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Abstract

Empirical studies have demonstrated the ef-
fectiveness of (score-based) diffusion models
in generating high-dimensional data, such as
texts and images, which typically exhibit a
low-dimensional manifold nature. These em-
pirical successes raise the theoretical question
of whether score-based diffusion models can
optimally adapt to low-dimensional manifold
structures. While recent work has validated
the minimax optimality of diffusion models
when the target distribution admits a smooth
density with respect to the Lebesgue measure
of the ambient data space, these findings do
not fully account for the ability of diffusion
models in avoiding the the curse of dimen-
sionality when estimating high-dimensional
distributions. This work considers two com-
mon classes of diffusion models: Langevin dif-
fusion and forward-backward diffusion. We
show that both models can adapt to the in-
trinsic manifold structure by showing that
the convergence rate of the inducing distribu-
tion estimator depends only on the intrinsic
dimension of the data. Moreover, our consid-
ered estimator does not require knowing or
explicitly estimating the manifold. We also
demonstrate that the forward-backward dif-
fusion can achieve the minimax optimal rate
under the Wasserstein metric when the tar-
get distribution possesses a smooth density
with respect to the volume measure of the
low-dimensional manifold.

1 Introduction

Generative models have emerged as powerful and rou-
tinely utilized tools for generating complex data, find-
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ing numerous applications across various domains, in-
cluding computer vision Park et all (2021)); Wang et all
(2021); [[urhan and Bilgd (201R), natural language pro-
cessing Salakhufdinov (POTH); Nadkarnief all (PO1T),
and bioinformatics Cheng et al] (P021); Lan_ef_al

(2020). Contrasted with classical explicit distribu-
tion estimation approaches, generative modeling im-
plicitly estimates the data distribution by characteriz-
ing the data-generating process, and can adeptly cap-
ture highly nonlinear structures that may lead to singu-
larities, such as jumps and point masses, in the distri-
bution. Additionally, generating samples from the un-
derlying data distribution can be more useful and im-
portant than estimating it in many applications, such
as synthetic image creation, automated text genera-
tion, and biological structure simulation.

Various architectures and training methodologies, such
as Generative Adversarial Networks (GAN) Goadfel
low ef—all (2004), Variational Autoencoders (VAE)
Kingma and Welling (2013), and flow-based genera-
tive model Papamakarios et all (2021), have been de-
veloped to enhance the efficacy and application range
of generative models, each presenting unique strengths
and challenges. Recently, a new class of generative
models, known as (score-based) diffusion models HG
efall (2020); Song et al] (2020); Nichol and Dhariwal
(2021); Song and Ermor (2019), has showcased state-
of-the-art performance in various domains, includ-
ing high-quality image generation Song et all (2020);
Nichol“and Dhariwal (2021), photorealistic text-to-
image translation Saharia_ef—all (2022), and high-
fidelity audio production Kong et al] (2020). In par-
ticular, two classes of diffusion models are prevalently
employed for sampling and data generation. One is
Langevin diffusion models, which leverage Langevin
dynamics to gradually transition a simple initial distri-
bution to the target data distribution, making use of
the gradient of the logarithmic data density (i.e. score),
typically estimated through score matching. The other
is forward-backward diffusion models, which employ
two diffusions to construct the generative model. The
first diffusion, called the forward process, utilizes an
analytically tractable stochastic differential equation,
such as the Ornstein-Uhlenbeck (OU) process, to trans-
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form the data distribution to a simple noise distribu-
tion. The second diffusion, called the backward pro-
cess, utilizes the time-reversal of the forward process
to generate data from noise based on the score esti-
mated from the forward process.

Despite the high-dimensional form of data in various
applications, the empirical success of state-of-the-art
generative modeling approaches is often attributed to
the identification and utilization of low-dimensional
manifold structures within the data. These structures
enable a means to circumvent the curse of dimension-
ality, allowing generative models to adeptly adapt to
manifold structures. For instance, earlier generative
modeling approaches, including GAN and VAE, typ-
ically involve the extraction of latent features or rep-
resentations (encoding) that are used for accurately
reconstructing the original data (decoding). In other
words, a low-dimensional manifold structure is implic-
itly assumed and utilized in distribution modeling and
estimation. In contrast, diffusion models do not explic-
itly estimate or utilize the manifold structure, beyond
merely injecting Gaussian noise to smooth out the
(possibly) singular data distribution, yet they achieve
remarkably accurate data generation. Motivated by
these considerations, the present study aims to address
the following theoretical question: Is diffusion model-
ing able to optimally adapt to the manifold structure in
the data? In other words, does the convergence rate of
the induced distribution estimator from diffusion mod-
els depend only on the intrinsic dimension of the data,
and is the rate optimal?

Related works. Recently, convergence rates of gener-
ative models for implicit distribution estimation have
been investigated by a number of works. [lang and
Yang (2021) examines the excess risk associated with
VAE through the lens of M-estimation. When spe-
cialized to Gaussian encoders and decoders with mean
functions approximated by ReLU neural networks,
their result demonstrates that VAE can adapt to low-
dimensional manifold structures. However, the derived
rate of convergence is worse than the minimax-optimal
rate, as the KullbackLeibler (KL) divergence objective
in VAE appears unsuitable for comparing mutually
singular distributions. Several recent studies estab-
lish quantitative convergence rates for GAN in distri-
bution estimation under various discrepancy metrics,
such as the Jensen-Shannon divergence Belomestny
efall (20211), Wasserstein distances Liang (2021); Chae
(2022); [Tang and Yang (2023), and adversarial losses
(also termed integral probability metrics) [Liang (2021);
Tang and Yang (2023); Uppal et all (2009). Among
these, Liang (2021) demonstrates that, by replacing
the empirical distribution with a regularized version
that incorporates the smoothness of the target den-

sity function, GAN can attain the minimax rate of
convergence for smooth density estimation under the
1-Wasserstein metric. Furthermore, [Tang and Yang
(2023) establishes the minimax rate under adversarial
losses for estimating smooth distributions supported
on manifolds, and shows that a regularized GAN ex-
plicitly incorporating the manifold structure can at-
tain this rate.

For Langevin diffusion models, some previous works
such as Huggins and Zou (2017); Dalalyan and Karag
ulyan (2019); [Yang and Wibisond (2022) have studied
its convergence and asymptotic bias due to the use
of an inaccurate score (e.g., based on stochastic gra-
dient or score matching). However, their assumptions
on the score approximation either requires a nearly
Lo-accurate score estimator Dalalyan and Karagulyan
(2019), or a controlled moment generating function for
the approximation error [Yang and Wibisond (2022),
both implying a controlled error under all finite mo-
ments. In comparison, our proof only requires a fourth-
moment error bound (expectation under the stationary
distribution of the diffusion) on the score estimation.

For forward-backward diffusion models, Chen_ef all
(2022); Lee_ef—all (2023) demonstrate that an Lo-
accurate score estimator leads to a controlled distri-
bution estimation error bound in the total variation
distance. Oko_ef all (2023) analyzes the Lo-error in
score estimation utilizing score matching over a neu-
ral network class, and demonstrates that, under cer-
tain smoothness conditions on the true density func-
tion, the estimated data distribution achieves the min-
imax optimal rate both in the total variation distance
and in the 1-Wasserstein distance. For data distribu-
tions supported on manifolds, Pidstrigach (2022) iden-
tifies conditions that enable forward-backward diffu-
sion to generate samples from the data manifold and
highlights the drift explosion in the backward diffu-
sion process as time progresses; De Borfoli (2027) ex-
amines convergence in the 1-Wasserstein distance un-
der an Lo error assumption on the score estimator;
and Oko ef all (P023); Chen_efall (P2023) establish ex-
plicit convergence rates using specific score estimation
methods when the data-supporting manifold is a low-
dimensional hyperplane in the ambient space, with the
rate by Oka efall (2023) attaining the minimax opti-
mality in the 1-Wasserstein distance.

Our contributions. In this paper, we illustrate
that both diffusion models can adapt to the intrin-
sic manifold structure by demonstrating that the con-
vergence rates of the inducing distribution estimators
are n=20@™") up to logarithmic terms, with d denot-
ing the data intrinsic dimension. Interestingly, unlike
other generative modelling approaches such as GAN
and VAE, our considered estimator does not need
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knowing or explicitly estimating the manifold. Fur-
thermore, our result shows that the forward-backward
diffusion can achieve the minimax optimal rate of
max{ﬁ, n‘ﬁ} under the 1-Wasserstein metric
when the target distribution admits an a-smooth den-
sity with respect to the volume measure of a (poten-
tially non-linear) d-dimensional manifold in the ambi-
ent space R”. For Langevin diffusion models, in order
to appropriately define the drift based on a singular
data distribution, we consider a Gaussian-smoothed
score and a corresponding score estimation method;
technically, we demonstrate that a fourth-moment er-
ror bound on the score estimator suffices to imply a
distribution estimation error bound, which refines ex-
isting theory that assumes either an L, error bound or
a moment-generating function bound on the error dis-
tribution of the score estimator. For forward-backward
diffusion models, we show that the minimax optimal
estimation error can be attained without explicitly esti-
mating the manifold by employing a new class of score
approximating neural network class whose complexity
gradually changes with time ¢, and derive an explicit
score approximation error bound.

2 Diffusion Models and Score
Estimation

In this section, we review two representative score-
based diffusion models for distribution estimation. We
also discuss their adaptations for handling singular dis-
tributions with manifold structure.

2.1 Langevin diffusion models

In generative modeling, the goal is to implicitly learn
the underlying data distribution pga.tn on data space
X C RP by specifying a data generative model that
produces samples looking similar to a given set of
iid. samples {z;}"_; from pgata. FEarlier attempts
(e.g., Song and Ermor (2019)) to address this prob-
lem using diffusion models directly used a (time-
discretized) Langevin model to generate new data
when pgata admits a density with respect to the
Lebesgue measure on R,

dX; = =V 1og paata (X¢) dt + \@dBt, Xo ~po, (1)

where {B; : ¢ > 0} denotes the standard Brownian
motion in RP, pg is an initial distribution that is easy
to sample from, and V log pyata : RP — RP is called
the score function defining the drift term of the dif-
fusion model. As a well-known result, the stationary
(or limiting) distribution of the Langevin model ()
coincides with the target distribution pgata. In other
words, the distribution p; of X; converges to pgata as

t — oo under various metrics over Z(X), the space of
all distribution on the data space X ¢ RP. In prac-
tice, the score function needs to be estimated; we defer
details about score estimation using the finite sample
set {z;}7; to Section 3. In this paper, we aim to
keep the presentation simple by ignoring the techni-
cal issues that arise from the time-discretization er-
ror in simulating or generating samples from diffusion
models, which have been addressed in many existing
works, e.g., Zhang et al] (2023); Dalalvan (2017); Li
ef_all (2009). Unfortunately, this conceptually simple
score-based diffusion modeling approach has a notable
drawback: the convergence of p; to its limit pgata can
be exponentially slow due to the non-log-concavity or
multi-modality of pqaga-

When dealing with high-dimensional data residing on
low-dimensional manifolds, a common scenario in im-
age and text generation, pqata becomes a singular dis-
tribution on the data ambient space R”. In such
cases, Song and Ermorn (2019) proposes an anneal-
ing approach, where they use scores associated with
the Gaussian-smoothed data distribution pgata,-(-) =
fRD Pdata(y) o (- —y)dy with different levels of noise o
to construct a sequence of annealed Langevin models.
Here, ¢, denotes the density function of N (0,021p).
In the sampling stage, noise levels are gradually de-
creased as the sampling process approaches the data
manifold. In this work, we instead consider the follow-
ing Gaussian-smoothed Langevin diffusion

dX; = _vlogpdata,o<Xt) dt + \/idBt’ Xo ~ po (2>

using a single noise parameter o to optimally trade-off
the bias and variance in order to attain a best estima-
tion error. Intuitively, this parameter o plays a similar
role as an inverse bandwidth parameter as in the kernel
density estimator (e.g., Kim-ef all (20019); Dival (2027)
for KDE on manifolds). The first contribution of this
paper is to show that, with a properly chosen ¢ that
depends only on the sample size n and the intrinsic
dimensionality d of the data, this Gaussian-smoothed
Langevin diffusion can adapt to the intrinsic manifold
structure by showing that the convergence rate of the
inducing distribution estimator for estimating pqat, de-
pends only on d. Here, the estimation of the noise-
perturbed score function V logpgata,. is discussed in
Section 3.

2.2 Forward and backward diffusion models

To address the issue of potentially exponentially slow
convergence inherent to the Langevin diffusion model,
several recent papers (e.g., Hoetall (2020); Song et all
(2020)) have introduced forward and backward diffu-
sion models. These strategies employ two diffusion pro-
cesses collaboratively: one for constructing more com-
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plex, time-dependent score functions, and the other
for generating samples through a time-inhomogeneous
process, based on the estimated score functions. Con-
sequently, this method can circumvent the slow conver-
gence typically associated with using a single diffusion
model.

Specifically, the first diffusion process, referred to as
the forward diffusion, employs a simple diffusion start-
ing from pgata that admits a closed-form solution and
converges exponentially quickly to its limiting distri-
bution, such as the OrnsteinUhlenbeck (OU) process:

dYt = _ﬁt?t dt + 5t (‘:lBt7 ?O ~ Pdata, (3)

for some (possibly time-dependent) drift coefficient
Bt :,t >0 and scalar diffusion coefficient §; :,¢ > 0.
Without loss of generality, we will focus on the OU
process with §; = 1/25; as the forward diffusion in
this paper,® which admits the closed form solution
X =mXo+ fg e V2B, dB, and has the conditional
distribution of p;(- | Xo) = N (mXo, 021p) given Xo,
where m; = exp ( — fot Bsds) and 07 = 1 —mj. For
example, for constant drift 8; = 8 and diffusion §; =
V2B, we have m; = exp(—ft), 07 = 1 — exp(—20t),
and p; converges exponentially quickly to its limiting
distribution po, = N(0,02 Ip) with 02, = 1 under the
total variation metric dpv, or

dTv(pm poo) <C exp(—ﬂt), t>0, (4)

for some constant C' only depending on py = Pdata-
Using sample trajectories generated from the forward
diffusion (B), one can estimate the (time-dependent)
score function Vlogp; :,RP — RP by score matching
(c.f. Section E33), where p; denotes the (unconditional)
distribution of X4, for ¢ from zero to a sufficiently large
time T" < log(e 1) such that drv (pr, pso) < € for some
error tolerance level ¢ € (0, 1).

The second diffusion process, usually called the back-
ward diffusion, reverses the forward diffusion:

dX, = [Br X, + 287 Viogpr_(X )] dt
+ /2B87r—dB;, y0 ~pr. (5)

Under mild conditions on pgat. Song et all (2020
Hanssmann and Pardonx (I986) (valid for our setting
the distribution of ?t is pr—¢, so that X1 ~ py =
Pdata- Since pr is close to po = N(0,Ip), one can in-
stead initialize the backward diffusion using the easy-

Xo ~ N(O,Ip).

!This process is also called Variance Preserving Stochas-
tic Differential Equation (VPSDE) in Song et all] (2020),
which yields a process with a fixed variance of one when
the initial distribution has unit variance. The analysis of
this process is also considered in Oka_ef—all (20123); Chen
et all (2022).

);
),

to-sample distribution p,, i.e. set

The drift term of the backward diffusion depends on
the score function estimated using the forward diffu-
sion; therefore, the forward and the backward diffu-
sions together yield a generative model for sampling
from Pdata-

When pyaca is a singular distribution on RP, the dis-
tribution p; of X for any ¢ > 0 from the forward dif-
fusion is the convolution of a rescaled pgata and Gaus-
sian noise N (0, 021p), making it absolutely continuous
with respect to the Lebesgue measure on R”. There-
fore, unlike the Langevin diffusion (@) that requires
deliberately injecting Gaussian noise to smooth out
Pdata, the forward and backward diffusion model does
not require this extra step. The second contribution of
this paper is to show that the forward and backward
diffusion model can also achieve the minimax-optimal
convergence rate for estimating pgata. Moreover, com-
pared to the Langevin diffusion model, the forward
and backward diffusion model does not impose any
log-concavity condition or any logarithmic Sobolev in-
equalities on pgata. This is consistent with the key
observations made in earlier studies (e.g., Chen ef all
(2022); Lee_efall (2023)) that do not involve manifold
structures.

