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Abstract

In this paper, we examine the computational complexity of sampling from a Bayesian
posterior (or pseudo-posterior) using the Metropolis-adjusted Langevin algorithm (MALA).
MALA first employs a discrete-time Langevin SDE to propose a new state, and then
adjusts the proposed state using Metropolis-Hastings rejection. Most existing theoretical
analyses of MALA rely on the smoothness and strong log-concavity properties of the target
distribution, which are often lacking in practical Bayesian problems. Our analysis hinges
on statistical large sample theory, which constrains the deviation of the Bayesian posterior
from being smooth and log-concave in a very specific way. In particular, we introduce a new
technique for bounding the mixing time of a Markov chain with a continuous state space
via the s-conductance profile, offering improvements over existing techniques in several
aspects. By employing this new technique, we establish the optimal parameter dimension
dependence of d'/3 and condition number dependence of x in the non-asymptotic mixing
time upper bound for MALA after the burn-in period, under a standard Bayesian setting
where the target posterior distribution is close to a d-dimensional Gaussian distribution
with a covariance matrix having a condition number k. We also prove a matching mixing
time lower bound for sampling from a multivariate Gaussian via MALA to complement the
upper bound.

Keywords: Bayesian inference, Gibbs posterior, Large sample theory, Log-isoperimetric
inequality, Metropolis-adjusted Langevin algorithms, Mixing time.

1. Introduction

Bayesian inference gains significant popularity during the last two decades due to the ad-
vance in modern computing power. As a method of statistical analysis based on probabilis-
tic modelling, Bayesian inference allows natural uncertainty quantification on the unknown
parameters via a posterior distribution. In the classical Bayesian framework, the data
X — {X1,...,X,} is assumed to consist of i.i.d. samples generated from a probability
distribution p(X |6) depending on an unknown parameter @ in parameter space © C R
Domain knowledge and prior beliefs can be characterized by a probability distribution 7 (6)
over O called prior (distribution), which is then updated into a posterior (distribution)
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p(6| X™) by multiplying with the likelihood function

n

Ln(6; XM) : =[] p(Xi16)

=1

evaluated on the observed data X using the Bayes theorem. The classical Bayesian
framework relies on the likelihood formulation, which hinders its use in problems where
the data generating model is hard to fully specify or is not our primary interest. The
pseudo-posterior (Alquier et al., 2016; Ghosh et al., 2020) idea provides a more general
probabilistic inference framework to alleviate this restriction by replacing the negative log-
likelihood function in the Bayesian posterior with a criterion function. For example, when
applied to risk minimization problems, the so-called Gibbs posteriors (Bhattacharya and
Martin, 2020; Syring and Martin, 2020) use the (scaled) empirical risk function as the
criterion function, thus avoiding imposing restrictive assumptions on the statistical model
through a fully specified likelihood function.

Despite the conceptual appeal of Bayesian inference, its practical implementation is a
notoriously difficult computational problem. For example, the posterior p(6 | X (")) involves
a normalisation constant that can be expressed as a multidimensional integral

/ L,(0; X™)7(6) d6.
©

This integral is usually analytically intractable and hard to numerically approximate, espe-
cially when the parameter dimension d is high. Different from those numerical methods for
directly computing the normalisation constant, the Markov chain Monte Carlo (MCMC)
algorithm (Hastings, 1970; Geman and Geman, 1984; Robert et al., 2004) constructs a
Markov chain, whose simulation only requires evaluations of the likelihood ratio under a
pair of parameters, such that its stationary distribution matches the target posterior dis-
tribution. Thus, MCMC provides an appealing alternative for Bayesian computation by
turning the integration problem into a sampling problem that does not require computing
the normalisation constant. Despite its popularity, the theoretical analysis of the compu-
tational efficiency of MCMC algorithms is mostly carried out for smooth and log-concave
target distributions, and is comparatively rare in the Bayesian literature where a (pseudo-
)posterior can be non-smooth and non-log-concave. In addition, precise characterizations
of the computational complexity (or mixing time) and its dependence on the parameter di-
mension d for commonly used MCMC algorithms are important for guiding their practical
designs and use.

A widely used MCMC algorithm for sampling from Bayesian posteriors is the Gibbs
sampler, which generates samples from a multivariate distribution by iteratively sampling
each variable from its conditional distribution, given all other variables. The Gibbs sam-
pler is particularly efficient for Bayesian models with closed-form conditional distributions
under conjugate priors. A recent theoretical study by Ascolani and Zanella (2023) pro-
vides a dimension-free mixing time bound for the Gibbs sampler when applied to certain
high-dimensional Bayesian hierarchical models. However, it is important to note that each
iteration of their algorithm involves the sequential sampling of each dimension of the param-
eter from its corresponding full conditional distribution. This means that the total number
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of sampling steps required for the Gibbs sampler to converge is at least linear in the pa-
rameter dimension, which is larger than our sub-linear d*/3 scaling of the needed sampling
steps for MALA. On the other hand, the per-step cost of MALA can be linear in d because
of gradient computation, while that of Gibbs sampling can be much lower, especially un-
der weak dependence (although in the worst case, computing each conditional distribution
may also require O(d) complexity). On a separate note, we would like to mention that
although MALA has a per-iteration cost linear in d to compute the gradient, the compu-
tation across different dimensions can be parallelized. In contrast, Gibbs sampling must
sequentially scan over all its components and cannot be made parallel in order to maintain
the detailed balance property. Additionally, the high efficiency of the Gibbs sampler often
relies on the use of conjugate priors that facilitate closed-form conditional distributions.
However, for complex Bayesian models, such a conjugate prior may not exist, as is the
case in Bayesian quantile regression, discussed in Yu and Moyeed (2001), or linear regres-
sion with heavy-tailed noise (like Student’s t-distributions). Moreover, there are situations
where people tend to use specific non-conjugate priors for particular reasons. For example,
sparsity-induced priors such as the spike and slab priors (with heavy-tailed slabs) are widely
used in regression analysis for facilitating variable selection. In these complicated scenarios,
one might have to resort to using MALA or, more broadly, the Metropolis-Hastings (MH)
algorithm, to draw samples from the Bayesian posterior.

On the other hand, the Metropolis-Hastings (MH) algorithm provides a more flexible
alternative. An MH algorithm produces samples by proposing and then accepting or re-
jecting these proposals based on a specified acceptance criterion. A key advantage of the
MH algorithm is its ability to handle Bayesian (pseudo-)posterior distributions without
requiring explicit knowledge of the normalization constant or the full conditional distribu-
tions. Omne of the most popular MH algorithms is the Metropolis random walk (MRW), a
zeroth-order method that queries the value of the target density ratio under two points per
iteration. Dwivedi et al. (2019) shows that for a log-concave and smooth target density,
the e-mixing time in total variation distance (the number of iterations required to converge
to an e-neighborhood of stationary distribution in the total variation distance) for MRW is
at most O(dlog(1/¢)). On the other hand, the O(d) scaling limit of Gelman et al. (1997)
suggests that their linear dependence on dimension d is optimal. For a class of Bayesian
pseudo-posteriors that can be non-smooth and non-log-concave, it has been shown in Belloni
and Chernozhukov (2009) that as the sample size n grows to infinity while the parameter
dimension d does not grow too quickly relative to n so that the pseudo-posterior satisfies
a Bernstein-von Mises (asymptotic normality) result, then MRW for sampling from the
target pseudo-posterior constrained on an approximate compact set with a warm start has
an asymptotic total variation e-mixing time upper bound as O, (d2 log(1/ 5))

Another prominent class of MH algorithms is the Metropolis-adjusted Langevin algo-
rithm (MALA), which utilizes additional gradient information about the target density. Al-
though this approach requires computing the gradient and can be costlier than zeroth-order
methods that only use function evaluations, the development of automatic differentiation
tools (Paszke et al., 2017; Margossian, 2019) has simplified this task for many explicit and
smooth densities. These tools make the computational demands for gradient computation
comparable to those for evaluating the density itself. Furthermore, it has been demon-
strated that MALA tends to have a lower mixing time in comparison to the MRW. For
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example, Chewi et al. (2021) show that if the negative log-density (will be referred to as
potential) of the target distribution is twice continuously differentiable and strongly convex,
then the e-mixing time in x? divergence for MALA with a warm start scales as ©(d'/?) mod-
ulo polylogarithmic factors in €. Additionally, Roberts and Rosenthal (1998) and Chewi
et al. (2021) show that the optimal dimension dependence for MALA is d'/3 for some product
measures satisfying stringent conditions like the standard Gaussian. However, for Bayesian
(pseudo-)posteriors, it is common that the smoothness and strong convexity properties of
the log-density assumed in literature are not satisfied. For instance, consider Bayesian
quantile regression with a quantile level 7. Given a dataset X(™ = {X; = ()~(Z,YZ) o
consisting of covariates and response variables, the posterior distribution then takes the
form of 7, (0] X)) o exp (=>m, (Y — XP0)(r — 1(Y; < X[9))) m(6), where 1(-) denotes
the indicator function. An important feature of this example is that the resulting Bayesian
posterior is neither differentiable owing to the discontinuity introduced by the indicator
function, nor strongly log-concave. For such non-differentiable densities, we slightly extend
the MALA by using any subgradient to replace the gradient in its algorithm formulation.
Theoretically, it is natural to investigate:

What is the optimal dimension (and condition number) dependence when using
MALA to sample from a possibly non-smooth and non-log-concave (pseudo-
)posterior density, in light of the asymptotic Gaussian nature of the posterior
as predicted by statistical large sample theory?

