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Abstract

Empirical studies have demonstrated the ef-
fectiveness of (score-based) diffusion models
in generating high-dimensional data, such as
texts and images, which typically exhibit a
low-dimensional manifold nature. These em-
pirical successes raise the theoretical question
of whether score-based diffusion models can
optimally adapt to low-dimensional manifold
structures. While recent work has validated
the minimax optimality of diffusion models
when the target distribution admits a smooth
density with respect to the Lebesgue measure
of the ambient data space, these findings do
not fully account for the ability of diffusion
models in avoiding the the curse of dimen-
sionality when estimating high-dimensional
distributions. This work considers two com-
mon classes of diffusion models: Langevin dif-
fusion and forward-backward diffusion. We
show that both models can adapt to the in-
trinsic manifold structure by showing that
the convergence rate of the inducing distribu-
tion estimator depends only on the intrinsic
dimension of the data. Moreover, our consid-
ered estimator does not require knowing or
explicitly estimating the manifold. We also
demonstrate that the forward-backward dif-
fusion can achieve the minimax optimal rate
under the Wasserstein metric when the tar-
get distribution possesses a smooth density
with respect to the volume measure of the
low-dimensional manifold.

1 Introduction

Generative models have emerged as powerful and rou-
tinely utilized tools for generating complex data, find-
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ing numerous applications across various domains, in-
cluding computer vision Park et al. (2021); Wang et al.
(2021); Turhan and Bilge (2018), natural language pro-
cessing Salakhutdinov (2015); Nadkarni et al. (2011),
and bioinformatics Cheng et al. (2021); Lan et al.
(2020). Contrasted with classical explicit distribu-
tion estimation approaches, generative modeling im-
plicitly estimates the data distribution by characteriz-
ing the data-generating process, and can adeptly cap-
ture highly nonlinear structures that may lead to singu-
larities, such as jumps and point masses, in the distri-
bution. Additionally, generating samples from the un-
derlying data distribution can be more useful and im-
portant than estimating it in many applications, such
as synthetic image creation, automated text genera-
tion, and biological structure simulation.

Various architectures and training methodologies, such
as Generative Adversarial Networks (GAN) Goodfel-
low et al. (2014), Variational Autoencoders (VAE)
Kingma and Welling (2013), and flow-based genera-
tive model Papamakarios et al. (2021), have been de-
veloped to enhance the efficacy and application range
of generative models, each presenting unique strengths
and challenges. Recently, a new class of generative
models, known as (score-based) diffusion models Ho
et al. (2020); Song et al. (2020); Nichol and Dhariwal
(2021); Song and Ermon (2019), has showcased state-
of-the-art performance in various domains, includ-
ing high-quality image generation Song et al. (2020);
Nichol and Dhariwal (2021), photorealistic text-to-
image translation Saharia et al. (2022), and high-
fidelity audio production Kong et al. (2020). In par-
ticular, two classes of diffusion models are prevalently
employed for sampling and data generation. One is
Langevin diffusion models, which leverage Langevin
dynamics to gradually transition a simple initial distri-
bution to the target data distribution, making use of
the gradient of the logarithmic data density (i.e. score),
typically estimated through score matching. The other
is forward-backward diffusion models, which employ
two diffusions to construct the generative model. The
first diffusion, called the forward process, utilizes an
analytically tractable stochastic differential equation,
such as the Ornstein-Uhlenbeck (OU) process, to trans-
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form the data distribution to a simple noise distribu-
tion. The second diffusion, called the backward pro-
cess, utilizes the time-reversal of the forward process
to generate data from noise based on the score esti-
mated from the forward process.

Despite the high-dimensional form of data in various
applications, the empirical success of state-of-the-art
generative modeling approaches is often attributed to
the identification and utilization of low-dimensional
manifold structures within the data. These structures
enable a means to circumvent the curse of dimension-
ality, allowing generative models to adeptly adapt to
manifold structures. For instance, earlier generative
modeling approaches, including GAN and VAE, typ-
ically involve the extraction of latent features or rep-
resentations (encoding) that are used for accurately
reconstructing the original data (decoding). In other
words, a low-dimensional manifold structure is implic-
itly assumed and utilized in distribution modeling and
estimation. In contrast, diffusion models do not explic-
itly estimate or utilize the manifold structure, beyond
merely injecting Gaussian noise to smooth out the
(possibly) singular data distribution, yet they achieve
remarkably accurate data generation. Motivated by
these considerations, the present study aims to address
the following theoretical question: Is diffusion model-
ing able to optimally adapt to the manifold structure in
the data? In other words, does the convergence rate of
the induced distribution estimator from diffusion mod-
els depend only on the intrinsic dimension of the data,
and is the rate optimal?

Related works. Recently, convergence rates of gener-
ative models for implicit distribution estimation have
been investigated by a number of works. Tang and
Yang (2021) examines the excess risk associated with
VAE through the lens of M -estimation. When spe-
cialized to Gaussian encoders and decoders with mean
functions approximated by ReLU neural networks,
their result demonstrates that VAE can adapt to low-
dimensional manifold structures. However, the derived
rate of convergence is worse than the minimax-optimal
rate, as the KullbackLeibler (KL) divergence objective
in VAE appears unsuitable for comparing mutually
singular distributions. Several recent studies estab-
lish quantitative convergence rates for GAN in distri-
bution estimation under various discrepancy metrics,
such as the Jensen-Shannon divergence Belomestny
et al. (2021), Wasserstein distances Liang (2021); Chae
(2022); Tang and Yang (2023), and adversarial losses
(also termed integral probability metrics) Liang (2021);
Tang and Yang (2023); Uppal et al. (2019). Among
these, Liang (2021) demonstrates that, by replacing
the empirical distribution with a regularized version
that incorporates the smoothness of the target den-

sity function, GAN can attain the minimax rate of
convergence for smooth density estimation under the
1-Wasserstein metric. Furthermore, Tang and Yang
(2023) establishes the minimax rate under adversarial
losses for estimating smooth distributions supported
on manifolds, and shows that a regularized GAN ex-
plicitly incorporating the manifold structure can at-
tain this rate.

For Langevin diffusion models, some previous works
such as Huggins and Zou (2017); Dalalyan and Karag-
ulyan (2019); Yang and Wibisono (2022) have studied
its convergence and asymptotic bias due to the use
of an inaccurate score (e.g., based on stochastic gra-
dient or score matching). However, their assumptions
on the score approximation either requires a nearly
L∞-accurate score estimator Dalalyan and Karagulyan
(2019), or a controlled moment generating function for
the approximation error Yang and Wibisono (2022),
both implying a controlled error under all finite mo-
ments. In comparison, our proof only requires a fourth-
moment error bound (expectation under the stationary
distribution of the diffusion) on the score estimation.

For forward-backward diffusion models, Chen et al.
(2022); Lee et al. (2023) demonstrate that an L2-
accurate score estimator leads to a controlled distri-
bution estimation error bound in the total variation
distance. Oko et al. (2023) analyzes the L2-error in
score estimation utilizing score matching over a neu-
ral network class, and demonstrates that, under cer-
tain smoothness conditions on the true density func-
tion, the estimated data distribution achieves the min-
imax optimal rate both in the total variation distance
and in the 1-Wasserstein distance. For data distribu-
tions supported on manifolds, Pidstrigach (2022) iden-
tifies conditions that enable forward-backward diffu-
sion to generate samples from the data manifold and
highlights the drift explosion in the backward diffu-
sion process as time progresses; De Bortoli (2022) ex-
amines convergence in the 1-Wasserstein distance un-
der an L2 error assumption on the score estimator;
and Oko et al. (2023); Chen et al. (2023) establish ex-
plicit convergence rates using specific score estimation
methods when the data-supporting manifold is a low-
dimensional hyperplane in the ambient space, with the
rate by Oko et al. (2023) attaining the minimax opti-
mality in the 1-Wasserstein distance.

Our contributions. In this paper, we illustrate
that both diffusion models can adapt to the intrin-
sic manifold structure by demonstrating that the con-
vergence rates of the inducing distribution estimators
are n−O(d−1) up to logarithmic terms, with d denot-
ing the data intrinsic dimension. Interestingly, unlike
other generative modelling approaches such as GAN
and VAE, our considered estimator does not need
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knowing or explicitly estimating the manifold. Fur-
thermore, our result shows that the forward-backward
diffusion can achieve the minimax optimal rate of
max

{
1√
n
, n− α+1

2α+d
}

under the 1-Wasserstein metric
when the target distribution admits an α-smooth den-
sity with respect to the volume measure of a (poten-
tially non-linear) d-dimensional manifold in the ambi-
ent space RD. For Langevin diffusion models, in order
to appropriately define the drift based on a singular
data distribution, we consider a Gaussian-smoothed
score and a corresponding score estimation method;
technically, we demonstrate that a fourth-moment er-
ror bound on the score estimator suffices to imply a
distribution estimation error bound, which refines ex-
isting theory that assumes either an L∞ error bound or
a moment-generating function bound on the error dis-
tribution of the score estimator. For forward-backward
diffusion models, we show that the minimax optimal
estimation error can be attained without explicitly esti-
mating the manifold by employing a new class of score
approximating neural network class whose complexity
gradually changes with time t, and derive an explicit
score approximation error bound.

2 Diffusion Models and Score
Estimation

In this section, we review two representative score-
based diffusion models for distribution estimation. We
also discuss their adaptations for handling singular dis-
tributions with manifold structure.

2.1 Langevin diffusion models

In generative modeling, the goal is to implicitly learn
the underlying data distribution pdata on data space
X ⊂ RD by specifying a data generative model that
produces samples looking similar to a given set of
i.i.d. samples {xi}ni=1 from pdata. Earlier attempts
(e.g., Song and Ermon (2019)) to address this prob-
lem using diffusion models directly used a (time-
discretized) Langevin model to generate new data
when pdata admits a density with respect to the
Lebesgue measure on RD,

dXt = −∇ log pdata(Xt) dt+
√
2 dBt, X0 ∼ p0, (1)

where {Bt : t ≥ 0} denotes the standard Brownian
motion in RD, p0 is an initial distribution that is easy
to sample from, and ∇ log pdata : RD → RD is called
the score function defining the drift term of the dif-
fusion model. As a well-known result, the stationary
(or limiting) distribution of the Langevin model (1)
coincides with the target distribution pdata. In other
words, the distribution pt of Xt converges to pdata as

t→∞ under various metrics over P(X ), the space of
all distribution on the data space X ⊂ RD. In prac-
tice, the score function needs to be estimated; we defer
details about score estimation using the finite sample
set {xi}ni=1 to Section 2.3. In this paper, we aim to
keep the presentation simple by ignoring the techni-
cal issues that arise from the time-discretization er-
ror in simulating or generating samples from diffusion
models, which have been addressed in many existing
works, e.g., Zhang et al. (2023); Dalalyan (2017); Li
et al. (2019). Unfortunately, this conceptually simple
score-based diffusion modeling approach has a notable
drawback: the convergence of pt to its limit pdata can
be exponentially slow due to the non-log-concavity or
multi-modality of pdata.

When dealing with high-dimensional data residing on
low-dimensional manifolds, a common scenario in im-
age and text generation, pdata becomes a singular dis-
tribution on the data ambient space RD. In such
cases, Song and Ermon (2019) proposes an anneal-
ing approach, where they use scores associated with
the Gaussian-smoothed data distribution pdata,σ(·) =∫
RD pdata(y)ϕσ( · −y)dy with different levels of noise σ

to construct a sequence of annealed Langevin models.
Here, ϕσ denotes the density function of N (0, σ2ID).
In the sampling stage, noise levels are gradually de-
creased as the sampling process approaches the data
manifold. In this work, we instead consider the follow-
ing Gaussian-smoothed Langevin diffusion

dXt = −∇ log pdata,σ(Xt) dt+
√
2 dBt, X0 ∼ p0 (2)

using a single noise parameter σ to optimally trade-off
the bias and variance in order to attain a best estima-
tion error. Intuitively, this parameter σ plays a similar
role as an inverse bandwidth parameter as in the kernel
density estimator (e.g., Kim et al. (2019); Divol (2022)
for KDE on manifolds). The first contribution of this
paper is to show that, with a properly chosen σ that
depends only on the sample size n and the intrinsic
dimensionality d of the data, this Gaussian-smoothed
Langevin diffusion can adapt to the intrinsic manifold
structure by showing that the convergence rate of the
inducing distribution estimator for estimating pdata de-
pends only on d. Here, the estimation of the noise-
perturbed score function ∇ log pdata,σ is discussed in
Section 2.3.

2.2 Forward and backward diffusion models

To address the issue of potentially exponentially slow
convergence inherent to the Langevin diffusion model,
several recent papers (e.g., Ho et al. (2020); Song et al.
(2020)) have introduced forward and backward diffu-
sion models. These strategies employ two diffusion pro-
cesses collaboratively: one for constructing more com-
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plex, time-dependent score functions, and the other
for generating samples through a time-inhomogeneous
process, based on the estimated score functions. Con-
sequently, this method can circumvent the slow conver-
gence typically associated with using a single diffusion
model.

Specifically, the first diffusion process, referred to as
the forward diffusion, employs a simple diffusion start-
ing from pdata that admits a closed-form solution and
converges exponentially quickly to its limiting distri-
bution, such as the OrnsteinUhlenbeck (OU) process:

d
−→
X t = −βt

−→
X t dt+ δt dBt,

−→
X 0 ∼ pdata, (3)

for some (possibly time-dependent) drift coefficient
βt :, t ≥ 0 and scalar diffusion coefficient δt :, t ≥ 0.
Without loss of generality, we will focus on the OU
process with δt =

√
2βt as the forward diffusion in

this paper,1 which admits the closed form solution
Xt = mtX0+

∫ t

0
mt

ms

√
2βs dBs and has the conditional

distribution of pt( · |X0) = N (mtX0, σ
2
t ID) given X0,

where mt = exp
(
−

∫ t

0
βs ds

)
and σ2

t = 1 − m2
t . For

example, for constant drift βt ≡ β and diffusion δt ≡√
2β, we have mt = exp(−βt), σ2

t = 1 − exp(−2βt),
and pt converges exponentially quickly to its limiting
distribution p∞ = N (0, σ2

∞ID) with σ2
∞ = 1 under the

total variation metric dTV, or

dTV(pt, p∞) ≤ C exp(−βt), t ≥ 0, (4)

for some constant C only depending on p0 = pdata.
Using sample trajectories generated from the forward
diffusion (3), one can estimate the (time-dependent)
score function ∇ log pt :,RD → RD by score matching
(c.f. Section 2.3), where pt denotes the (unconditional)
distribution of Xt, for t from zero to a sufficiently large
time T ≍ log(ε−1) such that dTV(pT , p∞) ≤ ε for some
error tolerance level ε ∈ (0, 1).

The second diffusion process, usually called the back-
ward diffusion, reverses the forward diffusion:

d
←−
X t =

[
βT−t

←−
X t + 2βT−t∇ log pT−t(

←−
X t)

]
dt

+
√
2βT−t dBt,

←−
X 0 ∼ pT . (5)

Under mild conditions on pdata Song et al. (2020);
Haussmann and Pardoux (1986) (valid for our setting),
the distribution of

←−
X t is pT−t, so that

←−
XT ∼ p0 =

pdata. Since pT is close to p∞ = N (0, ID), one can in-
stead initialize the backward diffusion using the easy-
to-sample distribution p∞, i.e. set

←−
X 0 ∼ N (0, ID).

1This process is also called Variance Preserving Stochas-
tic Differential Equation (VPSDE) in Song et al. (2020),
which yields a process with a fixed variance of one when
the initial distribution has unit variance. The analysis of
this process is also considered in Oko et al. (2023); Chen
et al. (2022).

The drift term of the backward diffusion depends on
the score function estimated using the forward diffu-
sion; therefore, the forward and the backward diffu-
sions together yield a generative model for sampling
from pdata.

When pdata is a singular distribution on RD, the dis-
tribution pt of

−→
X t for any t > 0 from the forward dif-

fusion is the convolution of a rescaled pdata and Gaus-
sian noise N(0, σ2

t ID), making it absolutely continuous
with respect to the Lebesgue measure on RD. There-
fore, unlike the Langevin diffusion (1) that requires
deliberately injecting Gaussian noise to smooth out
pdata, the forward and backward diffusion model does
not require this extra step. The second contribution of
this paper is to show that the forward and backward
diffusion model can also achieve the minimax-optimal
convergence rate for estimating pdata. Moreover, com-
pared to the Langevin diffusion model, the forward
and backward diffusion model does not impose any
log-concavity condition or any logarithmic Sobolev in-
equalities on pdata. This is consistent with the key
observations made in earlier studies (e.g., Chen et al.
(2022); Lee et al. (2023)) that do not involve manifold
structures.

2.3 Score estimation

Langevin diffusion model: The score function in
the Langevin diffusion model can be estimated by score
matching Song and Ermon (2019); Vincent (2011). At
the population level, score matching solves the follow-
ing optimization problem

min
θ

Ex∼pdata

[
∥Sθ(x)−∇ log pdata(x)∥2

]
, (6)

where Sθ : RD → RD denotes a score approximat-
ing map parameterized by parameter θ, e.g., (deep)
neural networks with controlled depth and number of
non-zero parameters. Recall that the primary focus
of this paper is on estimating a singular distribution
with manifold structure. Therefore, we consider us-
ing Ŝ = Sθ̂ to approximate the noise-injected score
∇ log pdata,σ, where θ̂ minimizes the following sample-
level score matching loss:

1

n

n∑
i=1

Ex∼pσ(· | xi)

[
∥Sθ(x)−∇ log pσ(x |xi)∥2

]
. (7)

Here, pσ(x |xi) = N (xi, σ
2ID) denotes the conditional

distribution of the Gaussian error-injected random
variable x given i-th data xi, so that the (uncondi-
tional) distribution of x is pdata,σ. Finally, the distri-
bution estimator of pdata based the estimated Langevin
diffusion model is p̂ = p̂T , where p̂t is the distribution
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of Yt for t ∈ [0, T ], and

dYt = −Ŝ(Yt) dt+
√
2 dBt, Y0 ∼ µ0. (8)

Forward-backward diffusion model: To estimate
the time-dependent score function ∇ log pt in the for-
ward diffusion (3), one can use a score function Sθ(x, t)
over space and time, indexed by a parameter θ, and
minimize the following sample score matching loss:

1

n

n∑
i=1

∫ T

0

Ext∼pt(· | xi)[
∥Sθ(xt, t)−∇ log pt(xt |xi)∥2

]
λ(t) dt, (9)

where λ(t) is a weighting function. Here, given xi,
xt ∼ pt(· |xi) = N (mtxi, σ

2
t ID) follows the forward

diffusion (3) with initialization X0 = xi. Without loss
of generality, we may assume λ(t) to be a normalized
probability density function over [0, T ]. Finally, let
Ŝ(x, t) = Sθ̂(x, t) denote the corresponding score esti-
mator. The distribution estimator of pdata based the
forward-backward diffusion model is p̂ = p̂T , where p̂t
is the distribution of

←−
Y t for t ∈ [0, T ], and

d
←−
Y t =

[
βT−t

←−
Y t + 2βT−tŜ(

←−
Y t, T − t)

]
dt

+
√
2βT−t dBt,

←−
Y 0 ∼ N (0, ID). (10)

In both cases, we consider using neural networks to
define the function class for approximating the score.

Definition (Neural network class): A class of neu-
ral networks Φ(L, W, S, B, V ) with height L, width
vector W = (W1, W2, . . . , WL+1), sparsity R, norm
constraint B, and function norm constraint V is de-
fined as Φ(L,W,R,B, V ) =

{
f(·) = (A(L) ReLU(·) +

b(L))◦ · · · ◦ (A(2) ReLU(·)+ b(2))◦ (A(1)x+ b(1))
∣∣A(i) ∈

RWi×Wi+1 ; b(i) ∈ RWi+1 ;
∑l

i=1(∥A(i)∥0 + ∥b(i)∥0) ≤
R; maxi ∥A(i)∥∞ ∨ ∥b(i)∥∞ ≤ B; ∥f∥∞ ≤ V

}
, where

ReLU(x) = max{0, x} denotes the rectified linear unit
activation function.

3 Main Results

In this section, we present our main results show-
ing that both diffusion models can adapt to the data
manifold structure without requiring knowledge or ex-
plicit estimation of the manifold. For any sequence
{an : n ≥ 1}, we use the notation Θ(an) to mean of
order of an up to a multiplicative constant as n→∞
and Θ̃(an) to mean of order of an up to a multiplica-
tive constant and logarithmic terms of n. Similarly, we
use O(an) and Õ(an) to mean of at most order of an.

3.1 Assumptions

Assumption A (Regularity of data manifold):
The target distribution pdata lies in a d-dimensional
submanifold M embedded in RD. The manifold M
is compact and boundaryless. Additionally, it is β-
smooth for β ≥ 2 and has a reach that is lower bounded
away from zero.2

Intuitively, imposing a lower bound on the reach of
the manifold ensures that the projection map to the
manifold is locally well-defined; that is, it guarantees a
unique projection from any point close to the manifold.
In the analysis of the generalization bound (see Ap-
pendix C), the existence of such local projection maps
will be leveraged to construct neural networks capable
of approximating true score functions. Furthermore,
appropriate neural networks will be designed to locally
approximate these projection maps (see Lemma C.8),
with their complexity being dependent on the smooth-
ness level β of the manifold.