2.3 Score estimation

Langevin diffusion model: The score function in
the Langevin diffusion model can be estimated by score
matching Song and Ermon (2009); Mincenfl (2001). At
the population level, score matching solves the follow-
ing optimization problem

min Bypy,,, [[[90(2) = Viog paaea(@)*],  (6)

where Sp : RP? — RP” denotes a score approximat-
ing map parameterized by parameter 6, e.g., (deep)
neural networks with controlled depth and number of
non-zero parameters. Recall that the primary focus
of this paper is on estimating a singular distribution
withAmanifold structure. Therefore, we consider us-
ing S = 57 to approximate the noise-injected score
V log pgata,o, Where 0 minimizes the following sample-
level score matching loss:

n

% > B, (o [[1S6(x) = Viog pe (x| z:)]?].  (7)

i=1

Here, p, (2| z;) = N(x;,0%Ip) denotes the conditional
distribution of the Gaussian error-injected random
variable x given i-th data z;, so that the (uncondi-
tional) distribution of % iS Pdata,-- Finally, the distri-
bution estimator of pqat, based the estimated Langevin
diffusion model is p = pr, where p; is the distribution
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of ¥; for t € [0,T], and

dY; = —5(Y;) dt +v2dB;, Yo~ po. (8)

Forward-backward diffusion model: To estimate
the time-dependent score function Vlogp, in the for-
ward diffusion (B), one can use a score function Sy(z,t)
over space and time, indexed by a parameter 6, and
minimize the following sample score matching loss:

1 — /T
. ]EItN (@i
n; | Eeipic o
[11So(xe,t) — Viog pe(we | z:) I] A(t) dt, (9)

where A(t) is a weighting function. Here, given z;,
zy ~ pi(-|z) = N(myx;, olp) follows the forward
diffusion (B8) with initialization Xy = x;. Without loss
of generality, we may assume A(t) to be a normalized
probability density function over [0,7]. Finally, let
§(a:, t) = Sz(x,t) denote the corresponding score esti-
mator. The distribution estimator of pga.t. based the
forward-backward diffusion model is p = pr, where Py

is the distribution of ?t for ¢ € [0,T], and

d?t = [BT—t?t + QﬁT—tS\(?hT —t)] dt
+ V2B dB,, Yo~N(O,Ip). (10)

In both cases, we consider using neural networks to
define the function class for approximating the score.

Definition (Neural network class): A class of neu-
ral networks ®(L, W, S, B, V) with height L, width
vector W = (Wq, Wa, ..., Wr11), sparsity R, norm
constraint B, and function norm constraint V is de-
fined as ®(L,W,R,B,V) = { f(-) = (A ReLU() +
b(L))o~~o(A(2) ReLU(~)+b(2>)o(A(1)x+b(1>) | A ¢
RWoWer; o) € RWert S5 (Ao + [50]o) <
R; max; A9 V 10Dl < B ||flloc <V}, where
ReLU(z) = max{0, z} denotes the rectified linear unit
activation function.

3 Main Results

In this section, we present our main results show-
ing that both diffusion models can adapt to the data
manifold structure without requiring knowledge or ex-
plicit estimation of the manifold. For any sequence
{an : m > 1}, we use the notation ©(a,) to mean of
order of a, up to a multiplicative constant as n — oo
and ©(a,) to mean of order of a,, up to a multiplica-
tive constant and logarithmic terms of n. Similarly, we
use O(ay,) and O(ay,) to mean of at most order of ay,.

3.1 Assumptions

Assumption A (Regularity of data manifold):
The target distribution pgat. lies in a d-dimensional
submanifold M embedded in RP”. The manifold M
is compact and boundaryless. Additionally, it is (-
smooth for # > 2 and has a reach that is lower bounded
away from zero.2

Intuitively, imposing a lower bound on the reach of
the manifold ensures that the projection map to the
manifold is locally well-defined; that is, it guarantees a
unique projection from any point close to the manifold.
In the analysis of the generalization bound (see Ap-
pendix O), the existence of such local projection maps
will be leveraged to construct neural networks capable
of approximating true score functions. Furthermore,
appropriate neural networks will be designed to locally
approximate these projection maps (see Lemma C8),
with their complexity being dependent on the smooth-
ness level 8 of the manifold.

Assumption B (Regularity of data distribution):
The density f* of pgata relative to the volume measure
of M is a-smooth with « € [0, 8 — 1] and uniformly
bounded away from zero on M.

Here, we restrict o € [0, 8 — 1] to make the den-
sity smoothness compatible with the manifold smooth-
ness (see Appendix A for details). In the special case
when M = RP”, the density function f* becomes the
usual probability density function with respect to the
Lebesgue measure on R”, and the a-smoothness con-
dition reduces to the usual Holder smoothness. The
lower bound requirement of pgata on M is commonly
imposed for distribution estimation in statistics; oth-
erwise, we can redefine the manifold M as the support
of Pdata, or the region where pgat, is lower bounded by
any sufficiently small positive constant.

Assumption C (Poincaré constant): pgat. satisfies
a Poincaré inequality with a (Poincaré) constant Cpy >
0, that is, for all smooth functions f : RP” — R,

Varp,., () = B [(f~Eps )] < CprEp,, [IIVFIP]-

Assumption C will be utilized only in the analysis of
Langevin diffusion. Note that in a standard analysis of
Langevin diffusion, a positive Poincaré constant Cpr,
as assumed in Assumption C, is a common condition
to guarantee exponential ergodicity with respect to the
chi-squared divergence x?: if M = RP and pqaia sat-
isfies Assumption C, then the time ¢ distribution p; of
the Langevin diffusion (@) converges to pdata as

X2 (Pt || Paata) < exp (—2¢/Cp1) X* (1o || Paata), t > 0.

2Detailed definitions of a B-smooth manifold and the
reach of a manifold can be found in Appendix [l
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Langevin diffusion is a useful approach for sampling
only when p; rapidly approaches its stationary distri-
bution as ¢ increases; therefore, making Assumption
C when analyzing the Langevin diffusion approach is
reasonable. See, for example Besson_efall (20IR);
Merfin (2022), for related results about Poincaré in-
equalities on manifolds. In particular, the correspond-
ing Poincaré constant also depends on certain geo-
metric characterizations of the manifold, such as the
Ricci curvature. As an intermediate result in our
proof (proof of Lemma B4 in Appendix [0@), we show
that Assumption C implies the Gaussian-smoothed dis-
tribution pgata,s also satisﬁes a Poincaré inequality
with constant Cp; + 02, leading to the exponential
convergence of the Gaussmn smoothed Langevin dif-
fusion (2).

3.2 Langevin diffusion model

Let S denote the score estimator defined as the min-
imizer of score matching loss (@) over the neural net-
work class ®(L, W, R, B, V). Recall that {Y; : ¢ > 0}
follows the diffusion (8) with estimated score S, which
approximates the “population-level” Langevin diffu-
sion (B) . Since the Langevin diffusion (B) converges
exponentially fast to pdata,c as t — oo and the man-
ifold is compact, we define a (truncated) estimator p
for paata as the distribution of Y7 - 1(||Yr|leo < L), for
some large constants (T, L) so that pr & pgata and
M C Br/2(0p). Here, we truncate the support of the
distribution pr of Y7 to guarantee a bounded support
for the distribution estimator, which is merely for tech-
nical reasons. Let Wi(u,v) = supyiq | [ fdu —
J f dv| denote the 1-Wasserstein distance.

Theorem 1 (Langevin diffusion). Suppose Assump-
tions A, B, and C are satisfied, and the initial

distribution pg in the Langevin diffusion satisfies
X2(po || Pdata,c) = O(1). If we set T = @(log n) and

_ 1
n~ 8+d a<4orpB<5b
o=¢{ n satdd 4<a§%ﬂ
__8 .
n~ T0a+sd otherwise,

then there exist neural network size L = @(log4 n),
[Wlls = ©((cvn~771)~4), R = O((oVn~25)~7),
B = exp(©(log* n)) and V = 6( log"), so that

E[W1 (P, paata)] = O(0).

Theorem 0 shows that the convergence rate of the dis-
tribution estimator p only depends on the intrinsic di-
mension d as opposed to the ambient dimension D.
However, as we will see, the current error upper bound
is worse than error attained by the forward-backward
diffusion model (see Theorem B). By inspecting our

current proof, we find this larger error bound is mainly
due to several reasons.

At the technical level, an Ly error (or second-moment)
bound on the estimated score S is not sufficient to con-
trol the W error (or any other common error metrics)
of the distribution estimator p based on the Langevin
diffusion, an observation also made in Huggins and
Zou (20017); [Yang and Wibisond (2022). Our new proof
technique (c.f. Section @) demonstrates that a fourth-
moment error bound on the score estimation suffices
to control the Wy error, thereby relaxing the moment
generating function error assumption from [Yang and
Wihisond (2022) that implies an error bound on the
score estimation for all finite moments. However, since
the score estimation method based on score matching
is intrinsically tied up with the second-moment bound,
and directly relating the fourth-moment to the second-
moment by the Lo, norm on the score will introduce
an extra factor of order O(c~!) since the Gaussian-
smoothed score V10gpgata,s has Lo, norm of order

O(c~') near the manifold.

At the method design level, given that Gaussian noise
N(0,02Ip) in the full space R is injected into the
true data distribution pga¢ in the construction of the
Langevin diffusion, it is plausible that such isotropic
noise might dilute the manifold structure and lead
to an inflated approximation error. For instance,
this isotropic noise renders the approximation error
W1 (Pdata,o» Pdata) = O(0), which is larger than a typ-
ical approximation error of order ¢®*! that can lead
to the minimax rate in the analysis. Note that o can-
not be chosen too small, as otherwise the Gaussian-
smoothed score V10g pgata,c becomes nearly singular,
causing its estimation error to explode. It is there-
fore an interesting direction to explore whether it is
possible to improve the score estimation procedure in
Langevin diffusion either by using a different loss, or by
avoiding the injection of isotropic Gaussian noise and
incorporating information about the manifold beyond
merely its intrinsic dimension d.

One natural choice of initialization pg is the kernel
density estimator (KDE) with bandwidth o in RP,
ie, po(y) =n"t> " exp(— M) - (2m0?)" 7. In-
terestingly, the following lemma shows that the chi-
squared error rate only depends on the intrinsic di-
mension d, and x?(po || Pdata.s) = O(1) is satisfied if
o=t = O(ni).
Lemma 1. Let (01, d2) be any fized positive constants.
Consider the initial distribution with density po(y) =
_12 _exp(— M) (2m0?)~ 2. Ifein™% <o <

con~%2, then with probability at least 1 — cz3n™!,

X2 (P || Pdata,e) = O(n~to~? + n~20724).
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3.3 Forward-backward diffusion model

Recall that in the forward diffusion process (8), the
distribution p; of X; as t — oo rapidly approaches a
limiting normal distribution A(0,Ip), which admits
an infinitely differentiable density function, allowing
the corresponding score function to be approximated
by relatively small neural networks. Consequently, it is
anticipated that the required sizes of neural networks
for approximating V log p; would gradually decrease as
t increases. This motivates us to consider score neural
networks whose size decreases in t. For technical con-
venience, we discretize the time and consider the fol-
lowing piece-wise constant complexity neural network
class, although it is possible to design a more sophisti-
cated network architecture that allows for a smoother
change of network complexity over time ¢ and facilitate
the sharing of parameters (potentially long-range) be-
tween different times,

K-1

k=0
| i, € ®(Li, Wi, Rie, B, Vi), k € [K]},
WhereT:tO <t1 < v <tK :T, tizl

0<k<K-1,and7=2"5T. Let §(x,t) be the score
estimator defined as the minimizer of score matching
loss (H) over score class Syny with weight function
A(t) =t (other weights like A(t) = 1 also work). Based
on the backward diffusion process (I0) with the esti-

= 2 for any

mated score S , we define a similar truncated estimator
P for pgata as the distribution of ?T,T A(|Y 77l <
L). Here, we consider time T — 7 instead of T to mit-
igate the issue of the score function explosion, which
arises due to the singularity of the target distribution,
or py = oo on M ast — 04. For any v € (0,1], let
dy (V) = SUD Ly s sl <le—yip | [ i = [ fdv]
denote a general v adversarial loss, which reduces to
Wi at v = 1 and to drv as v — 04. Roughly speaking,
a smaller (larger) v causes d, to place more weight on
the manifold (density) estimation; see Appendix B.1
for further details.

Theorem 2 (Forward-backward diffusion). Suppose
Assumptions A and B are satisfied, and the drift co-
efficient B¢ s infinitely differentiable and uniformly
bounded from above and below in t. Then there ex-

ist T = é(n_%), T = ©(logn), and neural network
sizes satisfying Ly = ©(log*n), |[Wille = é(t;% v
nTT), Ry = 6(t;* v n¥), log By = O(log"n)
ande:@( logn) fork € {0,1,--- , K —1}, so that

tp Nl

E[d, (P, Pasta)] = O(n~2 Vn~3ata v~ 3atd),

Theorem B shows that the forward-backward diffu-
sion model can also adapt to the (possibly unknown)
manifold structure. Moreover, when taking v = 1,
the obtained convergence rate ﬁ V n~%a%d matches
the minimax-optimal rate under Wj; metric of esti-
mating an a-smooth distribution supported on a d-
dimensional manifold in R” [Tang and Yang (2023) up
to logn terms. As expected, to attain the minimax
rate by optimally balancing the approximation and es-
timation error of the score estimator, the neural net-
work size (e.g., ||Wk|loo, R and V}) demanded in the
theorem for approximating the score function V log p;
decreases as t increases.

Compared to the Langevin diffusion model, forward-
backward diffusion does not require imposing any con-
dition, such as isoperimetry (Assumption C) or log-
Sobolev inequality on pgata, to ensure a controlled er-
ror bound that does not explode as t increases. This
observation is consistent with numerous existing theo-
retical works (e.g., De_Bartolief all (20211); Oka ef al’
(2023); Leeefall (2023); Chen_ef all (2022)) primar-
ily focusing on characterizing error bounds on sam-
pling from distributions in R” that admit (at least)
Lipschitz continuous density functions (with respect
to the ambient space Lebesgue measure). In ad-
dition, according to Theorem 0, Langevin diffusion
requires a reasonably good initialization py so that
X2(po || paata.s) = O(1), while the backward diffusion
for sampling simply initializes at a normal distribution.
It is worth noticing that an essential property leading
to minimax-optimality is that forward-backward dif-
fusion only requires an Lo-accurate score estimate in
order to produce a good distribution estimator p [Leé
ef_all (2023); Chen ef all (2022); the present work rig-
orously demonstrates that this property remains valid
when estimating singular target distributions, utilizing
the same technique of Girsanov’s theorem.

The convergence rate implied by Theorem B is
minimax-optimal in d, for a sufficiently smooth man-
ifold, ie., B > v 'a + 1, or relatively large v, i.e.,
v > a/(B —1). However, the term arising from (im-
plicitly) estimating the unknown [3-smooth manifold

structure is n~ 747 (cf. Theorem B in the appendix),
which is suboptimal compared to the minimax rate
n_%Y
(7023) in d.,. We suspect that this sub-optimality may
not arise from our analysis but rather from adding
isotropic Gaussian noises in the forward process (8),
which may mask finer details of the manifold structure
and lead to an inflated error akin to the Langevin dif-
fusion model with Gaussian-smoothing. In contrast to
the Langevin diffusion, employing Gaussian-smoothed
score functions at all noise levels during the sampling
step in the backward process helps mitigate its impact

Aamari_and Levrard ('2[”9); l'ang and Yang
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on directions tangential to the manifold, resulting in a

considerably improved error bound ﬁ VnT 3T com-

pared to that based on the Langevin diffusion. How-

ever, errors accumulated along directions perpendicu-

lar to the manifold are less impacted and contribute to
. _ By

the sub-optimal error term n™ 2e+2. We leave a formal

investigation of this to future research.

4 Technical Highlights

In this section, we highlight some technical contribu-
tions in the proof.

Langevin diffusion with inaccurate score. Con-
sider a generic diffusion model with negative drift S
(which is the score V10g pdata,s in our case) and sta-
tionary distribution p (i.e., pdata,o),

dX, = —S(X,)dt +V2dB;, X ~ po;

and an approximating diffusion model with an esti-
mated negative drift S,

dY, = —S(Y;)dt +V2dB;, Yy ~ po.