Moreover, it would be insightful to determine to what extent we can diverge from a Gaus-
sian distribution while preserving the dimension dependence as sampling from a Gaussian
distribution, and how various factors, such as the dimensionality, sample size and density
smoothness, affect the deviance of the posterior from the Gaussian distribution.

Our contributions. In this work, we show an upper bound on the e-mixing time of
MALA for sampling from a class of possibly non-smooth and non-log-concave distributions
with non-product forms (c.f. Condition A for a precise definition) with an My-warm start
(defined in Section 2.3) as O(max {d1/3 log(e~*log My), log My} ), which matches (up to
logarithmic terms in (My,)) the lower bound result proved in Chewi et al. (2021) that
the mixing time of MALA for the standard Gaussian is at least O(d'/3). Specially, our
condition requires the target distribution (after proper rescaling by the sample size n) to be
close to a multivariate Gaussian subject to small perturbations. We verify that a wide class
of Gibbs posteriors (Bhattacharya and Martin, 2020; Syring and Martin, 2020), including
conventional Bayesian posteriors defined through likelihood functions, meets our condition
under a minimal set of assumptions. In particular, our theory provides an explicit upper
bound condition on the growth of parameter dimension d relative to sample size n, stated
in a non-asymptotic manner, that is, d < c%, where k1 depends on the regularity of the
density function (c.f. Theorem 5). Specifically, for less smooth density functions, a smaller
dimension d is necessary to maintain the d'/? scaling of the mixing time guarantee, which
is also supported by our numerical results in Section 7.

In addition, our result illustrates that the mixing time of MALA exhibits a linear depen-
dence on the condition number k of the covariance matrix (which may have a polynomial
dependence on the dimension in some ill-conditioned cases) of the approximating multi-
variate Gaussian. Our bound matches the mixing time scaling of Gaussian targets with
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condition number k, and is therefore optimal. For the sake of completeness, we derive a
matching lower bound in Appendix A.3. In our lower bound analysis, we extend the proof
of Theorem 1 in Chewi et al. (2021), which primarily focuses on a standard Gaussian target
distribution. In addition, we also carefully keep track of the dependence on the condi-
tion number in our derivation, which allows us to establish a lower bound that explicitly
demonstrates a linear dependence on the condition number and also matches with our upper
bound.

It is worthwhile mentioning that our Condition A does not require the distance between
the target posterior and the multivariate Gaussian distribution to vanish as n tends to
infinity; while in the context of Bayesian posteriors, these distances indeed decay to zero
under minimal assumptions on the statistical model. Therefore, our mixing time result is
more generally applicable to problems beyond Bayesian posterior sampling, for example,
to optimization of approximately convex functions via simulated annealing (Belloni et al.,
2015), where the target distribution can deviate from being smooth and strongly log-concave
by a finite amount. In such settings, the computational complexity of sampling algorithms
scales as O(d'/?) with the variable dimension d under reasonably good initialization while
that of a wide class of gradient-based optimization algorithms may scale exponentially (Ma
et al., 2019).

Our result on the O(d'/?) dimension dependence for the mixing time of MALA after the
burn-in period for the perturbed Gaussian class strengthens our understanding of sampling
from non-smooth and non-log-concave distributions. It also partly fills the gap between
the optimal d*/3 mixing time for a class of sufficiently regular product distributions derived
from the scaling limit approach in Roberts and Rosenthal (1998) and the d'/? lower bound
on the class of all log-smooth and strongly log-concave distributions obtained in Chewi
et al. (2021), by identifying a much larger class of distributions of practical interest that
attain the optimal d*/3 dimension dependence. Moreover, we introduce a somewhat more
general average conductance argument based on the s-conductance profile in Section 3 to
improve the warming parameter dependence without deteriorating the dimension depen-
dence. More specifically, our mixing time upper bound improves upon existing results (e.g.
Chewi et al., 2021) in the dependence on the warming parameter My from logarithmic to
doubly logarithmic (the loglog(Mj) term in Theorem 3) when log My < d%, by adapting
the s-conductance profile and the log-isoperimetric inequality device (Chen et al., 2020),
or more generally, the log-Sobolev inequality device (Lovasz and Kannan, 1999; Kannan
et al., 2006), to our target distribution class. Our constraint of ds on log My can be overly
strong for general target distributions in practice. For instance, in the case of distribu-
tions possessing product forms, such as a pair of isotropic Gaussians with varying means,
log My tends to increase linearly with the dimension d. However, for Bayesian posterior
with smooth density, we may leverage its asymptotic distribution to construct more effec-
tive warm starts (c.f. Lemma 4 and Corollary 7). In addition, we study a variant of MALA
where the (sub-)gradient vector in the Langevin SDE is preconditioned by a matrix for
capturing the local geometry, for example, the Fisher information matrix in the context
of Bayesian posterior sampling, and we illustrate in our Corollaries 7 and 8 that MALA
with suitable preconditioning may improve the convergence of the sampling algorithm even
though the target density is non-differentiable.
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Our analysis is motivated by the statistical large sample theory suggesting the Bayesian
posterior to be close to a multivariate Gaussian. We develop mixing time bounds of MALA
for sampling from general Gibbs posteriors (possibly with increasing parameter dimension
and non-smooth criterion function) by establishing non-asymptotic Bernstein-von Mises re-
sults, applying techniques from empirical process theory, including chaining, peeling, and
localization. Due to the delicate analysis in our mixing time upper bound proof that uti-
lizes the explicit form of Gaussian distributions for bounding the acceptance probability in
each step of MALA, we obtain a better dimension dependence of d'/3 than the d/2 depen-
dence derived for general smooth and log-concave densities. In addition, by utilizing our
s-conductance profile technique, we can obtain a mixing time upper bound for sampling
from the original Bayesian posterior instead of a truncated version considered in Belloni
and Chernozhukov (2009).

Organization. The rest of the paper is organized as follows. In Section 2, we describe the
background and formally formulate the theoretical problem of analyzing the computational
complexity of MALA for Bayesian posterior sampling that is addressed in this work. In
Section 3, we briefly review some common concepts and existing techniques for analyzing
the computational complexity (in terms of mixing time) of a Markov chain, and introduce
our improved technique based on s-conductance profile. In Section 4, we apply the generic
technique developed in Section 3 to analyze MALA for Bayesian posterior sampling. In
Section 5, we specialize the general mixing bound of MALA to the class of Gibbs posteriors,
and apply it to both Gibbs posteriors with smooth and non-smooth loss functions. Section 6
sketches the main ideas in proving the MALA mixing time bound and discuss some main
differences with existing proofs. Some numerical studies are provided in Section 7, where we
empirically compare the convergence of MALA and MRW. All proofs and technical details
are deferred to the appendices in the supplementary material.

Notation. For two real numbers, we use aAb and aVb to denote the maximum and minimum
between a and b. For two distributions p and ¢, we use ||p — q|rv = % [ Ip(z) — gq(z)| dx to
denote their the total variation distance and x2(p, q) to denote their x? divergence. We use
|| - | to denote the usual vector ¢, norm, and suppress the subscript when p = 2. We use
0,4 to denote the d-dimensional all zero vector, and B, (x) to denote the closed ball centered
at = with radius » (under the 5 distance) in the Euclidean space; in particular, we use B¢
to denote B,(04) when no ambiguity may arise. We use S = {z € R¥*! : |z|| = 1} to
denote the d-dimensional sphere. We use Ny(p, X)) to denote the d-dimensional multivariate
Gaussian distribution with mean vector u € R? and covariance matrix ¥ € R%? and d
suppress the subscript when d = 1. We use P(K) to denote the set of probability measures
on a set K. For a function f : R? — R, we use V f(x) to denote the d-dimensional gradient
vector of f at z and Hess(f(z)) to denote the Hessian matrix of f at z. For a matrix J, we
use [|[J]]l,, and [| /]| to denote its operator norm and Frobenius norm respectively, and use
Amax(J) and Apin(J) to denote the maximal and minimal eigenvalues of J. Throughout,
C, ¢, Cy, cg, C1, c1, .. .are generically used to denote positive constants independent of n, d
whose values might change from one line to another.
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2. Background and Problem Setup

We first review the Bayesian (pseudo-)posterior framework and the Metropolis-adjusted
Langevin algorithm (MALA). After that, we discuss an extension of MALA to handle the
case where the target density is non-smooth by using the subgradient to replace the gradient
and formulate the theoretical problem to be addressed in this work.