Assumption B (Regularity of data distribution):
The density f∗ of pdata relative to the volume measure
of M is α-smooth with α ∈ [0, β − 1] and uniformly
bounded away from zero on M.

Here, we restrict α ∈ [0, β − 1] to make the den-
sity smoothness compatible with the manifold smooth-
ness (see Appendix A for details). In the special case
when M = RD, the density function f∗ becomes the
usual probability density function with respect to the
Lebesgue measure on RD, and the α-smoothness con-
dition reduces to the usual Hölder smoothness. The
lower bound requirement of pdata on M is commonly
imposed for distribution estimation in statistics; oth-
erwise, we can redefine the manifoldM as the support
of pdata, or the region where pdata is lower bounded by
any sufficiently small positive constant.

Assumption C (Poincaré constant): pdata satisfies
a Poincaré inequality with a (Poincaré) constant CPI >
0, that is, for all smooth functions f : RD → R,

Varpdata
(f) = Epdata

[
(f−Eµ∗f)2

]
≤ CPI·Epdata

[
∥∇f∥2

]
.

Assumption C will be utilized only in the analysis of
Langevin diffusion. Note that in a standard analysis of
Langevin diffusion, a positive Poincaré constant CPI,
as assumed in Assumption C, is a common condition
to guarantee exponential ergodicity with respect to the
chi-squared divergence χ2: if M = RD and pdata sat-
isfies Assumption C, then the time t distribution pt of
the Langevin diffusion (1) converges to pdata as

χ2(pt ∥ pdata) ≤ exp
(
− 2t/CPI

)
χ2(µ0 ∥ pdata), t ≥ 0.

2Detailed definitions of a β-smooth manifold and the
reach of a manifold can be found in Appendix A.
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Langevin diffusion is a useful approach for sampling
only when pt rapidly approaches its stationary distri-
bution as t increases; therefore, making Assumption
C when analyzing the Langevin diffusion approach is
reasonable. See, for example Besson et al. (2018);
Mertin (2022), for related results about Poincaré in-
equalities on manifolds. In particular, the correspond-
ing Poincaré constant also depends on certain geo-
metric characterizations of the manifold, such as the
Ricci curvature. As an intermediate result in our
proof (proof of Lemma B.4 in Appendix D.6), we show
that Assumption C implies the Gaussian-smoothed dis-
tribution pdata,σ also satisfies a Poincaré inequality
with constant CPI + σ2, leading to the exponential
convergence of the Gaussian-smoothed Langevin dif-
fusion (2).

3.2 Langevin diffusion model

Let Ŝ denote the score estimator defined as the min-
imizer of score matching loss (7) over the neural net-
work class Φ(L,W,R,B, V ). Recall that {Yt : t ≥ 0}
follows the diffusion (8) with estimated score Ŝ, which
approximates the “population-level” Langevin diffu-
sion (2) . Since the Langevin diffusion (2) converges
exponentially fast to pdata,σ as t → ∞ and the man-
ifold is compact, we define a (truncated) estimator p̂
for pdata as the distribution of YT · 1(∥YT ∥∞ ≤ L), for
some large constants (T,L) so that pT ≈ pdata and
M⊂ BL/2(0D). Here, we truncate the support of the
distribution p̄T of YT to guarantee a bounded support
for the distribution estimator, which is merely for tech-
nical reasons. Let W1(µ, ν) = supf is 1-Lip |

∫
f dµ −∫

f dν | denote the 1-Wasserstein distance.
Theorem 1 (Langevin diffusion). Suppose Assump-
tions A, B, and C are satisfied, and the initial
distribution p0 in the Langevin diffusion satisfies
χ2(p0 ∥ pdata,σ) = O(1). If we set T = Θ

(
log n

)
and

σ =


n− 1

8+d α ≤ 4 or β ≤ 5

n− α
8α+4d 4 < α ≤ 4

5β

n− β
10α+5d otherwise,

then there exist neural network size L = Θ(log4 n),
∥W∥∞ = Θ̃

(
(σ∨n− 1

2α+d )−d
)
, R = Θ̃

(
(σ∨n− 1

2α+d )−d
)
,

B = exp(Θ(log4 n)) and V = Θ(
√
log n
σ ), so that

E[W1(p̂, pdata)] = Õ(σ).

Theorem 1 shows that the convergence rate of the dis-
tribution estimator p̂ only depends on the intrinsic di-
mension d as opposed to the ambient dimension D.
However, as we will see, the current error upper bound
is worse than error attained by the forward-backward
diffusion model (see Theorem 2). By inspecting our

current proof, we find this larger error bound is mainly
due to several reasons.

At the technical level, an L2 error (or second-moment)
bound on the estimated score Ŝ is not sufficient to con-
trol the W1 error (or any other common error metrics)
of the distribution estimator p̂ based on the Langevin
diffusion, an observation also made in Huggins and
Zou (2017); Yang and Wibisono (2022). Our new proof
technique (c.f. Section 4) demonstrates that a fourth-
moment error bound on the score estimation suffices
to control the W1 error, thereby relaxing the moment
generating function error assumption from Yang and
Wibisono (2022) that implies an error bound on the
score estimation for all finite moments. However, since
the score estimation method based on score matching
is intrinsically tied up with the second-moment bound,
and directly relating the fourth-moment to the second-
moment by the L∞ norm on the score will introduce
an extra factor of order Õ(σ−1) since the Gaussian-
smoothed score ∇ log pdata,σ has L∞ norm of order
Õ(σ−1) near the manifold.

At the method design level, given that Gaussian noise
N(0, σ2ID) in the full space RD is injected into the
true data distribution pdata in the construction of the
Langevin diffusion, it is plausible that such isotropic
noise might dilute the manifold structure and lead
to an inflated approximation error. For instance,
this isotropic noise renders the approximation error
W1(pdata,σ, pdata) = O(σ), which is larger than a typ-
ical approximation error of order σα+1 that can lead
to the minimax rate in the analysis. Note that σ can-
not be chosen too small, as otherwise the Gaussian-
smoothed score ∇ log pdata,σ becomes nearly singular,
causing its estimation error to explode. It is there-
fore an interesting direction to explore whether it is
possible to improve the score estimation procedure in
Langevin diffusion either by using a different loss, or by
avoiding the injection of isotropic Gaussian noise and
incorporating information about the manifold beyond
merely its intrinsic dimension d.

One natural choice of initialization p0 is the kernel
density estimator (KDE) with bandwidth σ in RD,
i.e., p0(y) = n−1

∑n
i=1 exp(−

∥Xi−y∥2

2σ2 ) · (2πσ2)−
D
2 . In-

terestingly, the following lemma shows that the chi-
squared error rate only depends on the intrinsic di-
mension d, and χ2(p0 ∥ pdata,σ) = O(1) is satisfied if
σ−1 = Õ(n 1

d ).

Lemma 1. Let (δ1, δ2) be any fixed positive constants.
Consider the initial distribution with density p0(y) =

n−1
∑n

i=1 exp(−
∥Xi−y∥2

2σ2 ) ·(2πσ2)−
D
2 . If c1n−δ1 ≤ σ ≤

c2n
−δ2 , then with probability at least 1− c3n

−1,

χ2(p0 ∥ pdata,σ) = Õ
(
n−1σ−d + n−2σ−2d

)
.
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3.3 Forward-backward diffusion model

Recall that in the forward diffusion process (3), the
distribution pt of Xt as t → ∞ rapidly approaches a
limiting normal distribution N (0, ID), which admits
an infinitely differentiable density function, allowing
the corresponding score function to be approximated
by relatively small neural networks. Consequently, it is
anticipated that the required sizes of neural networks
for approximating∇ log pt would gradually decrease as
t increases. This motivates us to consider score neural
networks whose size decreases in t. For technical con-
venience, we discretize the time and consider the fol-
lowing piece-wise constant complexity neural network
class, although it is possible to design a more sophisti-
cated network architecture that allows for a smoother
change of network complexity over time t and facilitate
the sharing of parameters (potentially long-range) be-
tween different times,

SNN =
{
S(x, t) =

K−1∑
k=0

Sk(x, t) · 1
(
tk ≤ t < tk+1

)
∣∣Sk ∈ Φ(Lk,Wk, Rk, Bk, Vk), k ∈ [K]

}
,

where τ = t0 < t1 < · · · < tK = T , tk+1

tk
= 2 for any

0 ≤ k ≤ K−1, and τ = 2−KT . Let Ŝ(x, t) be the score
estimator defined as the minimizer of score matching
loss (9) over score class SNN with weight function
λ(t) = t (other weights like λ(t) ≡ 1 also work). Based
on the backward diffusion process (10) with the esti-
mated score Ŝ, we define a similar truncated estimator
p̂ for pdata as the distribution of

←−
Y T−τ ·1(∥

←−
Y T−τ∥∞ ≤

L). Here, we consider time T − τ instead of T to mit-
igate the issue of the score function explosion, which
arises due to the singularity of the target distribution,
or pt → ∞ on M as t → 0+. For any γ ∈ (0, 1], let
dγ(µ, ν) = supf : ∥f(x)−f(y)∥≤∥x−y∥γ |

∫
f dµ −

∫
f dν |

denote a general γ adversarial loss, which reduces to
W1 at γ = 1 and to dTV as γ → 0+. Roughly speaking,
a smaller (larger) γ causes dγ to place more weight on
the manifold (density) estimation; see Appendix B.1
for further details.

Theorem 2 (Forward-backward diffusion). Suppose
Assumptions A and B are satisfied, and the drift co-
efficient βt is infinitely differentiable and uniformly
bounded from above and below in t. Then there ex-
ist τ = Θ̃(n− 2β

2α+d ), T = Θ(log n), and neural network
sizes satisfying Lk = Θ(log4 n), ∥Wk∥∞ = Θ̃

(
t
− d

2

k ∨
n

d
2α+d

)
, Rk = Θ̃

(
t
− d

2

k ∨ n
d

2α+d
)
, logBk = Θ(log4 n)

and Vk = Θ
(√

log n
tk∧1

)
for k ∈ {0, 1, · · · ,K − 1}, so that

E[dγ(p̂, pdata)] = Õ
(
n− 1

2 ∨ n− βγ
2α+d ∨ n− α+γ

2α+d
)
.

Theorem 2 shows that the forward-backward diffu-
sion model can also adapt to the (possibly unknown)
manifold structure. Moreover, when taking γ = 1,
the obtained convergence rate 1√

n
∨ n− α+1

2α+d matches
the minimax-optimal rate under W1 metric of esti-
mating an α-smooth distribution supported on a d-
dimensional manifold in RD Tang and Yang (2023) up
to log n terms. As expected, to attain the minimax
rate by optimally balancing the approximation and es-
timation error of the score estimator, the neural net-
work size (e.g., ∥Wk∥∞, Rk and Vk) demanded in the
theorem for approximating the score function ∇ log pt
decreases as t increases.

Compared to the Langevin diffusion model, forward-
backward diffusion does not require imposing any con-
dition, such as isoperimetry (Assumption C) or log-
Sobolev inequality on pdata, to ensure a controlled er-
ror bound that does not explode as t increases. This
observation is consistent with numerous existing theo-
retical works (e.g., De Bortoli et al. (2021); Oko et al.
(2023); Lee et al. (2023); Chen et al. (2022)) primar-
ily focusing on characterizing error bounds on sam-
pling from distributions in RD that admit (at least)
Lipschitz continuous density functions (with respect
to the ambient space Lebesgue measure). In ad-
dition, according to Theorem 1, Langevin diffusion
requires a reasonably good initialization p0 so that
χ2(p0 ∥ pdata,σ) = O(1), while the backward diffusion
for sampling simply initializes at a normal distribution.
It is worth noticing that an essential property leading
to minimax-optimality is that forward-backward dif-
fusion only requires an L2-accurate score estimate in
order to produce a good distribution estimator p̂ Lee
et al. (2023); Chen et al. (2022); the present work rig-
orously demonstrates that this property remains valid
when estimating singular target distributions, utilizing
the same technique of Girsanov’s theorem.

The convergence rate implied by Theorem 2 is
minimax-optimal in dγ for a sufficiently smooth man-
ifold, i.e., β ≥ γ−1α + 1, or relatively large γ, i.e.,
γ ≥ α/(β − 1). However, the term arising from (im-
plicitly) estimating the unknown β-smooth manifold
structure is n− βγ

2α+d (cf. Theorem B.1 in the appendix),
which is suboptimal compared to the minimax rate
n− βγ

d Aamari and Levrard (2019); Tang and Yang
(2023) in dγ . We suspect that this sub-optimality may
not arise from our analysis but rather from adding
isotropic Gaussian noises in the forward process (3),
which may mask finer details of the manifold structure
and lead to an inflated error akin to the Langevin dif-
fusion model with Gaussian-smoothing. In contrast to
the Langevin diffusion, employing Gaussian-smoothed
score functions at all noise levels during the sampling
step in the backward process helps mitigate its impact
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on directions tangential to the manifold, resulting in a
considerably improved error bound 1√

n
∨ n− α+γ

2α+d com-
pared to that based on the Langevin diffusion. How-
ever, errors accumulated along directions perpendicu-
lar to the manifold are less impacted and contribute to
the sub-optimal error term n− βγ

2α+d . We leave a formal
investigation of this to future research.

4 Technical Highlights

In this section, we highlight some technical contribu-
tions in the proof.

Langevin diffusion with inaccurate score. Con-
sider a generic diffusion model with negative drift S̃
(which is the score ∇ log pdata,σ in our case) and sta-
tionary distribution p̃ (i.e., pdata,σ),

dXt = −S̃(Xt) dt+
√
2 dBt, X0 ∼ p0;

and an approximating diffusion model with an esti-
mated negative drift Ŝ,

dYt = −Ŝ(Yt) dt+
√
2 dBt, Y0 ∼ p0.

Let pt and p̂t denote the respective distributions of
Xt and Yt. Note that the score matching loss (7) is
averaged over independent and identically distributed
(i.i.d.) samples {xi}ni=1 ∼ pdata. Consequently, the in-
duced generalization error bound is only averaged over
the stationary distribution p̃ (see Lemma B.5 in Ap-
pendix B.2) rather than over both pt and t. This is in
contrast with the forward-backward diffusion, where
the score S(x, t) is dependent on t, and the score
matching loss (9) is averaged over time t ∈ [0, T ]; so
that its generalization error has an L2 bound averaged
over both pt and t (see Lemma B.3 in Appendix B.1),
facilitating the neat application of Girsanov’s theorem
to control the distribution estimation error (see the
proof of Lemma B.2 in Appendix D.1, or Song and
Ermon (2019); Chen et al. (2022); Oko et al. (2023)).
However, the complication in analyzing the Langevin
diffusion with inexact drift calls for the more stringent
L∞ or the moment generating function bound (e.g.,
Dalalyan and Karagulyan (2019); Yang and Wibisono
(2022)) than a simple second moment bound in order
to analyze the distribution estimation error. In com-
parison, our analysis demonstrates that a bound on
the fourth moment of the score estimation error is suf-
ficient. More specifically, we can invoke Pinsker’s in-
equality and Girsanov’s Theorem to obtain

d2TV(pT , p̂T ) ≤
∫ T

0

∫
RD

∥∥Ŝ(x)− S̃(x)
∥∥2 pt(x)

p̃(x)
p̃(x) dx dt

≤

√∫
RD

∥∥Ŝ(x)− S̃(x)
∥∥4p̃(x) dx · ∫ T

0

√
χ2(pt ∥ p̃) + 1 dt,

where the second inequality is due to the Cauchy-
Schwarz inequality (over x). If p̃ satisfies Poincaré
inequality with Poincaré constant C ′

PI (in our case, we
can take C ′

PI = CPI + σ2, see Appendix D.6), then
χ2(pt ∥ p̃) ≤ exp(−2t C ′−1

PI ) · χ2(p0 ∥ p̃). Therefore, by
choosing T = O

(
C ′

PI

[
log n∨ log

(
χ2(p0 ∥ p̃)

)])
, we can

obtain the following using basic algebra,

dTV(p̂T , p̃) ≤ n−1+
√
C ′

PI ·
((

χ2(p0 ∥ p̃)
) 1

4 +
√

log n
)

·
(∫

RD

∥∥Ŝ(x)− S̃(x)
∥∥4 p̃(x) dx)1/4

.

This inequality relates the distribution estimation er-
ror to the fourth-moment of the score estimation error.

Forward-backward diffusion score estimation.
Our strategy for bounding the distribution estimation
error mainly follows the pipeline of Oko et al. (2023).
First, we construct a concrete neural network in SNN

to approximate the true score function ∇ log pt(x).
Subsequently, we use the complexity of SNN to con-
trol the generalization bound for the score estimator
Ŝ, which minimizes the sample score matching loss (9).
Finally, we apply Girsanov’s theorem to relate the dis-
tribution estimation error with the L2 score estimation
error Song and Ermon (2019); Chen et al. (2022); Oko
et al. (2023). Our main technical novelty occurs in the
first step of constructing score approximating neural
networks with controlled sizes under manifold struc-
ture, as summarized in the following lemma.
Lemma 2. Under the same neural network sizes
{(Lk,Wk, Rk, Bk, Vk)}Kk=1 and time T as in Theo-
rem 2, for any k ∈ {0, 1, · · · ,K−1}, there exists neural
network ϕk(x, t) ∈ Φ(Lk,Wk, Rk, Bk, Vk) so that∫ tk+1

tk

∫
RD

∥∥ϕk(x, t)−∇ log pt(x)
∥∥2 pt(x) dx dt

=

{
Õ
(
t−1
k n− 2β

2α+d + n− 2α
2α+d

)
, if τ ≤ tk ≤ n− 2

2α+d ;

Õ
(
n−1

)
, if n− 2

2α+d ≤ tk ≤ T.

The proof of this lemma (Appendix C) is substantially
more involved under a general (nonlinear) manifold as
considered in this paper than under a hyperplane as
considered in earlier studies Oko et al. (2023); Chen
et al. (2023). The term n− 2β

2α+d originates from the
nonlinearity of the β-smooth manifold, where we dis-
cretize the manifold with a suitable cover (resolution
level varying over tk) and approximate its local charts
via polynomials of order ⌊β⌋ (largest integer less than
β); see equation (16) in Appendix C. These local poly-
nomials can additionally be efficiently approximated
by neural networks with controlled sizes. The term
n− 2α

2α+d arises from local polynomial approximations
to the α-smooth density function within local chart
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parametrization over compact sets in Rd; refer to equa-
tion (27) in Appendix C. The actual proof contains
other technical components, such as using neural net-
works to approximate the local projection map ProjM
onto the manifold and local inner products over the
manifold; see Lemma C.8. Some of these bounds are
also utilized in the analysis of the score estimation er-
ror under the Langevin diffusion model (e.g., Lemma
B.5).

5 Discussion

In this study, we explored theoretical properties of two
prevalent diffusion models for sampling from complex
data distributions, demonstrating that both models
can accommodate general manifold structures of the
data by showing that the convergence rates of their in-
duced distribution estimators only depend on the man-
ifold intrinsic dimension. Our results strengthen the
findings of some existing studies, which either focus on
distributions supported on (potentially known) hyper-
planes or provide non-quantitative bounds. Addition-
ally, we showed that the forward-backward diffusion
achieves the corresponding minimax optimal rate un-
der the 1-Wasserstein metric. Some possible future di-
rections include improving the analysis of the Langevin
diffusion model and its score estimation method, an-
alyzing the discretization error arising from simulat-
ing the continuous-time diffusion, as well as proposing
data-driven methods that can accommodate unknown
intrinsic dimension d and smoothness levels (α, β) for
both diffusion-based generative models.
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Notation: We adopt the notations in the main text, and further introduce the following additional notations for
technical proofs. We use 1(·) to denote the indicator function so that 1(x ∈ A) = 1 if x ∈ A and zero otherwise.
For a finite set A, we use |A| to denote its cardinality. We use det(·) to denote the determinant of sqaure matrices.
For any positive integer m, we use the shorthand [m] := {1, 2, · · · ,m}. We use N0 to denote the set of non-
negative integers and Nd

0 = {(i1, i2, · · · , id) : ik ∈ N0, ∀ k ∈ [d]} to denote the set of d-dimensional multi-index.
For a multi-index i ∈ Nd

0, we denote |i| = i1+ i2+ · · ·+ id. We use N (µ,Σ) to denote the (multivariate) Gaussian
distribution with mean µ and covariance matrix Σ. For α ∈ R, the floor and ceiling functions are denoted by
⌊α⌋ and ⌈α⌉, indicating rounding α to the next smaller and larger integer. For two sequences {an} and {bn},
we use the notation an ≲ bn and an ≳ bn to mean an ≤ Cbn and an ≥ Cbn, respectively, for some constant
C > 0 independent of n. In addition, an ≍ bn means that both an ≲ bn and an ≳ bn hold. For any measure
ν on Z and map G : Z → X , we denote G#ν as the push forward measure, which is defined as the unique
measure on X such that G#ν(A) = ν

(
G−1(A)

)
holds for any measurable set A on X . For a probability measure

µ and a measurable set Ω, we use µ|Ω to denote the restriction of µ on Ω. For two probability measures µ and
ν where µ is absolutely continuous with respect to ν, we use dµ

dν to denote the Radon-Nikodym derivative of µ
with respect to ν. The KL divergence between µ and ν is denoted by KL(µ ∥ ν) and is defined as

∫
log(dµdν ) dµ.