Let p; and p; denote the respective distributions of
X; and Y;. Note that the score matching loss () is
averaged over independent and identically distributed
(i.i.d.) samples {z;}?; ~ Ddata- Consequently, the in-
duced generalization error bound is only averaged over
the stationary distribution p (see Lemma B in Ap-
pendix B) rather than over both p; and ¢. This is in
contrast with the forward-backward diffusion, where
the score S(x,t) is dependent on ¢, and the score
matching loss (8) is averaged over time ¢ € [0,T]; so
that its generalization error has an Ly bound averaged
over both p; and ¢ (see Lemma B3 in Appendix B),
facilitating the neat application of Girsanov’s theorem
to control the distribution estimation error (see the
proof of Lemma B in Appendix O, or Song and
Ermon (20019); Chen et all (2022); Oko et all (2023)).
However, the complication in analyzing the Langevin
diffusion with inexact drift calls for the more stringent
Lo, or the moment generating function bound (e.g.,
Dalalyan and Karagulyan (2019); [Yang and Wibisond
(2022)) than a simple second moment bound in order
to analyze the distribution estimation error. In com-
parison, our analysis demonstrates that a bound on
the fourth moment of the score estimation error is suf-
ficient. More specifically, we can invoke Pinsker’s in-
equality and Girsanov’s Theorem to obtain

r = ~ n2pi(T)
daw (pr, pr) < /0 /RD HS(a:) - S(@)| ]]?5((35)) p(z) dx dt

~ ~ T
< \// 15(z) — 5(2)||*Ble) de / X2 (pe || p) + Ldt,
RD 0

where the second inequality is due to the Cauchy-
Schwarz inequality (over z). If p satisfies Poincaré
inequality with Poincaré constant Cp; (in our case, we
can take Cph; = Cpr + 0?2, see Appendix [DXB), then
X2 (pe | P) < exp(=2¢Cpr') - X*(po || p). Therefore, by
choosing T = O(C}; [lognVlog (x*(po || P))]), we can
obtain the following using basic algebra,

drv 7)<+ (o 17)F + Viogn)

([ 5@ - 5@ pwyas)
(L, )

This inequality relates the distribution estimation er-
ror to the fourth-moment of the score estimation error.

Forward-backward diffusion score estimation.
Our strategy for bounding the distribution estimation
error mainly follows the pipeline of Oka ef all (2023).
First, we construct a concrete neural network in Sy
to approximate the true score function Vlogp:(x).
Subsequently, we use the complexity of Syy to con-
trol the generalization bound for the score estimator
S, which minimizes the sample score matching loss (H).
Finally, we apply Girsanov’s theorem to relate the dis-
tribution estimation error with the Lo score estimation
error Song and Ermon (2019); Chen ef all (2022); Okad
ef-all (2023). Our main technical novelty occurs in the
first step of constructing score approximating neural
networks with controlled sizes under manifold struc-
ture, as summarized in the following lemma.

Lemma 2. Under the same neural network sizes
{(L, Wi, Ri, B, Vi )}, and time T as in Theo-
remB, for any k € {0,1,--- , K—1}, there exists neural
network ¢ (x,t) € ®(Ly, Wy, Rk, Bk, Vi) so that

trt1
/ / H(ﬁk(m,t) —Vlogpt(x)H2pt(x) dzdt
tr RD

N, —1 —-28_ _ _2a . __2
{O(tk n_ 2atd 4+ n 2a+d>’ if T <tp <n” Zotd,

6(n_1), ifn_ﬁ <t, <T.

The proof of this lemma (Appendix ) is substantially
more involved under a general (nonlinear) manifold as
considered in this paper than under a hyperplane as
considered in earlier studies Oko et all (2023); Chenl
ef all (2023). The term n~Tera originates from the
nonlinearity of the S-smooth manifold, where we dis-
cretize the manifold with a suitable cover (resolution
level varying over t;) and approximate its local charts
via polynomials of order | 3] (largest integer less than
B); see equation (IB) in Appendix 0. These local poly-
nomials can additionally be efficiently approximated
by neural networks with controlled sizes. The term
n~7a%d arises from local polynomial approximations
to the a-smooth density function within local chart
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parametrization over compact sets in R?; refer to equa-
tion (22) in Appendix 0. The actual proof contains
other technical components, such as using neural net-
works to approximate the local projection map Proj
onto the manifold and local inner products over the
manifold; see Lemma 8. Some of these bounds are
also utilized in the analysis of the score estimation er-
ror under the Langevin diffusion model (e.g., Lemma

E3).

5 Discussion

In this study, we explored theoretical properties of two
prevalent diffusion models for sampling from complex
data distributions, demonstrating that both models
can accommodate general manifold structures of the
data by showing that the convergence rates of their in-
duced distribution estimators only depend on the man-
ifold intrinsic dimension. Our results strengthen the
findings of some existing studies, which either focus on
distributions supported on (potentially known) hyper-
planes or provide non-quantitative bounds. Addition-
ally, we showed that the forward-backward diffusion
achieves the corresponding minimax optimal rate un-
der the 1-Wasserstein metric. Some possible future di-
rections include improving the analysis of the Langevin
diffusion model and its score estimation method, an-
alyzing the discretization error arising from simulat-
ing the continuous-time diffusion, as well as proposing
data-driven methods that can accommodate unknown
intrinsic dimension d and smoothness levels («, 8) for
both diffusion-based generative models.
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Supplementary Materials for “Adaptivity of Diffusion Models to
Manifold Structures”

Notation: We adopt the notations in the main text, and further introduce the following additional notations for
technical proofs. We use 1(-) to denote the indicator function so that 1(x € A) =1 if x € A and zero otherwise.
For a finite set A, we use |A| to denote its cardinality. We use det(+) to denote the determinant of sqaure matrices.
For any positive integer m, we use the shorthand [m] := {1,2,--- ,m}. We use Ny to denote the set of non-
negative integers and N¢ = {(i1,ia, - ,i4) : ix € No, V& € [d]} to denote the set of d-dimensional multi-index.
For a multi-index i € N¢, we denote [i| = iy +iy+---+igz. We use N'(p1, %) to denote the (multivariate) Gaussian
distribution with mean g and covariance matrix . For a € R, the floor and ceiling functions are denoted by
|a| and [«], indicating rounding « to the next smaller and larger integer. For two sequences {a,} and {b,},
we use the notation a, < b, and a, 2 b, to mean a, < Cb, and a, > Cb,, respectively, for some constant

C > 0 independent of n. In addition, a, < b, means that both a, < b, and a, = b, hold. For any measure
von Z and map G : Z — &, we denote Gxv as the push forward measure, which is defined as the unique
measure on X such that Gyv(A) = v(G~'(A)) holds for any measurable set A on X. For a probability measure
w1 and a measurable set 2, we use u|g to denote the restriction of x on . For two probability measures p and

v where p is absolutely continuous with respect to v, we use g—fj to denote the Radon-Nikodym derivative of p
with respect to v. The KL divergence between p and v is denoted by KL (|| v) and is defined as [ log(g—’:) dp.

The x? divergence between u and v is denoted by x?(u || v) and is defined as f(g—‘; —1)2dv. The total variation
distance between p and v is denoted by drv(u,v) and is defined as [ %|3—’; — 1| dv. When no ambiguity arises,
for an absolutely continuous probability measure p, we may also use p to refer its density function. We use
Il - ||, to denote the usual vector ¢, norm, and reserve || - || for the ¢; norm (that is, suppress the subscript when
p = 2). We use 04 to denote the d-dimensional all zero vector, and B, (x) the closed ball centered at x with
radius 7 (under the ¢5 distance) in the Euclidean space. For the neural network class ®(L, W, R, B, V') defined

in the main text, when there is no constraint on V', we write ®(L, W, R, B) = ®(L, W, R, B, c0).

Contents

A Regularity of Submanifold 2

B Proofs of Main Result 3
B.1 Forward backward diffusion model . . . . . . . . . . . ... 3
B.2 Langevin diffusion model . . . . . . . ..o )

C Proof of Lemma B.3 6
C1 Casel: n™29(logn) 3 <t <T .00t 7
C.2 Case2: n~%ra <t< n’z‘ﬁ(logn)*3 .................................. 11
C3 Case3: 7<t< e 16

D Proof of Technical Lemmas 21
D.1 Proof of Lemma B.2 . . . . . . . . 21
D.2 Proof for Lemma C.1 . . . . . . . . . e e e e 23

D.3 Proof of Lemma C.2 . . . . . . . . . e e e e 24



Supplementary Materials for “Adaptivity of Diffusion Models to Manifold Structures”

D.4 Proof of Lemma C.3 . . . . . . . . 25
D.5 Proof of Lemma C.8 . . . . . . . . e e 26
D.6 Proof of Lemma B.4 . . . . . ..o e 29
D.7 Proof of Lemma B.5 . . . . . .. 30
D.8 Analysis of KDE as initial distribution in Langevin diffusion . . . . . . . ... ... ... ... .. 31

A Regularity of Submanifold

Definition (Submanifold): A subset M of R? is a d-dimensional submanifold if for every point z in M, there
exists a neighbourhood V of z on M and an open set U C R%, such that that there exists a homeomorphism &
that maps V to U, that is, £ : V — U is bijective and both & and £~! are continuous maps. We call (V&) a
local coordinate chart of M near x, and £ a coordinate map around .

Definition (Reach): The reach of a closed subset A C R? is defined as

TA = ;gg dist(p, Med(A4)) = ZEI\}II;E(A) dist(z, A)
where dist(z, A) = inf,ca ||p — 2| denotes the distance function to A, and Med(A) is the medial axis of A
consisting of the points that have at least two nearest neighbors on A, or

Med(4) = {z €RP | 3p £ g € 4, |p— 2| = [lg — 2I| = dist(z, 4)} .

The reach is the largest distance p > 0 such that the projection to A is well defined on the p-offset
{z € RP | dist(z, 4) < p}.

Definition (Smooth Manifold): We say that a submanifold M is S-smooth if there exist positive constants
(10, L) such that for any z* € M, the function Projr , (z —2*) : M — Tp+ M, defined as the projection
function of z — z* onto the tangent space Ty M of M at x*, is a local diffeomorphism at z* with inverse function
U« defined on B,,(0p) N Ty« M, and U, is f-Holder smooth with Hoélder norm bounded by L.

Remark A.1. Let V. € RP*? be an arbitrary orthonormal basis of Ty« M. Then, &(x) = V.1 ‘Projp  pm(z—2%)
serves as a special coordinate map around x* with a B-smooth inverse E~1(2) = W (Ve 2). It is worth noting that,
for a manifold M with positive reach, the B-smoothness of M is equivalent to the existence of B-smooth coordinate
maps that possess a 3-smooth inverse (see for example, Lemma F.4 of Tang and Yang (2023)). Consequently,
the smoothness of M is an intrinsic property that does not rely on the the choice of the coordinate map.

Definition (Smooth distribution on a smooth manifold) We say a distribution p* on a S-smooth subman-
ifold M being a-smooth if, for every 2* € M and -smooth coordinate map &(-) : V' — U around z* that admits
a [B-smooth inverse, the distribution of the local coordinate &(z) for z ~ p*|y admits an a-smooth density on U
with respect to the Lebesgue measure of R%.

Remark A.2. To ensure compatibility between the smoothness of the density and the smoothness of the manifold,
the distribution smoothness parameter o should be smaller than [ — 1. This is because when considering two
coordinate maps & : V3 — Uy and & : Vo — Us around a point x*, the change of measure formula yields:

(€0)5 (hirva)| (€ @) = [(€) 4 (Hhira)| (€(@)) - [det (A [2067"] )] TN

where the differential d[€20&, Y] of the transition map ;06" is (3—1)-smooth. If the smoothness level o is larger
than 8 — 1, it may lead to incompatible definitions of smoothness over the intersection of two coordinate charts.
Furthermore, when o < B—1, an a-smooth distribution on M can be equivalently defined as a distribution whose
density function with respect to the volume measure of M exists and is a-smooth, as defined in the following.

Definition (Smooth density function): We say a density function f : M — R with respect to the volume
measure of M is a-smooth, if for any x € M, fo ¥, : B, (0p) NT, M — R is a-Holder smooth with bounded
Holder norm.

Geometric Properties of 5-smooth manifolds with positive reach: (see for example, Lemma 20 of Divol
(2022)) Suppose M is a B-smooth d-dimensional submanifold with 8 > 2 and reach 7o4. Then



1. If h < T4, then there exist some constants (¢, C) so that for any z € M,
ch? < volp(Bp(z) N M) < Ch,
where volx, denotes the volume measure of M.
2. For any h < rg and x € M, By (z) " M C U, (Bx(0p) N Ty M) C Bgy7(x) N M.

3. For any z € M, denotes T, M~ as the normal space of M at x, then there exists a map N, : B,,(0p) N
T, M — T, Mt satisfying dN,.(0) = 0, and for u € B,,(0p) N T, M, we have ¥, (u) = x + u + N, (u) with
[ No ()| < Liuf?.

4. If Proj,(z) = z for some z satisfying dist(z, M) < Tr4, then z — 2 € T, M*.

B Proofs of Main Result

B.1 Forward backward diffusion model

We consider metric d, (0 <y < 1) defined as

dy(p, p2) < sup /f(ﬂ«") dpu —/f(l‘)duz.

@@ le =yl
When v =1, d, is equivalent to the 1-Wasserstein distance.

Remark B.1. The smoothness parameter v in d., characterizes a trade-off between supporting manifold recovery
and density estimation on the manifold. A smaller v makes d., (1, v) more sensitive to the misalignment between
the supports of u and v. To see this, define dist(x, A) = infyea ||z — y|| as the distance from a point x € R? to
a set A C RP. Note that dist(-, A)Y is y-smooth for any v > 0. For two distributions ju and v with bounded
supports, we may take f(x) = cdist(z,supp(v))? — cdist(x,supp(u))? for some sufficiently small constants c,
leading to

d?,(,u, v) 1= E, [dist(X,supp(v))"] + E, [dist(X,supp(p))”] < ¢~ d,(p,v).

Consequently, an upper bound of d. implies an error bound on the supporting manifold recovery through discrep-
ancy measure d,SY, As v tends to zero, d,SY (1, v) approaches P, (X ¢ supp(v)) + P, (X ¢ supp(u)), which vanishes
only if p and v have perfectly aligned supports.

Theorem B.1. Suppose Assumptions A and B are satisfied, and the drift coefficient 3; is infinitely differentiable
with respect to t and B < i < B holds uniformly over t for some positive constants (3,). We choose T =
c (ni =t (logn)ﬂﬂ) and T = C logn for some large enough constants (c,C). Then for any % <4d<

lo,
2 log log n . . K-1
Sard — loge there exist choices of { Ly, Wi, Ry, B, Vi }1_o so that

ol
2

v ¥ aty 9+
E[d, (7, paata)] S 0~ 757 (logn) (5 F3+D7 4~ de5a <logn>{(

(31 D+ D)

—146d . d+Z )
+ 22 ;iogn) = log%n\/ (

Remark B.2. The detailed choices of {Lk,Wk,Rk,Bk,Vk}sz_Ol are provided in Lemma B.3. If we select 6 =
3loglogn
lcg;g ng
introduces (logn)® in the bound, which might pose challenges for large D. Fortunately, this issue can be resolved

by choosing a sufficiently small constant value for 8. Specifically, when d > 3, as the dominant term in the bound
o n—Tola 4 Tl _1 By aty [31+0
ism”ZeFd 4 n” 2Fd for any v < 1, we can set 6 = 5 — ( A ). Consequently, the term ( D ) only

2 2a+d 2a+d
introduces a constant that is polynomial in D.

, we can recover the result stated in Theorem 2. However, it is worth noting that the term (r%]JD)
)P

Proof. For the sake of simplicity and without loss of generality, in the following analysis, we assume M C B1(0p).

Recall that o; = \/1 —exp(—2 fot Bsds) < vt A1l. We first state the following lemma to relate the generalization
error of the score function Vlogp,(X;) to the generalization error of the distribution pgata under the d metric.
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Lemma B.2. Suppose S(z,t) < Vl;)gn then when v < 1,

K—
1 i+1
dy (P, paata) S — + 77 + § \/mog n /\1/ / stt — Vlogpi(z H pe(z) dz dt
n RD

The following lemma provides upper bounds to the score approximation error.

Lemma B.3. Fort € [t,t] with 1 < % < 2:
1. Ifr <n~ 2a+d there exists a neural network @score (z,t) € ®(L, W, R, B, V') satisfying
7 3% . (] B+2 .
/ / 6 score (2, 8) — Vlog py(2)||? pe(x) dadt < Eog”) + 0525 (log )+,
t JRP L

Here L, W, R, B and V are evaluated as L = © (log4 n), [Wlle = @(nﬁ(logn)*% -(log® nV (logn)®3)),
R =0©(n=7(logn)~% - (log®n V (logn)??)), B = exp (O(log' n)) and V = ©(,/1%&0).