2.1 Bayesian pseudo-posterior

A standard Bayesian model consists of a prior distribution (density) m(#) over parameter
space © C R? as the marginal distribution of the parameter § and a sampling distribution
(density) p(X | ) as the conditional distribution of the observation random variable X given
0. After obtaining a collection of n observations X (™ = {X1, X9, -+, X,,} modelled as n
independent copies of X given 6, we update our beliefs about 6 from the prior by calculating
the posterior distribution (density)

p(9 ‘ X(n)) — exp { logw(@) + IOg £n(07 X(n))} i c e} (1)

Joexp { logm(6) + log L, (6; X))} df’ ’
where recall that £,(0; X™) = [[, p(X;|f) is the likelihood function. Despite the
Bayesian formulation, in our theoretical analysis, we will adopt the frequentist perspec-
tive by assuming the data X to be ii.d. samples from an unknown data generating
distribution P* : = p(X | 0*), where 0* will be referred to as the true parameter, or simply
truth, throughout the rest of the paper.

In many real situations, practitioners may not be interested in learning the entire data
generating distribution P*, but want to draw inference on some characteristic as a functional
0 = 6(P*) of P*, which alone does not fully specify P*. An illustrative example is the
quantile regression where the goal is to learn the conditional quantile of the response given
the covariates; however, the conventional Bayesian framework requires a full specification
of the condition distribution by imposing extra restrictive assumptions on the model, which
may lead to model misspecification and sacrifice estimation robustness. A natural idea
to alleviate the limitation of requiring a well-specified likelihood function is to replace the
log-likelihood function log £,,(A; X™) in the usual Bayesian posterior (1) by a criterion
function C,(#; X (™). The resulting distribution,

0| xm) = P {log 7(60) + C(6; X))}
Tn ~ Jyexp {logm(0) + Cp(8; X(M)} dO’

0 €0, (2)

is called the Bayesian pseudo-posterior with criterion function C, : ©® x X" — R, and we
may use the shorthand m,(-) to denote the pseudo-posterior 7, (-|X (™) when no ambiguity
may arise. A popular choice of a criterion function is C,(6; X™) = —anR,(#), where

Rn(0) :=n"1 Zn:E(Xi, )
=1

is the empirical risk function induced from a loss function £: X x © — R, and «a € (0, 00)
is the learning rate parameter. The corresponding Bayesian pseudo-posterior is called the
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Gibbs posterior associated with loss function ¢ in the literature (e.g. Bhattacharya and
Martin, 2020; Syring and Martin, 2020). In particular, the usual Bayesian posterior (1) is
a special case when the loss function is /(X,6) = —logp(X |0) and o = 1. For Bayesian
quantile regression, we may take the check loss function ¢(z,q) = (¢ — z) - (1 — 1(¢ < z))
for a given quantile level 7 € (0, 1), since the 7-th quantile of any one-dimensional random
variable X corresponds to the population risk function minimizer arg min cg E[£(X, q)].

A direct computation of either the posterior p(f | X (™) or the pseudo-posterior (2) in-
volves the normalisation constant (the denominator) as a d-dimensional integral, which
is often analytically intractable unless the prior distributions form a conjugate family to
the likelihood (criterion) function. In practice, Markov chain Monte Carlo (MCMC) algo-
rithm (Hastings, 1970; Geman and Geman, 1984; Robert et al., 2004) is instead employed as
an automatic machinery for sampling from the (pseudo-)posterior, whose implementation is
free of the unknown normalisation constant. The aim of this paper is to provide a rigorous
theoretical analysis on the computational complexity of a popular and widely used class
of MCMC algorithms described below. In particular, we are interested in characterizing
a sharp dependence of their mixing times on the parameter dimension in the context of
Bayesian posterior sampling.

2.2 Metropolis-adjusted Langevin algorithm

Consider a generic (possibly unnormalized) density function f(6) = exp{—U ()} defined
on a set © C R? where U : © — R is called the potential (function) associated with
f. For example, in the Bayesian setting with target posterior (2), we can take U(f) =
—log m(8) — Cn(6; X(™). Suppose our goal is to sample from the probability distribution p
induced by f, where u(A) = % for any measurable set A C ©. Metropolis-adjusted
Langevin algorithm (MALA), as an instance of MCMC with a special design of the proposal
distribution, aims at producing a sequence of random points {fx}x>0 in © such that the
distribution of 6, approaches u as k tends to infinity, so that for sufficiently large ko,
the ko-th iterate 0, can be viewed as a random variable approximately sampled from the
target distribution p. In practice, every ky iterates from the chain can be collected (called
thinning), which together form approximately independent draws from p.

Specifically, given step size h > 0 and initial distribution pg on ©, MALA produces
{0k } >0 sequentially as follows: for k =0,1,2,.. .,

1. (Initialization) If £ = 0, sample 6y from po;

2. (Proposal) If k£ > 1, given previous state fx_;, generate a candidate point y; from
proposal distribution Ny (Gk_l —hVU (0k-1), 2h Id) whose density function is denoted
as Q(0k_1, -), or equivalently,

Yp = Op_1 — %VU(Qk_l) + 2h 2k,  with zi ~ Ng(0, Iy).

3. (Metropolis-Hasting rejection/correction) Set acceptance probability A(0;_1, yx) :
= 1A a(fk_1, yx) with acceptance ratio statistic

fyk) - Qyk, Ok—1)
f(O0r-1) - Q(Ok—1, i)

a(p—1,yx) 1=

8
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Flip a coin and accept yj with probability A(f;_1, yx) and set 0y = yx; otherwise, set
O = 0r_1.

It is straightforward to verify that MALA described above produces a Markov chain whose
transition kernel is

76,49 = (1= [ 469 QE. 0dy) -5o(c) + A0 QO ). (3)

rejection probability

where Jg denotes the point mass measure at 6. In practice, the target density f can be non-
smooth at certain point 6 € ©, and we address this issue by replacing the gradient VU (0)
with any of its subgradient VU (0! in MALA. That means, the proposal distribution @ is
being chosen as Ny(6x—1—h VU (0x_1), 2h) and other aspects of the MALA algorithm remain
unchanged. Furthermore, MALA can be generalized by introducing a symmetric positive-
definite preconditioning matrix I € R4 g5 that the proposal @ in MALA is modified
as Ng(Ox_1 — hI VU (0_1),2h I). It has been shown that (Girolami and Calderhead, 2011;
Vacar et al., 2011) for a suitable preconditioning matrix, the resulting preconditioned MALA
can help to alleviate the issue caused by the anisotropicity of the target measure. We
illustrate both empirically (c.f. Appendix A.1) and theoretically (c.f. Corollary 7) that a
suitable preconditioning matrix may improve the convergence of the sampling algorithm
for Bayesian posteriors. As a common practice (Chen et al., 2020; Lovész and Simonovits,
1993) to simplify the analysis of MALA, in this paper, we consider the (-lazy version of
MALA, where at each iteration, the chain is forced to remain unchanged with probability
(. The corresponding Markov transition kernel of the (-lazy version of MALA is given by

TS0, dy) = (1— (1- ) /@ A(6,9) Q(6.y) dy) - So(dy) + (1— ) - A6, 1)Q(6.y)dy. (4)

A closely related algorithm is the unadjusted Langevin algorithm (ULA, Durmus and
Moulines, 2017; Cheng et al., 2018; Roberts and Tweedie, 1996; Dalalyan, 2017), which cor-
responds to discretization of the following Langevin stochastic differential equation (SDE),

dX; = —VU(X;)dt +V2dB;, t>0,

and does not have the Metropolis-Hasting correction step 3. As a consequence, the sta-
tionary distribution of ULA is of order O(v/dh) away from p under several commonly used
metrics (Durmus et al., 2019). Due to this error, even in the strongly log-concave scenario,
unlike MALA which requires at most poly-log(1/¢) iterations with a constant step size h to
get one sample distributed close from p with accuracy €, ULA requires poly-(1/¢) iterations
and an e-dependent choice of h (Durmus et al., 2019).

Another closely related algorithm is the classical Metropolis random walk (MRW), which
instead uses Ny (Gk_l, 2h Id) without the gradient term in the proposal distribution ). As
we will see, by using the extra gradient information, the dimension dependence of the mixing
time can be improved from O(d) (Gelman et al., 1997; Dwivedi et al., 2019) to O(d/3) for
sampling from Bayesian posteriors.