The χ2 divergence between µ and ν is denoted by χ2(µ ∥ ν) and is defined as
∫
(dµdν − 1)2 dν. The total variation

distance between µ and ν is denoted by dTV(µ, ν) and is defined as
∫

1
2 |

dµ
dν − 1| dν. When no ambiguity arises,

for an absolutely continuous probability measure µ, we may also use µ to refer its density function. We use
∥ · ∥p to denote the usual vector ℓp norm, and reserve ∥ · ∥ for the ℓ2 norm (that is, suppress the subscript when
p = 2). We use 0d to denote the d-dimensional all zero vector, and Br(x) the closed ball centered at x with
radius r (under the ℓ2 distance) in the Euclidean space. For the neural network class Φ(L,W,R,B, V ) defined
in the main text, when there is no constraint on V , we write Φ(L,W,R,B) = Φ(L,W,R,B,∞).
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A Regularity of Submanifold

Definition (Submanifold): A subset M of RD is a d-dimensional submanifold if for every point x in M, there
exists a neighbourhood V of x on M and an open set U ⊆ Rd, such that that there exists a homeomorphism ξ
that maps V to U , that is, ξ : V → U is bijective and both ξ and ξ−1 are continuous maps. We call (V, ξ) a
local coordinate chart of M near x, and ξ a coordinate map around x.

Definition (Reach): The reach of a closed subset A ⊂ RD is defined as

τA = inf
p∈A

dist(p,Med(A)) = inf
z∈Med(A)

dist(z,A)

where dist(z,A) = infp∈A ∥p − z∥ denotes the distance function to A, and Med(A) is the medial axis of A
consisting of the points that have at least two nearest neighbors on A, or

Med(A) =
{
z ∈ RD | ∃ p ̸= q ∈ A, ∥p− z∥ = ∥q − z∥ = dist(z,A)

}
.

The reach is the largest distance ρ ≥ 0 such that the projection to A is well defined on the ρ-offset{
x ∈ RD | dist(x,A) < ρ

}
.

Definition (Smooth Manifold): We say that a submanifold M is β-smooth if there exist positive constants
(r0, L) such that for any x∗ ∈ M, the function ProjTx∗M(x − x∗) : M → Tx∗M, defined as the projection
function of x−x∗ onto the tangent space Tx∗M of M at x∗, is a local diffeomorphism at x∗ with inverse function
Ψx∗ defined on Br0(0D) ∩ Tx∗M, and Ψx∗ is β-Hölder smooth with Hölder norm bounded by L.
Remark A.1. Let Vx∗ ∈ RD×d be an arbitrary orthonormal basis of Tx∗M. Then, ξ(x) = V T

x∗ ·ProjTx∗M(x−x∗)
serves as a special coordinate map around x∗ with a β-smooth inverse ξ−1(z) = Ψx∗(Vx∗z). It is worth noting that,
for a manifold M with positive reach, the β-smoothness of M is equivalent to the existence of β-smooth coordinate
maps that possess a β-smooth inverse (see for example, Lemma F.4 of Tang and Yang (2023)). Consequently,
the smoothness of M is an intrinsic property that does not rely on the the choice of the coordinate map.

Definition (Smooth distribution on a smooth manifold) We say a distribution µ∗ on a β-smooth subman-
ifold M being α-smooth if, for every x∗ ∈ M and β-smooth coordinate map ξ(·) : V → U around x∗ that admits
a β-smooth inverse, the distribution of the local coordinate ξ(x) for x ∼ µ∗|V admits an α-smooth density on U
with respect to the Lebesgue measure of Rd.
Remark A.2. To ensure compatibility between the smoothness of the density and the smoothness of the manifold,
the distribution smoothness parameter α should be smaller than β − 1. This is because when considering two
coordinate maps ξ1 : V1 → U1 and ξ2 : V2 → U2 around a point x∗, the change of measure formula yields:[

(ξ1)# (µ|V1∩V2
)
]
(ξ1(x)) =

[
(ξ2)# (µ|V1∩V2

)
]
(ξ2(x)) ·

∣∣∣det(d [ξ2 ◦ ξ−1
1

]
ξ1(x)

)∣∣∣ , x ∈ V1 ∩ V2.

where the differential d[ξ2◦ξ−1
1 ] of the transition map ξ2◦ξ−1

1 is (β−1)-smooth. If the smoothness level α is larger
than β − 1, it may lead to incompatible definitions of smoothness over the intersection of two coordinate charts.
Furthermore, when α ≤ β−1, an α-smooth distribution on M can be equivalently defined as a distribution whose
density function with respect to the volume measure of M exists and is α-smooth, as defined in the following.

Definition (Smooth density function): We say a density function f : M → R with respect to the volume
measure of M is α-smooth, if for any x ∈ M, f ◦ Ψx : Br0(0D) ∩ TxM → R is α-Hölder smooth with bounded
Hölder norm.

Geometric Properties of β-smooth manifolds with positive reach: (see for example, Lemma 20 of Divol
(2022)) Suppose M is a β-smooth d-dimensional submanifold with β ≥ 2 and reach τM. Then



1. If h ≤ τM
4 , then there exist some constants (c, C) so that for any x ∈ M,

c hd ≤ volM(Bh(x) ∩M) ≤ C hd,

where volM denotes the volume measure of M.

2. For any h ≤ r0 and x ∈ M, Bh(x) ∩M ⊂ Ψx

(
Bh(0D) ∩ TxM

)
⊂ B8h/7(x) ∩M.

3. For any x ∈ M, denotes TxM⊥ as the normal space of M at x, then there exists a map Nx : Br0(0D) ∩
TxM → TxM⊥ satisfying dNx(0) = 0, and for u ∈ Br0(0D) ∩ TxM, we have Ψx(u) = x + u +Nx(u) with
|Nx(u)| ≤ L|u|2.

4. If ProjM(z) = x for some z satisfying dist(z,M) < τM, then z − x ∈ TxM⊥.

B Proofs of Main Result

B.1 Forward backward diffusion model

We consider metric dγ (0 < γ ≤ 1) defined as

dγ(µ1, µ2) ≤ sup
f : ∥f(x)−f(y)∥≤∥x−y∥γ

∫
f(x) dµ1 −

∫
f(x) dµ2.

When γ = 1, dγ is equivalent to the 1-Wasserstein distance.
Remark B.1. The smoothness parameter γ in dγ characterizes a trade-off between supporting manifold recovery
and density estimation on the manifold. A smaller γ makes dγ(µ, ν) more sensitive to the misalignment between
the supports of µ and ν. To see this, define dist(x,A) = infy∈A ∥x − y∥ as the distance from a point x ∈ Rd to
a set A ⊂ RD. Note that dist(·, A)γ is γ-smooth for any γ > 0. For two distributions µ and ν with bounded
supports, we may take f(x) = c dist(x, supp(ν))γ − c dist(x, supp(µ))γ for some sufficiently small constants c,
leading to

dSγ(µ, ν) : = Eµ

[
dist(X, supp(ν))γ

]
+ Eν

[
dist(X, supp(µ))γ

]
≤ c−1dγ(µ, ν).

Consequently, an upper bound of dγ implies an error bound on the supporting manifold recovery through discrep-
ancy measure dSγ . As γ tends to zero, dSγ(µ, ν) approaches Pµ

(
X /∈ supp(ν)

)
+ Pν

(
X /∈ supp(µ)

)
, which vanishes

only if µ and ν have perfectly aligned supports.
Theorem B.1. Suppose Assumptions A and B are satisfied, and the drift coefficient βt is infinitely differentiable
with respect to t and β ≤ βt ≤ β holds uniformly over t for some positive constants (β, β). We choose τ =

c
(
n−

2β
2α+d (log n)β+1

)
and T = C log n for some large enough constants (c, C). Then for any 3 log log n

log n ≤ δ ≤
2

2α+d − log log n
log n , there exist choices of {Lk,Wk, Rk, Bk, Vk}K−1

k=0 so that

E[dγ(p̂, pdata)] ≲ n−
βγ

2α+d (log n)(
β
2 + γ

2 +1)γ + n−
α+γ
2α+d · (log n)

{(
9+ γ

2 −
d
4

)
∨
(

15
2 + γ

2 +
d
4

)
∨
(

α+1
2

)}

+
n−

1
2+δd · (log n)d+ 7

2

δ4
·

log
3
2 n ∨

√(
⌈ 2
δ ⌉+D

D

) .

Remark B.2. The detailed choices of {Lk,Wk, Rk, Bk, Vk}K−1
k=0 are provided in Lemma B.3. If we select δ =

3 log log n
log n , we can recover the result stated in Theorem 2. However, it is worth noting that the term

(⌈ 2
δ ⌉+D
D

)
introduces (log n)D in the bound, which might pose challenges for large D. Fortunately, this issue can be resolved
by choosing a sufficiently small constant value for δ. Specifically, when d ≥ 3, as the dominant term in the bound
is n−

βγ
2α+d + n−

α+γ
2α+d for any γ ≤ 1, we can set δ = 1

2 − ( βγ
2α+d ∧ α+γ

2α+d ). Consequently, the term
(⌈ 2

δ ⌉+D
D

)
only

introduces a constant that is polynomial in D.

Proof. For the sake of simplicity and without loss of generality, in the following analysis, we assume M ⊂ B1(0D).
Recall that σt =

√
1− exp(−2

∫ t

0
βs ds) ≍

√
t ∧ 1. We first state the following lemma to relate the generalization

error of the score function ∇ log pt(Xt) to the generalization error of the distribution pdata under the dγ metric.
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Lemma B.2. Suppose Ŝ(x, t) ≲
√
log n
σt

, then when γ ≤ 1,

dγ (p̂, pdata) ≲
1

n
+ τ

γ
2 +

K−1∑
i=0

√(
(tγi log

γ n) ∧ 1
) ∫ ti+1

ti

∫
RD

∥∥∥Ŝ(x, t)−∇ log pt(x)
∥∥∥2 pt(x) dx dt

The following lemma provides upper bounds to the score approximation error.

Lemma B.3. For t ∈ [t, t] with 1 < t
t ≤ 2:

1. If τ ≤ t ≤ n−
2

2α+d , there exists a neural network ϕscore (x, t) ∈ Φ(L,W,R,B, V ) satisfying

∫ t̄

t

∫
RD

∥ϕscore (x, t)−∇ log pt(x)∥2 pt(x) dxdt ≲
n−

2β
2α+d · (log n)β+2

t
+ n−

2α
2α+d · (log n)α+1.

Here L, W , R, B and V are evaluated as L = Θ
(
log4 n

)
, ∥W∥∞ = Θ

(
n

d
2α+d (log n)−

d
2 ·(log6 n∨(log n)d+3)

)
,

R = Θ
(
n

d
2α+d (log n)−

d
2 · (log8 n ∨ (log n)d+5)

)
, B = exp

(
Θ(log4 n)

)
and V = Θ(

√
log n
t ).

2. For any 3 log log n
log n ≤ δ ≤ 2

2α+d − log log n
log n :

(a) If n−
2

2α+d ≤ t ≤ n−2δ(log n)−3, there exists a neural network ϕscore (x, t) ∈ Φ(L,W,R,B, V ) satisfying∫ t̄

t

∫
RD

∥ϕscore (x, t)−∇ log pt(x)∥2 pt(x) dxdt ≲
log4 n

n
.

Here L, W , R, B and V are evaluated as L = Θ
(
log4 n

)
, ∥W∥∞ = Θ

((
t log n

)− d
2 ·
[
log6 n +

L2(log n)
d+3
(
L2+D

D

)])
, R = Θ

((
t log n

)− d
2 ·
[
log8 n ∨ L2(log n)

d+5
(
L2+D

D

)])
, B = exp

(
Θ(log4 n)

)
and

V = Θ(
√

log n
t ), where L2 = ⌈ log(n− 1

2 )

log(σt log
3
2 n)

⌉.

(b) If n−2δ(log n)−3 ≤ t ≤ T = Θ(log n), there exists a neural network ϕscore (x, t) ∈ Φ(L,W,R,B, V )
satisfying ∫ t̄

t

∫
RD

∥ϕscore (x, t)−∇ log pt(x)∥2 pt(x) dxdt ≲
log5 n

n
.

Here L, W , R, B and V are evaluated as L = Θ
(
log2 n
δ2

)
, ∥W∥∞ = Θ

(n2δd(log n)2d

δ3 ·
[
log3 n∨

(⌈ 1
2δ ⌉+D
D

)])
,

R = Θ
(n2δd(log n)2d+1

δ4 ·
[
log3 n ∨

(⌈ 1
2δ ⌉+D
D

)])
, B = exp

(
Θ( log

2 n
δ2 )

)
and V = Θ(

√
logn
t∧1 ).

Define ℓ
[k]
S (x) =

∫ tk+1

tk

∫
RD ∥S(xt, t) − ∇ log pt(xt|x)∥2pt(xt|x) dxtdt, where p(xt|x) is the density function of

N (mtx, σ
2
t ). Then when S(xt, t) ≲

√
log n
t∧1 , we have

ℓ
[k]
S (x) ≤

∫ tk+1

tk

∫
2 · ∥S(xt, t)∥2pt(xt|x) dxtdt+

∫ tk+1

tk

∫
2 · ∥∇ log pt(xt|x)∥2pt(xt|x) dxtdt ≲ log2 n.

Then by Theorem 4.3 of Oko et al. (2023) and Lemma B.3, for any k ∈ {0, 1, · · · ,K − 1},

E
[∫ tk+1

tk

∫
RD

∥∥∥Ŝ(x, t)−∇ log pt(x)
∥∥∥2 pt(x) dxdt]

≤

(
n−

2β
2α+d (log n)β+2

tk
+ n−

2α
2α+d (log n)α+1

)
1
(
tk ≤ n−

2
2α+d

)
+

log5 n

n
+

(log n)2

n
RkLk log (nLk ∥Wk∥∞Bk) .



Therefore, combined with Lemma B.2, we can obtain

E[dγ(p̂, pdata)] ≲ τ
γ
2 +

K−1∑
i=1

√(
(tγi log

γ n) ∧ 1
)
· E
[∫ ti+1

ti

∫
RD

∥∥∥Ŝ(x, t)−∇ log pt(x)
∥∥∥2 pt(x) dxdt]

≲ τ
γ
2 +

∑
i∈{0,··· ,K−1}

τ≤ti≤n
− 2

2α+d

log
γ
2 n ·

(
n

−β
2α+d · (log n)β/2+1

t
1−γ
2

i

+ n
−α

2α+d · (log n)
α+1
2 · t

γ
2
i

)
+

log
7
2 n√
n

+

K−1∑
i=0

(ti log n)
γ
2 ∧ 1√

n
· log n ·

√
RiLi log (nLi∥Wi∥∞Bi)

≲ n−
βγ

2α+d (log n)(
β
2 + γ

2 +1)γ + n−
α+γ
2α+d · (log n)

{(
9+ γ

2 −
d
4

)
∨
(

15
2 + γ

2 +
d
4

)
∨
(

α+1
2

)}

+
n−

1
2+δd · (log n)d+ 7

2

δ4
·

log
3
2 n ∨

√(
⌈ 2
δ ⌉+D

D

) .

B.2 Langevin diffusion model

Consider the Langevin diffusion model

dXt = −S̃(Xt) dt+
√
2 dBt

X0 ∼ p0,

where S̃ is the score function of the Gaussian-smoothed data distribution with noise level σ, i.e.,

S̃(x) =
Epdata

(X − x) exp(−∥X−x∥2

2σ2 )

σ2 · Epdata
exp(−∥X−x∥2

2σ2 )
.

And the estimated Langevin diffusion model

dYt = −Ŝ(Yt) dt+
√
2 dBt

Y0 ∼ p0.

Let p̂T denote the distribution of YT and p̃ = pdata,σ = pdata ∗ N (0, σ2ID). We have the following lemma.
Lemma B.4. Suppose Assumption C is satisfied. Then set T = Θ

(
(CPI + σ2) · [log n ∨ logχ2(p0 ∥ p̃)]

)
, we have

dTV(p̂T , p̃) ≲
√
CPI + σ2 ·

(
(χ2(p0 ∥ p̃))

1
4 +

√
log n

)
·
(
Ep̃

[
∥S̃(x)− Ŝ(x)∥4

]) 1
4

+
1

n
.

Then we state the following lemma for bounding
(
Ep̃

[
∥S̃(x)− Ŝ(x)∥4

]) 1
4 .

Lemma B.5. Suppose Assumptions A and B are satisfied. If we choose

Ŝ = argmin
S∈Φ(L,W,R,B,V )

n−1
n∑

i=1

Ez∼N (xi,σ2ID)

∥∥∥∥s(z)− xi − z

σ2

∥∥∥∥2
with L = Θ(log4 n), ∥W∥∞ = Θ

(
(h ∨ n−

1
2α+d )−d(log6−

d
2 n ∨ log

d
2+3 n)

)
, R = Θ

(
(h ∨ n−

1
2α+d )−d(log8−

d
2 n ∨

log
d
2+5 n)

)
, B = exp(Θ(log4 n)), and V = Θ(

√
logn
σ ). Then for any positive constants δ1, δ2 and σ satisfying

n−δ1 ≲ σ ≲ n−δ2 , we have

1. If σ > n− 1
2α+d , then

Epdata
⊗n

[(
Ep̃

[
∥S̃(x)− Ŝ(x)∥4

]) 1
4

]
≲ n−

1
4σ− d

4−1
(
log

9
2−

d
8 n ∨ log

d
8+

15
4 n
)
.
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2. If σ ≤ n−
1

2α+d , then

Epdata
⊗n

[(
Ep̃

[
∥S̃(x)− Ŝ(x)∥4

]) 1
4

]
≲ n−

β
4α+2d

σ
3
2

log
β+3
4 n+

n−
α

4α+2d

σ

(
log

α+2
4 n ∨ log

9
2−

d
8 n ∨ log

15
4 + d

8 n
)
.

Then denote p̂ as the distribution of YT · 1(∥YT ∥∞ ≤ L) and p̃′ as the distribution of X · 1(∥X∥∞ ≤ L) with
X ∼ p̃. Based on M ⊂ BL/2(0D), we can get

W1(p̃
′, pdata) ≤ E

x∼pdata
z∼N(0,ID)

∥x− (x+ σz)1(∥x+ σz∥∞ ≤ L)∥

≤ E
x∼pdata

z∼N(0,ID)

∥x− (x+ σz)∥

≲ σ.

(1)

Furthermore, combined with Lemma B.4 and B.5, we can obtain

1. When σ > n− 1
2α+d ,

Epdata
⊗n [W1(p̂, p̃

′)] ≲ Epdata
⊗n [dTV(p̂, p̃

′)]

≤ Epdata
⊗n [dTV(p̂T , p̃)]

≲
√
CPI + σ2 ·

(
(χ2(p0 ∥ p̃))

1
4 +

√
log n

)
· n− 1

4σ− d
4−1

(
log

9
2−

d
8 n ∨ log

d
8+

15
4 n
) (2)

2. When σ ≤ n−
1

2α+d ,

Epdata
⊗n [W1(p̂, p̃

′)] ≲ Epdata
⊗n [dTV(p̂, p̃

′)] ≤ Epdata
⊗n [dTV(p̂T , p̃)]

≲
√
CPI + σ2 ·

(
(χ2(p0 ∥ p̃))

1
4 +

√
log n

)
·

(
n−

β
4α+2d

σ
3
2

log
β+3
4 n+

n−
α

4α+2d

σ

(
log

α+2
4 n ∨ log

9
2−

d
8 n ∨ log

15
4 + d

8 n
))

.

(3)

We can obtain the desired result in Theorem 1 by combining (1), (2), and (3).

C Proof of Lemma B.3

To begin with, we introduce the following lemma, which states that it is sufficeint to approximate the score
function ∇ log pt(x) only for values of x that are in close proximity to the manifold.
Lemma C.1. If sup

x∈RD

sup
t∈[τ,T ]

[∥S(x, t)∥∞σt] ≤ c
√
log n. Then, there exist constants (c0, c1, c2, c3) so that for any

i ∈ {0, 1, · · · ,K − 1} and t ∈ [ti, ti+1] with 1 < ti+1

ti
≤ 2,

1. Denote dist(x,M) as the distance of point x ∈ RD to manifold M. Then∫
∥∇ log pt(x)− S(x, t)∥2 pt(x) dx

≤
∫

∥∇ log pt(x)− S(x, t)∥2 pt(x) · 1
(
dist(x,M) ≤ c0σti

√
log n

)
dx+ (1 + c2) · c1

1

n2
.

2. For any x ∈ RD satisfying dist(x,M) ≤ c0σti
√
log n, we have

(a) ∥∇ log pt(x)∥∞ ≤ c2
√
log n
σti

.

(b) (2πσ2
t )

D
2 pt(x) ≥ n−c3 .

Then we use the following lemma to bound the covering number of M.



Lemma C.2. For any ϵ > 0 there exists an ϵ-cover Nϵ of M so that Nϵ ⊂ M and |Nϵ| ≲ (ϵ ∧ 1)−d, moreover,
for any x0 ∈ M and r ≥ ϵ, we have ∣∣{x ∈ Nϵ : ∥x− x0∥ ≤ r}

∣∣ ≲ (r ∧ 1

ϵ ∧ 1

)d
.