310g logn loglogn .
2. For any <5§2a+d oan

(a) If n~ ToFd < t <n~2°(logn)3, there exists a neural network Gyeore (,t) € ®(L, W, R, B, V) satisfying

log n

/ / ||¢score (x t) V]ngt( )” pt( )d dt<

d

Here L, W, R, B and V are evaluated as L = @(log4n), [Wle = ©((tlogn) * - [log’n +
.fg(logn)dJr3 (gng)]), R= @((Llogn)fg . [logsn\/ Z(logn)d+® (‘%ED)D, B =exp (@(10g4 n)) and
V =0(,/81), where L = [leeln 2) 7.

3
t log (o log2 n)

(b) If n=2(logn)™3 < t < T = O(logn), there exists a neural network Gyeore (z,t) € ®(L, W, R, B,V)
satisfying

log” n

t
/ / |bscore () — Vlog pe (@)1 po() dadt <
t JRP

Here L, W, R, B and V are evaluated as L = @(h)%#), Wleo = @(M . [log3n\/ ((%HD)]),

D
R=@(2ee ™ 115035 v (1515P)]), B = exp (O(1252)) and V = ©( logn),

Define E[k] (x) = t’““ Jao 1S(@e, t) — Vog pe(ai|@)||*pe (2¢]x) daydt, where p(x|z) is the density function of

N (myz,0?). Then When S(z4,t) < /252 we have

[k tret1 tht1
lg / / NS (e, )] pt(xt|x) dmtdt—f—/ / ||V log pi (x| 2) || pt(act|m) dxtdt<log n.

Then by Theorem 4.3 of Oko et al. (2023) and Lemma B.3, for any k € {0,1,---

E Utu /RD 8.1 - Vlogpt(x)Hth(x) dxdt]

28
~%atd (] B+2 o o1 log® 1 2
< <n itllogn) T - sitatiogn ) Lt gnmi )+ 220y Uo8 ™) b Lictog (nLi [ Wil By).
n

, K —1},

tr n



Therefore, combined with Lemma B.2, we can obtain

., K-1 tit1 R 2
Eldy (D, Pdata)] S T + E ((t? log" n) A 1) -E [/ / HS(fﬂat) - Vlogpt(x)H pe(x) dxdt}
i=1 ti RP

log?
og?n

B
Zat+d . (] B/2+1 —a a
7—% + E 10g% n- n (fi%n) + natd . (]Ogn) ;1 Lt
t,?

i€{0,-- ,K—1}

A

Sl

r<t;<n 2afd

= (t;logn)® A1
+ E Y logn - /R;L;log (nL;|| Wil B:)
n
=0

(S

S nomda (logn) (FFEHDY 4 da (10g”){(9+

_1l.5 z 2

64

B.2 Langevin diffusion model

Consider the Langevin diffusion model

dX; = —S(X,)dt + v2dB,
XO ~ Po,

where S is the score function of the Gaussian-smoothed data distribution with noise level o, ie.,

Sy — Bruwa (X — @) exp(- P20
S(x) = — nxfiuz)

202

0% By, exp(—
And the estimated Langevin diffusion model
dY; = —S(Y;) dt + V2dB,
Yo ~ po.

Let pr denote the distribution of Y7 and p = pdata,s = Pdata * N'(0,0%Ip). We have the following lemma.
Lemma B.4. Suppose Assumption C is satisfied. Then set T = @((CPI +02) - [logn Vlog x%(po || ﬁ)]), we have

%W%@5¢@ﬁ?(uwwmikbw)@ﬂﬁm—&mﬂf+g

1
1

Then we state the following lemma for bounding (Eﬁ [||§(:E) - g(x)||4D .

Lemma B.5. Suppose Assumptions A and B are satisfied. If we choose
2
T; — =
2

s(2) —

n
. ) .
S = argmin = n ZEZ~N(Ii,021D)

Se®(L,W,R,B,V) =1 o

1

with L = O(log" n), |[W|le = O((hvn~ 2a+d)*d(log6_% n Vv log%"|r3 n)), R = O((hv nfﬁ)’d(logg_% n Vv

log%Jr5 n)), B = exp(©(log*n)), and V = 6( Vk;g"). Then for any positive constants 01,02 and o satisfying
n=% <o <n7%, we have

1. If o > n_2a1+d, then

1
Eponca®n [(Eﬁ {”S(x) N S(x)HALD 4] SnTigmiT! (logg*% n \/log%JfT n) .



Supplementary Materials for “Adaptivity of Diffusion Models to Manifold Structures”

2. Ifo <n~ 2a1+d, then

__B_ __a
n da+2d B+3 n da+2d (

1 2
Epieaen [(]E,; {HS(x) - §(:E)||4D4] S——F5—log * n+ logTJr nV log%_% nV log%+% n) .
o

Then denote p as the distribution of Y7 - 1(||Y7||lc < L) and p’ as the distribution of X - 1(|| X ||lcc < L) with
X ~p. Based on M C By, /5(0p), we can get

Wi(P', Pdata) < LE e (@t o)z + ozl < Ll
zNN(O?};)

< E_lo—(@+o2) 1)
2N (0,1 1)
<o.

Furthermore, combined with Lemma B.4 and B.5, we can obtain

1
1. When o > n™ 2a+d

]Epdata®n [Wl (ﬁ\’ﬁ)] 5 Epdata®n [dTV /\’ﬁ)]
< E ®n[

— "“Pdata® "
S VCri+ 07 (oo )} + Viogn) -0t 171 (logh =¥ n v 10g ¥+ n)
2. When o <n~ 2a1+d,

Epiaia®n W10, D)) S Epy,uon[drv (D, P)] < Epypun [drv (Pr, )]

__B_ o
Ta+2d : Iat2d o
<VCpr+o02- ((XQ(pQH@ﬁ —&—Vlogn) . (n < logﬁzsn—l—in (log jlr211v10g,'%7%nvlog,‘l45+
o

ool

).

3)
We can obtain the desired result in Theorem 1 by combining (1), (2), and (3).
C Proof of Lemma B.3

To begin with, we introduce the following lemma, which states that it is sufficeint to approximate the score
function V log p;(x) only for values of x that are in close proximity to the manifold.

Lemma C.1. If sup sup [||S(z,t)|ec0t] < cv/logn. Then, there exist constants (co,c1,c2,c3) so that for any
c€RPE[r,T]

i€{0,1,- K =1} and t € [t;,ti1] with 1 < %52 <2,
1. Denote dist(x, M) as the distance of point x € RP to manifold M. Then
19108 5:(0) ~ S0 pr(z) da
< / [V log pe(z) — S(a,t)||* pe(x) - 1 (dist(x,/\/l) < cgoy, \/@) do+ (1+¢%) - 01%-

2. For any v € RP satisfying dist(z, M) < cooy,+/logn, we have
(a) |V 1ogpi(x)|loo < e 222

o,

(b) (2770?)%]%(30) >nos,

Then we use the following lemma to bound the covering number of M.



Lemma C.2. For any e > 0 there exists an e-cover N, of M so that N. C M and |N¢| < (e A1)~%, moreover,
for any xg € M and r > €, we have

T/\l)d
en1’

’{:IJEN6 e = x| Sr}| < (

Let us fix a time interval ¢ € [t, ] where 1 < % < 2. According to Lemma C.1, it suffices to focus on approximating

the score function for ¢ € [¢,#] and x € RP with dist(x, M) < cooyy/logn. Our first objective is to demonstrate
that if there are neural networks capable of accurately approximating V logp:(z) within local neighborhoods
in M, then there exists a neural network capable of providing a reliable approximation of Vlogp;(x) for all x
satisfying dist(x, M) < coo¢y/logn, this is summarized in the following Lemma.

Lemma C.3. Suppose 7 < t < T and € > oy\/logn. Let N = {Y7*,Y5",--- Y.} be an €*-cover of M
satisfying the statements in Lemma C.2. Then if for each j € [J*], there exists a neural network (o (z,t) €

@(L,WR,B,@(L%)) s0 that for any t € [t,7] and x € RP satisfying ||z — Y| < V2(€* + coopr/logn) and

Ot

dist(x,./\/l) < 000';\/10@,
6% (2,t) — Viog pi ()]0 < .

Then there exists a neural network Pscore(x,t) € (L17 W1, Rq, B1, @(Log”)) with L1 = ©(L + log? n), |[Willeo =

O(J*(||W]|oe +1ogn) +log® n), Ry = O(J*(R+logn) +log*n) and B, = exp(©(log® n)), so that for any t € [t, 1]
and © € RP satisfying dist(z, M) < coo/logn,

1
|pscore(z,t) — Viog pe(2)|loo S e+ -

Recall @)
th x
Vio x)= ,
gpt( ) Pt(ﬂC)
where )
D r—m T —m
Vinla) = (2not) % [exp (ISR (LEZ2) ) dvolaato)
0% 0%
and

2
_p T —my
(o) = @ro?) £ oo (00N 1) dvolaato)
t
with m; = exp ( — fot Bs ds) and 0?2 = 1 — m? satisfying 1 —m; < t A1 and 0, < vVt Al. By statement 2
of Lemma C.1, there exists a large enough constant co, so that for any t € [t,7], + € RP with dist(z, M) <
cooey/logn, and any partition {A, M\ A} of M satisfying {y € M : |y — z|| < ca0¢\/logn} C A, it holds that

vl 1 Jaexp (—”””‘2’3,5*’“2) ‘ (—z_;:"y> fy) dvola(y)
ngt(f) - (; : fA exp (7%) . f(y) dvol g (y)

<

(4)

S

o0

We will approximate V log p:(z) by constructing suitable sets A and considering the approximation of f 4 €XP (—
z—myyl|? T—my z—my||?
llz=my|~ QUéyH ) . ( — y)f(y) dvola(y) and fA exp ( _ llz=mey|” 20?““ )f(y) dvolp(y) separately.

C.1 Case 1: n2(logn) 2 <t<T

Let N~ be an €*-cover of M with €* = o4/logn so that statements in Lemma C.2 are satisfied. Then the
carnidality of N, denoted by |N.-|, satisfies [Nex| = ©(1 V (¢*)~?). As per Lemma C.3, our focus lies in
constructing approximations of Vlogp(z) within local neighborhoods of points inside N.«. Fix an arbitrary
y* € N+ and consider

r€ Ly ={x €RP : ||z —y*|| < V2" + cooiy/logn), dist(z, M) < cooy/logn}, (5)
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we have
{yeM : |ly—z| < caop/logn} C{y e M : |ly —y*| < (c2 + V2 + V2¢0)a/logn} = A.
Then by Lemma C.2, let € = n=2%(logn)~2, there exists an e-cover N, of A so that N. C A and

~ Jt\/m/\ 1 d

IN| S (S5 s)
n=29(logn)

and for any y € M,

{y € Ne : |ly —yl < V2e}| = O(1).

Denote N, = {Y7,Ya,---,Y;} and define the following partition functions
1 lz] <1

plx) = 0 |z| > 2
2—|z] 1<lz|<2

M .x:ﬂfor' J]. 6
2) o S @ e o

Since for any y € A: (1) there exists Y € N, so that ||y — Yj|| < € (2) there are constant-order number of
Y; € N, so that ||y — Yj|| < v/2¢, we can obtain 1 < ijl p;(y) < C. Then,

[ e () (2 ) avolt)
A 0% Ot

- /AjZ:;pj(y) exp (—x _QZ?MQ) : <—x _Uinty> - f(y) dvolam(y)

s o3(y) exp (—”90‘”””’”2) ~ (—W) - Flg) dvolu(y),

2
20% o

ﬁj(w)=ﬁ(

j=1 /{yEAi lly—Y; || <v2¢}
where the last inequality uses the fact that p;(y) = 0 when ||y — Y;|| > v/2e. Then based on the decomposition

lz = mey||* = |z — meY5|* + 2z — me¥j,meYy — mey) + [ me¥; — maylf?,

we can obtain

i _
/AeXp (_I:r 2::;2/“ )(_x thnty> F(y) dvola(y)

-y {/ p3(y) exp (_ [m:Y; — mty||2> exp (_ (x —meY;,mY; — mty>>
= Weasv-vii<vaa 207 of

. <xmty) - f(y) dvolum(y) - exp <W) ]

o 202

Similarly, we have

[ e (Jm_my”) £() dvolau(y)

20}
[[m4Y; mty||2> ( (x = miYj, myY; mty>>
= p;(y)exp (— ~exp | —
jz:; U{yeA: ly-Ysl<vae 207 &

— 12
- fy)dvolau(y) - exp (_II;Z&/H) ]




Notice that for any Y; € N, z€ Sy~ and t € [t,t], we have

|z = m Y5
— < Cilo
207 = T1ost,

and for any ||y — Y;|| < v/2e,

Y5 — mey||? <p~2

20?2 ~

and
<SC - thj, th} - mty>

2
O

‘ < (7)

We can then obtain

m:Y; — myy||? r—miY;,mY, —muy 1
/ p] (y) exp (_HtJQQt”) . eXp (_ < tly 2t J t >> . f(y) dVOlM (y) = 7
{yeA: ly—-Y;lI<v2¢e} Tt ot

meY;—my 2 T—mY;,myY; —my T—1M41
Jyea: jy-v1vaey Pi(y) exp G%) P (_< o? y>) ' (_aiy) Sy dvolm(y)

meY;—myyl|2 T—m Y, meY; —my
Jyen: 1u-vi<vaey Pi(y) exp (_4” s )'eXp (_< A y>)-f(y)dvolm(y)

2
T

2 ~
20}

S Vlogn,

and

Therefore, if there exist neural networks qﬁgl] (z,t), qb?] (z,t) and (bgfq'] (z,t) so that for any j € [J], z € .- and
t et

meY; — myy|? T—miY;,mY; —m
H/ p;i(y) exp (—w) -exp (—< = ty>)
{yeA: ly-Y;|1<vZe) I 7 ®)
() avotat) - o' )| S o Vg,

[m:Y; — mty||2) exp (_ (x —meY;,mY; — mw))

2 2
207 o;

’ / p;(y) exp (—
{yeA: |ly=Y;|<V2¢e}

) av0laa(n) — 7o) S e

e o — meY; 2
T—melty (3] —C1—3-4
exp (— 207 ’ ) —¢; (%t)‘ snoTE (10)
We have ; " -
V] 1 Ejzl ¢j (xat)¢j (x,t) 10g2n 11
ogpi(e) = = S m SV (11)
¢ Ej:l ¢j (x’t)¢j (z,1) s

To construct QS?] (z,t), QSBQ] (z,t) and d)gs] (z,t), we consider the following lemmas in Oko et al. (2023) for the
approximation of my, o, exponential function, monomial and reciprocal function.
Lemma C.4. (Lemma 3.8 in Oko et al. (2023)) There exist neural networks ¢um,(t), ds(t) € ®(L, W, B, R)
that approximates m; and o; up to € for all t > 0, where L = O (log2 (™), IW|lx =0 (10g3 (e71).R =
O (log* (¢71)), and B = exp (O (log® (¢71))).
Lemma C.5. (Lemma F.12 in Oko et al. (2028)) Take ¢ > 0 arbitrarily. There exists a neural network
Gexp € ®(L, W, R, B) such that

sup ‘efz/ - ¢exp(1‘)‘ <e+ |z -2

z,z’' >0
holds, where L = O (log®c™1), [W||o = O (loge™),R = O (log’c!),B = exp (O (log’¢~)). Moreover,
|pexp ()| < € for all x > log3e~!.
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Lemma C.6. (Lemma F.6 in Oko et al. (2023)) Let d > 2,C > 1,0 < erpor < 1. For any e > 0, there exists
a neural network Gy (x1,22,--+ ,24) € ®(L,W,R,B) with L = O (logd(loge_1 + dlogC)) W lleo = 48d,
R=0 (dlogs_1 + dlog C’) . B = C? such that

d

Sate (25,7, 2y) — [ wa

d’'=1

< e+ dC e o, for allx € [~C,C)* and 2’ € R with ||z — 2'|| , < Ecrrom

and |Gmur(z)] < C? for all z € [-C,C). Note that some of x;,x;(i # j) can be shared. For Hle xyt with
w; € Zy(i =1,2,--- 1) and Zi[:l w; = d, there exists a neural network satisfying the same bounds as above,
and the network is denoted by ¢mun(T; w).