1. A subgradient of a function f : R* — R at point € R? is a vector g € R? such that f(y) > f(z) +
(g y—2)+O0(ly—=zl) asy = =
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2.3 Problem setup

The goal of this paper is to characterize the mixing time of MALA for sampling from the
Bayesian pseudo-posterior ,, defined in (2). Assume we have access to a warm start defined
as follows.

Definition 1 We say pg is an My-warm start with respect to the stationary distribution pu,
if o(E) < Mo p(E) holds for all Borel set E C R, and we call My the warming parameter.

We state our problem as characterizing the e-mizing time in x> divergence of the Markov
chain produced by (preconditioned) MALA starting from an arbitrary Mo-warm start g
for obtaining draws from m,(0), which is mathematically defined as the maximum of the
minimal number of steps required for the chain to be within £2-x? divergence from its
stationary distribution, over My-warm starts, or

Tmix (&, Mo) = max {Tmix (&, po) : o is an My-warm start with respect to m,}

with Tmix(e, o) = inf{k € N: /x?(uw, mp) < e},

where uj, denotes the probability distribution obtained after k steps of the Markov chain.
Note that a mixing time upper bound in y? divergence implies that in total variation

distance since [|p — ¢lltv < /X2(p, q).

3. Mixing Time Bounds via s-Conductance Profile

In this section, we introduce a general technique of using s-conductance profile to bound
the mixing time of a Markov chain. We first review some common concepts and previous
results in Markov chain convergence analysis, and then provide an improved analysis for
obtaining a sharp mixing time upper bound of MALA in this work.

Ergodic Markov chains: Given a Markov transition kernel 7'(-, -) with stationary distri-
bution p € P(RY), the ergodic flow of a set S is defined as

o) = [{ [ 76 anputag)

The ergodic flow captures the mass of points leaving S (i.e., T'(¢,5°) = | g T'(&, dy))
average under stationary distribution p in one step of the Markov chain. A Markov cham
is said to be ergodic if ¢(S) > 0 for all measurable set S C R? with 0 < u(S) < 1. Let us
denote the probability distribution obtained after & steps of a Markov chain. If the Markov
chain is ergodic, then up — p as k — oo in total variation distance; see, for example,
Corollary 1.6 of Lovész and Simonovits (1993).

Conductance of Markov chain and rapid mixing: The (global) conductance of an
ergodic Markov chain characterizes the least relative ratio between ¢(S) and the measure
u(S) of S, and is formally defined as

e [0S 1
o = f{,u,(S)'O<M(S)S }

10
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A Markov chain with low conductance tends to become trapped in a subset of its states,
whereas one with high conductance has more freedom to explore and transition across its
entire state space. The conductance is related to the spectral gap? of the Markov chain via
Cheeger’s inequality (Cheeger, 2015), and thus can be used to characterize the convergence
of the Markov chain. For example, Corollary 1.5 in Lovész and Simonovits (1993) shows
that if g is an My-warm start with respect to the stationary distribution u, then

e — pllTv < \ﬁ(l - —) k> 0.

Furthermore, some people consider the more flexible notion of s-conductance, defined as

. o(5) . 1
D, .—mf{u(s)_s.s<,u(5)§2}, for s € (0,1/2),

which restricts the infimum over all sets with a probability greater than s. This restriction
avoids including sets in the conductance bound that have poor conductance but receive
negligible probability, which should be less significant to the overall mixing of the Markov
chain. Specifically for sampling from Bayesian posteriors, this refined analysis allows us to
focus our calculations on these “highest posterior regions” while avoiding some unwieldy
tail probability regions (e.g., the region defined in Condition A.3). Using the s-conductance,
Corollary 1.6 in Lovasz and Simonovits (1993) proves a similar bound implying the expo-
nential convergence of the algorithm up to accuracy level s as

@2

i — iy < Mos + My (1 22), k>0
Consequently, the e-mixing time with respect to the total variation distance of the Markov
chain startmg from an My-warm start can be upper bounded by -2 37 log =7 2Mo if we choose
5= 2npp-
Conductance profile of Markov chain: Instead of controlling mixing times via a worst-
case conductance bound, some recent works have introduced more refined methods based
on the conductance profile. The conductance profile is defined as the following collection of
conductance,

o [ 9(5) . 1
() i=inf{ 22 0 < u(S)<wvb, indexed b o,f].
(v) :=1in {,u(S) < pu(S) <w indexe va( )
Note that the classic conductance constant ® is a special case that can be expressed as

o = (ID(%) Based on the conductance profile, Chen et al. (2020) consider the concept of
Q-restricted conductance profile for a convex set {2, given by

D0 (v) ::inf{/m : 0<M(Sﬂﬂ)§v}, v e ( 7#(29)]

It has been shown in Chen et al. (2020) that given an My-warm start pog, if

2 4 1
M(Q)Zl_iﬂgwg and Pq(v )>\/Blogf for all v € [MO }

2. The spectral gap is define as A = inf{E(f, f)/Var,(f) : f € L*(u),Var,(f) > 0}, where £(f,g) =
J(f(z) — g(v))*T(z,dy) du(z) is the Dirichlet form.

11
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then the e-mixing time in x? divergence of the chain is bounded from above by © (% log(%)) .

Therefore, compared with the (global) conductance, employing the technique of conduc-
tance profile may improve the warming parameter dependence in the mixing time bound
from log My to loglog My. This improvement from a logarithmic dependence to the double
logarithmic dependence may dramatically sharpen the mixing time upper bound, since in
a typical Bayesian setting My may grow exponentially in the dimension d. However, one
drawback of the conductance profile technique from Chen et al. (2020) is that the high
probability set € should be constrained to be convex (Lemma 4 of Chen et al. (2020)) to
bound the Q-restricted conductance profile ®q(v). This convexity constraint may cause
P (v) to have a worse dimension dependence compared with the complexity analysis using
the s-conductance Pg.

In order to address the above issues of previous analysis, we introduce the following
notion of s-conductance profile , which combines ideas from the s-conductance and conduc-
tance profile,

()
u(S) — s
1

The s-conductance profile evaluated at v = 5 corresponds to the s-conductance that is
commonly-used in previous study for analyzing the mixing time of Markov chain (Chewi
et al., 2021; Dwivedi et al., 2019). We show in the following lemmas that a lower bound
on the s-conductance profile can be translated into an upper bound on the mixing time in
x?-squared divergence. We formulate here an informal result and postpone a more detailed
statement to Appendix A.2.

O, (v) == inf {

s<u(S)§v} indexed by s € (0,%) and vE(s,%].

Lemma 2 (Mixing time bound via s-conductance profile (informal)) For any er-
ror tolerance ¢ € (0,1), the mizing time in x? divergence of the (-lazy version of MALA
over My-warm starts can be bounded as

1
2 do 1 1 e?

) < —1 . 2 — = —

Tmix (6, Mo) < ¢ (/4 TEORETY 1og(5)), S = oz

Mo

It is worth noting that since ®4(v) is a decreasing function of v, by replacing ®4(v)
with its lower bound ®4 = @s(%), one can obtain a mixing time bound via s-conductance.

1
However, instead of simply considering the worst case, the integral [2 - (1512”(”) averages over
g U5

®,(v), offering a possible improvement in the dependence on warming parameter My. To
establish a lower bound for the s-conductance profile, we can employ the “overlap argu-
ment” frequently used in the literature (Chewi et al., 2021; Chen et al., 2020; Belloni and
Chernozhukov, 2009; Wu et al., 2022), that is, 1. prove a log-isoperimetric inequality for
u; 2. bound the total variation distance between T'(z,-) and T'(z,-) for any two sufficiently
close points x, z in a high probability set (not necessarily convex) of ;. We leave a detailed
description of this argument to Appendix A.2.

Among previous works of mixing time analysis of MALA, Chen et al. (2020) study
the problem of sampling from general smooth and strongly log-concave densities, using
the technique of Q2-restricted conductance profile. Their bound has a double logarithmic

12
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log log My dependence on the warmth parameter My under certain regime (of step size h),
and a sub-optimal O(d)-dependence on the dimension. On the other hand, Chewi et al.
(2021) study the same problem as Chen et al. (2020) and obtain a mixing time bound
with an optimal (’)(d%)—dependence, based on the s-conductance technique. However, the
bound in Chewi et al. (2021) has a quadratic dependence on log My. By utilizing our
s-conductance profile argument, when log My and h~! are not of constant order, we can
improve their bounds from h~! log(%) to max{h ! log(%), log My}, where h is the step
size used in Theorem 3 of Chewi et al. (2021).

4. Mixing Time of MALA

In this section, we describe our main result by providing an upper bound to the mixing
time of (preconditioned) MALA for sampling from the Bayesian pseudo-posterior m,. We
consider the (-lazy version of MALA and assume that a warm start is accessible, which
is a common assumption (e.g. Dwivedi et al., 2019; Mangoubi and Vishnoi, 2019). For
example, Corollary 7 in Section 5.1 provides a construction of My-warm start for general
Gibbs posterior with smooth criterion function, where M is bounded above by an (n,d)-
independent constant.