Let us fix a time interval t ∈ [t, t] where 1 < t
t ≤ 2. According to Lemma C.1, it suffices to focus on approximating

the score function for t ∈ [t, t] and x ∈ RD with dist(x,M) ≤ c0σt
√
log n. Our first objective is to demonstrate

that if there are neural networks capable of accurately approximating ∇ log pt(x) within local neighborhoods
in M, then there exists a neural network capable of providing a reliable approximation of ∇ log pt(x) for all x
satisfying dist(x,M) ≤ c0σt

√
log n, this is summarized in the following Lemma.

Lemma C.3. Suppose τ ≤ t ≤ T and ϵ∗ ≥ σt
√
log n. Let Nϵ∗ = {Y ∗

1 , Y
∗
2 , · · · , Y ∗

J∗} be an ϵ∗-cover of M
satisfying the statements in Lemma C.2. Then if for each j ∈ [J∗], there exists a neural network ϕ∗j (x, t) ∈
Φ
(
L,W,R,B,Θ(

√
log n
σt

)
)

so that for any t ∈ [t, t] and x ∈ RD satisfying ∥x − Y ∗
j ∥ ≤

√
2(ϵ∗ + c0σt

√
log n) and

dist(x,M) ≤ c0σt
√
log n,

∥ϕ∗j (x, t)−∇ log pt(x)∥∞ ≤ ε.

Then there exists a neural network ϕscore(x, t) ∈
(
L1,W1, R1, B1,Θ(

√
log n
σt

)
)

with L1 = Θ(L+ log2 n), ∥W1∥∞ =

Θ(J∗(∥W∥∞+log n)+ log3 n), R1 = Θ(J∗(R+log n)+ log4 n) and B1 = exp(Θ(log2 n)), so that for any t ∈ [t, t]
and x ∈ RD satisfying dist(x,M) ≤ c0σt

√
log n,

∥ϕscore(x, t)−∇ log pt(x)∥∞ ≲ ε+
1

n
.

Recall
∇ log pt(x) =

∇pt(x)
pt(x)

,

where

∇pt(x) = (2πσ2
t )

−D
2

∫
exp

(
−∥x−mty∥2

2σ2
t

)
·
(
−x−mty

σ2
t

)
f(y) d volM(y),

and

pt(x) = (2πσ2
t )

−D
2

∫
exp

(
−∥x−mty∥2

2σ2
t

)
f(y) d volM(y),

with mt = exp
(
−
∫ t

0
βs ds

)
and σ2

t = 1 − m2
t satisfying 1 − mt ≍ t ∧ 1 and σt ≍

√
t ∧ 1. By statement 2

of Lemma C.1, there exists a large enough constant c2, so that for any t ∈ [t, t], x ∈ RD with dist(x,M) ≤
c0σt

√
log n, and any partition {A,M\A} of M satisfying {y ∈ M : ∥y − x∥ ≤ c2σt

√
log n} ⊂ A, it holds that∥∥∥∥∥∥∇ log pt(x)−

1

σt
·

∫
A exp

(
−∥x−mty∥2

2σ2
t

)
·
(
−x−mty

σt

)
f(y) d volM(y)∫

A exp
(
−∥x−mty∥2

2σ2
t

)
· f(y) d volM(y)

∥∥∥∥∥∥
∞

≤ 1

n
. (4)

We will approximate ∇ log pt(x) by constructing suitable sets A and considering the approximation of
∫
A exp

(
−

∥x−mty∥2

2σ2
t

)
·
(
− x−mty

σt

)
f(y) d volM(y) and

∫
A exp

(
− ∥x−mty∥2

2σ2
t

)
f(y) d volM(y) separately.

C.1 Case 1: n−2δ(log n)−3 ≤ t ≤ T

Let Nϵ∗ be an ϵ∗-cover of M with ϵ∗ = σt
√
log n so that statements in Lemma C.2 are satisfied. Then the

carnidality of Nϵ∗ , denoted by |Nϵ∗ |, satisfies |Nϵ∗ | = Θ
(
1 ∨ (ϵ∗)−d

)
. As per Lemma C.3, our focus lies in

constructing approximations of ∇ log pt(x) within local neighborhoods of points inside Nϵ∗ . Fix an arbitrary
y∗ ∈ Nϵ∗ and consider

x ∈ Sy∗ = {x ∈ RD : ∥x− y∗∥ ≤
√
2(ϵ∗ + c0σt

√
log n), dist(x,M) ≤ c0σt

√
log n}, (5)
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we have

{y ∈ M : ∥y − x∥ ≤ c2σt
√
log n} ⊂ {y ∈ M : ∥y − y∗∥ ≤ (c2 +

√
2 +

√
2c0)σt

√
log n} = A.

Then by Lemma C.2, let ϵ = n−2δ(log n)−2, there exists an ϵ-cover Ñϵ of A so that Ñϵ ⊂ A and

|Ñϵ| ≲
( σt√log n ∧ 1

n−2δ(log n)−2

)d
,

and for any y ∈ M, ∣∣∣{y′ ∈ Ñϵ : ∥y′ − y∥ ≤
√
2ϵ}
∣∣∣ = O(1).

Denote Ñϵ = {Y1, Y2, · · · , YJ} and define the following partition functions

ρ̃(x) =

 1 |x| < 1
0 |x| > 2

2− |x| 1 < |x| ≤ 2

ρ̃j(x) = ρ̃

(
∥x− Yj∥2

ϵ2

)
, ρj(x) =

ρ̃j(x)∑J
j=1 ρ̃j(x)

for j ∈ [J ]. (6)

Since for any y ∈ A: (1) there exists Yj ∈ Ñϵ so that ∥y − Yj∥ ≤ ϵ; (2) there are constant-order number of
Yj ∈ Ñϵ so that ∥y − Yj∥ ≤

√
2ϵ, we can obtain 1 ≤

∑J
j=1 ρ̃j(y) ≤ C. Then,∫

A
exp

(
−∥x−mty∥2

2σ2
t

)
·
(
−x−mty

σt

)
f(y) d volM(y)

=

∫
A

J∑
j=1

ρj(y) exp

(
−∥x−mty∥2

2σ2
t

)
·
(
−x−mty

σt

)
· f(y) d volM(y)

=

J∑
j=1

∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥x−mty∥2

2σ2
t

)
·
(
−x−mty

σt

)
· f(y) d volM(y),

where the last inequality uses the fact that ρj(y) = 0 when ∥y − Yj∥ ≥
√
2ϵ. Then based on the decomposition

∥x−mty∥2 = ∥x−mtYj∥2 + 2⟨x−mtYj ,mtYj −mty⟩+ ∥mtYj −mty∥2,

we can obtain∫
A
exp

(
−∥x−mty∥2

2σ2
t

)
·
(
−x−mty

σt

)
f(y) d volM(y)

=

J∑
j=1

[ ∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥mtYj −mty∥2

2σ2
t

)
· exp

(
−⟨x−mtYj ,mtYj −mty⟩

σ2
t

)

·
(
−x−mty

σt

)
· f(y) d volM(y) · exp

(
−∥x−mtYj∥2

2σ2
t

)]
.

Similarly, we have∫
A
exp

(
−∥x−mty∥2

2σ2
t

)
f(y) d volM(y)

=

J∑
j=1

[ ∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥mtYj −mty∥2

2σ2
t

)
· exp

(
−⟨x−mtYj ,mtYj −mty⟩

σt

)

· f(y) d volM(y) · exp
(
−∥x−mtYj∥2

2σ2
t

)]
.



Notice that for any Yj ∈ Ñϵ, x ∈ Sy∗ and t ∈ [t, t], we have

∥x−mtYj∥2

2σ2
t

≤ C1 log n,

and for any ∥y − Yj∥ ≤
√
2ϵ,

∥mtYj −mty∥2

2σ2
t

≲ n−2δ,

and ∣∣∣∣ ⟨x−mtYj ,mtYj −mty⟩
σ2
t

∣∣∣∣ ≲ n−δ. (7)

We can then obtain∣∣∣∣∣
∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥mtYj −mty∥2

2σ2
t

)
· exp

(
−⟨x−mtYj ,mtYj −mty⟩

σ2
t

)
· f(y) d volM(y)

∣∣∣∣∣ ≍ 1

ϵd
.

∥∥∥∥∥∥
∫
{y∈A : ∥y−Yj∥≤

√
2ϵ} ρj(y) exp

(
−∥mtYj−mty∥2

2σ2
t

)
· exp

(
− ⟨x−mtYj ,mtYj−mty⟩

σ2
t

)
·
(
−x−mty

σt

)
· f(y) d volM(y)∫

{y∈A : ∥y−Yj∥≤
√
2ϵ} ρj(y) exp

(
−∥mtYj−mty∥2

2σ2
t

)
· exp

(
− ⟨x−mtYj ,mtYj−mty⟩

σ2
t

)
· f(y) d volM(y)

∥∥∥∥∥∥ ≲
√
log n,

and ∣∣∣∣exp(−∥x−mtYj∥2

2σ2
t

)∣∣∣∣ ≲ n−C1 .

Therefore, if there exist neural networks ϕ[1]j (x, t), ϕ[2]j (x, t) and ϕ
[3]
j (x, t) so that for any j ∈ [J ], x ∈ Sy∗ and

t ∈ [t, t], ∥∥∥∥ ∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥mtYj −mty∥2

2σ2
t

)
· exp

(
−⟨x−mtYj ,mtYj −mty⟩

σ2
t

)
·
(
−x−mty

σt

)
· f(y) d volM(y)− ϕ

[1]
j (x, t)

∥∥∥∥
∞

≲ ϵ−dn−δ− 1
2

√
log n,

(8)

∣∣∣∣ ∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥mtYj −mty∥2

2σ2
t

)
· exp

(
−⟨x−mtYj ,mtYj −mty⟩

σ2
t

)
· f(y) d volM(y)− ϕ

[2]
j (x, t)

∣∣∣∣ ≲ n−δ− 1
2 ϵ−d,

(9)

and ∣∣∣∣exp(−∥x−mtYj∥2

2σ2
t

)
− ϕ

[3]
j (x, t)

∣∣∣∣ ≤ n−C1− 1
2−δ. (10)

We have ∥∥∥∥∥∇ log pt(x)−
1

σt
·
∑J

j=1 ϕ
[1]
j (x, t)ϕ

[3]
j (x, t)∑J

j=1 ϕ
[2]
j (x, t)ϕ

[3]
j (x, t)

∥∥∥∥∥
∞

≲ log2 n√
n
. (11)

To construct ϕ[1]j (x, t), ϕ[2]j (x, t) and ϕ
[3]
j (x, t), we consider the following lemmas in Oko et al. (2023) for the

approximation of mt, σt, exponential function, monomial and reciprocal function.
Lemma C.4. (Lemma 3.3 in Oko et al. (2023)) There exist neural networks ϕm(t), ϕσ(t) ∈ Φ(L,W,B,R)
that approximates mt and σt up to ε for all t ≥ 0, where L = O

(
log2

(
ε−1
))
, ∥W∥∞ = O

(
log3

(
ε−1
))
, R =

O
(
log4

(
ε−1
))

, and B = exp
(
O
(
log2

(
ε−1
)))

.
Lemma C.5. (Lemma F.12 in Oko et al. (2023)) Take ε > 0 arbitrarily. There exists a neural network
ϕexp ∈ Φ(L,W,R,B) such that

sup
x,x′≥0

∣∣∣e−x′
− ϕexp(x)

∣∣∣ ≤ ε+ |x− x′|

holds, where L = O
(
log2 ε−1

)
, ∥W∥∞ = O

(
log ε−1

)
, R = O

(
log2 ε−1

)
, B = exp

(
O
(
log2 ε−1

))
. Moreover,

|ϕexp(x)| ≤ ε for all x ≥ log 3ε−1.
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Lemma C.6. (Lemma F.6 in Oko et al. (2023)) Let d ≥ 2, C ≥ 1, 0 < εerror ≤ 1. For any ε > 0, there exists
a neural network ϕmult (x1, x2, · · · , xd) ∈ Φ(L,W,R,B) with L = O

(
log d

(
log ε−1 + d logC

))
, ∥W∥∞ = 48d,

R = O
(
d log ε−1 + d logC

)
, B = Cd such that∣∣∣∣∣ϕmult (x

′
1, x

′
2, · · · , x′d)−

d∏
d′=1

xd′

∣∣∣∣∣ ≤ ε+ dCd−1εerror, for all x ∈ [−C,C]d and x′ ∈ R with ∥x− x′∥∞ ≤ εerror,

and |ϕmult(x)| ≤ Cd for all x ∈ [−C,C]. Note that some of xi, xj(i ̸= j) can be shared. For
∏I

i=1 x
ωi
i with

ωi ∈ Z+(i = 1, 2, · · · , I) and
∑I

i=1 ωi = d, there exists a neural network satisfying the same bounds as above,
and the network is denoted by ϕmult(x;ω).
Lemma C.7. (Lemma F.7 in Oko et al. (2023)) For any 0 < ε < 1, there exists ϕrec ∈ Φ(L,W,R,B) with
L ≤ O

(
log2 ε−1

)
, ∥W∥∞ = O

(
log3 ε−1

)
, R = O

(
log4 ε−1

)
, and B = O

(
ε−2
)

such that∣∣∣∣ϕrec (x
′)− 1

x

∣∣∣∣ ≤ ε+
|x′ − x|
ε2

, for all x ∈
[
ε, ε−1

]
and x′ ∈ R.

Since for any −1 < z < 1, we have | exp(z) −
∑L

l=0
zl

l! | ≤ e |z|L+1

(L+1)! ≤ e
( |z|e

L+1

)L+1. Set L = ⌈ 1
2δ ⌉, using

inequality (7), we have∣∣∣∣∣exp
(
−⟨x−mtYj ,mtYj −mty⟩

σ2
t

)
−

L∑
l=0

(−1)l
⟨x−mtYj ,mtYj −mty⟩l

l!(σt)2l

∣∣∣∣∣ ≲ n−
1
2−δ.

Therefore,∥∥∥∥ ∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥mtYj −mty∥2

2σ2
t

)
· exp

(
−⟨x−mtYj ,mtYj −mty⟩

σ2
t

)
·
(
−x−mty

σt

)
· f(y) d volM(y)

−
∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥mtYj −mty∥2

2σ2
t

)
·

L∑
l=0

(−1)l
⟨x−mtYj ,mtYj −mty⟩l

l!(σt)2l

(
−x−mty

σt

)
· f(y) d volM(y)

∥∥∥∥
∞

≲ n−δ− 1
2 ϵ−d

√
log n.

Notice that we can write∫
{y∈A : ∥y−Yj∥≤

√
2ϵ}

ρj(y) exp

(
−∥mtYj −mty∥2

2σ2
t

)
·

L∑
l=0

(−1)l
⟨x−mtYj ,mtYj −mty⟩l

l!(σt)2l

(
−x−mty

σt

)
· f(y) d volM(y)

=

L∑
l=0

(
1

σt
)2l+1

∑
0≤k≤2l+1

mk
t

∑
i∈ND

0 ,|i|≤l+1

alki · x(i),

where x(i) =
∏D

s=1 x
is
s and alki ∈ RD. Therefore, using Lemmas C.4, C.5, C.6 and C.7, we

1. Approximate mt by ϕm(t) ∈ Φ(L,W,R,B) with L = Θ( 1
δ2 log

2 n), ∥W∥∞ = Θ( 1
δ3 log

3 n), R = Θ( 1
δ4 log

4 n)

and B = exp(Θ( 1
δ2 log

2 n)).

2. Approximate σt by ϕσ(t) ∈ Φ(L,W,R,B) with L = Θ( 1
δ2 log

2 n), ∥W∥∞ = Θ( 1
δ3 log

3 n), R = Θ( 1
δ4 log

4 n)

and B = exp(Θ( 1
δ2 log

2 n)).

3. Approximate 1
x by ϕrec(x) ∈ Φ(L,W,R,B) with L = Θ( 1

δ2 log
2 n), ∥W∥∞ = Θ( 1

δ3 log
3 n), R = Θ( 1

δ4 log
4 n)

and B = exp(Θ( 1
δ2 log

2 n)).

4. For vector x ∈ RD, approximate x(i) by ϕ[D]
vpower(x; i) ∈ Φ(L,W,R,B) with L = Θ( 1δ log n log(

1
δ )), ∥W∥∞ =

Θ( 1δ ), R = Θ( 1
δ2 log n) and B = exp(Θ( 1δ log log n)).

5. For x ∈ R, approximate xa by ϕpower(x; a) ∈ Φ(L,W,R,B) with L = Θ( 1δ log n log(
1
δ )), ∥W∥∞ = Θ( 1δ ),

R = Θ( 1
δ2 log n) and B = exp(Θ( 1δ log n)).



6. For x, y ∈ R, approximate x · y by ϕmult(x, y) ∈ Φ(L,W,R,B) with L = Θ( 1δ log n), ∥W∥∞ = Θ(1),
R = Θ( 1δ log n) and B = exp(Θ( 1δ log n)).

We have for any x ∈ Sy∗ and t ∈ [t, t],∥∥∥∥∥
L∑
l=0

(
1

σt
)2l+1

∑
0≤k≤2l+1

mk
t

∑
i∈ND

0 ,|i|≤l+1

alkix
(i)

−
L∑
l=0

∑
0≤k≤2l+1

∑
i∈ND

0 ,|i|≤l+1

alki · ϕmult

(
ϕmult

(
ϕpower

(
ϕrec(ϕσ(t)); 2l + 1

)
, ϕpower

(
ϕm(t); k

))
, ϕ[D]

vpower(x; i)

)∥∥∥∥∥
∞

≲ n−δ− 1
2 ϵ−d.

Therefore, based on Lemmas F.1-F.3 in Oko et al. (2023) for the concatenation and parallelization of neural
networks, there exists networks ϕ[1]j (x, t) ∈ Φ(L,W,R,B) with L = Θ( 1

δ2 log
2 n), ∥W∥∞ = Θ

(
1
δ3 (log

3 n∨
(
L+D

D

)
)
)
,

R = Θ
(
log n
δ4 (log3 n ∨

(
L+D

D

)
)
)
, B = exp(Θ( 1

δ2 log
2 n)) so that (8) holds. Similarly, there exists a neural network

ϕ
[2]
j (x, t) with the same size as ϕ[1]j (x, t) so that (9) holds. For the term exp(−∥x−mtYj∥2

2σ2
t

), using Lemma C.5,
we construct neural network ϕexp ∈ Φ(L,W,R,B) with L = Θ(log2 n), ∥W∥∞ = Θ(log n), R = Θ(log2 n) and
B = exp(Θ(log2 n)), so that∣∣∣∣∣ϕexp

(
−1

2
ϕmult

(
ϕpower

(
ϕrec(ϕσ(t)); 2

)
,

D∑
i=1

ϕpower

(
xi −mtYj,i; 2

)))
− exp

(
−∥x−mtYj∥2

2σ2
t

)∣∣∣∣∣ ≲ n−C1− 1
2−δ.

Therefore, there exists ϕ[3]j (x, t) ∈ Φ(L,W,R,B) with L = Θ( 1
δ2 log

2 n), ∥W∥∞ = Θ( 1
δ3 log

3 n), R = Θ( 1
δ4 log

4 n),
B = exp(Θ( 1

δ2 log
2 n)) so that (10) holds. Then using (11) and Lemmas C.1, C.6, C.7, we can obtain∥∥∥∥∥max

{
−c2

√
log n

σt
,min

{
c2
√
log n

σt
, ϕmult

(
ϕrec (ϕσ(t)) , ϕmult

( J∑
j=1

ϕ
[1]
j (x, t)ϕ

[3]
j (x, t), ϕrec

( J∑
j=1

ϕ
[2]
j (x, t)ϕ

[3]
j (x, t)

)))}}

−∇ log pt(x)

∥∥∥∥∥
∞

≲ log2 n√
n

.

Combining all pieces, we can obtain that there exists ϕ∗(x, t) ∈ Φ
(
L,W,R,B,Θ(

√
logn
σt

)
)

with L = Θ( 1
δ2 log

2 n),
∥W∥∞ = Θ

(
J
δ3 (log

3 n∨
(
L+D

D

)
)
)
, R = Θ

(
J log n

δ4 (log3 n∨
(
L+D

D

)
)
)
, B = exp(Θ( 1

δ2 log
2 n)), so that for any x ∈ Sy∗

and t ∈ [t, t],

∥ϕ∗(x, t)−∇ log pt(x)∥∞ ≲ log2 n√
n
.

The desired result then follows from Lemmas C.1, C.3 and the fact that |Nϵ∗ | · |Ñϵ| = O
(
n2δd(log n)2d

)
.