Lemma C.7. (Lemma F.7 in Oko et al. (2023)) For any 0 < € < 1, there exists ¢prec € ®(L, W, R, B) with
L<O(log”e™),[[Wl]le =0 (log’c™?) ,R =0 (log*c™?), and B = O (¢72) such that

/ 1 ‘ml — xl -1 /
Drec (') — — <et+—5— forallxe[s,a ] and ' € R.
x €
<z
Since for any —1 < z < 1, we have |exp(z) — io%” < e(@;{; < e(f‘;_‘fl)fﬂ Set .# = [4&], using

inequality (7), we have

1
—1-5
Sn27l

&
exp (_ {x —miYj, myY; — mty>) _ Z(_l)z (x —mYj,m,Y; — myy)’

o? IN(oy)2

=0

Therefore,

() exp <_M> exp (_ {z = ma¥, maY; = mtw) . Gw) () dvola(y)

2
20; o ot

H /{yeA ly=Y;1<v2€}

<
_ImeY; *mty||2) (e = meYy,me Y — mey)! (_fﬂ*mty

207 (-1 (o) ) ’f(Z/)dVOlM(ZJ)H

-/ e
{y€A: |ly=Y;[<V2e}
< nf‘s*%e*d\/log n.

Notice that we can write

£ l
, CmeYs = meyl?\ gy @ meYgme Y —mey)' (o —mey
p;i(y) exp ( 202 ;( 1) (o2 5, f(y) dvolrm(y)

g
1=0 t oo

/{yeA: ly=Y;l1<v2e}
< .
= (*)QHI my Z QAlki - 17(1),

ot
=0 0<k<2l+1 ieND, i <141

where z(?) = Hle 2l and agp; € RP. Therefore, using Lemmas C.4, C.5, C.6 and C.7, we

1. Approximate m; by ¢ (t) € ®(L, W, R, B) with L = (35 log?n), Wl = O(35 log®n), R = @((%Jog4 n)
and B = exp(©(57 log® n)).

2. Approximate o by ¢,(t) € ®(L, W, R, B) with L = (s log®n), |[W||s = O(55log’n), R = O(3 log* n)
and B = exp(©(57 log® n)).

3. Approximate 1 by ¢yec(z) € ®(L, W, R, B) with L = O(z log”n), |[W||w = O(3 log’n), R = (& log* n)
and B = exp(©(57 log® n)).

4. For vector x € RP, approximate 2 by ¢plobuer (2:1) € ®(L, W, R, B) with L = O(%lognlog($)), Wl =
O(}), R = O(5: logn) and B = exp(O(; loglogn)).

5. For z € R, approximate x* by ¢power(x;a) € ®(L, W, R, B) with L = @(%lognlog(%)), W loo = @(%)’
R = 0(55 logn) and B = exp(©( logn)).



6. For z,y € R, approximate z -y by ¢pmun(z,y) € ®(L,W,R,B) with L = O(3logn), |[W|w = O(1),
R =0(§logn) and B = exp(O(5 logn)).

We have for any « € .« and t € [t, ],

‘Z 1 zz+1 Z mf Z azmx(i)

o
¢ 0<k<2l+1 ieENP |i|<l+1

<
Z Z Z Ak * ¢mult <¢mult (¢power (¢rec(¢0 (t)), 21 4+ 1) s ¢power ((ybm (t), k)) 5 (bggl)wer (’I’, ’L))

1=0 0<k<20+1ieNP |i|<I+1

o0

—5—-1 —d
<n7%T2e

Therefore, based on Lemmas F.1-F.3 in Oko et al. (2023) for the concatenation and parallelization of neural
networks, there exists networks (bg-l]( t) € ®(L,W, R, B) with L = O(35 log”n), [W|le = ©(& (log” nv ($+D))),
R= @(log"(log nvV ("s’p""D))), B = exp(©(4 log”n)) so that (8) holds. Similarly, there exists a neural network
qb?] (z,t) with the same size as qﬁgl] (z,t) so that (9) holds. For the term exp(—%), using Lemma C.5,
we construct neural network ¢e,, € ®(L, W, R, B) with L = ©(log?n), [|W || = ©O(logn), R = O(log>n) and
B = exp(©(log®n)), so that

1 _ Y. 2
¢exp <_2¢mult <¢power (¢7’ec ¢0 Z ¢power % Y} i 2))) — €xp <_|'T27:§j”>

Therefore, there exists ¢£»3](x,t) € ®(L,W,R,B) with L = O(5z log?n), |[W/lee = (3 log®n), R = O(3r log* n),
B = exp(O(35 log®n)) so that (10) holds. Then using (11) and Lemmas C.1, C.6, C.7, we can obtain

—C;—L1_5
Snp~ %7270

J J
Hmax{CQU Vf‘)g",min{ VL Gt (qﬁm 60(8) s Smuas (D 81 (@, )05 @, 1), 61 (3 P, )0} (o, t))))}}
t t =1 j=1
1 2
—Viogpi(z)|| < O\g/ﬁn-

Combining all pieces, we can obtain that there exists ¢*(z,t) € ®(L, W, R, B, O( 1Og")) with L = ©(4 log”n),

W ]loo = @(F(log n\/(‘ggD)))7 R= @(Jlg’f"(log n\/(ggD))), B= exp(@(é—zlog n)), so that for any z € .7+
and ¢ € [t, 1],

log®n
v

The desired result then follows from Lemmas C.1, C.3 and the fact that | N~

167 (2, t) = Viog py(z)]loe <

C|N| = O (n**(log n)??).

C.2 Case 2: n~ %ra <t<n ?(logn)?

Let N+ be an e*-cover of M with €* = o;y/logn so that statements in Lemma C.2 are satisfied. Then |Ne| =
O((e*)~?). Fix an arbitrary y* € N+ and consider

x € Yyt ={z e RP : ||z — y*|| < V2(e" + coop\/logn), dist(x, M) < cooy\/logn}. (12)
Let ¢; = v2(1 + ¢g) and ¢} = ¢p + ¢1, we have

lly* — Projy(2)]| < |ly* — z|| + [lz — Projp ()] < (co + c1)oy/logn = cfop/logn,

where Proj,(x) denotes the projection of = to M, and it is uniquely defined because M has a positive reach
and dist(z, M) < cpopy/Togn < n~(logn)~2 = o(1).

Then since M is S-smooth, ther exists a positive constant r so that
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1. The projection function ProjTy*M(m —y*) is a local diffeomorphism in y*, with the inverse ¥~ defined on
B, (0p) N Ty« M and is S-smooth.

Let V* be an arbitrary orthornormal basis for the tangent space T~ M at y*. Define a function G* with domain

B,(04) so that
G*(2) =0, (V*2) (13)

Then we can define the inverse function
Q*(y) = G (y) = V" Projp , m(y —y*) = V" (y — y"). (14)
Recall that ||y* — Proj(z)|| < ¢jorv/logn and ||z — Proj ()| < coory/logn, we have
{ye M : ly— 2l < caor/logn} € {y € M : [ly — Proju(a)]] < (ca + co)ouy/Tog )

ClyeM : |ly—y'll < (ca+co+cy)opy/logn}
C{y=G"(2) : ||z|| < cz0¢\/logn}

where the last statement uses G*(04) = y* and the Lipschitz continuity of @Q*. Therefore, using equation (4), we
only need to approximate

z—myyl|? —my
1 f{y:G*(z):\|z||<C3a“/1ong} exp (_ H Qatzyu ) : (—x o y) f(y) dvolam(y)
rz—mey||?
7 Jiumcie o) o1 sy 0 (155505 ) - Ty dvolaa(v)

llz—m.G*(2)|? z—miG*(2) | %
1 f\lleSCsﬂvlogneXp( 202 ) (_ o )v (2)dz

le—m.G* ()|
Jielzesor viogm P (*T) v (2) dz

)

Ot

where v*(z) = f(G*(z))\/det (VG*(2)TVG*(z)). Then consider the Taylor expansion of G* at 0g4,

18]
G (2) =y + > T7 (%) + O(||2]7),
=1
we denote
E1 '
)=y + Y Tr (=) (16)
=1

as the polynomial approximation to G*. We have
* B
sup  [|G*(z) = G(z)|| < (tlogn)>
[|z]|<csorv/logn
sup VG (2) = VG(:)|| S (tlogn) 7,
[|z||<csorv/Togn
where VG(z) = (VG1(2),VGa(2), -+ ,VGp(2))T is the Jacobian matrix of G. Next, we present the following
lemma, which provides an approximation to the projection function Proj,,(x).

Lemma C.8. If7 <t < n=2(logn) =3, there exists a neural network ¢,(x) € ®(L, W, R, B) with L = ©(log®n),
|[Wllee = ©(log®n), R = O(log*n) and B = exp(©(logn)) so that for any = with |z — y*|| < ci(oy V

n_ﬁ)\/logn and dist(z, M) < ¢cpo\/logn,

1 H<VG<¢p<w>>,w = Glop@)| 5 (o v 757) yIogn) ™.
2. ||ép(2) — Q*(Projpg(@))|| S (o1 v 0~ 777 )ogn)”.



Lemma C.8 suggests that that G(¢,(x)) is a good approximation for Proj,,(z). Based on this, we consider the
following decomposition

lz = mG*(2)]|* = llo = G(dp (@) + 2(x — G(p(2)), G(p(2)) — MG (2)) + | G¢p(2)) — MG (2)I*.

We can then substitute this expression into (15) to obtain

1 f”Z”SCSUL /rgnexp (_ Hi—méac-i;(Z)“z) ) (_;c—m;?*(d) ’U*(Z) dz
o z—m:G*(2)||2 %
” ie<canviogn ©XP (_%) v*(2) dz
z))—m:G* (2)|? T— p(T)), p(2))—m:G™ (2 z—m:G*(z %
Jizl <esonviogn EXP (_HG(%( ))20? (2| ) exp (_< Cldp()) G(ff( ))—me G ( >>> , (_ LG )) v*(2) dz
- z))—m:G*(2)||2 T— x z))—m:G* (2
0 [ Pp—— (_ G (6 ( ))%?n,c @ ) . exp (_( G (¢s( )),G(j%p( ) —me G ( ))) v (2) d
—m:G*(2)]|? T— z)), p(x))—m:G" (2 m:G*(2)— »(x *
JEpp——_s (_ HG(%(m))%% G )l )exp (_< G($p(@) c(:%( ))—m G* ( )>) ( G ()~ G(é( ))) v*(2) dz
B , z))=m;G*(z)|]? z— z z))—mG*(z
o fllzugcmme){p (_HG(%( ))20? G (2)| ) . exp (_< G(¢( )),G(izp( ) —m. G ( )>> v*(2) dz
(4)
z — G(¢p(@))
of
N———
(B)

For the term (B), since G is a polynomial function, using Lemma C.6, C.7 and C.4, we can obtain that there
exists a neural network ¢p(x,t) € ®(L, W, R, B) with L = O(log”n), |W| = ©(log®n), R = ©(log*n) and
B = exp(©(log® n)) so that

sup ‘“GW” - ¢B<x,t>H <L an
mey;\* g% o n

Then for the term (A), notice that for any x € yJ ={z € RP : ||z — y*|| < V2(e* + coor\/Togn), dist(z, M) <
coopy/logn} and ||z|| < czopv/logn,

¢p(@)]| < lldp(x) — Q% (Proj ()| + |Q" (Proj () — Q(y")|| S o1\/logn,
1G(¢p(x)) — muG™(2)]
< G(¢p(2)) — G(2)|| + |G(2) = G*(2)[| + (1 — mu) G (2) ||
S ldp@)l + [l2]l + (o1/logn)® +¢
S o1\/logn,
2 = G(dp(@)]| < ll& = y*|| + 1G(04) — G(p(@)]| S 01\/logn,

(18)

(19)
Therefore, denote

p, () :/ exp (_ IG(%(m))Q—:%G*(Z)IIQ) exp (_ (& — G(dy(x)), G(ﬁp(x)) - th*(z)>)
. l(l_SG(;ﬁ - th*(Z)) v*(2) dzt', t

Ot
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and

. o (NG ) = MG P | (5= G0y (0). Gly(o) = miG () .
pt<>/|2”<%m p< - ) p< < ) (=) dz,

we can derive

Hdpt(w)

— S Vlogn,
Py()

and

| \%

nef o ew (D Gy (=GN =GN

2
t Ut

/ ¢p(x)|\<gt P < |G(¢p(xg)at2 G(z)||2) v*(2)dz

Vv

2\/

Therefore, if there exist neural networks ¢[!(z,t) and ¢[?(z,t) so that for any t € [t, 7] and z € 5”;*,

dip r)— (b[l] l‘,t 0 S Ot d+1n_% 10g2 n, (20)
t ~ T

1P, () — 2 (2, )]0 S (00) 0~ F log? n. (21)
Then we have L

O ﬁt(x)

To construct ¢! (z, t) we approximate dp,(z) by polynomlals. Use (1 ) and (19), by choosing .23 = O(logn)

and % = (M], we have
log(o¢ log2 n)

<n”?

)

* 2 2 * 20
exp <_|G(¢p(ﬂf))—th )l )_ S (-1 |G (dp(2)) — meG*(2)||*

207 2y lo?h

11=0

and

T — x x)) — mG* (2 = T — x x)) — mG*(2))l2
exp <_< G(¢p(2)), G(¢p(2)) G ( )>) B Z(_l)zz< G(¢p(2)), G(¢p(2)) G*(2))

21
lQ!Jt 2

Therefore, we have

- NG(@p()) — mfG*(z>H2h = L (2 — G(9p(2)), G(dp(x)) — miG*(2))"2
[ (x) - /Hﬁ 1)’ SOy -lgO(—nf o

Ot

JELE th*<z>> o

_ * 2
510g2n~0£~n7% / H eXp (||G(¢P(J?)) QTntG (Z)” ) ( )dZ+( /logn) /logn.n72
<czoiv/logn

Hz 20’t
(23)
Then since

1G(6p(2)) — muG (I 2 S1G° (Bp(2) ~ G (I = 20G(6,(2)) — G (65(2)) + G*(2) = G ()]
S6n(e) = 2l = C (2 + (o0 v/logm) ),

v



3

notice that oy < VtA1 =X VtA1 < n_‘s(logn)_i and 8 > 2, we have

t2 + (o4+/Togn)??
O_tz =o(1),

— * 2 _ 9
/ oxp (_HG(%(@) G ()] )y*(z)dz§ / oxp <_Hfﬁw> ds < ot = ot
Izl <csorv/Togn 207 107 4

So based on (23), we can obtain

and

£ Z
N L IG(9p(@) = muG* ()P 3, (& = G(dp(), G(8p() — muG*(2))"
Hdpt(x) /|z|gca~,at¢mh§_:( 1 2l lo2h 122::0( D llog?
<log?n - (o,)%- nos.
) (24)
Furthermore,
£ <z
L 1G(@p(2) = muGH ()P 3 (2= G(6p(2), G(dp(2)) — muG*(2))
-/|z||SC3at\/ml1_0 ) 2111 lo 2l1 lgz::()( 1) l2!0't2l2

2 (20, (Culdpla) - miy(2)?)”

- / Z(_l)ll i 201
lzll<csorvIogn | o 24y loy

D b2
& (S (= Gul0pa)) (Gu(dp(e) —miGa(2)) (_G@p(x))

lo '02l2 (o

- th*(”) v*(2) dz

G 2 li+2+1 D
_ (=1) |20+l RO
=2 > W(at (Z —myGy(2)) )
11=01>=0 w=1
D
l2
(X (20 = Guly(@) - (Gul@p@) —miGi(2))) - (G6y() = miG*(2))
w=1
2
21 2s+1 . )
D 3D ET D SR > @Y Y anpmea?
1,=012=0 t 0<k<2l;+1x+1 seNd,|s|<(201+212+1)| 8] ieND Ji|<la
where ay, 1, .i.s € RP are some constant coefficients and the last equation use the fact that G = (G1,Ga,- -+ ,Gp)

are polynomials up to order [3]. Then notice that (- )211+212+1al1712,k7i,3 < exp(O(log? n)), we

1. Approximate m; by ¢, (t) € ®(L, W, R, B) with L = ©(log* n), |W|ls = O(ogn), R

O(log®n) and
B = exp(0(log* n)).

2. Approximate oy by ¢,(t) € ®(L, W, R, B) with L = O(log*n), |[W|le = O(log®n), R = ©(log®n) and
B = exp(©(log* n)).

3. Approximate T by ¢pec(z) € ®(L,W, R, B) with L = O(log*n), |[Wls = ©(og’n), R = O(log®n) and
B = exp(©(log* n)).

4. For vector z € RP | approximate z() by (bLjZl,wer(x;i) € ®(L, W, R, B) with L = ©(log® n -log %), [|W||s =
0(%), R=0(Zlog?n) and B = exp(0(.%, - loglogn)).
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5. For vector z € RY, approxunate 2() by ¢Upower(z i) € ®(L, W, R, B) with L = ©(log® n-loglogn), |W|ls =
O(logn), R = @(log n) and B = exp(©(logn - loglogn).