Note that the Bayesian pseudo-posterior with criterion function C, can be rewritten as

ma(0) x0)y — —SPAZVaVHO =0} 5

O = s {—Valvmo—dyyao ®)

where 6 = argmax C,(0) and (6)
6O

Val€) = —Ca 6+ jﬁ; XY 4, (85 X™) —log (0 + jﬁ) +logn(d)
is the corresponding rescaled potential (function). In the expression of V;,, we deliberately
added two terms independent of £ so that V,,(0) = 0 for simplifying the analysis. Motivated
by the classical Bernstein-von Mises (BvM) theorem?® (van der Vaart, 2000; Ghosh and
Ramamoorthi, 2003) for Bayesian posteriors, we impose following conditions on V,,, stating
that V,,(§) is close to a quadratic form and the subgradient of V,,(§) employed in MALA is
close to a linear form, uniformly over a high probability set of the rescaled target measure

-~

Toe = (Vn(- — 0))gm,.t Here moe corresponds to the measure of the localized random
variable £ = \/n(0 — 0) for § ~ m,(0|X™), and the transformation \/n(- — 6) makes the
limiting distribution of £ zero-centered and has constant-order variances.

Condition A: There ezists a tolerance € € (0,1), preconditioning matriz f, step size pa-
rameter h (rescaled by n), warming parameter My, numbers R,£y,e1 > 0, p1,p2 > 0 and a
symmetric positive definite matriz J € R4 so that

3. When sample size n is large, the Bayesian posterior is close to the Gaussian distribution
Ng(Omig, niljfl), where Oy is the maximum likelihood estimator and J the Fisher information
matrix.

4. We use p = Guv to denote the push forward measure so that for any measurable set A, p(A) =
v(GTH(A)).

13
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1. for any £ € K = {x: Hffl/%H < R}®
Va(€) - %STJf\ <2 and ||[VVn(€) - JE| <&,

where V'V, () is a subgradient of V,(€);
2. prly = J =TY2J12 < pyly;

3. o (VA I72(6 — 8)|| < R/2) > 1 — exp(—450) - "= and R > 8/d/Amin(J) -
0

The first inequality in Condition A.1 requires that V,,(£) can be uniformly approximated
by the quadratic term %fTJ & with an approximation error £y. This requirement is implied
by the classical BvM result, which is commonly utilized in MCMC mixing time analysis for
Bayesian posterior sampling (Belloni and Chernozhukov, 2009; Ascolani and Zanella, 2023).
It is noteworthy that we do not impose any smoothness or convexity constraints on V,,(§),
and the deviation characteristic £g can take any value. We also keep track of the impact of
this deviation in the final mixing time bound, as reflected in Theorem 3, where we explicitly
show the dependency of the mixing time on this approximation error, £y. The result reveals
that the mixing time exhibits an exponential dependence on £y. The second inequality in
Condition A.1 assumes that the subgradient of V;,(£) can be approximated by the linear term
J& with an approximation error 1. Although less standard, this condition is crucial since
€1 governs the efficacy of the subgradient used in MALA to adjust the proposal distribution
and facilitate faster exploration of the parameter space. As we will see in Theorem 3, a
small 7 enables MALA, leveraging (sub)gradient information, to improve upon MRW in
terms of mixing time. Condition A.2 requires the asymptotic covariance matrix J, after
rescaling by the preconditioning matrix, to have its maximum eigenvalue upper-bounded

by pe and its minimum eigenvalue lower-bounded by p;. The condition number x = Z—f

serves as an indicator of how well the preconditioning matrix I is chosen to alleviate issues
arising from the anisotropy of the target distribution. As we will see from Theorem 3, a
small x will lead to a lower mixing time. The last condition (Condition A.3) assumes that
the radius R of the compact set K, considered in Condition A.1, is sufficiently large. This
ensures that K is a high probability set under m,.. This assumption guarantees that the
region where the density 7o (or m,) deviates significantly from a Gaussian form, and is
possibly non-smooth and non-log-concave, is negligible, thereby reducing the chances of the
Markov chain becoming trapped in such regions.

In summary, Condition A requires the localized (rescaled) posterior mo. = (vVn(- —
é\))#ﬂn to be close to a Gaussian distribution N4(0, J~!), so that we can analyze the mixing
time of MALA for sampling ,, or m,. (note that the complexity for sampling from m, with
step size h = h/n is equivalent to that from .. with rescaled step size h) by comparing its
transition kernel T expressed in (4) with the transition kernel T2 induced from the MALA
for sampling the Gaussian distribution. Interestingly, we find that as long as the deviance
of . to Gaussian is sufficiently small but not necessarily diminishing as n,d — co, some
key properties (more precisely, conductance lower bound) of T® guarantee that the fast

5. Here the notation A~/? of a symmetric positive definite matrix A means the inverse of its matrix square
root A/
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mixing of MALA will be inherited by 7', so that the mixing time associated with T can be
controlled. Using this argument, we prove a mixing time upper bound without imposing the
smoothness and strongly convexity assumptions on V,,(§) that are restrictive and commonly
assumed in the literature for analyzing the convergence of MALA (Chewi et al., 2021; Chen
et al., 2020). As a concrete example, under mild assumptions, Condition A holds for a broad
class of Gibbs posteriors (Bhattacharya and Martin, 2020) mentioned in Section 2.1 where
the criterion function C,, is proportional to the negative empirical risk function R,,, as long
as d is relatively small compared to n (see Lemma 18 and Lemma 19 in Appendix B.3 for
details). Now we are ready to state the following theorem.

Theorem 3 (MALA mixing time upper bound) Let m, defined in (5) be the target
distribution and ¢ € (0, %] be a lazy parameter. Assume Condition A holds for a tolerance
e, warming parameter My, sample size n, preconditioning matriz f, rescaled step size h,
and some R > 0, &1 > 0, po > p1 > 0, and that there erists a small enough absolute
(n,d)-independent constant cy so that the step size can be expressed as h= h/n with

_ Modk\T (- Modk\ 35 |~ -
h=cp- |:p2 (d%—i-ali (Eo—l-log (; H) ‘o <€o+log z H) ’ +||IH|OPR2§?>] , where Kk = @,
P1

then the (-lazy version of MALA with proposal distribution Ng(O—1 — ET%U(Gk,l), 2h f)
and step size h has a mazimal e-mizing time in x> divergence over My-warm starts being
bounded as

C1 exp(4€y)
¢

where Cy is an (n,d)-independent constant.

~ log M,
Tmix (€, Mp) < . { {pll exp(8&p) - h~'log ((Nggo)} V log Mo}, (7)

The mixing time bound (7) is proved using the technique of s-conductance profile in-
troduced in Section 3. A similar mixing time bound can be obtained if when consider the
sampling of 7. constrained on the high probability set K = {z : ||[I~'/2z|| < R}, which
is adopted by Belloni and Chernozhukov (2009) for analyzing the mixing time of MRW;
however, our result does not require such a constraining step. According to Theorem 3,
for a fixed tolerance (accuracy level) e, the e-mixing time is determined by the parameter
dimension d, warming parameter My, preconditioning matrix I~, approximation errors £g,
€1 of the potential and the gradient, radius R of the high probability set of m. and the
precision matrix J of the Gaussian approximation to mjo.. The derived mixing time bound
is exponentially dependent on &y, implying that a bound that is polynomial in d can only
be attained if & is either constant-order or logarithmic in d. The fourth term || ]| OpRZ% in
the expression of A will be dominated by others once €7 is sufficiently small. For example,
suppose I= 14, log @ = O(d) and 7, has a sub-Gaussian type tail behavior, or

Tioe (€]l > c1(Vd + 1)) < exp(—cat?), t>0,

then we can choose the radius as R = O(v/d), and the term |||f||\0pR2§% will be dominated
by the O(d%) term once €1 = O(dfé). This suggests that a d%—mixing time upper bound
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is achievable as long as the (sub)gradient used in MALA deviates from a linear form with
approximation error at most d_%, which is independent of the sample size. Therefore, when
d < n, it is safe to fix a mini-batch dataset for computing the (sub)gradient in MALA
instead of using the full batch. As another remark, our theorem also gives a tight mixing
time upper bound O(d) of MRW by taking £; = O(1), corresponding to the case where the
gradient estimate is completely uninformative.