C.2 Case 2: n−
2

2α+d ≤ t ≤ n−2δ(log n)−3

Let Nϵ∗ be an ϵ∗-cover of M with ϵ∗ = σt
√
log n so that statements in Lemma C.2 are satisfied. Then |Nϵ∗ | =

O
(
(ϵ∗)−d

)
. Fix an arbitrary y∗ ∈ Nϵ∗ and consider

x ∈ S †
y∗ = {x ∈ RD : ∥x− y∗∥ ≤

√
2(ϵ∗ + c0σt

√
log n), dist(x,M) ≤ c0σt

√
log n}. (12)

Let c1 =
√
2(1 + c0) and c′1 = c0 + c1, we have

∥y∗ − ProjM(x)∥ ≤ ∥y∗ − x∥+ ∥x− ProjM(x)∥ ≤ (c0 + c1)σt
√
log n = c′1σt

√
log n,

where ProjM(x) denotes the projection of x to M, and it is uniquely defined because M has a positive reach
and dist(x,M) ≤ c0σt

√
log n ≲ n−δ(log n)−2 = o(1).

Then since M is β-smooth, ther exists a positive constant r so that
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1. The projection function ProjTy∗M(x− y∗) is a local diffeomorphism in y∗, with the inverse Ψy∗ defined on
Br(0D) ∩ Ty∗M and is β-smooth.

2. Br(y
∗) ∩M ⊂ Ψy∗(Br(0D) ∩ Ty∗M) ⊂ B8r/7(y

∗) ∩M.

Let V ∗ be an arbitrary orthornormal basis for the tangent space Ty∗M at y∗. Define a function G∗ with domain
Br(0d) so that

G∗(z) = Ψy∗(V ∗z) (13)

Then we can define the inverse function

Q∗(y) = G∗−1(y) = V ∗TProjTy∗M(y − y∗) = V ∗T (y − y∗). (14)

Recall that ∥y∗ − ProjM(x)∥ ≤ c′1σt
√
log n and ∥x− ProjM(x)∥ ≤ c0σt

√
log n, we have

{y ∈ M : ∥y − x∥ ≤ c2σt
√
log n} ⊂ {y ∈ M : ∥y − ProjM(x)∥ ≤ (c2 + c0)σt

√
log n}

⊂ {y ∈ M : ∥y − y∗∥ ≤ (c2 + c0 + c′1)σt
√
log n}

⊂ {y = G∗(z) : ∥z∥ ≤ c3σt
√
log n}

where the last statement uses G∗(0d) = y∗ and the Lipschitz continuity of Q∗. Therefore, using equation (4), we
only need to approximate

1

σt
·

∫
{y=G∗(z) : ∥z∥≤c3σt

√
logn} exp

(
−∥x−mty∥2

2σ2
t

)
·
(
−x−mty

σt

)
f(y) d volM(y)∫

{y=G∗(z) : ∥z∥≤c3σt

√
log n} exp

(
−∥x−mty∥2

2σ2
t

)
· f(y) d volM(y)

=
1

σt
·

∫
∥z∥≤c3σt

√
log n

exp
(
−∥x−mtG

∗(z)∥2

2σ2
t

)
·
(
−x−mtG

∗(z)
σt

)
v∗(z) dz∫

∥z∥≤c3σt

√
logn

exp
(
−∥x−mtG∗(z)∥2

2σ2
t

)
v∗(z) dz

,

(15)

where v∗(z) = f(G∗(z))
√
det
(
∇G∗(z)T∇G∗(z)

)
. Then consider the Taylor expansion of G∗ at 0d,

G∗(z) = y∗ +

⌊β⌋∑
i=1

T ∗
i (z

⊗i) +O(∥z∥β),

we denote

G(z) = y∗ +

⌊β⌋∑
i=1

T ∗
i (z

⊗i) (16)

as the polynomial approximation to G∗. We have

sup
∥z∥≤c3σt

√
log n

∥G∗(z)−G(z)∥ ≲ (t log n)
β
2

sup
∥z∥≤c3σt

√
log n

∥∇G∗(z)−∇G(z)∥ ≲ (t log n)
β−1
2 ,

where ∇G(z) = (∇G1(z),∇G2(z), · · · ,∇GD(z))T is the Jacobian matrix of G. Next, we present the following
lemma, which provides an approximation to the projection function ProjM(x).
Lemma C.8. If τ ≤ t ≤ n−2δ(log n)−3, there exists a neural network ϕp(x) ∈ Φ(L,W,R,B) with L = Θ(log2 n),
∥W∥∞ = Θ(log3 n), R = Θ(log4 n) and B = exp(Θ(log n)) so that for any x with ∥x − y∗∥ ≤ c1(σt ∨
n−

1
2α+d )

√
log n and dist(x,M) ≤ c0σt

√
log n,

1.
∥∥∥〈∇G(ϕp(x)), x−G(ϕp(x))

〉∥∥∥ ≲
(
(σt ∨ n−

1
2α+d )

√
log n

)2β.

2.
∥∥ϕp(x)−Q∗(ProjM(x))

∥∥ ≲
(
(σt ∨ n−

1
2α+d )

√
log n

)β.



Lemma C.8 suggests that that G(ϕp(x)) is a good approximation for ProjM(x). Based on this, we consider the
following decomposition

∥x−mtG
∗(z)∥2 = ∥x−G(ϕp(x))∥2 + 2⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩+ ∥G(ϕp(x))−mtG
∗(z)∥2.

We can then substitute this expression into (15) to obtain

1

σt
·

∫
∥z∥≤c3σt

√
log n

exp
(
−∥x−mtG

∗(z)∥2

2σ2
t

)
·
(
−x−mtG

∗(z)
σt

)
v∗(z) dz∫

∥z∥≤c3σt

√
logn

exp
(
−∥x−mtG∗(z)∥2

2σ2
t

)
v∗(z) dz

=

∫
∥z∥≤c3σt

√
logn

exp
(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
·
(
−x−mtG

∗(z)
σt

)
v∗(z) dz

σt
∫
∥z∥≤c3σt

√
log n

exp
(
−∥G(ϕp(x))−mtG∗(z)∥2

2σ2
t

)
· exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG∗(z)⟩

σ2
t

)
v∗(z) dz

=

∫
∥z∥≤c3σt

√
logn

exp
(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)(
mtG

∗(z)−G(ϕp(x))
σt

)
v∗(z) dz

σt
∫
∥z∥≤c3σt

√
log n

exp
(
−∥G(ϕp(x))−mtG∗(z)∥2

2σ2
t

)
· exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG∗(z)⟩

σ2
t

)
v∗(z) dz︸ ︷︷ ︸

(A)

− x−G(ϕp(x))

σ2
t︸ ︷︷ ︸

(B)

For the term (B), since G is a polynomial function, using Lemma C.6, C.7 and C.4, we can obtain that there
exists a neural network ϕB(x, t) ∈ Φ(L,W,R,B) with L = Θ(log2 n), ∥W∥ = Θ(log3 n), R = Θ(log4 n) and
B = exp(Θ(log2 n)) so that

sup
x∈S †

y∗

∥∥∥∥x−G(ϕp(x))

σ2
t

− ϕB(x, t)

∥∥∥∥
∞

≤ 1

n
. (17)

Then for the term (A), notice that for any x ∈ S †
y∗ = {x ∈ RD : ∥x− y∗∥ ≤

√
2(ϵ∗ + c0σt

√
log n), dist(x,M) ≤

c0σt
√
log n} and ∥z∥ ≤ c3σt

√
log n,

∥ϕp(x)∥ ≤ ∥ϕp(x)−Q∗(ProjM(x))∥+ ∥Q∗(ProjM(x))−Q∗(y∗)∥ ≲ σt
√
log n,

∥G(ϕp(x))−mtG
∗(z)∥

≤ ∥G(ϕp(x))−G(z)∥+ ∥G(z)−G∗(z)∥+ ∥(1−mt)G
∗(z)∥

≲ ∥ϕp(x)∥+ ∥z∥+ (σt
√

log n)β + t

≲ σt
√
log n,

(18)

∥x−G(ϕp(x))∥ ≤ ∥x− y∗∥+ ∥G(0d)−G(ϕp(x)∥ ≲ σt
√

log n,

and∣∣⟨x−G(ϕp(x)), G(ϕp(x))−mtG
∗(z)⟩

∣∣
≤
∣∣⟨x−G(ϕp(x)), G(ϕp(x))−G(z)⟩

∣∣+ ∣∣⟨x−G(ϕp(x)), G(z)−G∗(z)⟩
∣∣+ ∣∣⟨x−G(ϕp(x)), G

∗(z)−mtG
∗(z)⟩

∣∣
≤
∣∣⟨x−G(ϕp(x)), G(ϕp(x))−G(z)⟩

∣∣+O
(
(σt
√

log n)β+1
)
+O

(
(σt
√

log n)3
)

≤
∣∣⟨x−G(ϕp(x)),∇G(ϕp(x))(ϕp(x)− z)⟩

∣∣+O
(
(σt
√

log n)3
)

≲ (σt
√
log n)3.

(19)
Therefore, denote

dpt(x) =

∫
∥z∥≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
·
(
−G(ϕp(x))−mtG

∗(z)

σt

)
v∗(z) dz,
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and

pt(x) =

∫
∥z∥≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
·exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
v∗(z) dz,

we can derive ∥∥∥∥dpt(x)pt(x)

∥∥∥∥ ≲
√
log n,

and

pt(x) ≥
∫
∥z−ϕp(x)∥≤σt

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
v∗(z) dz

≳
∫
∥z−ϕp(x)∥≤σt

exp

(
−∥G(ϕp(x))−G(z)∥2

2σ2
t

)
v∗(z) dz

≳ (σt)
d.

Therefore, if there exist neural networks ϕ[1](x, t) and ϕ[2](x, t) so that for any t ∈ [t, t] and x ∈ S †
y∗ ,

∥dpt(x)− ϕ[1](x, t)∥∞ ≲ (σt)
d+1n−

1
2 log2 n, (20)

∥pt(x)− ϕ[2](x, t)∥∞ ≲ (σt)
d+1n−

1
2 log

3
2 n. (21)

Then we have ∥∥∥∥ 1

σt
· dpt(x)
pt(x)

− 1

σt
· ϕ

[1](x, t)

ϕ[2](x, t)

∥∥∥∥
∞

≲ (log n)2√
n

. (22)

To construct ϕ[1](x, t), we approximate dpt(x) by polynomials. Use (18) and (19), by choosing L1 = Θ(log n)

and L2 = ⌈ log(n− 1
2 )

log(σt log
3
2 n)

⌉, we have

∣∣∣∣∣exp
(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
−

L1∑
l1=0

(−1)l1
∥G(ϕp(x))−mtG

∗(z)∥2l1

2l1 l1!σ
2l1
t

∣∣∣∣∣ ≲ n−2,

and ∣∣∣∣∣exp
(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
−

L2∑
l2=0

(−1)l2
⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩l2

l2!σ
2l2
t

∣∣∣∣∣
≲ σt log

3
2 n · n− 1

2 .

Therefore, we have

∥∥∥dpt(x)− ∫
∥z∥≤c3σt

√
log n

L1∑
l1=0

(−1)l1
∥G(ϕp(x))−mtG

∗(z)∥2l1

2l1 l1!σ
2l1
t

·
L2∑
l2=0

(−1)l2
⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩l2

l2!σ
2l2
t

·
(
−G(ϕp(x))−mtG

∗(z)

σt

)
v∗(z) dz

∥∥∥
≲ log2 n · σt · n−

1
2 ·
∫
∥z∥≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
ν∗(z) dz + (σt

√
log n)d

√
log n · n−2

(23)
Then since

∥G(ϕp(x))−mtG
∗(z)∥2 ≥ 1

2
∥G∗(ϕp(x))−G∗(z)∥2 − 2∥G(ϕp(x))−G∗(ϕp(x)) +G∗(z)−mtG

∗(z)∥2

≥ 1

2
∥ϕp(x)− z∥2 − C (t2 + (σt

√
log n)2β),



notice that σt ≍
√
t ∧ 1 ≍

√
t ∧ 1 ≤ n−δ(log n)−

3
2 and β ≥ 2, we have

t2 + (σt
√
log n)2β

σ2
t

= o(1),

and ∫
∥z∥≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
ν∗(z) dz ≲

∫
exp

(
−∥z − ϕp(x)∥2

4σ2
t

)
dz ≲ σd

t ≍ σd
t .

So based on (23), we can obtain

∥∥∥dpt(x)− ∫
∥z∥≤c3σt

√
log n

L1∑
l1=0

(−1)l1
∥G(ϕp(x))−mtG

∗(z)∥2l1

2l1 l1!σ
2l1
t

·
L2∑
l2=0

(−1)l2
⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩l2

l2!σ
2l2
t

·
(
−G(ϕp(x))−mtG

∗(z)

σt

)
v∗(z) dz

∥∥∥
≲ log2 n · (σt)d+1 · n− 1

2 .
(24)

Furthermore,∫
∥z∥≤c3σt

√
logn

L1∑
l1=0

(−1)l1
∥G(ϕp(x))−mtG

∗(z)∥2l1

2l1 l1!σ
2l1
t

·
L2∑
l2=0

(−1)l2
⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩l2

l2!σ
2l2
t

·
(
−G(ϕp(x))−mtG

∗(z)

σt

)
v∗(z) dz

=

∫
∥z∥≤c3σt

√
logn

L1∑
l1=0

(−1)l1

(∑D
w=1

(
Gw(ϕp(x))−mtG

∗
w(z)

)2)l1
2l1 l1!σ

2l1
t

·
L2∑
l2=0

(−1)l2

(∑D
w=1

(
xw −Gw(ϕp(x))

)(
Gw(ϕp(x))−mtG

∗
w(z)

))l2
l2!σ

2l2
t

·
(
−G(ϕp(x))−mtG

∗(z)

σt

)
v∗(z) dz

=

L1∑
l1=0

L2∑
l2=0

(−1)l1+l2+1

2l1 l1!l2!

( 1
σt

)2l1+2l2+1
( D∑

w=1

(
Gw(ϕp(x))−mtG

∗
w(z)

)2)l1
·
( D∑

w=1

(
xw −Gw(ϕp(x))

)
·
(
Gw(ϕp(x))−mtG

∗
w(z)

))l2
·
(
G(ϕp(x))−mtG

∗(z)
)

=

L1∑
l1=0

L2∑
l2=0

( 1
σt

)2l1+2l2+1 ∑
0≤k≤2l1+l2+1

mk
t

∑
s∈Nd

0 ,|s|≤(2l1+2l2+1)⌊β⌋

(ϕp(x))
(s)

∑
i∈ND

0 ,|i|≤l2

al1,l2,k,s,i · x(i)

where al1,l2,k,i,s ∈ RD are some constant coefficients and the last equation use the fact that G = (G1, G2, · · · , GD)
are polynomials up to order ⌊β⌋. Then notice that ( 1

σt
)2l1+2l2+1al1,l2,k,i,s ≲ exp(O(log2 n)), we

1. Approximate mt by ϕm(t) ∈ Φ(L,W,R,B) with L = Θ(log4 n), ∥W∥∞ = Θ(log6 n), R = Θ(log8 n) and
B = exp(Θ(log4 n)).

2. Approximate σt by ϕσ(t) ∈ Φ(L,W,R,B) with L = Θ(log4 n), ∥W∥∞ = Θ(log6 n), R = Θ(log8 n) and
B = exp(Θ(log4 n)).

3. Approximate 1
x by ϕrec(x) ∈ Φ(L,W,R,B) with L = Θ(log4 n), ∥W∥∞ = Θ(log6 n), R = Θ(log8 n) and

B = exp(Θ(log4 n)).

4. For vector x ∈ RD, approximate x(i) by ϕ[D]
vpower(x; i) ∈ Φ(L,W,R,B) with L = Θ(log2 n · logL2), ∥W∥∞ =

Θ(L2), R = Θ(L2 log
2 n) and B = exp(Θ(L2 · log log n)).
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5. For vector z ∈ Rd, approximate z(i) by ϕ[d]vpower(z; i) ∈ Φ(L,W,R,B) with L = Θ(log2 n · log log n), ∥W∥∞ =
Θ(log n), R = Θ(log3 n) and B = exp(Θ(log n · log log n).

6. For x ∈ R, Approximate xa by ϕpower(x; a) ∈ Φ(L,W,R,B) with L = Θ(log2 n·log log n), ∥W∥∞ = Θ(log n),
R = Θ(log3 n) and B = exp(Θ(log n · log log n)).

7. For x, y ∈ R, Approximate x · y by ϕmult(x, y) ∈ Φ(L,W,R,B) with L = Θ(log2 n), ∥W∥∞ = Θ(1),
R = Θ(log2 n) and B = exp(Θ(log2 n)).

We have∥∥∥∥∥
L1∑
l1=0

L2∑
l2=0

( 1
σt

)2l1+2l2+1 ∑
0≤k≤2l1+l2+1

mk
t

∑
s∈Nd

0 ,|s|≤(2l1+2l2+1)⌊β⌋

(ϕp(x))
(s)

∑
i∈ND

0 ,|i|≤l2

al1,l2,k,s,i · x(i)

−
L1∑
l1=0

L2∑
l2=0

∑
0≤k≤2l1+l2+1

∑
s∈Nd

0 ,|s|≤(2l1+2l2+1)⌊β⌋

∑
i∈ND

0 ,|i|≤l2

al1,l2,k,i,s

· ϕmult

(
ϕmult (ϕpower (ϕrec(ϕσ(t)); 2l1 + 2l2 + 1) , ϕpower(ϕm(t); k)) , ϕmult

(
ϕ[D]
vpower(x; i), ϕ

[d]
vpower(ϕp(x); s)

))∥∥∥∥∥
∞

≲ (σt)
d+1n−

1
2 log2 n.

Therefore, by concatenation and parallelization of neural networks, we can obtain that there exists a network
ϕ[1](x, t) ∈ Φ(L,W,R,B) with L = Θ(log4 n), ∥W∥∞ = Θ

(
log6 n + L2 log

d+3 n
(
L2+D

D

))
, R = Θ

(
log8 n +

L2 log
d+5 n

(
L2+D

D

))
, B = exp(Θ(log4 n)) so that (20) holds. Similarly, there exists a neural network ϕ

[2]
j (x, t)

with the same size as ϕ[1]j (x, t) so that (21) holds. Then using (22), (17) and Lemmas C.1, C.6, C.7, we can
obtain∥∥∥∥∥max

{
−c2

√
log n

σt
,min

{
c2
√
log n

σt
, ϕmult

(
ϕrec (ϕσ(t)) , ϕmult

(
ϕ[1](x, t), ϕrec

(
ϕ[2](x, t)

)))
− ϕB(x, t)

}}

−∇ log pt(x)

∥∥∥∥∥
∞

≲ log2 n√
n
.

Combining all pieces, we can obtain that there exists ϕ∗(x, t) ∈ Φ
(
L,W,R,B,Θ(

√
log n
σt

)
)

with L = Θ(log4 n),
∥W∥∞ = Θ

(
log6 n + L2 log

d+3 n
(
L2+D

D

))
, R = Θ

(
log8 n + L2 log

d+5 n
(
L2+D

D

))
, B = exp(Θ(log4 n)), where

L2 = ⌈ log(n− 1
2 )

log(σt log
3
2 n)

⌉, so that for any x ∈ RD with ∥x − y∗∥ ≤ c1σt
√
log n and dist(x,M) ≤ c0σt

√
log n, and

t ∈ [t, t],

∥ϕ∗(x, t)−∇ log pt(x)∥∞ ≲ log2 n√
n
.

The desired result then follows from Lemmas C.1, C.3 and the fact that |Nϵ∗ | = O
(
σ−d
t (log n)−

d
2

)
.

C.3 Case 3: τ ≤ t ≤ n−
2

2α+d

Let Nϵ∗ be an ϵ∗-cover of M with ϵ∗ = n−
1

2α+d
√
log n so that statements in Lemma C.2 are satisfied. Then

|Nϵ∗ | = O
(
n

d
2α+d (log n)−

d
2

)
. Fix an arbitrary y∗ ∈ Nϵ∗ and consider (G∗, Q∗) defined in (13) and (14). For any

x ∈ S ‡
y∗ = {x ∈ RD : ∥x− y∗∥ ≤

√
2(ϵ∗ + c0σt

√
log n), dist(x,M) ≤ c0σt

√
log n}, (25)

we have

{y ∈ M : ∥y − x∥ ≤ c2σt
√
log n} ⊂ {y ∈ M : ∥y − ProjM(x)∥ ≤ (c2 + c0)σt

√
log n}

⊂ {y = G∗(z) : ∥z −Q∗(ProjM(x))∥ ≤ (c2 + c0)σt
√
log n}



Using Lemma C.8 and c n− 2β
2α+d (log n)β+1 = τ ≤ t ≤ n−

2
2α+d , we have

∥z − ϕp(x)∥ ≤ ∥z −Q∗(ProjM(x))∥+ ∥ϕp(x)−Q∗(ProjM(x))∥

≤ ∥z −Q∗(ProjM(x))∥+O
(
n−

β
2α+d (log n)

β
2

)
,

and thus
{y = G∗(z) : ∥z −Q∗(ProjM(x))∥ ≤ (c2 + c0)σt

√
log n}

⊂ {y = G∗(z) : ∥z − ϕp(x)∥ ≤ c3σt
√
log n}

⊂ {y = G∗(z) : ∥z − ϕp(x)∥∞ ≤ c3σt
√

log n}.