6. For z € R, Approximate 2% by ¢power(z;a) € ®(L, W, R, B) with L = O(log? n-loglogn), |[W|ls = O(logn),
R = 0(log®n) and B = exp(O©(logn - loglogn)).

7. For z,y € R, Approximate z -y by ¢mu(z,y) € ®(L,W,R,B) with L = O(log®n), Wl = ©(1),
R = 0(log?n) and B = exp(©(log® n)).

We have
AN 21 2041
1 2 k .
> > ( ) my ) Gp@)® > a2
11=012=0 0<k<2l1+l2+1 sENG,|s|< (211 +212+1) | B8] ieEND|i|<l2
L L

- Z Z Z Z Z @iyl ki,

l1=012=00<k<2l1+12+1 seNd,|s|< (2114212 +1) | B] i€ENP ,|i|<ly

. d)mult (¢mult (d)power (¢rec(¢o (t)); 211 + 212 + 1) 7¢power ((bm(t); k)) 7¢mult (d’y;]ower(z; i), ngz(ﬂower(d)p(z); 5)))

hS (ai)dHn_% log? n.
Therefore, by concatenation and parallelization of neural networks, we can obtain that there exists a network
oM(z,t) € ®(L,W,R,B) with L = O(log? n), |Wllew = @(log6n + % logdHn("%gD)), R = @(logsn +
2 log?™s n(’SfQBLD)), B = exp(O(log*n)) so that (20) holds. Similarly, there exists a neural network ¢£_2] (z,t)

with the same size as qbg.l] (z,t) so that (21) holds. Then using (22), (17) and Lemmas C.1, C.6, C.7, we can
obtain

|maX{W,mm{ @,%m(%(%( ) Gmate (81 (@, 8), Srec (47, t))))—¢3<x,t>}}

gt

2
<log n

~ \/ﬁ N
o0

— Vlog py(x)

Combining all pieces, we can obtaln that there exists ¢*(z,t) € <I>(L W, R, B,O( 1Og")) with L = ©(log* n),
Wloo = @(log n + % loght ($2+D)) R = 0(log®n + % log®* ($2+D)) B = exp(©(log* n)), where

&L = 11c(>g(772)1 so that for any € RP with ||z — y*|| < c104y/Togn and dist(z, M) < cooyv/logn, and
og(otlog2 n)
t et
log®n

" (x,t) — Viog pe(®)]|oo S T

The desired result then follows from Lemmas C.1, C.3 and the fact that |[Ne| = O(agd(log n)_%)

2

C.3 Case 3: 7 <t<n 2atd

Let N« be an e*-cover of M with ¢* = n™ Ta¥a vlogn so that statements in Lemma C.2 are satisfied. Then
|Ne<| = O(n 7 (log n)_%). Fix an arbitrary y* € N~ and consider (G*, Q*) defined in (13) and (14). For any

x € 5’;* ={z eRP : ||z — y*| < V2(¢" + coop\/logn), dist(x, M) < cooy1/logn}, (25)
we have

fyeM : |ly— 2| < cao/logn} € {y € M : |ly — Proju(@)]| < (e + co)or/logn}
C{y=G"() : |2 — Q" (Proju(@))l| < (2 + co)ory/log n}



8
Using Lemma C.8 and c¢n™ 2o (logn)ftl =7 <t <n~ 2c¥2+d, we have

2= @p(@)l < ll2 = Q" (Proj (@) + [16y(x) = Q" (Proj ()
< |12 = Q" (Proj ()| + O (n~ 7 (logm) 7 ),
and thus
{y=G"(2) ¢ ||z = Q" (Projp (@) < (ez + co)oryy/logn}
Cy=G"(2) : |12 = 6y(@)]| < cson/logn}
CHy=G"(2) ¢ llz = 9p(@) e < es00y/logn}.

So based on equation (4), we only need to approximate

o —myyll? emmy
1 f{y=c*<z>:Hz—%(m)\@gwgﬁlogn}eXp(_ 207 )(_ ot’y)f(y)dVOIM(y)

o lz—=msyl2
' f{y:G*<z>:||z—¢p(a:>||ooScsaWogn}eXp( 202 ) f(y) dvolm(y)
|lz—m:G* (2)]|? z—miG*(2) ), =
1 Jie 6@ lloe <esonvioan P (* 207 ) : (* - )U (z)dz
o le—meG= ()2 ,
' Jie =6y @)oo <eso0 vioET OXP (_ 207 ) v*(2)dz
IG(bp(2)—msG* (2)2 (2-G(dp(2)),G(dp (@) —msG* () | (MG (2)=G(dp(@)) )
i @lloo a0 viEET P (* N )eXP (* ] ) ( T )U (2) dz
- G (p@)—miG* ()2 (2 =G (¢p(2)).G(@p(2)) =m: G (=)}
ot fllzf¢p(w>||xgcsa£me"p( 207 ) eXp( o7 ) “(2)dz
©)
z — G(¢p(2))
o? ’
—_——

(26)

where v*(z) = f(G*(z \/det (VG*(2)TVG*(z)). In a similar manner to Case 2, the term (B) can be ap-
proximated by neural network ¢p(z,t) € ®(L, W, R, B) with an error X if L = O(log®n), |[W |« = O(log” n),
R = O(log* n) and B = exp(O(log®n)).

Notice that v* is a-smooth, we can write

v*(z) = v(z) + O(|1z[|%)
v(z) =v"(0a) + Y, v D(04) 2, (27)

1end
1<t<a)

where v*1(04) = % . We will first build an approximation to term (C') by replacing G* and v*
02," 025702, | 2=04

with their polynomial approximators, that is, G defined in (16) and v defined in (27). To bound the approximation
error, we will consider and bound the following terms using Lemma C.8 for any z € fyi ={reRP : ||z-

y*|| < V2(e* + coopy/logn), dist(z, M) < coop/logn} € {x € RP : ||z — y*|| < clnfﬁ\/logn, dist(z, M) <
coor/logn}, and any z € R satisfying ||z — ¢, (7)[| o < c3o4/Togn:
* : %[ % — Ll
[ép(@)]| < l[ép(2) — Q7 (Proja ()l + |Q"(Proju(z)) — Q" (y")|| S n” 2% /logn;

1G(6p(2)) = miG(2)|| < G(dp(2)) = G + (1 = m)[G(2)| S orv/Tog n;

1 o/l = /logn)’ I ~z=ra/logn)”
2 16600 = mG @I = 166y () - mGEI| £ Og”(”ag %en) . Vognlr - %)

[l = G(dp(2))|| <[l = Projy (@) + |GT(Q7 (Proj i (2))) — G*(p(2))l| + |G*(¢p(2)) — G(¢p(2))[| S o1/ logn;
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23 [(2 = GO, @), 66, (@) MG (2)) = (& = Gl0y(@)). G5, (w) — miC(2)|
orv/logn(n~ %51 y/logn)” _ logn(n” 751/logn)”

~ 2 -
(o Ot

(@ = G(&y(2)), Gl6y(x) - tG<z>>|
< (@ = Glop(@)), VG(8y()) (6p(x) = )| + [( = Gl6,(2)), G0 (2)) = G(2) = VG(Sy(@)(d() = 2))

+|(@ = G6,(2)). 6(2) —miG(2))| (28)
< (n~ 2Mrd\/logn ﬁat\/logn—i—at logn)% g\/@
< of (log ) ¥;
H G(dp(x)) —muG(2) || H G(¢p(2)) —miG(2)  G(dp(x)) — meG(2) n H G(¢p(2)) — G(2) plome G|
logn.
(29)

Combining all the pieces, we can obtain
iy exp (LD = CT DY o (2= Aol ey = mEE) )
ll2=6p ()|l oo <czoev/Togm 20} of

JECIEL IR [ (~etente)
o (=GN Glo) “ MG (Gl =) ),

th(Z)||2>

Ut oy
B
|G(y() —th*<z>||2) pommlesmE
< _ de. (P w2 (] =2
- /lz—%(x)lws%m o ( 207 : ( o1 e logn) )
(30)
Similarly, we have
‘ / exp < |G (¢p()) thG*(z)H?) e < (x — G(¢p(2)), G G (2 )
2= ¢p (@)l oo <czorvTogn 20}
_ / exp (_||G<¢p<x)) —2th(Z)||2) exp <_< G(pp(2)), (Z;p — Gz )
lz—¢p (@)l c <czotvIogn 20} O—t
||G(¢p(fc))—th*(z)||2> -z losm) .
S - | 2atd 2
- /lz—aap(mnws%m P < 207 dz ( P +n” 2% (logn) )
(31)
Denote
dp, () :/ exp (_ |G (dp(x)) —thG(z)HQ) . (_ (x — G(¢p()), (qsp( 7)) — th(Z»)
lz=dp(2)|c <czorv/logn 2Ut Ut
' (_G(%(x))a_ th(Z)) v(z) dz,
t
and
dp, ()

_ oy [ _NG(p(@) —mGEPN (@ = G(ep(@)), (¢>p( 2) =mGE)\ o
_/|z¢p(z>|oo<cmm p< 207 > p< of > () dz.



We will show that if there exist neural networks ¢! (z,t) and ¢[?(z,t) so that for any ¢ € [t,#] and = € Yyi*,

NS
n—ﬁ(logn)f*'

ldpe(z) = 6 (. 1) oo < (00! (= logm) F ), (32)

7%(logn)%
[5e() = 62w, 1) e S (o) (40 (log )% ). (33)
. -

Then we have

G —myG*(2)|? -G .G —mG* G*(2)-G *

"L|Z¢p(z)|lm§630t s OXP (_ I (¢p(x))2():2m @l )exp (_(x (dp(x)) (;b?p(w)) my (z))) (mt (z)ot (%(w)))v (2)dz

G z))—miG*(2)]|2 z—G z)),G z))—miG*(z «

B — (_ IG5 (2] ) exp (_< (60(2)). 6y ~me G )>)v () dz
ﬁ @ [e3
_i ¢[1]($,t) < n—ﬁ(logH)Z‘Fl n_m(logn)%
o ¢P(z,t) ||~ of o1
(34)
|G (pp () —mG* (2)]|% .

To show (34), we first bound f\lz—%(:c)\looéch\/@ exp (— T ) dz. Notice that

lép(@) = 2| < G (8p(2)) = G*(2)]| < [G(p()) = MG (2)]| + (1 = m) |G* ()| + O(n~ 757 (log ) #)
<G (dp(@)) = miG* (2) ]| + (o),

we have

— * 2 _ .2
J oxp (AN =LY . ¢ oy (DY 4. o
llz=@p (@) ]| o <csorvTogn 207} 207 L

Therefore, combined with (30) and (31), we can get

oo (GG ) =G P (= G(6,(2)), Glop() — miG* ()
H /|z—¢p(w)|mgcwt\/m < 207 ) P ( of >
. <_G<¢p<x>>g—t th*(2)> v*(2) dz — ¢ll(x, t)Hoo < (m>d(”“ﬁ”§:g”)2“ + =5 (logn) F)

and

/ exp < |G(¢p()) thG*(z)Hz) exp < (x — G(dp(z)), G(qu(x)) G (=)
2= (@)l oo <csoev/Iog T 207

B+1
n= 52— (logn) 2

) v*(2) dz

0%

¢[2](9€,t)H < (Jt)d( +n7ﬁ(logn)%>.

Now use the fact that
1G(p(2)) —meG™(2)]| < |G*(dp(2)) =G (2)[[+ (L —mu)[|G*(2) || + |G (dp(2)) = G (dp(2)) || S [|ép(x) —2[+0(00),

we have

1G (5 () =mi G* ()] (2= G (0p()).G(ép(@) =meG*(2)) | (m1G™()=G(6p(@)) )+
va¢p<z)|m<caatﬁlognexl° (_ a7 )eXP (_ o ) ( o )v (=) dz

|G (¢p(z)) —msG*(2)||? (2—G(¢p(2)),G(dp () —m:iG*(2)) \ .
Ji=6 @)oo <caoy viozT ©XP (_ 307 )'EXP (— - )v (z)dz
< Vlogn,
and
G — G* 2 -G G _ G*
/ exp(_n (6p(@) = mG"(2)] ).exp(_@ (60(2)). Gln()) = o “‘”)w(z)dz
lz—¢p ()l co <csorv/Togn 207 p

ox IG(@p(2)) — miG*(2)|? oxc {2z = G(9p(2)), G(dp(x)) — meG*(2)) ot (2) ds
= /|z¢p(z)|oo<a't p( 207 ) p< 7 > =)

(x — G(op(x)), G(dp(x)) — mG*(2))
z exp | — dz.
~ /|z¢p(z>|oo<m P ( ; >

0%
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Moreover, when ||z — ¢, (2)|ls < 01,
(@ = G(dy()), Glep(w)) = mG* (2))]
< |{@ = Gl6y(2)), VG (6 (2) () = 2))| + |(@ = G(6,(2)), G(6y(2)) — G (2) = VG (@) (Bp(2) — 2)
+ (2 = G6y(@)), G(2) = G*(2))| + [(@ = Gl6y(2)), 6" (2) = mG* (2))]

28
where we have used Lemma C.8 and t > 7 > c¢n™ %o+ (logn)?*! with a large enough constant c. Therefore, we
have

exn, [ NG @p(@)) — myG* ()| oxp [ &= G(9p(2)), G(¢p(2)) — meG™(2))
/llz¢p<m>|oo<mt\/m P ( 207 ) P ( o2
2 (o).

> v (2) dz

We can then show (34) by combining all pieces.

Then we construct ¢!(x,t) by approximating (fi\lj)t(x) with polynomials. Based on statements (28) and (29), by
choosing % = O(logn) and % = O(1), we have

7)) —mG(2)|? il 7)) — myG(z)||21
’exp (_IIG(%( ) G(2)| )_ S (1 |G (pp(2)) G|l

2
2(715 2l1l1!O',52l1

11=0
B+1
n~zarallogn) 2

< (logm) 4 + 7= (logn) ),

ot
and
’ exp ( (z — G(gp()), G;fp(fﬂ)) - th(Z)>) N f (—1)t (z — G(gp()), ?E@;l(f)) —myG(2))"
t l5=0 2:0;
u 7%ﬁ(logn)% N N
< (logn)~ 2 (HT + n_m(logn)f).
Therefore,
H / - (_1)l1 ||G(¢P(«T)) - th(Z)||2ll . fz:(—l)lz <$ — G(¢p($)), G(¢p(x)) - th(Z)>l2
2= (2) oo <caoevIoBT {; —§ 2l111!0't2l1 = lg!at?lz
8
G —mG — —5ra(logn) 2 *! . at1
. ( <¢p<x>>0_t my <Z>> w(2)dz —dp(@)| < (00" (T o w (logm) ).

Moreover, since G(z) = (G1(z),G2(2), -+ ,Gp(z)) and v(z) are polynomials with degree at most |3] and |a]
respectively, we can write

21

G(¢p(z)) — miG(2)]|?1 Z z— G(¢p(2)), G(pp(z)) — miG(2))"2
/lz%(w)lw<%ml_o<1)11” ol G 8yt = Glet). Gty =mC)

JEECEL O PR

Ot

|
1,=0 ZQ.O'

CEE 1 ! (s) (i)
- Z Z (UT) Z my Z (¢p(2)) Z ALy lo kys,i T

11=012=0 0<k<2l1+l2+1 seNd,|s|<(411+312+2) | 8] +d+ | o] ieNP |i|<l2

where a;, 1, ;s € RP are some constant coefficients. Then notice that (1)21+2=2+1q, , 4. o < exp(O(log® n)),
we



1. Approximate m; by ¢n(t) € ®(L, W, R, B) with L = ©O(log*n), |[W|s = ©(log’n), R = ©(log®n) and
B = exp(0(log* n)).

2. Approximate o, by ¢,(t) € ®(L, W, R, B) with L = O(log*n), |[W|lw = O(log’n), R = ©(log®n) and
B = exp(©(log* n)).

3. Approximate 2 by ¢rec(z) € ®(L, W, R, B) with L = O(log* n), |[Ws = ©(log’n), R = O(log®n) and
B = exp(©(log* n)).

4. For vector € R”, approximate (! by (bq[ﬂ,wer(x;i) € ®(L,W, R, B) with L = O(log”n), |W |l = O(1),
R = 0(log?n) and B = exp(O©(loglogn)).

5. For vector z € R%, approximate z(*) by ¢[v(ﬂower(z;i) € ®(L,W, R, B) with L = O(log® n-loglogn), |W||s =
O(logn), R = O(log®n) and B = exp(O(logn - loglogn)).