Our mixing time bound has a linear dependence (modulo logarithmic term) on the con-
dition number k = py/p1, which matches the best condition number dependence for MALA
under strong convexity (Wu et al., 2022) and we show the tightness of the condition num-
ber dependence in Theorem 12 of Appendix A.3. Moreover, by introducing preconditioning
matrix . , a small condition number can be obtained once T acts as a reasonable estimator
to J~!, which will lead to a faster mixing time when J is ill-conditioned. On the other
hand, assume & is bounded above by an (n, d)-independent constant and

(1171, B2E2) v log (M ) <db,

we have Tix(g, o) < C1 d3 log(log MO) This upper bound matches the lower bound proved

in Chewi et al. (2021) that the mixing time of MALA for sampling from the standard
Gaussian target is at least (’)(d%), and it improves the warming parameter dependence
from log My to log(log My) compared with the upper bound proved in Chewi et al. (2021).
Therefore, in order to attain the best achievable mixing time O(d%), we need to find a
initial distribution pg that is close to m,, so that the warming parameter My can be con-
trolled. For a generic log-concave distribution, it has been Shown that a warm start with
warming parameter My polynomial in d can be obtained with dz complexity, as demon-
strated by Altschuler and Chewi (2023). However, efficiently obtaining a poly(d) warm start
for general non-log-concave sampling problems is infeasible. Fortunately, in our Bayesian
posterior sampling context, although m,, may not be log-concave, large sample asymptotic
theory (refer to Section 5, for instance) ensures that m, is approximately Gaussian. There-
fore, using the Gaussian distribution Nd(ﬁ n1I ) constrained on a compact set, as the
initialization pg, is a natural choice. To support this initialization scheme, the following
lemma provides an upper bound for the corresponding warming parameter Mj.

Lemma 4 (Warming parameter control) Suppose Condition A is satisfied. For any
compact set K C R?, the initial distribution as

1o = Na (0, n_lf)|{0:\/ﬁ(9—§)ek'}

18 Mo-warm with respect to m,, where
~ ~ 1
log Moy < —logm, ({6 : vn(6 —0) € K}) + sup| A J)E| + 2 sup|V,(§) — ixTJx].
EEK ¢eK

In order to construct a feasible warm start using Lemma 4, it is necessary to compute the
maximizer 0 of the criterion function C,,(6). An inaccurate approximation of # may cause the
warming parameter My to grow linearly with the sample size n, a similar observation also
noted in studies by Ascolani and Zanella (2023); Belloni and Chernozhukov (2009). While it
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is generally challenging to obtain solutions for non-convex optimization problems, there are
cases where optimizing a nearly quadratic function can be much easier compared to sampling
from a nearly Gaussian distribution. A specific example is Bayesian quantile regression,
where the estimation of § can be efficiently achieved using linear programming techniques.
Our theoretical results also suggest that under Condition A, we can control the warming
parameter Mo in MALA by choosing a reasonable estimator I for the inverse asymptotic
covariance matrix J ! of mo. For instance, if I is chosen to be the identity matrix and J has
a bounded operator norm, then log My should be of order O(d). Furthermore, in Bayesian
Gibbs posterior sampling, where the loss function ¢ is continuously twice differentiable, a
viable option for approximating J ! could be the plug-in estimator:

- {|;| ZHesse<£<Xi,5>>}_17

1€S

where S is a subset of 1,2,--- ,n, and Hessy(¢(z,0)) denotes the Hessian matrix of ¢(x,-)
evaluated at #. Notably, since the warming parameter My can be of order O(d/?) for
achieving the best possible mixing time, it is feasible to compute the plug-in estimator
using only a mini-batch of data, the size of which depends solely on the dimension, rather
than the full dataset. Further details can be found in Corollary 7.

According to Lemma 4 and Theorem 3, a reasonably good approximation I to matrix J
in Condition A will improve both the mixing time of MALA after burn-in period and the
initialization affecting the burn-in. For completeness, we also provide an experiment in
Appendix A.1 for investigating the impact of the preconditioning matrix and initial distri-
bution on the performance of MALA. However, in some complicated problems, especially
when log m,. is not differentiable, a good estimator for the matrix J may not be easy to
construct. One possible strategy is to use adaptive MALA (Atchadé, 2006), where the pre-
conditioner I and step size h are updated in each iteration by using the history draws. It has
been empirically shown in Atchadé (2006) that adaptive MALA outperforms non-adaptive
counterparts in many interesting applications. We leave a rigorous theoretical analysis of
adaptive MALA as a future direction.

5. Sampling from Gibbs Posteriors

Recall from Section 2.1 that a Gibbs posterior is a Bayesian pseudo-posterior defined in (2)
with the criterion function C,(8; X(™) = —anR,(6), where a is an (n,d)-independent
positive learning rate and R,,(0) : =n~! Y. | £(X;, 0) is the empirical risk function induced
from a loss function ¢ : X x ©® — R. In this section, we first provide generic conditions
under which Condition A for Theorem 3 can be verified for the the Gibbs posterior so
that the mixing time bound of the corresponding MALA can be applied. After that, we
specialize the result to two representative cases: Gibbs posterior with a generic smooth loss
function, and Gibbs posterior in Bayesian quantile regression where the check loss function
is non-smooth.

Firstly, we make the following conditions on the population level risk function R(0) =
E[¢(X,0)]. Recall that #* = argming.gR(6) denotes the true parameter. The key idea is
that although the sample level risk function (i.e. empirical risk function) R,, is allowed to be
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non-smooth, but as the sample size n grows, it becomes closer and closer to the population
level risk function R(#), which can be properly analyzed if smooth.

Condition B.1 (Risk function): For (n,d)-independent constants (C',C,r) > 0 and
(70771772) Z 0:

1. R(0) is twice differentiable with mized partial derivatives of order two being uniformly
bounded by C on B,.(0*); for any 0 € ©, R(0) — R(6*) > C"d=°0 (d=" A |0 — 60*|?).

2. Let Hg denote the Hessian of R at §. For any 0 € B.(6%), [[Ho — Ho+|l,, < C d?[|6 -
0*||.

Condition B.1 imposes two requirements. Firstly, the population level risk function R(-)
must possess a unique global minimizer 6*. This condition ensures that when the empirical
risk R,, in the Gibbs posterior is substituted with R, the resulting distribution 7*(6) o
exp(—anR(6))r(f) will be unimodal, thereby preventing the Markov chain from getting
stuck in any local mode. Note that this condition is equivalent to the identifiability of the
parameter in the model, and therefore is natural to assume. Secondly, the risk function
should exhibit sufficient smoothness and local strong convexity in the vicinity of #*. This
property enables a reliable Gaussian approximation for the local shape of 7*(6) around 6*,
which is again a standard assumption and holds when the Fisher information matrix is not
singular. Next, we introduce the following assumption of Lipschitz continuity for the loss
function /.

Condition B.2 (Loss function): There exist (n,d)-independent constants C > 0 and y >
0 such that for any x € X and (0, §') € ©2, it holds that |¢(x,0) — {(x,0")| < Cd |0 —¢'|.
déé)e(jﬁ)‘ <C
holds for any j € [d], z € X, and 0§ € ©, where C is a constant independent of n and d,
then Condition B.2 holds with v = % Next, we introduce a function ¢ : X x © — R? that
satisfies the following conditions.

If the loss function has uniformly bounded derivatives with respect to 6, that is,

Condition B.3 (Subgradient of loss function): There exist some (n,d)-independent
constants (C,r,B1) > 0 and (y3,74) > 0 so that:

1. For any 6 € B,.(0*), it holds E[g(X,0)] = VR(0) and sup,cy ||g(z,0)]| < Cd", where
v is the same as that defined in Condition B.2.

2. Let d5,(0,0") = /n 1> 0 [|9(Xi,0) — g(Xi, 0|2 be a pseudo-metric in ©.5 The
logarithm of the e-covering number of B,(6*) with respect to dj, is upper bounded by
C dlog(™4).

3. For any v € S%1 and 0, §' € B,(6*), it holds that E[(vTg(X,0) — vTg(X, 0’))2] <
Cd» |6 — 0> and E[(((X,0) — €(X,0") — g(X,0)(0 — 9’))2] < Cd |6 — 0'||>+26n,

4. Let Ng« = E[g(X,0%) g(X, 0%)T] be the covariance matriz of the “score vector” g(X,6%).
It holds that Hy' Ag-Hy! < Cd™ 1.

6. d9(6,0) = 0 and d, satisfies the symmetric property and triangle inequality, but can be zero for two
distinct points.