So based on equation (4), we only need to approximate

1

σt
·

∫
{y=G∗(z) : ∥z−ϕp(x)∥∞≤c3σt

√
logn} exp

(
− ∥x−mty∥2

2σ2
t

)
·
(
−x−mty

σt

)
f(y) d volM(y)∫

{y=G∗(z) : ∥z−ϕp(x)∥∞≤c3σt
√
logn} exp

(
− ∥x−mty∥2

2σ2
t

)
· f(y) d volM(y)

=
1

σt
·

∫
∥z−ϕp(x)∥∞≤c3σt

√
logn

exp
(
− ∥x−mtG

∗(z)∥2

2σ2
t

)
·
(
−x−mtG

∗(z)
σt

)
v∗(z) dz∫

∥z−ϕp(x)∥∞≤c3σt
√
logn

exp
(
− ∥x−mtG∗(z)∥2

2σ2
t

)
v∗(z) dz

=

∫
∥z−ϕp(x)∥∞≤c3σt

√
logn

exp
(
− ∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)(
mtG

∗(z)−G(ϕp(x))

σt

)
v∗(z) dz

σt

∫
∥z−ϕp(x)∥∞≤c3σt

√
logn

exp
(
− ∥G(ϕp(x))−mtG∗(z)∥2

2σ2
t

)
· exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG∗(z)⟩

σ2
t

)
v∗(z) dz︸ ︷︷ ︸

(C)

− x−G(ϕp(x))

σ2
t︸ ︷︷ ︸

(B)

,

(26)

where v∗(z) = f(G∗(z))
√

det
(
∇G∗(z)T∇G∗(z)

)
. In a similar manner to Case 2, the term (B) can be ap-

proximated by neural network ϕB(x, t) ∈ Φ(L,W,R,B) with an error 1
n if L = Θ(log2 n), ∥W∥∞ = Θ(log3 n),

R = Θ(log4 n) and B = exp(Θ(log2 n)).

Notice that v∗ is α-smooth, we can write

v∗(z) = v(z) +O(∥z∥α)

v(z) = v∗(0d) +
∑
l∈Nd0

1≤|l|≤⌊α⌋

v∗(l)(0d) · z(l), (27)

where v∗(l)(0d) = ∂|l|v∗

∂z
l1
1 ∂z

l2
2 ···∂zld

d

∣∣∣
z=0d

. We will first build an approximation to term (C) by replacing G∗ and v∗

with their polynomial approximators, that is, G defined in (16) and v defined in (27). To bound the approximation
error, we will consider and bound the following terms using Lemma C.8 for any x ∈ S ‡

y∗ = {x ∈ RD : ∥x −
y∗∥ ≤

√
2(ϵ∗ + c0σt

√
log n), dist(x,M) ≤ c0σt

√
log n} ⊂ {x ∈ RD : ∥x − y∗∥ ≤ c1n

− 1
2α+d

√
log n, dist(x,M) ≤

c0σt
√
log n}, and any z ∈ Rd satisfying ∥z − ϕp(x)∥∞ ≤ c3σt

√
log n:

∥ϕp(x)∥ ≤ ∥ϕp(x)−Q∗(ProjM(x))∥+ ∥Q∗(ProjM(x))−Q∗(y∗)∥ ≲ n−
1

2α+d

√
log n;

∥G(ϕp(x))−mtG(z)∥ ≤ ∥G(ϕp(x))−G(z)∥+ (1−mt)∥G(z)∥ ≲ σt
√
log n;

1

σ2
t

·
∣∣∣∥G(ϕp(x))−mtG

∗(z)∥2 − ∥G(ϕp(x))−mtG(z)∥2
∣∣∣ ≲ σt

√
log n

(
n−

1
2α+d

√
log n

)β
σ2
t

≍
√
log n

(
n−

1
2α+d

√
log n

)β
σt

;

∥x−G(ϕp(x))∥ ≤ ∥x− ProjM(x)∥+ ∥G∗(Q∗(ProjM(x)))−G∗(ϕp(x))∥+ ∥G∗(ϕp(x))−G(ϕp(x))∥ ≲ σt
√

log n;
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1

σ2
t

·
∣∣∣〈x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)
〉
−
〈
x−G(ϕp(x)), G(ϕp(x))−mtG(z)

〉∣∣∣
≲
σt
√
log n

(
n−

1
2α+d

√
log n

)β
σ2
t

≍
√
log n

(
n−

1
2α+d

√
log n

)β
σt

;

∣∣⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩
∣∣

≤
∣∣∣⟨x−G(ϕp(x)),∇G(ϕp(x))(ϕp(x)− z)⟩

∣∣∣+ ∣∣∣⟨x−G(ϕp(x)), G(ϕp(x))−G(z)−∇G(ϕp(x))(ϕp(x)− z)⟩
∣∣∣

+
∣∣∣⟨x−G(ϕp(x)), G(z)−mtG(z)⟩

∣∣∣
≲ (n−

1
2α+d

√
log n)2βσt

√
log n+ σ3

t (log n)
3
2 + σ3

t

√
log n

≲ σ3
t (log n)

3
2 ;

(28)

∥∥∥∥G(ϕp(x))−mtG
∗(z)

σt

∥∥∥∥ ≲
∥∥∥∥G(ϕp(x))−mtG

∗(z)

σt
− G(ϕp(x))−mtG(z)

σt

∥∥∥∥+ ∥∥∥∥G(ϕp(x))−G(z)

σt

∥∥∥∥+ 1−mt

σt
· ∥G(z)∥

≲
√
log n.

(29)
Combining all the pieces, we can obtain∥∥∥∥ ∫

∥z−ϕp(x)∥∞≤c3σt

√
logn

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
·
(
−G(ϕp(x))−mtG

∗(z)

σt

)
v∗(z) dz −

∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩

σ2
t

)
·
(
−G(ϕp(x))−mtG(z)

σt

)
v(z) dz

∥∥∥∥
≲
∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
dz ·

(n− β
2α+d (log n)

β
2

+1

σt
+ n−

α
2α+d (log n)

α+1
2

)
.

(30)
Similarly, we have∣∣∣∣ ∫

∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
v∗(z) dz

−
∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩

σ2
t

)
v(z) dz

∣∣∣∣
≲
∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
dz ·

(n− β
2α+d (log n)

β+1
2

σt
+ n−

α
2α+d (log n)

α
2

)
.

(31)
Denote

d̃pt(x) =

∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩

σ2
t

)
·
(
−G(ϕp(x))−mtG(z)

σt

)
v(z) dz,

and

d̃pt(x)

=

∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩

σ2
t

)
v(z) dz.



We will show that if there exist neural networks ϕ[1](x, t) and ϕ[2](x, t) so that for any t ∈ [t, t] and x ∈ S ‡
y∗ ,

∥d̃pt(x)− ϕ[1](x, t)∥∞ ≲ (σt)
d
(n− β

2α+d (log n)
β
2

+1

σt
+ n−

α
2α+d (log n)

α+1
2

)
, (32)

∥p̃t(x)− ϕ[2](x, t)∥∞ ≲ (σt)
d
(n− β

2α+d (log n)
β+1
2

σt
+ n−

α
2α+d (log n)

α
2

)
. (33)

Then we have∥∥∥∥
∫
∥z−ϕp(x)∥∞≤c3σt

√
logn

exp
(
− ∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)(
mtG

∗(z)−G(ϕp(x))

σt

)
v∗(z) dz

σt

∫
∥z−ϕp(x)∥∞≤c3σt

√
logn

exp
(
− ∥G(ϕp(x))−mtG∗(z)∥2

2σ2
t

)
· exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG∗(z)⟩

σ2
t

)
v∗(z) dz

− 1

σt
· ϕ

[1](x, t)

ϕ[2](x, t)

∥∥∥∥
∞

≲ n− β
2α+d

(logn)
β
2

+1

σ2
t

+
n− α

2α+d (log n)
α+1
2

σt
.

(34)
To show (34), we first bound

∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp
(
− ∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
dz. Notice that

∥ϕp(x)− z∥ ≤ ∥G∗(ϕp(x))−G∗(z)∥ ≤ ∥G(ϕp(x))−mtG
∗(z)∥+ (1−mt)∥G∗(z)∥+O(n−

β
2α+d (log n)

β
2 )

≤ ∥G(ϕp(x))−mtG
∗(z)∥+ o(σt),

we have∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
dz ≲

∫
exp

(
−∥ϕp(x)− z∥2

2σ2
t

)
dz ≲ σd

t .

Therefore, combined with (30) and (31), we can get∥∥∥∥ ∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)

·
(
−G(ϕp(x))−mtG

∗(z)

σt

)
v∗(z) dz − ϕ[1](x, t)

∥∥∥∥
∞

≲ (σt)
d
(n− β

2α+d (log n)
β
2

+1

σt
+ n−

α
2α+d (log n)

α+1
2

)
and∣∣∣∣ ∫

∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
v∗(z) dz

− ϕ[2](x, t)

∥∥∥∥
∞

≲ (σt)
d
(n− β

2α+d (log n)
β+1
2

σt
+ n−

α
2α+d (log n)

α
2

)
.

Now use the fact that

∥G(ϕp(x))−mtG
∗(z)∥ ≤ ∥G∗(ϕp(x))−G∗(z)∥+(1−mt)∥G∗(z)∥+∥G(ϕp(x))−G∗(ϕp(x))∥ ≲ ∥ϕp(x)−z∥+o(σt),

we have∥∥∥∥
∫
∥z−ϕp(x)∥∞≤c3σt

√
logn

exp
(
− ∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)(
mtG

∗(z)−G(ϕp(x))

σt

)
v∗(z) dz∫

∥z−ϕp(x)∥∞≤c3σt
√
logn

exp
(
− ∥G(ϕp(x))−mtG∗(z)∥2

2σ2
t

)
· exp

(
− ⟨x−G(ϕp(x)),G(ϕp(x))−mtG∗(z)⟩

σ2
t

)
v∗(z) dz

∥∥∥∥
≲

√
log n,

and∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
v∗(z) dz

≥
∫
∥z−ϕp(x)∥∞≤σt

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
v∗(z) dz

≳
∫
∥z−ϕp(x)∥∞≤σt

exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
dz.
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Moreover, when ∥z − ϕp(x)∥∞ ≤ σt,∣∣∣⟨x−G(ϕp(x)), G(ϕp(x))−mtG
∗(z)⟩

∣∣∣
≤
∣∣∣⟨x−G(ϕp(x)),∇G(ϕp(x))(ϕp(x)− z)⟩

∣∣∣+ ∣∣∣⟨x−G(ϕp(x)), G(ϕp(x))−G∗(z)−∇G(ϕp(x))(ϕp(x)− z)⟩
∣∣∣

+
∣∣∣⟨x−G(ϕp(x)), G(z)−G∗(z)⟩

∣∣∣+ ∣∣∣⟨x−G(ϕp(x)), G
∗(z)−mtG

∗(z)⟩
∣∣∣

≲ (n−
1

2α+d

√
log n)2βσt + σ3

t

√
log n+ σt

√
log n(n−

1
2α+d

√
log n)β + σ3

t

√
log n

≲ σ2
t ,

where we have used Lemma C.8 and t ≥ τ ≥ c n− 2β
2α+d (log n)β+1 with a large enough constant c. Therefore, we

have∫
∥z−ϕp(x)∥∞≤c3σt

√
log n

exp

(
−∥G(ϕp(x))−mtG

∗(z)∥2

2σ2
t

)
· exp

(
−⟨x−G(ϕp(x)), G(ϕp(x))−mtG

∗(z)⟩
σ2
t

)
v∗(z) dz

≳ (σt)
d.

We can then show (34) by combining all pieces.

Then we construct ϕ[1](x, t) by approximating d̃pt(x) with polynomials. Based on statements (28) and (29), by
choosing L1 = Θ(log n) and L2 = Θ(1), we have∣∣∣ exp(−∥G(ϕp(x))−mtG(z)∥2

2σ2
t

)
−

L1∑
l1=0

(−1)l1
∥G(ϕp(x))−mtG(z)∥2l1

2l1 l1!σ
2l1
t

∣∣∣
≲ (log n)−

d
2

(n− β
2α+d (log n)

β+1
2

σt
+ n−

α
2α+d (log n)

α
2

)
,

and ∣∣∣ exp(−⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩
σ2
t

)
−

L2∑
l2=0

(−1)l2
⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩l2

l2!σ
2l2
t

∣∣∣
≲ (log n)−

d
2

(n− β
2α+d (log n)

β+1
2

σt
+ n−

α
2α+d (log n)

α
2

)
.

Therefore,∥∥∥ ∫
∥z−ϕp(x)∥∞≤c3σt

√
logn

L1∑
l1=0

(−1)l1
∥G(ϕp(x))−mtG(z)∥2l1

2l1 l1!σ
2l1
t

·
L2∑
l2=0

(−1)l2
⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩l2

l2!σ
2l2
t

·
(
−G(ϕp(x))−mtG(z)

σt

)
v(z) dz − d̃pt(x)

∥∥∥
∞

≲ (σt)
d ·
(n− β

2α+d (log n)
β
2

+1

σt
+ n−

α
2α+d (log n)

α+1
2

)
.

Moreover, since G(z) = (G1(z), G2(z), · · · , GD(z)) and v(z) are polynomials with degree at most ⌊β⌋ and ⌊α⌋
respectively, we can write∫

∥z−ϕp(x)∥∞≤c3σt

√
log n

L1∑
l1=0

(−1)l1
∥G(ϕp(x))−mtG(z)∥2l1

2l1 l1!σ
2l1
t

·
L2∑
l2=0

(−1)l2
⟨x−G(ϕp(x)), G(ϕp(x))−mtG(z)⟩l2

l2!σ
2l2
t

·
(
−G(ϕp(x))−mtG(z)

σt

)
v(z) dz

=

L1∑
l1=0

L2∑
l2=0

( 1
σt

)2l1+2l2+1 ∑
0≤k≤2l1+l2+1

mk
t

∑
s∈Nd

0 ,|s|≤(4l1+3l2+2)⌊β⌋+d+⌊α⌋

(ϕp(x))
(s)

∑
i∈ND

0 ,|i|≤l2

al1,l2,k,s,i · x(i),

where al1,l2,k,i,s ∈ RD are some constant coefficients. Then notice that ( 1σ )
2l1+2l2+1al1,l2,k,i,s ≲ exp(O(log2 n)),

we



1. Approximate mt by ϕm(t) ∈ Φ(L,W,R,B) with L = Θ(log4 n), ∥W∥∞ = Θ(log6 n), R = Θ(log8 n) and
B = exp(Θ(log4 n)).

2. Approximate σt by ϕσ(t) ∈ Φ(L,W,R,B) with L = Θ(log4 n), ∥W∥∞ = Θ(log6 n), R = Θ(log8 n) and
B = exp(Θ(log4 n)).

3. Approximate 1
x by ϕrec(x) ∈ Φ(L,W,R,B) with L = Θ(log4 n), ∥W∥∞ = Θ(log6 n), R = Θ(log8 n) and

B = exp(Θ(log4 n)).

4. For vector x ∈ RD, approximate x(i) by ϕ
[D]
vpower(x; i) ∈ Φ(L,W,R,B) with L = Θ(log2 n), ∥W∥∞ = Θ(1),

R = Θ(log2 n) and B = exp(Θ(log log n)).

5. For vector z ∈ Rd, approximate z(i) by ϕ[d]vpower(z; i) ∈ Φ(L,W,R,B) with L = Θ(log2 n · log log n), ∥W∥∞ =
Θ(log n), R = Θ(log3 n) and B = exp(Θ(log n · log log n)).

6. For x ∈ R, Approximate xa by ϕpower(x; a) ∈ Φ(L,W,R,B) with L = Θ(log2 n log log n), ∥W∥∞ = Θ(log n),
R = Θ(log3 n) and B = exp(Θ(log n log log n).

7. For x, y ∈ R, Approximate x · y by ϕmult(x, y) ∈ Φ(L,W,R,B) with L = Θ(log2 n), ∥W∥∞ = Θ(1),
R = Θ(log2 n) and B = exp(Θ(log2 n)).

We have∥∥∥∥∥
L1∑
l1=0

L2∑
l2=0

( 1
σt

)2l1+2l2+1 ∑
0≤k≤2l1+l2+1

mk
t

∑
s∈Nd

0 ,|s|≤(4l1+3l2+2)⌊β⌋+d+⌊α⌋

(ϕp(x))
(s)

∑
i∈ND

0 ,|i|≤l2

al1,l2,k,s,i · x(i)

−
L1∑
l1=0

L2∑
l2=0

∑
0≤k≤2l1+l2+1

∑
s∈Nd

0 ,|s|≤(4l1+3l2+2)⌊β⌋+d+⌊α⌋

∑
i∈ND

0 ,|i|≤l2

al1,l2,k,i,s

· ϕmult

(
ϕmult (ϕpower (ϕrec(ϕσ(t)); 2l1 + 2l2 + 1) , ϕpower(ϕm(t); k)) , ϕmult

(
ϕ[D]
vpower(x; i), ϕ

[d]
vpower(ϕp(x); s)

))∥∥∥∥∥
∞

≲ (σt)
d ·
(n− β

2α+d (log n)
β
2

+1

σt
+ n−

α
2α+d (log n)

α+1
2

)
.

Therefore, there exists network ϕ[1](x, t) ∈ Φ(L,W,R,B) with L = Θ(log4 n), ∥W∥∞ = Θ
(
log6 n + logd+3 n

)
,

R = Θ
(
log8 n + logd+5 n

)
, B = exp(Θ(log4 n)) so that (32) holds. By employing same techniques, we can also

obtain that there exists a neural network ϕ
[2]
j (x, t) with the same size as ϕ[1]j (x, t) so that (33) holds. Then

use (34), similar as the analysis for Case 2, we can obtain that there exists ϕ∗(x, t) ∈ Φ
(
L,W,R,B,Θ(

√
log n
σt

)
)

with L = Θ(log4 n), ∥W∥∞ = Θ
(
log6 n+ logd+3 n

)
, R = Θ

(
log8 n+ logd+5 n

)
, B = exp(Θ(log4 n)), so that for

any x ∈ RD with ∥x− y∗∥ ≤ c1n
− 1

2α+d
√
log n and dist(x,M) ≤ c0σt

√
log n, and t ∈ [t, t],

∥ϕ∗(x, t)−∇ log pt(x)∥∞ ≲ n−
β

2α+d (log n)
β
2

+1

σ2
t

+
n−

α
2α+d (log n)

α+1
2

σt
.

The desired result then follows from Lemmas C.1, C.3 and the fact that |Nϵ∗ | = O
(
n

d
2α+d (log n)−

d
2

)
.

D Proof of Technical Lemmas

D.1 Proof of Lemma B.2

Consider processes
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Y0 ∼ pT

dYt = βT−t(Yt + 2 log pT−t(Yt)) dt+
√

2βT−t dBt (0 ≤ t ≤ T − τ)

YT−τ = YT−τ · 1 (∥YT−τ∥∞ ≤ L) .

Y 0 ∼ pT

dY t = βT−t(Y t + 2Ŝ(Y t, T − t)) dt+
√
2βT−t dBt (0 ≤ t ≤ T − τ)

Y T−τ = Y T−τ · 1
(
∥Y T−τ∥∞ ≤ L

)
.

Ŷ0 ∼ N (0, ID)

dŶt = βT−t(Ŷt + 2Ŝ(Ŷt, T − t)) dt+
√
2βT−t dBt (0 ≤ t ≤ T − τ)

ŶT−τ = ŶT−τ · 1
(
∥ŶT−τ∥∞ ≤ L

)
.

Denote pt, pt and p̂t (τ ≤ t ≤ T ) as the probability distribution of YT−t, Y T−t and ŶT−t respectively. Then we
have

E[dγ(pdata, p̂)] ≤ E[dγ(pdata, pτ )] + E[dγ(pτ , pτ )] + E[dγ(pτ , p̂)].
Since c(x, y) = ∥x− y∥γ is a distance cost function for γ ≤ 1, we have

dγ(µ1, µ2) ≍ min
π∈Π(µ1,µ2)

∫
∥x− y∥γ dπ,

where Π(µ1, µ2) is the set of all couplings of µ1 and µ2. Notice that pdata is supported on M ⊂ BD
L/2, we can

bound
E[dγ(pdata, pτ )] ≲ Ex∈pdata,z∈N (0,ID) [∥x− (mτx+ στz) · 1 (∥mτx+ στz∥∞ ≤ L)∥γ ]

≤ Ex∈pdata,z∈N (0,ID) [∥x− (mτx+ στz)∥γ ]
≤ ((1−mτ )

γ + σγ
τ ) · Ex∈pdata

[∥x∥γ ]

≲ τ
γ
2 .

Furthermore,
dγ(pτ , p̂) ≲ dTV(pτ , p̂) ≤ dTV(pT ,N (0, ID))

≤
√
2KL(pT ∥N (0, ID))

≤ 2 exp((T − 1)β)
√
KL(p1 ∥N (0, ID),

where the last inequality is due to the exponential convergence of the Ornstein-Ulhenbeck process (Bakry et al.,
2014). Moreover,

log

(
p1

(2π)−
D
2 exp(−∥x∥2/2)

)
= log

(
1

σD
1

·
∫

exp(−∥x−m1y∥2 − ∥x∥2

2σ2
1

)f(y) dvolM(y)

)
≲ ∥x∥,

and
Ep1

[∥x∥] = O(1),

we have
dγ(pτ , p̂) ≲ 2 exp((T − 1)β)

√
KL(p1 ∥N (0, ID) ≲ exp((T − 1)β) ≲ 1

n
.