6. For z € R, Approximate 2% by @power(2;a) € ®(L, W, R, B) with L = ©(log® nloglogn), [|W ||~ = ©(logn),
R = 0(log®n) and B = exp(O(log nloglogn).

7. For x,y € R, Approximate z - y by ¢man(x,y) € ®(L,W,R, B) with L = O(log®n), W]l = ©(1),
R = 0(log?n) and B = exp(©(log®n)).

We have
& 1 201 +205+1
1 2 k .
ZZ(;) >, om > (Dp(@) D g 2
li=0l=0 ' 0<k<20y+la+1l  seNE,|s|<(4l1+312+2) | 8] +d+|a] iEND |i[<I2
21 32

- Z Z Z Z Z Ay 1o,k iys

11=012=00<k<2l1+l2+1 seNd,|s|<(4l1+3l2+2) | B]+d+ | o] iEND || <l2

: ¢mult ((bmult (d)power (¢rec(¢o (t))y 2ll + 2l2 + 1) 7¢power(¢m(t); k)) a¢mult (‘égg]ower(x; Z)a ¢£ﬁlower(¢p(x); S)))

o0

8
8 S+1
(n—m(lognﬂ a+1)

< (o) + 7 (log ) 3

t o8
Therefore, there exists network ¢l(z,t) € ®(L, W, R, B) with L = O(log" n), [|[W|ls = ©(log® n + log?**n),
R= @(log8 n + logd*t® n), B = exp(©(log* n)) so that (32) holds. By employing same techniques, we can also
obtain that there exists a neural network ¢£2] (z,t) with the same size as (bgl] (x,t) so that (33) holds. Then
use (34), similar as the analysis for Case 2, we can obtain that there exists ¢*(z,t) € <I)(L7 W, R, B, @(@))
with L = ©(log* n), |[W||s = ©(log®n +1log?*®n), R = ©(log®n +log?™®n), B = exp(6(log* n)), so that for
any x € RP with ||z — y*|| < cin~ 7% /logn and dist(z, M) < ¢pory/logn, and t € [t, 1],

B i1

B 5 a a+1
—7(]0g n) 2 —_—— a+tl
n 2a+d n 2a+d (log n) 2
16" (2,t) = Viog pi(z)[lo0 S 5
o Ot

The desired result then follows from Lemmas C.1, C.3 and the fact that |Ne«| = O(nﬁ(log n)_%).

D Proof of Technical Lemmas

D.1 Proof of Lemma B.2

Consider processes
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Yo~ pr

dY; = Br—¢(Y: +2logpr—¢(Yy)) dt +/2Br—¢dB; (0<t<T —7)
Yr r=Yr_ ;-1 (HYTf‘r”oo < L) .

Yo ~ pr
AY, = Br_ (Y +28(Y,, T — t))dt + /27— dB; (0<t<T —7)
Y — —YT T]-(H?T7T||OO§L)

Yo ~ N(0,1p)
AY; = Br_o(Yy + 28(Y,, T — ) dt + /287 dB, (0<t<T —1)
?T—‘r = ?T—‘r -1 (HS}T—T”OO < L) .

Denote py, P, and p; (1 <t < T) as the probability distribution of Yr_, Yr_; and ?T,t respectively. Then we

have
E[d’v(pdatavﬁ)] < E[d’y(pdataapT)] + E[d'y(p7'7ﬁ7')} + E[d’y(ﬁrvﬁ)]

Since ¢(z,y) = ||x — y||” is a distance cost function for v < 1, we have
&) = _min oyl d
mE(p1,p2

where TI(p1, pio) is the set of all couplings of 1 and ps. Notice that pgata is supported on M C Bfﬂ, we can

bound ~
E[dv(pdata,pf)] < Exepdata,zeN(071D) [Hx —(mrx+0,2)-1 (Hme + UTZHOO < L)H ]
S ExepdatavzeN(Ole) [”‘7} - (mT:I; + O-Tz)H’Y]
< (T =m7)" +07) - Evepyaralllz]”]
3
ST2.

Furthermore,
d (p7'7p) dTV(p7-7p) < dTV(pTvN((),ID))

< V2KL(pr | N(0,Ip))
<2 exp((T —1)8)v/KL(p1 | N(0, Ip),

where the last inequality is due to the exponential convergence of the Ornstein-Ulhenbeck process (Bakry et al.,
2014). Moreover,

b oe (L [ Nl =yl — |2 . )<
bg((%ﬂgempCﬂaﬂ%Q)>bg<0? u/elx 207 )f(y) dvolm(y) | < =),

Ep, [lz]] = O(1),

and

we have

4P, P) 5 2 exp((T ~ 1)8) VKL TN, Ip) S exp((T - 1)B) £ -

The analysis for the term E[d,(p-, P, )] follows from Lemma D.7 of Oko et al. (2023), the only difference is that
we need to take -y into consideration. We include the proof below for completeness.

For 0 < i < K, denote
Yo ~pr
dY(Z = Br—«(Y, —1—210ng ( Ei)))dt—i— V2Br_¢dB; (0<t<T —t)
dY(l = Br- t( +2S( T —t)dt+/26r_+dB; (T —t; <t<T —7)

Y(l = YT—T 1 (”YT—T”OO < L) .

v



Denote Togi) (1 <t <T) as the probability distribution of ?E;)_t. We have

E[d, (p+,P.)] ZE @, P ). (35)

Denote A = {(z,t) € RT X R : ||z|lc < my + Cop/logn, 7 <t < T}. By Lemma A.1 of Oko et al. (2023),
there exists a large enough constant C' so that it holds with probability at least 1 — + that forall0 <t < T —,
(Y3, T —t) € A. Then consider

?3(“ NPT
Y'Y = Br_ (V) + 2log pr—y(V, D)) dt + /27— dB; (0<t<T —ti11)
v’ = g, (Yt(’) + 2log pr (Y, )1((V} D, T~ t) € A, for all 5 <)
+25(Y, O - )1 ((Yt’(i),T —t) ¢ A, for some s < t)) dt +/2Br—¢dBy (T —ti1 <t <T —t;)
A, = Br_o(V, D +28(Y, D T —t))dt + /2Br_1dB, (T —t; <t <T —7)
VL =V (P e < ).

Denote p,() (1 <t < T) as the probability distribution of 7/?%, we have d., (p..C >,]5$)) < 2. Furthermore, when
t; = (logn)~!, we have dw(*/r(i)f(wl)) < dpv (P, p(ZH)) When t; < (logn)~t, Oko et al. (2023) construct a

transportation map between ﬁ;(i) and p( 1 50 that

(i+1)

1. As much as %dTv (., 57 ") of the mass is transported from p’.(*) to p(H_l)

2. With probability 1 — 5, the transportation map moves at most O(y/t; logn).
Based on the above fact, we can then conclude
1 v ) .
dy ( (@) p("H)) —+ ( tilogn A 1) : dTv(ﬁ;(l),ﬁ,(rl—i_l)).
n

Finally, follow the analysis in Chen et al. (2022), we can use invoke Girsanovs Theorem to shows that

. . ] i tit1
dry (7@, B < /2KLEL O [ 0D < \// /D
t; R

The desired result is then follows from (35).

. 2
S(xz,t) — Vlogpt(a:)H pi(x) dadt.

D.2 Proof for Lemma C.1

Since M C B4 (0p), for any x € RP,

\V4
IV log pe(a)] H pil@

J exp ( — Lol (=) () dvolu(y)
Jexp (= 125220 - () dvola (y)
llall +vD

Ut

Therefore, for any constant ¢; > 0,

/||Vlogpt(x)||2pt(x) -1 (dist(m,/\/l) > coati\/logn) dz
_ 2
/ [id | + vD 1) 5 exp ( — Hinm;yH) dvolp(y) - 1 (dist(a:,/\/l) > coo,/logn, ||z]| > cm/logn) dz
T o

(2107) ;
H33|| +vD f(y) [l — muy]? g
+ 3 5 exp ( — ) dvolaq(y) - 1 (dist(z, M) > coor, \/logn, ||z|| < c11/logn ) dx.
o; (2mo2) 2 202
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Note that for large enough ¢,

/D _ 2
/ ] +2 1) 5 exp (— M) dvolpm(y) - 1 (dist(x,/\/l) > coo,/logn, ||z]| > cm/logn) dz
o Fl

(2mo?) 20}

g/[/”‘”';‘@( L %exp(fw).l(”xﬂzw@) dx] - f(y) dvola(y)

2rof) 20}

<

3[0‘ —_

Moreover, for large enough ¢y, we have

/D _ 2
/ Iz +2 W) & exp ( — Hinm;yH) dvolp(y) - 1 (dist(x,./\/l) > coor,/logn, ||z] < clx/logn) dz
o7 z o

(2ma?) t
c1v/logn + D 1 cto?
S ! 5 D oexp(f Z ; logn)//f(y)-1<||x|| Sclx/logn) dvoly(y) do
0% (2mo7)2 o
1
< ol

Therefore, we have
/||Vlogpt(x)H2pt($) -1 (dist(x,./\/l) > cooy, \/IOE) dz < 01%.
Similarly, we can show
/Hs 2, )| pe(z) - 1<dist(:1:,/\/l) > coati\/@) dz
< /c lc;gnpt( ) (dlbt(as M) > oy, \/loﬂ) dz < 8261%.

t

The first statement is then proved. For the second statement. Denote Proj,,(z) as any point inside
argmin, ¢ ||z — yl|. Then for any & € RP with dist(z, M) < cooy,+/logn,

2
D T —m
(onot) Epule) > | exp (~ 220y () avol(y)
YEB,, (Proj o (x))NM 0%
> exp(— (coot;v/logn + ap + (1 — mt))Q)atd
2Jt
>n~ .

Therefore, there exists a constant ¢ so that for any x € RP with dist(z, M) < cgoy,/logn,

oo < | L ) () 1 (el < s Togm) S o)
og pe(x p— -
Jexp ( %) -1 (||x —myyl| < 030t\/logn) - f(y) dvolaq(y) n
Viegn  +/logn
< -
~ Ot - Ot. '

i

We can then get the desired statement by combining all pieces.

D.3 Proof of Lemma C.2

The case for € > 1 is trivial. So we only consider the case of € < 1. Since M is S-smooth and has a reach that is
bounded away from zero, there exists a constant r so that for any x € M, there exists a local homeomorphism
1, defined on B, (04) so that B,(z) N M C 9, (B,(04)) C Bs,/7(x) N M and both ¢, and ¢, ' are f-smooth



maps. Therefore, we can write M as UM 1;(B,.(04)), where M is a positive constant and ; is 3-smooth map
with B-smooth inverse. Without loss of generality, we assume 1, ! to be 1-Lipschitz. Denote

AZ{Z:W

: j; is integer, z € B,.(04)}.

Then
| UM wi(a)| s e

~

For any y € M, there exists i € [M] and z € B,.(04) so that y = 1;(z). Moreover, there exists z* € A so that
Iz = z*|| <e. So,

ly =izl < llz = 27| < e,

which indicates that UM 1;(A) is an e-cover of M. Furthermore, for any xo € M and i € [M], if ||z — xo|| < 7
and ||y — xo|| < r, then

™ (z) = v~ W)l < llo = yll < 27

Therefore,
{a € ¢i(A) : |z =zl <20} S (r/e)?,

and thus
o e M : o — a0l < 2r}| S (r/e)?,
D.4 Proof of Lemma C.3
Consider z € RP so that dist(z, M) < cyo;v/Togn. Then there exists y € N« so that
|z —y|| < dist(z, M)+ €* < coorr/logn + €*.
Write Ne» = {Y7*,Ys,---,Y}.} and define
1 |z] <1

plx) = 0 |z| > 2
2— |z 1<|z|<2

i) = (= pi@) = =20 g e ()
1) =7 e o) PO

Then we have

7*
Vlog pi(z) = Z Vlogpi(x) - pj().
j=1
By Lemma C.6 and C.7, we construct the following neural networks:

1. For j € [J*], we approximate p;(z) by ¢z, (x) € ®(L,W, R, B) with L = O(logn), ||[W|l. = O(logn),
R = 0O(logn) and B = exp(©(logn)).

2. We approximate - by ¢rec(z) € ®(L, W, R, B) with L = O(log?n), ||[W|ls = ©(log®n), R = O(log*n) and
B = exp(©(log® n)).

3. We approximate z - y by ¢mui(x,y) € (L, W, R, B) with L = O(logn), |[W|lw = O(logn), R = O(logn)
and B = exp(O(logn)).
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We have for any z € RP with dist(xz, M) < cyor\/Iogn,

J* J*
Z V Ingt (‘75) : Pj (l‘) - ¢muti (Z ¢muti (’JJ t) ¢pJ ¢rec (Z ¢pJ ) )
j=1 -

j=1

IN

J* J*
Z Vliogpi(x) - pj(x) — Z ¢j (1) - ()

o0

+ Z¢ xt p] Z¢ xt p] ¢Tec (Z¢p] )
J* b J*

+ Z(b x, t p] ¢rec Z(bp] - Z ¢; (xvt) ' ¢ﬁj (l‘) : <ﬁrec Z¢ﬁ, (37)
j=1 j=1

o0

J* J*
+ Z (b; (.’L‘, t) : d)ﬁ] (l’) ' ¢7‘ec Z ¢ﬁ7 Z ¢mult ¢7‘ec Z ¢p7
j=1 j=1

J*

+ Z (bmult (brec Z ¢p9 - qsmuti Z ¢muti (33 t) d)pj erec Z ¢/}

Jj=1

oo

oo

1
55—"_77
n

where the last inequality uses the fact that there are only constant-order number of j € [J] so that
p;i(x) # 0. Finally, by concatenation and parallelization of neural networks, there exists @score(r) €
(L1,W1751,Bl7@(y)) with L1 = O(L + log’n), [Willee = O(J*(|Wle + logn) + log’n), S1 =
O(J*(S + logn) + log* n) and By = exp(6©(log® n)) so that

(bscore (LU) = max —C2 log 1 9 min log “ ) ¢mut7, Z (bmutz (LL' t) ¢p9 ¢Tec Z ¢p1

(oF
t =1

The result is then follows from the fact that |V 1og p:(2)|leo < c2¥ log" when dist(z, M) < cooy\/logn.

D.5 Proof of Lemma C.8

Let h(z,z) = (VG(2))T(z — G(2)). Then we can write the Jacobian of h with respect to z as
D
V.h(z,2) = =VG(2)"VG(2) + Y (xr — Gr(2))Hr(2),
k=1
where G(z) = (G1(2),G2(2),--- ,Gp(z)) and Hy(z) denotes the Hessian matrix of Gy (z). Then denote
g(z,2) = 2 — (V.h(z,2)) " h(z, 2).
Note that for any x with ||z — G(04)]| = ||l — y*|| < c1(op V n_ﬁ)\/log n, we have

1h(@, 00)]| = [(VG(04)" (z = G(0a)]| < ea(o0 vV n~777)1/log .

Then since G(z) is C*°-smooth and VG(04)TVG(04) = I, we have

l9(,00)]| = O(Ih(, 0)])) = O (o0 v n~ 770 logn)



and
[1h(z, g(x,0q))| = ||h (x,Od — (V:h(z,0q))” h(x, Od))H
h

(
= ||h(z,04) = V.h(2,04)(V.h(z,04)) " h(z,04)|| + O(|h(z, 04)||%)
=0 (((at\/ n- 2a1+d 10gn)2>

g(x) =gogo---og(x,g(x,0q)),
~—_———
Mog,(26)]

I5@)ll = © (o v n~751)/logn) ,

Similarly, define

we can obtain

and

Inte. gl =0 ( (o0 vn- =) iogr) ).

Then we approximate g(x) by the neural network. Notice that by Cayley-Hamilton theorem, for A € R4*4,
denote Sy as the trace of A* and By as the kth complete exponential Bell polynomial.! We can write

det( ) *Bd(Sl,—l'SQ, ,(—l)dil(n— 1)'Sd)

d—1 Ad—k-1
det Z 1) e Bi(S1, =118, -+, (= 1) (k= 1)15).
> !