18



COMPUTATIONAL COMPLEXITY OF MALA FOR BAYESIAN POSTERIOR SAMPLING

Conditions B.3.1 relaxes the pointwise differentiability requirement for the loss function
¢(z,0) with respect to 6. In fact, in many statistical applications, the expectation in the
population-level risk function R(6) = E[¢(X,0)] has the smoothing effect of rendering R
to be twice differentiable. For instance, we can choose g(z,-) as the gradient (or any
subgradient) of ¢(x, -) for z € X when ¢ is (or not) differentiable. Moreover, the boundedness
assumption on the covering number in Condition B.3.2 allows us to uniformly control the
random fluctuation of the empirical mean = 3% | g(X;,0) away from the gradient of R(6).
Condition B.3.3 can be interpreted as “smooth” assumptions on the loss function at the
population level, quantified by (1: by taking expectations with respect to the data X,
the first term controls the Lipschitz constant of g(X,-), while the second term controls
the remainder term of the first-order Taylor expansion of ¢(X,-), where the gradient is
replaced with g(X,-). Condition B.3.4 assumes the boundedness of the operator norm of
the matrix H;}A(;*H;ﬁl. This matrix represents the limiting covariance matrix for the
sampling distribution of the empirical risk minimizer (/9\, scaled by the sample size, i.e.,
V(0 — 6) converges in distribution to Ny(0, H,.' Ag+H,.'). This assumption allows us to
provide an explicit bound on the deviance of 5, which represents the asymptotic mean of
the Gibbs posterior, from #*. It is important to highlight that Conditions B.1-B.3 can
cover the common scenario where the loss function is continuously twice differentiable (see
Corollary 7). Furthermore, these conditions also apply to more general cases with non-
smooth loss functions, such as quantile regression (see Corollary 8).

Additionally, we assume the following smoothness condition for the prior distribution
and compactness of the parameter space.

Condition B.4 (Prior and parameter space): There exist positive (n,d)-independent
constants (C,r) so that the parameter space © satisfies B.(0*) C © C [~C,C)%, and for
any 6 € O, ||[V(log7)(0)|| < CVd.

The posterior density is defined to be zero for values of 6 outside the parameter space O,
ensuring that MALA rejects any proposed states that go beyond the boundaries of ©. The
assumption of compactness for the parameter space is primarily for technical convenience
and is commonly made in Bayesian literature (Kleijn and van der Vaart, 2012; Yang and
He, 2012). However, it is possible to relax this requirement by assuming the exponential
tail behavior of the prior distribution, which will only incur extra logarithmic terms in the
final result. Finally, we made the following conditions to the preconditioning matrix I.

Condition C (Preconditioning matrix): There exist some (n, d)-independent constants
C' so that the preconditioning matriz I satisfies that

LA lop Tl < ClliHe-

op —

opll#g- |l

ol

T 1 FL_ -
2 M lopll (22 Ho12) 7l < ClIHG -

The requirement for the preconditioning matrix I holds when I and its inverse has
constant-order eigenvalues, such as the identity matrix that is conventionally used in MALA.
On the other hand, it can also cover the case when I acts as a reasonable estimator to 7—[911

(i.e, IY/27{4.TY/? and its inverse has constant-order eigenvalues).
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We now state the following theorem that provides a mixing time bound for sampling from
a Gibbs posterior using MALA. Note that the (sub)gradient g is used for constructing the
proposal in each step MALA.

Theorem 5 (Complexity of MALA for Bayesian sampling) Consider sampling from
the Bayesian Gibbs posteriors where Cp(8; X™) = —naR,(0). Under Conditions B.1-
B.4 and Condition C, consider positive numbers pi, p2, warming parameter My and tol-
erance € satisfying (1) prly < TV HgIY2 < poly; (2) log(%) < Cy(d» + logn) for
(n,d)-independent constants Cy and v5 > 1. There exists a constant k1 depends only on

nh1

(B, 70,71, ,Y5) So that if d < Clogn for a small enough constant c, then with probability
at least 1 —n~1, the mizing time bound (7) in Theorem 3 holds for &g =1 and

Mod | 1 Modrk 1\] 7
h:CO'[,OQ(d'}‘+d‘11(10g gﬁ)“—#—(log ZK)Q)] ,where/i:&,
P1

where ¢y is an (n,d)-independent constant.

Remark 6 Theorem 5 is proved by verifying Condition A for Bayesian Gibbs posteriors.
The parameter k1 sets an upper bound on how the dimensionality of the parameter space d
can grow in relation to the sample size n. A smaller k1 value implies that a larger dataset is
necessary for the target posterior to be well-approximated by a Gaussian distribution. The
expression for k1 is given by:

1 8 1
K1 = A A
YTl 2y 460+ det o 1T+ (20 V(s +0) A+ B))] T Y0 +m + s ()
1 1

A A .
29+ 2y +2n + 2V (A +7)] 3+ +(27) V(v + 292 +0) V (292 + 2790)]

From the expression, k1 tends to be smaller if the loss function exhibits low smoothness,
that means, B1 is small. The classical proof of the Gaussian approrimation of Bayesian
posteriors with smooth likelihoods is based on the Taylor expansion of the likelihood function
around 0 (e.g. see Ghosh and Ramamoorthi, 2003). For the general non-smooth cases, we
instead apply the Taylor expansion to the population level risk function R and use chaining
and localization techniques in the empirical process theory to relate it to the sample ver-
sion. Moreover, we keep track of the parameter dimension dependence, making Theorem 5
adaptable to more general cases under increasing dimension.

5.1 Gibbs posterior with smooth loss function

One representative example of Gibbs posterior satisfying Conditions B.1-B.4 is the one
equipped with a smooth loss function. More specifically, we need Condition B.1 for the
local convexity of the risk function, Condition B.4 for the smoothness of the prior and the
following smoothness condition to the loss function.

Condition B.3’ (Smoothness of loss function): There exist some (n,d)-independent
constants C > 0 and (v,7v2,73,74) > 0 so that (1) the loss function is twice differentiable
so that for any x € X and 0 € ©, ||Vol(z,0)] < Cd?; |HHess(9(€(x,6))|ng < Cd;" and

7. We use Vo/l(x,0) and Hessg (¢(z, 0)) to denote the gradient and Hessian matrix of £ (-) = £(z, -) evaluated
at 0, respectively.
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for any 6,0" € ©, ||Hessp({(x,0)) — Hessg(l(x,0))|lop < Cd?||0 — O'||; (2) let Ng« =
E[Vl(X,0%)Vol(X,0°)T], then Hy Ag Myt < C d™1,.

Corollary 7 (Sampling from smooth posteriors) Consider the Bayesian Gibbs poste-
rior with loss function €. Suppose (1) Conditions B.1, B.3” and B.4 hold; (2) the warming
parameter My and tolerance € satisfying log(%) < C1 (d +logn) for (n,d)-independent
constants C1 and v5 > 1; (3) d < clzgln for a small enough constant ¢, where k1 is defined

in (8) with 1 = 1. Then there exists an (n,d)-independent constant co so that it holds with
probability at least 1 —n~! that

1. consider the identity preconditioning matriz I= 1;. the mizing time upper bound (7)
holds for any p1 < p2 so that p11g = He+ = paly, log(%) < C1d" and

-1
h=co- [,02' (d% +di(log Mod)% + (log ]\iod);)] :

€
2. consider the inverse empirical Hessian matriz I = (1517 Y ies Hesse(E(Xi,é\)))_l,
where S C {1,2,--- ,n} with |S| > Cy d320F7/3 for g large enough (n, d)-independent

constant Ca, then the mizing time upper bound (7) holds with p; = % and

)+ (log]\i“l)é)]_l;

Myd
9

h=co- [(dé +di (log

moreover, let oy = Nd(@\, nflf)‘ where c1 s a constant so that

{0:/nT~ % (0-0)||<3c1 A}’
2 *
c1 >3V 'E[S]u%d}aagjézj), then po is My-warm with respect to m, with log My < d%.
Z 7]

When the Hessian matrix Hy~ is ill-conditioned, introducing the preconditioning matrix

~ _

I= (18|71 ;5 Hessg(£(X;,6))) ! may lead to a faster mixing. Furthermore, if the toler-
ance satisfying log(1) = O(d%), then the second statement of Corollary 7 can lead to an

optimal mixing time bound (’)(d% log(2)).

5.2 Bayesian quantile regression

We consider Bayesian quantile regression as a representative example where the loss function
is non-smooth. Specifically, in quantile regression (Koenker and Bassett, 1978), for a fixed
7 € (0,1), the 7" quantile ¢-(Y|X) of the response Y € R given the covariates X &
R? is modelled as ¢-(Y|X) = XT0*. Here we consider the homogeneous case where the
error e = Y — XT0* is independent of the covariates X. Given a set of n i.id. samples
XM = (X, = ()?l, Yi) }ieln)» the quantile regression solves the following convex optimization
problem:

6= arg mingq Z [(YZ' —X'09)- (T—1(Y; < )Z'lTQ))],
i=1

where the loss function €q(()?, Y),0) = (Y — X79). (T—1(Y < )?TH)) is referred to as the
check loss. The minimization of the check loss function is equivalent to the maximization of
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a likelihood function formed by combining independently distributed asymmetric Laplace
densities (Yu and Moyeed, 2001). The posterior for Bayesian quantile regression can thus
be formed by assuming a (possibly misspecified) asymmetric Laplace distribution (ALD)
for the response, which is

Tn(0) < exp (— nRn(0)) 7(0), 6 R,

with m(#) being a prior on © and R, (0) = n='> "1, ,(X;,0) being the empirical risk
function. Furthermore, by adding a multiplier o > 0 to the likelihood, we can obtain the
Gibbs (or tempered) posterior.