The analysis for the term E[dγ(pτ , pτ )] follows from Lemma D.7 of Oko et al. (2023), the only difference is that
we need to take γ into consideration. We include the proof below for completeness.

For 0 ≤ i ≤ K, denote

Y
(i)

0 ∼ pT

dY
(i)

t = βT−t(Y
(i)

t + 2 log pT−t(Y
(i)

t )) dt+
√
2βT−t dBt (0 ≤ t ≤ T − ti)

dY
(i)

t = βT−t(Y
(i)

t + 2Ŝ(Y
(i)

t , T − t)) dt+
√
2βT−t dBt (T − ti ≤ t ≤ T − τ)

Y
(i)

T−τ = Y
(i)

T−τ · 1
(
∥Y (i)

T−τ∥∞ ≤ L
)
.



Denote p(i)t (τ ≤ t ≤ T ) as the probability distribution of Y (i)

T−t. We have

E[dγ(pτ , pτ )] ≤
K−1∑
i=0

E[dγ(p(i)τ , p(i+1)
τ )]. (35)

Denote A = {(x, t) ∈ Rd × R : ∥x∥∞ ≤ mt + Cσt
√
log n, τ ≤ t ≤ T}. By Lemma A.1 of Oko et al. (2023),

there exists a large enough constant C so that it holds with probability at least 1− 1
n that for all 0 ≤ t ≤ T − τ ,

(Yt, T − t) ∈ A. Then consider

Y
′
0
(i) ∼ pT

dY
′(i)
t = βT−t(Y

′
t
(i) + 2 log pT−t(Y

′
t
(i))) dt+

√
2βT−t dBt (0 ≤ t ≤ T − ti+1)

dY
′(i)
t = βT−t

(
Y

′
t
(i) + 2 log pT−t(Y

′
t
(i))1

(
(Y ′

t
(i), T − t) ∈ A, for all s ≤ t

)
+ 2Ŝ(Y

′
t
(i), T − t)1

(
(Y ′

t
(i), T − t) /∈ A, for some s ≤ t

))
dt+

√
2βT−t dBt (T − ti+1 ≤ t ≤ T − ti)

dY
′
t
(i) = βT−t(Y

′
t
(i) + 2Ŝ(Y

′
t
(i), T − t)) dt+

√
2βT−t dBt (T − ti ≤ t ≤ T − τ)

Y
′(i)
T−τ = Y

′(i)
T−τ · 1

(
∥Y ′(i)

T−τ∥∞ ≤ L
)
.

Denote p′t(i) (τ ≤ t ≤ T ) as the probability distribution of Y ′(i)
T−t, we have dγ(p′τ (i), p

(i)
τ ) ≲ 1

n . Furthermore, when
ti ≳ (log n)−1, we have dγ(p′τ (i), p

(i+1)
τ ) ≲ dTV(p

′
τ
(i), p

(i+1)
τ ). When ti ≲ (log n)−1, Oko et al. (2023) construct a

transportation map between p′τ
(i) and p

(i+1)
τ so that

1. As much as 1
2dTV(p

′
τ
(i), p

(i+1)
τ ) of the mass is transported from p′τ

(i) to p(i+1)
τ .

2. With probability 1− 1
n , the transportation map moves at most O(

√
ti log n).

Based on the above fact, we can then conclude

dγ

(
pτ

(i), p(i+1)
τ

)
≲ 1

n
+
(√

ti log n ∧ 1
)γ

· dTV(p
′
τ
(i), p(i+1)

τ ).

Finally, follow the analysis in Chen et al. (2022), we can use invoke Girsanovs Theorem to shows that

dTV(p
′
τ
(i), p(i+1)

τ ) ≤
√
2KL(p′τ

(i) ∥ p(i+1)
τ ) ≤

√∫ ti+1

ti

∫
RD

∥∥∥Ŝ(x, t)−∇ log pt(x)
∥∥∥2 pt(x) dxdt.

The desired result is then follows from (35).

D.2 Proof for Lemma C.1

Since M ⊂ B1(0D), for any x ∈ RD,

∥∇ log pt(x)∥ =

∥∥∥∥∇pt(x)pt(x)

∥∥∥∥
=

∥∥∥∥∥∥
∫
exp

(
− ∥x−mty∥2

2σ2
t

)
·
(
− x−mty

σ2
t

)
· f(y) dvolM(y)∫

exp
(
− ∥x−mty∥2

2σ2
t

)
· f(y) dvolM(y)

∥∥∥∥∥∥
≤ ∥x∥+

√
D

σ2
t

.

Therefore, for any constant c1 > 0,∫
∥∇ log pt(x)∥2pt(x) · 1

(
dist(x,M) ≥ c0σti

√
log n

)
dx

≤
∫

∥x∥+
√
D

σ2
t

∫
f(y)

(2πσ2
t )

D
2

exp
(
− ∥x−mty∥2

2σ2
t

)
dvolM(y) · 1

(
dist(x,M) ≥ c0σti

√
log n, ∥x∥ ≥ c1

√
log n

)
dx

+

∫
∥x∥+

√
D

σ2
t

∫
f(y)

(2πσ2
t )

D
2

exp
(
− ∥x−mty∥2

2σ2
t

)
dvolM(y) · 1

(
dist(x,M) ≥ c0σti

√
log n, ∥x∥ < c1

√
log n

)
dx.



Supplementary Materials for “Adaptivity of Diffusion Models to Manifold Structures”

Note that for large enough c1,∫
∥x∥+

√
D

σ2
t

∫
f(y)

(2πσ2
t )

D
2

exp
(
− ∥x−mty∥2

2σ2
t

)
dvolM(y) · 1

(
dist(x,M) ≥ c0σti

√
log n, ∥x∥ ≥ c1

√
log n

)
dx

≤
∫ [ ∫

∥x∥+
√
D

σ2
t

1

(2πσ2
t )

D
2

exp
(
− ∥x−mty∥2

2σ2
t

)
· 1
(
∥x∥ ≥ c1

√
log n

)
dx

]
· f(y) dvolM(y)

≤ 1

n2
.

Moreover, for large enough c0, we have∫
∥x∥+

√
D

σ2
t

∫
f(y)

(2πσ2
t )

D
2

exp
(
− ∥x−mty∥2

2σ2
t

)
dvolM(y) · 1

(
dist(x,M) ≥ c0σti

√
log n, ∥x∥ ≤ c1

√
log n

)
dx

≲ c1
√
log n+D

σ2
t

1

(2πσ2
t )

D
2

· exp
(
−
c20σ

2
ti

4σ2
t

log n)

∫ ∫
f(y) · 1

(
∥x∥ ≤ c1

√
log n

)
dvolM(y) dx

≤ 1

n2
.

Therefore, we have ∫
∥∇ log pt(x)∥2 pt(x) · 1

(
dist(x,M) ≥ c0σti

√
log n

)
dx ≤ c1

1

n2
.

Similarly, we can show ∫
∥S(x, t)∥2 pt(x) · 1

(
dist(x,M) ≥ c0σti

√
log n

)
dx

≤
∫
c2

log n

σ2
t

pt(x) · 1
(
dist(x,M) ≥ c0σti

√
log n

)
dx ≤ c2c1

1

n2
.

The first statement is then proved. For the second statement. Denote ProjM(x) as any point inside
argminy∈M∥x− y∥. Then for any x ∈ RD with dist(x,M) ≤ c0σti

√
log n,

(2πσ2
t )

D
2 pt(x) ≥

∫
y∈Bσt (ProjM(x))∩M

exp
(
− ∥x−mty∥2

2σ2
t

)
· f(y) dvolM(y)

≳ exp(− (c0σti
√
log n+ σt + (1−mt))

2

2σt
)σd

t

≥ n−c2 .

Therefore, there exists a constant c′0 so that for any x ∈ RD with dist(x,M) ≤ c0σti
√
log n,

∥∇ log pt(x)∥ ≤

∥∥∥∥∥∥
∫
exp

(
− ∥x−mty∥2

2σ2
t

)
·
(
− x−mty

σ2
t

)
· 1
(
∥x−mty∥ ≤ c3σt

√
log n

)
· f(y) dvolM(y)∫

exp
(
− ∥x−mty∥2

2σ2
t

)
· 1
(
∥x−mty∥ ≤ c3σt

√
log n

)
· f(y) dvolM(y)

∥∥∥∥∥∥+ 1

n

≲
√
log n

σt
≍

√
log n

σti
.

We can then get the desired statement by combining all pieces.

D.3 Proof of Lemma C.2

The case for ϵ > 1 is trivial. So we only consider the case of ϵ ≤ 1. Since M is β-smooth and has a reach that is
bounded away from zero, there exists a constant r so that for any x ∈ M, there exists a local homeomorphism
ψx defined on Br(0d) so that Br(x) ∩ M ⊂ ψx(Br(0d)) ⊂ B8r/7(x) ∩ M and both ψx and ψ−1

x are β-smooth



maps. Therefore, we can write M as ∪M
i=1ψi(Br(0d)), where M is a positive constant and ψi is β-smooth map

with β-smooth inverse. Without loss of generality, we assume ψ−1
i to be 1-Lipschitz. Denote

A = {z = (j1, j2, · · · , jd)
⌈ 1
ϵ ⌉

: ji is integer, z ∈ Br(0d)}.

Then ∣∣∣ ∪M
i=1 ψi(A)

∣∣∣ ≲ ϵ−d.

For any y ∈ M, there exists i ∈ [M ] and z ∈ Br(0d) so that y = ψi(z). Moreover, there exists z∗ ∈ A so that
∥z − z∗∥ ≤ ϵ. So,

∥y − ψi(z
∗)∥ ≤ ∥z − z∗∥ ≤ ϵ,

which indicates that ∪M
i=1ψi(A) is an ϵ-cover of M. Furthermore, for any x0 ∈ M and i ∈ [M ], if ∥x− x0∥ ≤ r

and ∥y − x0∥ ≤ r, then
∥ψ−1(x)− ψ−1(y)∥ ≤ ∥x− y∥ ≤ 2r.

Therefore,
|{x ∈ ψi(A) : ∥x− x0∥ ≤ 2r}| ≲ (r/ϵ)d,

and thus
|{x ∈ M : ∥x− x0∥ ≤ 2r}| ≲ (r/ϵ)d,

D.4 Proof of Lemma C.3

Consider x ∈ RD so that dist(x,M) ≤ c0σt
√
log n. Then there exists y ∈ Nϵ∗ so that

∥x− y∥ ≤ dist(x,M) + ϵ∗ ≤ c0σt
√
log n+ ϵ∗.

Write Nϵ∗ = {Y ∗
1 , Y2, · · · , Y ∗

J∗} and define

ρ̃(x) =

 1 |x| < 1
0 |x| > 2

2− |x| 1 < |x| ≤ 2

ρ̃j(x) = ρ̃

(
∥x− Y ∗

j ∥2

(c0σt
√
log n+ ϵ∗)2

)
, ρj(x) =

ρ̃j(x)∑J∗

j=1 ρ̃j(x)
for j ∈ [J∗].

Then we have

∇ log pt(x) =

J∗∑
j=1

∇ log pt(x) · ρj(x).

By Lemma C.6 and C.7, we construct the following neural networks:

1. For j ∈ [J∗], we approximate ρ̃j(x) by ϕρ̃j
(x) ∈ Φ(L,W,R,B) with L = Θ(log n), ∥W∥∞ = Θ(log n),

R = Θ(log n) and B = exp(Θ(log n)).

2. We approximate 1
x by ϕrec(x) ∈ Φ(L,W,R,B) with L = Θ(log2 n), ∥W∥∞ = Θ(log3 n), R = Θ(log4 n) and

B = exp(Θ(log2 n)).

3. We approximate x · y by ϕmult(x, y) ∈ Φ(L,W,R,B) with L = Θ(log n), ∥W∥∞ = Θ(log n), R = Θ(log n)
and B = exp(Θ(log n)).
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We have for any x ∈ RD with dist(x,M) ≤ c0σt
√
log n,∥∥∥∥∥∥

J∗∑
j=1

∇ log pt(x) · ρj(x)− ϕmuti

 J∗∑
j=1

ϕmuti

(
ϕ∗j (x, t), ϕρ̃j

(x)
)
, ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
J∗∑
j=1

∇ log pt(x) · ρj(x)−
J∗∑
j=1

ϕ∗j (x, t) · ρj(x)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
J∗∑
j=1

ϕ∗j (x, t) · ρj(x)−
J∗∑
j=1

ϕ∗j (x, t) · ρ̃j(x) · ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
J∗∑
j=1

ϕ∗j (x, t) · ρ̃j(x) · ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

−
J∗∑
j=1

ϕ∗j (x, t) · ϕρ̃j
(x) · ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
J∗∑
j=1

ϕ∗j (x, t) · ϕρ̃j
(x) · ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

−
J∗∑
j=1

ϕmult

(
ϕ∗j (x, t), ρ̃j(x)

)
· ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
J∗∑
j=1

ϕmult

(
ϕ∗j (x, t), ρ̃j(x)

)
· ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

− ϕmuti

 J∗∑
j=1

ϕmuti

(
ϕ∗j (x, t), ϕρ̃j

(x)
)
, ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

∥∥∥∥∥∥
∞

≲ ε+
1

n
,

where the last inequality uses the fact that there are only constant-order number of j ∈ [J ] so that
ρj(x) ̸= 0. Finally, by concatenation and parallelization of neural networks, there exists ϕscore(x) ∈
Φ(L1,W1, S1, B1,Θ(

√
log n
σt

)) with L1 = Θ(L + log2 n), ∥W1∥∞ = Θ(J∗(∥W∥∞ + log n) + log3 n), S1 =

Θ(J∗(S + log n) + log4 n) and B1 = exp(Θ(log2 n)) so that

ϕscore(x) = max

−c2
√
log n

σt
,min

c2√log n

σt
, ϕmuti

 J∗∑
j=1

ϕmuti

(
ϕ∗j (x, t), ϕρ̃j

(x)
)
, ϕrec

 J∗∑
j=1

ϕρ̃j
(x)

 .

The result is then follows from the fact that ∥∇ log pt(x)∥∞ ≤ c2
√
log n
σt

when dist(x,M) ≤ c0σt
√
log n.

D.5 Proof of Lemma C.8

Let h(x, z) = (∇G(z))T (x−G(z)). Then we can write the Jacobian of h with respect to z as

∇zh(x, z) = −∇G(z)T∇G(z) +
D∑

k=1

(xk −Gk(z))Hk(z),

where G(z) = (G1(z), G2(z), · · · , GD(z)) and Hk(z) denotes the Hessian matrix of Gk(z). Then denote

g(x, z) = z − (∇zh(x, z))
−1h(x, z).

Note that for any x with ∥x−G(0d)∥ = ∥x− y∗∥ ≤ c1(σt ∨ n−
1

2α+d )
√
log n, we have

∥h(x, 0d)∥ = ∥(∇G(0d))T (x−G(0d))∥ ≤ c1(σt ∨ n−
1

2α+d )
√
log n.

Then since G(z) is C∞-smooth and ∇G(0d)T∇G(0d) = Id, we have

∥g(x, 0d)∥ = O(∥h(x, 0d)∥) = O
(
(σt ∨ n−

1
2α+d )

√
log n

)
,



and
∥h(x, g(x, 0d))∥ =

∥∥h (x, 0d − (∇zh(x, 0d))
−1h(x, 0d)

)∥∥
=
∥∥h(x, 0d)−∇zh(x, 0d)(∇zh(x, 0d))

−1h(x, 0d)
∥∥+O(∥h(x, 0d)∥2)

= O
((

(σt ∨ n−
1

2α+d )
√

log n
)2)

.

Similarly, define
g(x) = g ◦ g ◦ · · · ◦ g(x, g︸ ︷︷ ︸

⌈log2(2β)⌉

(x, 0d)),

we can obtain
∥g(x)∥ = O

(
(σt ∨ n−

1
2α+d )

√
log n

)
,

and
∥h(x, g(x))∥ = O

((
(σt ∨ n−

1
2α+d )

√
log n

)2β)
,

Then we approximate g(x) by the neural network. Notice that by Cayley-Hamilton theorem, for A ∈ Rd×d,
denote Sk as the trace of Ak and Bk as the kth complete exponential Bell polynomial.1 We can write

det(A) =
1

d!
Bd(S1,−1!S2, · · · , (−1)d−1(n− 1)!Sd)

A−1 =
1

det(A)

d−1∑
k=0

(−1)d+k−1A
d−k−1

k!
Bk(S1,−1!S2, · · · , (−1)k−1(k − 1)!Sk).

Note that there exists a small enough constant r so that for any x with ∥x − G(0d)∥ ≤ c1(σt ∨ n−
1

2α+d )
√
log n,

when ∥z∥ ≤ r,
−2Id ≼ ∇zh(x, z) ≼ −1

2
Id.

By Lemmas C.6 and C.7, there exists ϕg(x, z) ∈ Φ(L,W,R,B) with L = Θ(log2 n), ∥W∥∞ = Θ(log3 n),
R = Θ(log4 n) and B = exp(Θ(log2 n)) so that for any x with ∥x−G(0d)∥ ≤ c1(σt ∨n−

1
2α+d )

√
log n and ∥z∥ ≤ r,

∥ϕg(x, z)− g(x, z)∥ ≲ n−
2β

2α+d .

Furthermore, ∥∥∥∥∥∥∥g ◦ g ◦ · · · ◦ g(x, g︸ ︷︷ ︸
⌈log2(2β)⌉

(x, 0d))− ϕg ◦ ϕg ◦ · · · ◦ ϕg(x, ϕg︸ ︷︷ ︸
⌈log2(2β)⌉

(x, 0d))

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥g ◦ g ◦ · · · ◦ g(x, g︸ ︷︷ ︸
⌈log2(2β)⌉

(x, 0d))− g ◦ g ◦ · · · ◦ g(x, ϕg︸ ︷︷ ︸
⌈log2(2β)⌉

(x, 0d))

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥g ◦ g ◦ · · · ◦ g(x, ϕg︸ ︷︷ ︸
⌈log2(2β)⌉

(x, 0d))− g ◦ g ◦ · · · ◦ ϕg(x, ϕg︸ ︷︷ ︸
⌈log2(2β)⌉

(x, 0d))

∥∥∥∥∥∥∥
+ · · ·

+

∥∥∥∥∥∥∥g ◦ ϕg ◦ · · · ◦ ϕg(x, ϕg︸ ︷︷ ︸
⌈log2(2β)⌉

(x, 0d))− ϕg ◦ ϕg ◦ · · · ◦ ϕg(x, ϕg︸ ︷︷ ︸
⌈log2(2β)⌉

(x, 0d))

∥∥∥∥∥∥∥
≲ n−

2β
2α+d .

1Bk (x1, . . . , xk) =
∑k

w=1 Bk,w (x1, x2, . . . , xk−w+1) with Bk,w (x1, x2, . . . xk−w+1)

=
∑

j1+...+jk−w+1=w

j1+2j2+...+(k−w+1)jk−w+1=k

k!
j1!j2!...jk−w+1!

(
x1
1!

)j1 (x2
2!

)j2 · · ·(xk−w+1

k−w+1!

)jk−w+1
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So by concatenation and parallelization of neural networks, there exists ϕp(x) ∈ Φ(L,W,R,B) with L =
Θ(log2 n), ∥W∥∞ = Θ(log3 n), R = Θ(log4 n) and B = exp(Θ(log2 n)) so that for any x with ∥x − y∗∥ ≤
c1(σt ∨ n−

1
2α+d )

√
log n,

∥ϕp(x)− g(x)∥ ≲ n−
2β

2α+d .

So we have ∥(∇G(ϕp(x))T (x − G(ϕp(x))∥ = ∥h(x, ϕp(x))∥ ≲
(
(σt ∨ n−

1
2α+d )

√
log n

)2β
. The proof of the first

statement is completed. Then for the second statement, note that for any x with ∥x − G(0d)∥ = ∥x − y∗∥ ≤
c1(σt ∨ n−

1
2α+d )

√
log n, we have ∥ϕp(x)∥ ≲ (σt ∨ n−

1
2α+d )

√
log n. Therefore,∥∥(∇G∗(ϕp(x))

T (x−G∗(ϕp(x))
∥∥ ≤

∥∥(∇G(ϕp(x))T (x−G(ϕp(x))
∥∥

+
∥∥(∇G∗(ϕp(x))

T (x−G∗(ϕp(x))− (∇G∗(ϕp(x))
T (x−G(ϕp(x))

∥∥
+
∥∥(∇G∗(ϕp(x))

T (x−G(ϕp(x))− (∇G(ϕp(x))T (x−G(ϕp(x))
∥∥

≲
(
(σt ∨ n−

1
2α+d )

√
log n

)β
.

Then define ℓ(x, z) = ∥x−G∗(z)∥2, we have the Jacobian matrix of ℓ with respect to z is

∇ℓz(x, z) = −2∇G∗(z)T (x−G∗(z)),

and the Hessian matrix of ℓ with respect to z is

Hz(x, z) = ∇G∗(z)T∇G∗(z)− 2

D∑
k=1

(xk −G∗
k(z))H∗

k(z),

where G∗(z) = (G∗
1(z), G

∗
2(z), · · · , G∗

D(z)) and H∗
k(z) denotes the Hessian matrix of G∗

k(z). For any x with
∥x−G∗(0d)∥ = ∥x− y∗∥ ≤ c1(σt ∨ n−

1
2α+d )

√
log n and dist(x,M) ≤ c0σt

√
log n, denote

z = Q∗(ProjM(x)).