Note that there exists a small enough constant r so that for any x with ||z — G(0g)|| < c1(oe V™ 7ata )vIogn,
when ||z]| < r,

—QId V h((E Z) —*Id

By Lemmas C.6 and C.7, there exists ¢,(z,2) € ®(L,W,R, B) with L = O(log”>n), |[W|w = ©(log®n),
R = O(log* n) and B = exp(O(log® n)) so that for any = with ||z — G(04)| < cl(JE\/n_ﬁ)\/logn and ||z|| < r,

__28
||¢g($,2’) - g(x,z)” S n~ 2a+d

Furthermore,
gogo--og(x,g(x,04)) — ¢g0pg0-0dy(z,P4(x,0a))
—_—
[log,(28)] [log,(28)]
<l|lgogo--og(x,g(x,04) —gogo--og(z,¢4(x,04))
—_—
[log,(26)] [log,(28)]
+||gogo-0g(z,¢4(x,0a)) —gogo---og4(z,¢4(x,0a))
[log5(268)] [log,(26)]
+ ..
+lgodgo-0¢y(x,04(x,04)) — dgodgo---0¢y(x,Py(x,04))
[logs(28)] [log,(28)]
< e
1Bk (5017 L. ,Ik) = Zﬁ;:l Bk,w (171, To, ... 7CCk7w+1) with Bkyw (1'17 Ta,. - {EkfwﬂH)
| - ; - ; Th—w Jk—w+1
=Y etiwnme e ()7 ()7 ()

J1+2j2+. A (k—w+1)jg 1=k
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So by concatenation and parallelization of neural networks, there exists ¢,(x) € ®(L,W,R,B) with L
O(log?n), |[Wllee = O(log®n), R = O(log*n) and B = exp(O(log?n)) so that for any z with ||z — y*||
c1(o v n_ﬁ)\/log n,

IN I

28

[6p(x) = g(a)]| Sn” =+
So we have ||(VG(¢,(2))T (2 — G(¢p(2))| = ||h(z, ¢p(2))]| S ((UL\/n_ﬁ)\/@) 25. The proof of the first

statement is completed. Then for the second statement, note that for any z with ||z — G(04)]| = ||z — y*|| <
c1 (o v n~ 77 )y /Togn, we have ||¢,(z)]| < (0y V n_ﬁ)\/@. Therefore,
[(VG*(p(2))" (x = G*(dp(2)) | < [[(VG(dp())" (2 = G(ep(2))
+[[(VG (9p(@)" (& — ( Op(x)) = (VG (9p(2))" (v — G(op())
(VG (¢p(2)) (2 = G(gp(x)) = (VG (8p(2))T (x — Gy ()|

< (o0 v o) Viogn)
Then define £(z, 2) = ||z — G*(2)||?, we have the Jacobian matrix of ¢ with respect to z is
Vi (2,2) = =2VG* (2)T (x — G*(2)),
and the Hessian matrix of ¢ with respect to z is

D
H.(z,2) = VG (2)TVG*(2) — 2 Z(wk — GrL(2))Hi(2),

k=1

where G*(2) = (Gi(2),G5(2), - ,G5,(z)) and H;(z) denotes the Hessian matrix of Gj(z). For any x with
le — G*(04)]| = ||z — v*|| < c1(oV nfﬁ)\/logn and dist(z, M) < cpory/log n, denote

Z = Q" (Proj ().
We have
1
IZIl < lly* = Projy ()| < |l —y*|| + dist(z, M) < (0¢ V n~2%7)/logn.
Since G* is B-smooth with 8 > 2 and VG*(04)T VG*(04) = 14, we have
IHo (@, 2) = Hal2,00) e S [12]] + (00 v~ 2=7)/logm,

and
M- (2,04) — Lallr S (00 V 0~ =72)\/log n.

Therefore, there exist positive constants 1, a so that when z € B, (%),
H.(x,2) = aly.

Then use Taylor’s theorem, for any v € R? with ||v]| = 1, z € B,,(2) and = with ||z — G*(04)| = ||z — v*|| <
c1(o Vv nfﬁ)\/logn and dist(z, M) < coor/logn,

Vi (2, 2) v =V (2,2)Tv+ (2 = 2)THI (z, t2 + (1 = )Z)v = (2 — 2)THI (z,t2 + (1 — t)Z)v,
where ¢ € (0,1) and depends on v, x, z. Therefore,

[Ve.(z,2)| > sup inf |(z—2)"Hi(2)v| > alz—Z|.
HveHRdl 2€B, (Z)

Then since ||V (z, ¢p(2))|| = (VG (¢p ()T (z — G*(¢p(2))| S ( oLV n~zari)y/log n)ﬁ, we can obtain

[9p(a) — Q" (Proju ()l = 6,(x) ~ =1 < ((o0 v 0~ 57)/logn)

Proof is completed.



D.6 Proof of Lemma B.4

We first show that p satisfies Poincaré inequality with Poincaré constant Cpy + 2. Indeed, consider & ~ pdata
and z ~ N(0,0%Ip), for any smooth function f : RP? — R, we have

Es [(/) - Bslf ()]

- ]Epdmn]EN(O o21p) |: f T+ Z PdmtaEN(O,O'QID)[f(x + z)])z}

= En(0,0215)Epaara { f@+2) = Epy,.[f(z+ Z)DQ} + En0,021p) [(Epdaca[f(x +2)] = Epoara En(0,0210) [f (@ + 2)1)2}
E

< EN(O o2lp) [CPI 'Pdata [HVf(IL‘ + Z)H H + II\q:./\/((),(rzlp) |:(]:Epdata [f(l‘ + Z)] - EpdataEN(O,UQID)[f(x + Z)])2:| )

where the last inequality uses the fact that pgasa satisfying Poincaré inequality with Poincaré constant Cpr.
Furthermore, by Gaussian Poincaré inequality, for any smooth function ¢ : R — R,

Ex.0710) [(9(2) ~ En0.0210)[9(2)]) "] < 0Bno.onr,) [IV9(2)I7 -

Choose g(z) = E,,,..[f(xz + 2)] in the above inequality, we can obtain

Enr0,021p) [(]Epdm [f(x+ 2)] = Epyra Enr0,0210) [f (= + 2)1)2}

0% En(0,021p) [[Epgua [V.f (@ + 2)]17]
< 0% Eppn BN (00210 [IIV (2 +2)[%] -

So finally, we can obtain that
By (/) — Bolf0)))?] < (Cor+0%) B3 [IVF@)I1].

Therefore, p satisfies Poincaré inequality with Poincaré constant Cp; = Cpp + 02, which can imply the following
convergence result (see for example, Chewi et al. (2021))

o) D) (30)

X2 (pe || ) < exp(—

where p; denotes the distribution of X in the Langevin diffusion model. Therefore, by choosing T' = © (C{DI [lognVv

log(x*(po || P))]), we have x2(pr || p) = O(%). Moreover, follow the analysis in Chen et al. (2022), we can invoke
Girsanovs Theorem to shows that

drv(pr,pr) < V2KL(pr | pr) < \//T/ S(x) —§(x)Hzpt($) dxdt
RD
T L 1o -5 2o g
4 z T
s(/R |5) - 5| ﬁ(x)dx) \//0 o l15) + Dt

drv(pr,p) < dvv(pr,pr) + drv(pr, D)

< ( [, |5 - §<:c>H4ﬁ<x> dx)l

Combined with (36), we have

I
/N
3
+
EQ
/~
—
|
@
M
=
|
EQ
\j/
%?
[}
S
e
\/
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D.7 Proof of Lemma B.5

Notice that
L By [y v en(- 1)

S(m) = 2
02 Epy, |exp(— 50|

Compared with the score function used in forward backward diffusion

2
Epdam [(mty - !E) exp <_%)}

Vlogpi(z) = ;
07 B [exp (~ 250 )

we can see S (z) can be recovered by choosing m; = 1 and o; = ¢ in Vlogp;(x). Therefore, follow the analysis
in the proof of Lemma B.3, by choosing L = O(log*n), |[W|le = CI(CAY n_ﬁ)_ (10g67% n vV log%+3 n)),
R=0((ocV n_ﬁ)_d(log&% nv log%+5 n)), B = exp(©(log* n)), and V = ©( log") we have

1
log n o >n" 2atd

1
o S n~ 2a+d,

Se@(L}élVfR,B,V)Eﬁ [HS(J:) ( )” } { n 2“§rd(logn)5+2 n o Tata (logn)>t?!
o4 o2

Then notice that by the equivalence of the explicit score matching and denoising score matching (see for exam-
ple, Vincent (2011)), for any S € ®(L, W, R, B, V),

2

B5 [15(2) = 52) 2] = Epau.,

+C,

X —
IEzw./\f(X,o'QID) U’S(Z) - o2

where C' = E5[||§(x)|\2] —Epiia {IEZNN(XJQID) [H X5z HQH is independent of s. Furthermore,

X —z|? X —z logn
E.nN(X,021p) [HS(Z) - S E.n(x,0%1p) [HS( )| } +E.on(X,021p) U‘ ] < o
Then follow the proof of Theorem 4.3 of Oko et al. (2023), we can obtain
Epaunon By | I18(2) = S(@)|1?]
. logn LRlog(nL||W|xB)
S o f B |IS(2) - S@)|?] +
€%(L,W,R,B,V) n
n~lo—d-2 <log177% nV longr14 n) o >n" T

< 28
~ o « _d d 1
u log?+2 n + u (1oga+1 nV1og!T~% 1 v logltts n) o < n- T,

Then notice that

~ Epauns | (y — ) exp(—L221%) v
15(2)]] = (s o)l PYETES:

—_zll2 - 2
07 Epyye, [exp(~ 150 4

Similar as Lemma C.1, we can obtain that for any S € ®(L, W, R, B,V),
~ 4
5 |50 - 5|
- 4 1
<Ey |:HS(.%‘) - S(:L‘)H -1 (dist(x,./\/l) < coax/logn)} dz + O(ﬁ)




And for any x € RP satisfying dist(z, M) < coov/Togn, we have ||S(z)[o < 027”?”. Then combined with
S e ®(L,W,R,B,V) with V = O log") we can obtain

E,, . o {(Eﬁ [||§(z) - §(rf:)ll4})1

< By [ (B 150 - S@1]) ' 22 4 0 L
< (Byon [E5 [18@) - S@)1?]]) lj‘f +0(22).

The desired result then follows by plugging in the bound for E, e~ [Eﬁ {Hg(m) — §(a:)\|2” given in (37).

D.8 Analysis of KDE as initial distribution in Langevin diffusion

Lemma D.1. Consider o satisfying n=% < o < n=% for any positive constants (61,03). Let the initial distribu-

tion be the kernel density estimator po(y) = £ 31" | exp(—%) - (2702)=% . It holds with probability at least
1—21 that
n

1 w4 1 _
x*(po | Paata,s) S —(logn) ¥ o d+ﬁ(logn)d“a 2d,

Proof. For any r,, > 0, we can write

2
Po
X200 | Pastane) = Enguens [( ) 1) ]
Pdata,o

— /RD (pO(y)y) - 1)2 -1 (dist(y, M) < y) - Pata,o (y) dy

pdata,o’(

(po(y) — Pdata,o (¥))?
+ /R )

pdata,o(y)

1 (dlst(y,./\/l) > Tn) dy

2 2
_ z; o
T s AR |
: 1(dISt(y’M) STTL) pdata7a(y) dy
RD

E [exp(—%)]

(4)
n zi—yl|? —y|? 2
oD (n_l > i1 exp(—%) —E {eXP(_%)D ,
+/ (2mo®)™ % - e -1 (dist(y, M) > ry,) dy.
RP E [exp(—Tj)]
(B)

We first bound term (B). For any y € R”, denote Proj,(y) as an arbitrary point inside argmin, ¢ [ly" — -
Then we have

X —yl? X —yl?
E [exp<> > exp(— X0 £(x) dvol e (X)
20? lz—Proj i (1) | <o 20?

> o%exp (_ (dist(y, M) + g)2>

202

. ] 2
> ol exp (3 dist(y, M) > ’

402

: [exp<—X‘“>} < oo (7Y

202 202

2 : 2
1E:exp y|| —— ) <exp (_dlst(2y012/\/l) )
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Without loss of generality, we assume M C B;(0p), then we have

o 2
(B) 5/ o~ (P+d) L exp (-W) -1 (dist(y, M) > r,,) dy
]RD

2 -1 2
S/ ex (—T—”Q)-a_(Der) dyn-i-/ exp (_(||y 5 ) >~a_(D+d) dyn,
lyll<2 4o llyll>2 do

where we use dist(y, M) > ||y|| — 1 in the last inequality. Therefore, by choosing r,, = ©(c+/logn), we have

1
B) < —.
(B)s5 :
Then for the term (A), let N, 577 be a o/y/logn cover of M. By Lemma C.2, we have J = [N, ozm| <
(¥2£)d. Denote N, o/Togm = 1Y1, Y2, , Yy} and
Ay =y €RP ¢ (k= 1)—— < dist(y, M) < k———, [[Proju(y) = Yj|| < ———
7 Viegn — ~ Vlogn = logn

ke{l1,2,--- K}, je€l1,2,---,J.

Notice that since M has a reach 7o that is lower bounded away from zero, Proj,,(y) is uniquely defined when
dist(y, M) < 74 > 0. Then set K = O(logn), we have

{y e RP : dist(y, M) <7, } Cc UK, U}']:1 Ap ;.

Consider an arbitrary k € [K] and j € [J], we aim to bound

sup Zex y|| ——)-E exp(—M)H.

2
yEAL j o 20

Denote y* =Yj and r = (k—1)
we have

N For any y € Ay j and € M so that ||z — y* ||>27"+\/120"W+0 dlog L,

* * . . 1
lz =yl = lle =yl = lly" = Projp ()l = lly = Projp(y)ll = £+ oy /dlog —.

Therefore, for any y,y" € Ay ;, we have

du(y.y') = ii(exp< o~ y“2> ( s = 1" ))

=1

1 ¢ |xz y”2 |:U1 y'|12 ? 1
<. | = E -1 i — vy > 2 dl
I\ <€Xp< 202 s =yl LY oan V1o + ? =P

1< |-Tz yH2 ‘xl y'lI? 2 20 1

— -1 =yl <2 dlog —
+ ”;:1: (ex ( Togz lo; —y*|| < 2r + TR T

r? 1
SeXp(_ij)' ol + = Zl(”xz y||<2r+F+a dloga>.

Furthermore, since for any y,y’ € Ay ;,

y—y
dn(yay/) S %7
denote w, = £ 3" 1(||lz; —y*|| < 2r + \/120‘7? +04/dlog L), for any € < exp(—£z) - /0% + wy, the e-covering

number of Ay, ; under pseudo-metric d,, is upper bounded by exp(O(log 2)). Therefore, by standard symmetriza-
tion and Dudleys entropy integral bound (see for example, Theorem 5.22 of Wainwright (2019)), let {e;}?_; be



i.i.d . Rademacher random variables, we have

1o (157) (20|

i=1

Iy exp (-1 y')H

=1

1 exp(fzi—i)-\/adern
E nw | —= e " a
Pdata® \/E/O Og €
2

1 T
< —\/lognexp(—i?)Epdata®n {\/ ot + wn}

Epapea®n | SUD
yEAL ;

<E

sup
yEAL ;

A

~Y ﬁ
2
< %\/lognexp(f;?)(ax/logn)%.

Moreover, for any y € Ay ; and x € M,

= = y]? r?
exp <%€2 < exp(f@),

X —yl?
<E exp Xyl -1 | X — Proj ()||<2r+fa,/dlog + ——
— “Pdata 0_2 M logn

X —yl? :
exp (—02 1 [ [|X = Projy(y)|| > 2r + V20 dlog + \/@
2
T
< (o4/logn)? exp(—;).
So by Talagrand concentration inequality (see, for example, Theorem 3.27 of Wainwright (2019)), it holds with
probability at least 1 — n~(919+2) that

—yl? 1X = y)?
26"? T ) E[Q"“‘zgz)

and

+ Epdata

sup
yEA

2

2 1
< %\/lognexp(f;?)(ox/logn)% + %exp(f%‘z).

Moreover, notice that for any y € Ay ;,

X — P I — P . :
_ > _ ) _ <
By o0 (1550 2 B oo (<520 1 (1 = rofl < 2=

(Z+ 20 )2
2 exp (— Vlog 1 -o%(logn)~ %,

Q.

202
we have
% Z?:l eXP(*%) {exp( I ):| ‘ 1 d 3d | 1 1 d
sup e < —=(0)"2(logn) T + (o)~ (logn) 2.
yEAR ; E,,.. {exp( I %gn } N n

Then use the fact that K.J < (logn)2+tie= < (logn)?t1n% 9, we have it holds with probability at least 1 — i

that

+1

N|=

() togm) ¥+ + (o) ~(logn)?

i 2 X — 2
L3 exp(- 2l — B [exp(— 12240 |
sup <

{yeRP :dist(y,M)<r,} Epdata [exp (7 HAXQZ_’;/”Q ):|

Si-
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Therefore, we have
1

1
(o) "(logn) T + —5(0) > (logn) "2,

(4) 5 —

We can then obtain the desired result by combining all pieces. O
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