We have
∥z∥ ≤ ∥y∗ − ProjM(x)∥ ≤ ∥x− y∗∥+ dist(x,M) ≲ (σt ∨ n−

1
2α+d )

√
log n.

Since G∗ is β-smooth with β ≥ 2 and ∇G∗(0d)
T∇G∗(0d) = Id, we have

∥Hz(x, z)−Hz(x, 0d)∥F ≲ ∥z∥+ (σt ∨ n−
1

2α+d )
√

log n,

and
∥Hz(x, 0d)− Id∥F ≲ (σt ∨ n−

1
2α+d )

√
log n.

Therefore, there exist positive constants r1, a so that when z ∈ Br1(z),

Hz(x, z) ≽ aId.

Then use Taylor’s theorem, for any v ∈ Rd with ∥v∥ = 1, z ∈ Br1(z) and x with ∥x − G∗(0d)∥ = ∥x − y∗∥ ≤
c1(σt ∨ n−

1
2α+d )

√
log n and dist(x,M) ≤ c0σt

√
log n,

∇ℓz(x, z)T v = ∇ℓz(x, z)T v + (z − z)TH∗
z(x, tz + (1− t)z)v = (z − z)TH∗

z(x, tz + (1− t)z)v,

where t ∈ (0, 1) and depends on v, x, z. Therefore,

∥∇ℓz(x, z)∥ ≥ sup
v∈Rd
∥v∥=1

inf
z∈Br1

(z)

∣∣(z − z)TH∗
z(z)v

∣∣ ≥ a∥z − z∥.

Then since ∥∇ℓz(x, ϕp(x))∥ =
∥∥(∇G∗(ϕp(x))

T (x−G∗(ϕp(x))
∥∥ ≲

(
(σt ∨ n−

1
2α+d )

√
log n

)β
, we can obtain

∥ϕp(x)−Q∗(ProjM(x))∥ = ∥ϕp(x)− z∥ ≲
(
(σt ∨ n−

1
2α+d )

√
log n

)β
.

Proof is completed.



D.6 Proof of Lemma B.4

We first show that p̃ satisfies Poincaré inequality with Poincaré constant CPI + σ2. Indeed, consider x ∼ pdata
and z ∼ N (0, σ2ID), for any smooth function f : RD → R, we have

Ep̃

[
(f(y)− Ep̃[f(y)])

2
]

= Epdata
EN (0,σ2ID)

[(
f(x+ z)− Epdata

EN (0,σ2ID)[f(x+ z)]
)2]

= EN (0,σ2ID)Epdata

[
(f(x+ z)− Epdata

[f(x+ z)])
2
]
+ EN (0,σ2ID)

[(
Epdata

[f(x+ z)]− Epdata
EN (0,σ2ID)[f(x+ z)]

)2]
≤ EN (0,σ2ID)

[
CPI · Epdata

[
∥∇f(x+ z)∥2

]]
+ EN (0,σ2ID)

[(
Epdata

[f(x+ z)]− Epdata
EN (0,σ2ID)[f(x+ z)]

)2]
,

where the last inequality uses the fact that pdata satisfying Poincaré inequality with Poincaré constant CPI.
Furthermore, by Gaussian Poincaré inequality, for any smooth function g : RD → R,

EN (0,σ2ID)

[(
g(z)− EN (0,σ2ID)[g(z)]

)2] ≤ σ2EN (0,σ2ID)

[
∥∇g(z)∥2

]
.

Choose g(z) = Epdata
[f(x+ z)] in the above inequality, we can obtain

EN (0,σ2ID)

[(
Epdata

[f(x+ z)]− Epdata
EN (0,σ2ID)[f(x+ z)]

)2]
≤ σ2 · EN (0,σ2ID)

[
∥Epdata

[∇f(x+ z)]∥2
]

≤ σ2 · Epdata
EN (0,σ2ID)

[
∥∇f(x+ z)∥2

]
.

So finally, we can obtain that

Ep̃

[
(f(y)− Ep̃[f(y)])

2
]
≤ (CPI + σ2) · Ep̃

[
∥∇f(y)∥2

]
,

Therefore, p̃ satisfies Poincaré inequality with Poincaré constant C ′
PI = CPI + σ2, which can imply the following

convergence result (see for example, Chewi et al. (2021))

χ2(pt ∥ p̃) ≤ exp(− 2t

C ′
PI

) · χ2(p0 ∥ p̃), (36)

where pt denotes the distribution ofXt in the Langevin diffusion model. Therefore, by choosing T = Θ
(
C ′

PI[log n∨
log(χ2(p0 ∥ p̃))]

)
, we have χ2(pT ∥ p̃) = O( 1n ). Moreover, follow the analysis in Chen et al. (2022), we can invoke

Girsanovs Theorem to shows that

dTV(pT , p̂T ) ≤
√
2KL(pT ∥ p̂T ) ≤

√∫ T

0

∫
RD

∥∥∥Ŝ(x)− S̃(x)
∥∥∥2 pt(x) dxdt

=

√∫ T

0

∫
RD

∥∥∥Ŝ(x)− S̃(x)
∥∥∥2 pt(x)

p̃(x)
p̃(x) dxdt

≤
(∫

RD

∥∥∥Ŝ(x)− S̃(x)
∥∥∥4 p̃(x) dx) 1

4

·

√∫ T

0

(χ2(pt ∥ p̃) + 1)
1
2 dt.

Combined with (36), we have

dTV(p̂T , p̃) ≤ dTV(p̂T , pT ) + dTV(pT , p̃)

≤
(∫

RD

∥∥∥Ŝ(x)− S̃(x)
∥∥∥4 p̃(x) dx) 1

4

·

(
√
T +

√
C ′

PI

(
1− exp(− T

C ′
PI

)

)
(χ2(p0 ∥ p̃))

1
4

)
+O(

1

n
)

≲
√
C ′

PI ·
(
(χ2(p0 ∥ p̃))

1
4 +

√
log n

)
·
(∫

RD

∥∥∥Ŝ(x)− S̃(x)
∥∥∥4 p̃(x) dx) 1

4

+
1

n
.
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D.7 Proof of Lemma B.5

Notice that

S̃(x) =
Epdata

[
(y − x) exp(−∥y−x∥2

2σ2 )
]

σ2 · Epdata

[
exp(−∥y−x∥2

2σ2 )
] .

Compared with the score function used in forward backward diffusion

∇ log pt(x) =
Epdata

[
(mty − x) exp

(
−∥x−mty∥2

2σ2
t

)]
σ2
t · Epdata

[
exp

(
−∥x−mty∥2

2σ2
t

)] ,

we can see S̃(x) can be recovered by choosing mt = 1 and σt = σ in ∇ log pt(x). Therefore, follow the analysis
in the proof of Lemma B.3, by choosing L = Θ(log4 n), ∥W∥∞ = Θ

(
(σ ∨ n−

1
2α+d )−d(log6−

d
2 n ∨ log

d
2+3 n)

)
,

R = Θ
(
(σ ∨ n−

1
2α+d )−d(log8−

d
2 n ∨ log

d
2+5 n)

)
, B = exp(Θ(log4 n)), and V = Θ(

√
log n
σ ), we have

inf
S∈Φ(L,W,R,B,V )

Ep̃

[
∥S(x)− S̃(x)∥2

]
≲
{

log4 n
n σ > n− 1

2α+d

n
− 2β

2α+d (log n)β+2

σ4 + n
− 2α

2α+d (log n)α+1

σ2 σ ≤ n−
1

2α+d .

Then notice that by the equivalence of the explicit score matching and denoising score matching (see for exam-
ple, Vincent (2011)), for any S ∈ Φ(L,W,R,B, V ),

Ep̃

[
∥S(x)− S̃(x)∥2

]
= Epdata

[
Ez∼N (X,σ2ID)

[∥∥∥∥S(z)− X − z

σ2

∥∥∥∥2
]]

+ C,

where C = Ep̃[∥S̃(x)∥2]− Epdata

[
Ez∼N (X,σ2ID)

[∥∥X−z
σ2

∥∥2]] is independent of s. Furthermore,

Ez∼N (X,σ2ID)

[∥∥∥∥S(z)− X − z

σ2

∥∥∥∥2
]
≲ Ez∼N (X,σ2ID)

[
∥S(z)∥2

]
+ Ez∼N (X,σ2ID)

[∥∥∥∥X − z

σ2

∥∥∥∥2
]
≲ log n

σ2
.

Then follow the proof of Theorem 4.3 of Oko et al. (2023), we can obtain

Epdata
⊗n

[
Ep̃

[
∥Ŝ(x)− S̃(x)∥2

]]
≲ inf

S∈Φ(L,W,R,B,V )
Ep̃

[
∥S(x)− S̃(x)∥2

]
+

log n

σ2

LR log(nL∥W∥∞B)

n

≲

 n−1σ−d−2
(
log17−

d
2 n ∨ log

d
2+14 n

)
σ > n− 1

2α+d

n
− 2β

2α+d

σ4 logβ+2 n+ n
− 2α

2α+d

σ2

(
logα+1 n ∨ log17−

d
2 n ∨ log14+

d
2 n
)

σ ≤ n−
1

2α+d .

Then notice that

∥S̃(x)∥ =

∥∥∥∥∥∥
Epdata

[
(y − x) exp(−∥y−x∥2

2σ2 )
]

σ2 · Epdata

[
exp(−∥y−x∥2

2σ2 )
]
∥∥∥∥∥∥ ≤ ∥x∥+D

σ2
.

Similar as Lemma C.1, we can obtain that for any S ∈ Φ(L,W,R,B, V ),

Ep̃

[∥∥∥S̃(x)− S(x)
∥∥∥4]

≤Ep̃

[∥∥∥S̃(x)− S(x)
∥∥∥4 · 1(dist(x,M) ≤ c0σ

√
log n

)]
dx+O(

1

n2
).

(37)



And for any x ∈ RD satisfying dist(x,M) ≤ c0σ
√
log n, we have ∥S̃(x)∥∞ ≤ c2

√
log n
σ . Then combined with

Ŝ ∈ Φ(L,W,R,B, V ) with V = Θ(
√
log n
σ ), we can obtain

Epdata
⊗n

[(
Ep̃

[
∥S̃(x)− Ŝ(x)∥4

]) 1
4

]
≲ Epdata

⊗n

[(
Ep̃

[
∥S̃(x)− Ŝ(x)∥2

]) 1
4

]
log

1
4 n√
σ

+O(
1√
n
)

≤
(
Epdata

⊗n

[
Ep̃

[
∥S̃(x)− Ŝ(x)∥2

]]) 1
4 log

1
4 n√
σ

+O(
1√
n
).

The desired result then follows by plugging in the bound for Epdata
⊗n

[
Ep̃

[
∥S̃(x)− Ŝ(x)∥2

]]
given in (37).

D.8 Analysis of KDE as initial distribution in Langevin diffusion

Lemma D.1. Consider σ satisfying n−δ1 ≲ σ ≲ n−δ2 for any positive constants (δ1, δ2). Let the initial distribu-
tion be the kernel density estimator p0(y) = 1

n

∑n
i=1 exp(−

∥xi−y∥2

2σ2 ) · (2πσ2)−
D
2 . It holds with probability at least

1− 1
n that

χ2(p0 ∥ pdata,σ) ≲
1

n
(log n)

3d
2 +1σ−d +

1

n2
(log n)d+2σ−2d.

Proof. For any rn ≥ 0, we can write

χ2(p0 ∥ pdata,σ) = Epdata,σ

[(
p0

pdata,σ
− 1

)2
]

=

∫
RD

(
p0(y)

pdata,σ(y)
− 1

)2

· 1 (dist(y,M) ≤ rn) · pdata,σ(y) dy

+

∫
RD

(p0(y)− pdata,σ(y))
2

pdata,σ(y)
· 1 (dist(y,M) > rn) dy

=

∫
RD

n−1
∑n

i=1 exp(−
∥xi−y∥2

2σ2 )− E
[
exp(−∥X−y∥2

2σ2 )
]

E
[
exp(−∥X−y∥2

2σ2 )
]

2

· 1 (dist(y,M) ≤ rn) · pdata,σ(y) dy

︸ ︷︷ ︸
(A)

+

∫
RD

(2πσ2)−
D
2 ·

(
n−1

∑n
i=1 exp(−

∥xi−y∥2

2σ2 )− E
[
exp(−∥X−y∥2

2σ2 )
])2

E
[
exp(−∥X−y∥2

2σ2 )
] · 1 (dist(y,M) > rn) dy

︸ ︷︷ ︸
(B)

.

We first bound term (B). For any y ∈ RD, denote ProjM(y) as an arbitrary point inside argminy′∈M∥y′ − y∥.
Then we have

E
[
exp(−∥X − y∥2

2σ2
)

]
≥
∫
∥x−ProjM(y)∥≤σ

exp(−∥X − y∥2

2σ2
)f(X) dvolM(X)

≳ σd exp

(
− (dist(y,M) + σ)2

2σ2

)
≳ σd · exp

(
−3 · dist(y,M)2

4σ2

)
,

E
[
exp(−∥X − y∥2

2σ2
)

]
≤ exp

(
−dist(y,M)2

2σ2

)
,

n−1
n∑

i=1

exp(−∥xi − y∥2

2σ2
) ≤ exp

(
−dist(y,M)2

2σ2

)
.
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Without loss of generality, we assume M ⊂ B1(0D), then we have

(B) ≲
∫
RD

σ−(D+d) · exp
(
−dist(y,M)2

4σ2

)
· 1 (dist(y,M) > rn) dy

≤
∫
∥y∥≤2

exp(− r2n
4σ2

) · σ−(D+d) dyn +

∫
∥y∥>2

exp

(
− (∥y∥ − 1)2

4σ2

)
· σ−(D+d) dyn,

where we use dist(y,M) ≥ ∥y∥ − 1 in the last inequality. Therefore, by choosing rn = Θ(σ
√
log n), we have

(B) ≲ 1

n
.

Then for the term (A), let Nσ/
√
log n be a σ/

√
log n cover of M. By Lemma C.2, we have J = |Nσ/

√
log n| ≲

(
√
log n
σ )d. Denote Nσ/

√
log n = {Y1, Y2, · · · , YJ} and

Ak,j =

{
y ∈ RD : (k − 1)

σ√
log n

≤ dist(y,M) ≤ k
σ√
log n

, ∥ProjM(y)− Yj∥ ≤ σ√
log n

}
,

k ∈ {1, 2, · · · ,K}, j ∈ 1, 2, · · · , J.

Notice that since M has a reach τM that is lower bounded away from zero, ProjM(y) is uniquely defined when
dist(y,M) ≤ τM > 0. Then set K = Θ(log n), we have

{y ∈ RD : dist(y,M) ≤ rn} ⊂ ∪K
k=1 ∪J

j=1 Ak,j .

Consider an arbitrary k ∈ [K] and j ∈ [J ], we aim to bound

sup
y∈Ak,j

∣∣∣∣∣ 1n
n∑

i=1

exp(−∥xi − y∥2

2σ2
)− E

[
exp(−∥X − y∥2

2σ2
)

]∣∣∣∣∣ .
Denote y∗ = Yj and r = (k− 1) σ√

logn
. For any y ∈ Ak,j and x ∈ M so that ∥x− y∗∥ > 2r+ 2σ√

log n
+ σ
√
d log 1

σ ,
we have

∥x− y∥ ≥ ∥x− y∗∥ − ∥y∗ − ProjM(y)∥ − ∥y − ProjM(y)∥ ≥ r + σ

√
d log

1

σ
.

Therefore, for any y, y′ ∈ Ak,j , we have

dn(y, y
′) =

√√√√ 1

n

n∑
i=1

(
exp

(
−∥xi − y∥2

2σ2

)
− exp

(
−∥xi − y′∥2

2σ2

))2

≤

√√√√ 1

n

n∑
i=1

(
exp

(
−∥xi − y∥2

2σ2

)
− exp

(
−∥xi − y′∥2

2σ2

))2

· 1

(
∥xi − y∗∥ > 2r +

2σ√
log n

+ σ

√
d log

1

σ

)

+

√√√√ 1

n

n∑
i=1

(
exp

(
−∥xi − y∥2

2σ2

)
− exp

(
−∥xi − y′∥2

2σ2

))2

· 1

(
∥xi − y∗∥ ≤ 2r +

2σ√
log n

+ σ

√
d log

1

σ

)

≤ exp(− r2

2σ2
) ·

√√√√σd +
1

n

n∑
i=1

1

(
∥xi − y∗∥ ≤ 2r +

2σ√
log n

+ σ

√
d log

1

σ

)
.

Furthermore, since for any y, y′ ∈ Ak,j ,

dn(y, y
′) ≲ ∥y − y′∥

σ2
,

denote ωn = 1
n

∑n
i=1 1

(
∥xi − y∗∥ ≤ 2r + 2σ√

log n
+ σ

√
d log 1

σ

)
, for any ϵ ≤ exp(− r2

2σ2 ) ·
√
σd + ωn, the ϵ-covering

number of Ak,j under pseudo-metric dn is upper bounded by exp(O(log n
ϵ )). Therefore, by standard symmetriza-

tion and Dudleys entropy integral bound (see for example, Theorem 5.22 of Wainwright (2019)), let {εi}ni=1 be



i.i.d . Rademacher random variables, we have

Epdata
⊗n

[
sup

y∈Ak,j

∣∣∣∣∣ 1n
n∑

i=1

exp

(
−∥xi − y∥2

2σ2

)
− Epdata

[
exp

(
−∥X − y∥2

2σ2

)]∣∣∣∣∣
]

≤ E

[
sup

y∈Ak,j

∣∣∣∣∣ 1n
n∑

i=1

εi exp

(
−∥xi − y∥2

2σ2

)∣∣∣∣∣
]

≲ Epdata
⊗n

 1√
n

∫ exp(− r2

2σ2 )·
√

σd+ωn

0

√
log

n

ϵ
dϵ


≲ 1√

n

√
log n exp(− r2

2σ2
)Epdata

⊗n

[√
σd + ωn

]
≲ 1√

n

√
log n exp(− r2

2σ2
)(σ
√

log n)
d
2 .

Moreover, for any y ∈ Ak,j and x ∈ M,

exp

(
−∥x− y∥2

2σ2

)
≤ exp(− r2

2σ2
),

and
Epdata

[
exp

(
−∥X − y∥2

σ2

)]
≤ Epdata

[
exp

(
−∥X − y∥2

σ2

)
· 1

(
∥X − ProjM(y)∥ ≤ 2r +

√
2σ

√
d log

1

σ
+

σ√
log n

)]

+ Epdata

[
exp

(
−∥X − y∥2

σ2

)
· 1

(
∥X − ProjM(y)∥ > 2r +

√
2σ

√
d log

1

σ
+

σ√
log n

)]

≲ (σ
√
log n)d exp(− r2

σ2
).

So by Talagrand concentration inequality (see, for example, Theorem 3.27 of Wainwright (2019)), it holds with
probability at least 1− n−(δ1d+2) that

sup
y∈Ak,j

∣∣∣∣∣ 1n
n∑

i=1

exp(−∥xi − y∥2

2σ2
)− E

[
exp(−∥X − y∥2

2σ2
)

]∣∣∣∣∣
≲ 1√

n

√
log n exp(− r2

2σ2
)(σ
√
log n)

d
2 +

log n

n
exp(− r2

2σ2
).

Moreover, notice that for any y ∈ Ak,j ,

Epdata

[
exp

(
−∥X − y∥2

2σ2

)]
≥ Epdata

[
exp

(
−∥X − y∥2

2σ2

)
· 1
(
∥X − ProjM(y)∥ ≤ σ√

log n

)]
≳ exp

(
−
(r + 2σ√

log n
)2

2σ2

)
· σd(log n)−

d
2 ,

we have

sup
y∈Ak,j

∣∣∣ 1n ∑n
i=1 exp(−

∥xi−y∥2

2σ2 )− E
[
exp(−∥X−y∥2

2σ2 )
]∣∣∣

Epdata

[
exp

(
−∥X−y∥2

2σ2

)] ≲ 1√
n
(σ)−

d
2 (log n)

3d
4 + 1

2 +
1

n
(σ)−d(log n)

d
2+1.

Then use the fact that KJ ≲ (log n)
d
2+1σ−d ≲ (log n)

d
2+1nδ1d, we have it holds with probability at least 1 − 1

n
that

sup
{y∈RD : dist(y,M)≤rn}

∣∣∣ 1n ∑n
i=1 exp(−

∥xi−y∥2

2σ2 )− E
[
exp(−∥X−y∥2

2σ2 )
]∣∣∣

Epdata

[
exp

(
−∥X−y∥2

2σ2

)] ≲ 1√
n
(σ)−

d
2 (log n)

3d
4 + 1

2 +
1

n
(σ)−d(log n)

d
2+1.
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Therefore, we have
(A) ≲ 1

n
(σ)−d(log n)

3d
2 +1 +

1

n2
(σ)−2d(log n)d+2.

We can then obtain the desired result by combining all pieces.
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