Since the loss function /,(X, 6) for quantile regression is not differentiable when ¥ =
)?TH, in order to sampling from the Gibbs posterior associated with Bayesian quantile
regression using the (preconditioned) MALA, we need to consider the subgradient of /,
with respect to 6, given by

9(X,0) = (1(Y < XT9) - 7) X, X =(X,Y), 6cR%

The following corollary quantifies the computational complexity for sampling from m, using
MALA. We first state the required conditions.

Condition D.1: There exist (n,d)-independent constants (C,C") > 0 and (ag, 1) > 0 such
that (1) the support X of the covariates X is included in [—C,C)%; (2) for any v € S*7,
E|XTv? > C'd=2 and E|XTv|3 < Cd*.

Condition D.2: Let f.(-) denote the probability density function of the homogeneous error
e =Y — X760, then there exist (n,d)-independent constants (C,C") > 0 such that (1)
fEOO fe(z)dz = 7; (2) fe(0) > C" and sup.cga fe(e) < C; (8) for any e1,e2 € R, |fe(e1) —
fe(e2)] < Cler — ea.

Condition D.1 assumes the compactness of the covariate space and the positive definiteness
of the gram matrix IE[)? X 7], Condition D.2 introduces several regularity conditions on
the distribution of the error e = Y — XT*: (1) The error term e is independent of the
covariates. (2) The model is correctly specified, meaning that XTo* corresponds to the
7-th quantile of the response variable Y given X. (3) The density function f.(-) of the
error term is positive at the origin and Lipschitz continuous. Under the assumption of
homogeneous errors, the limiting covariance matrix of the posterior distribution of interest
is given by n1(f.(0) - E[XX7])~!. In this case, a natural choice for the preconditioning
matrix is the inverse of the empirical Gram matrix, denoted as I = (1971 Y ies )N(J?ZT )71
where S C {1,2,---,n}. It is worth noting that similar analyses can be carried out for the
case of heterogeneous errors, but the limiting covariance matrix will be more complex.

Corollary 8 (Sampling from non-smooth posteriors) Suppose Conditions D.1, D.2,
and B.4 are satisfied, and the warming parameter My and tolerance € satisfying log(%) <

Cy (d*2 + logn) for (n,d)-independent constants Cy and cg > 1. Assume d < c(7%-)

logn
and a small enough constant c, and let the inverse

with o =

1 1
24401 +Tag A 2—&;53040—&-2041—&-3042 7
empirical Gram matriz I = (|S|*1 Yics X,;XZ-T)fl be the preconditioning matriz, where
S c {1,2,---,n} with |S| > Cyd®+?*0+3/21ogn for a large enough (n,d)-independent
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constant Co, then it holds with probability larger than 1 — % that that the mizing time upper
bound (7) is true with p1 = 3 fe(0) and

1 1 -1
b= o[ 100 (a8 108 1 (10528 1)

with ¢o being an (n,d)-independent constant.

Corollary 8 illustrates the implications of applying our theory to non-smooth posteriors.
A key observation is that in the large-sample regime, although the potential function asso-
ciated with the Bayesian posterior may be non-smooth, its population-level counterpart is
smooth (as per Condition B.3). This allows MALA, using sub-gradients, to effectively sam-
ple from non-smooth posteriors. Moreover, while our theory is applicable to non-smooth
posteriors, the smoothness of the posterior density function influences its convergence to a
Gaussian limit as n grows, as captured by the parameter 81 in Condition B.3. A posterior
with higher smoothness (or larger 1) will converge more rapidly to a Gaussian distribution,
as demonstrated in Lemma 18, which in turn leads to an improved (higher) acceptance rate
of MALA. For example, in Bayesian quantile regression, the smoothness parameter 3 is
at most % In contrast, for posterior densities with smooth loss functions, 51 can be taken
as 1. Interestingly, our theoretical result also leads a practical guideline: when applying
MALA to sample from a less smooth Bayesian posterior densities, a relatively larger sample
size n is needed to maintain the sampling efficiency. Otherwise, if n is not sufficiently large
relative to the dimension, the non-smoothness of the Bayesian posterior can result in a lower
acceptance rate and slower mixing times for MALA; see our simulation results in Section 7
for some empirical evidence.

6. Proof Sketch of Theorem 3

In this section, we provide a sketched proof about how to utilize the general machinery of
s-conductance profile developed in Section 3 to analyze the mixing time of MALA under
Condition A. We consider the identity preconditioning matrix (i.e. I = I;) in this sketch
for simplicity, and the case for general preconditioning matrix can be proved by considering
the transformation G(0) = /nl’ 7%(«9 - 5), see Appendix B.1 for further details.

Let TS (dy) = T¢(x,dy) denote the Markov transition kernel of the (-lazy version of
MALA for sampling from m. as described in Section 4 with rescaled step size h. To apply
Lemma 2, we first need to establish a log-isoperimetric inequality, which is a property of 7.
alone and is not specific to MALA. This step can be done by adapting existing proofs of a
log-isoperimetric inequality for Gaussians (e.g. Lemma 16 of Chen et al. (2020)) to 7. via
a perturbation analysis (see Lemma 14 and its proof in the appendix for details). Second,
we need to apply an overlap argument for bounding the total variation distance between
TS(-) and T¢(+) for x and z satisfying ||z — z|| < Cv/h and belonging to a high probability
set F under mo.. This step utilizes the structure and properties of MALA algorithm, and
we briefly sketch its proof below (details can be found in Lemma 15 in the appendix) and
discuss its difference from existing proofs.

We construct a high probability set as F = {¢ € le%/2 : ‘ﬁTj?f — tr(j2)‘ <rgpn{€e

le%/2 : \571725 - tr(j){ < rq/p2}, where the value of r4 makes moc(E) > 1— 2%}52 based on
0
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the last property of Condition A (details can be found in Lemma 21). Recall the acceptance
probability A(z,y) =1 A Hee gg
J-

% and denotes A(z,y) = 1A %&ym% with 7 being the
0

density of the Gaussian Ny(0, ). By comparing 7. and 7 using Condition A, we can
get the following inequality:

>—AH

|IT5 =T llrv <1—(1— / mm Q(ﬂ:,y),A(Z,y)Q(Z,y)> dy
1 _
§1—§(1— exp(—2¢p) - ( Amy

Dyt [ A
- [ At QG.y) - Ao 1000 dy)
BR
<1- (1 - C) eXp<_2g0) ’ (1 - Q(‘Tay)(l —Z(.Z',y))dy - / Q(Zay)(l - Z(Z7y)) dy
5 5

1 1
—1Qz — Qzl|Tv — 3 /(B%)c Q(z,y)dy — 3 /(B%)c Q(z,v) dy).
9)

We will separately bound the terms on the right hand side of (9) as follows. The last term
3 de (z,y)dy+3 de)c z,y) dy can be upper bounded by £ using the condition of R
in Condltlon A. For the remaining terms, let @), denote the probability measure with density
function Q(z,-), now we use Condition A by comparing (), with the proposal distribution

Q2 := Ny(x — hJz, 2hly)

of MALA for sampling from the Gaussian Ny(0, J~!), leading to

™ A x
[ Q) (1 A dy <200, - Qv + [ @) - TP gy
: f _ (10)
T(y)Q*(y, )  T(y)Q(y, )
’ /Bz (w) 7(w)(x) [,

where we use Q2 (z,-) to denote the density function of Q5. It then can be proved using
Condition A and Pinsker’s inequality after some careful calculations (see Lemmas 22 and 23
in the appendix) that

/ Q) (1 — Az, ) dy + / Qzw)(1 - Az, y)) dy +1|Qs — Q:llrv < 1/3.
By, B

Our proof of Lemma 22 for bounding [54 |Q*(z,y) — 7(y)Q*(y, z)/7(z)| dy is technically
similar to that of Proposition 38 in Chewi et al. (2021) for bounding the mixing time of
MALA with a standard Gaussian target (i.e. @ = Ng(0,I)). The non-trivial part in our
analysis lies in keeping track of the dependence on the maximal and minimal eigenvalues of
J. Finally, we can obtain

1-— ~
HTxC — TZCHTV S 1-— C exp(—2€0).
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With the lower bound on 7. (E) and the upper bound on ||T5 — T%||7v, we are then able
to apply the s-conductance profile argument to control the mixing time.

Remark 9 [t is worth mentioning that the analysis in Chen et al. (2020) requires the high
probability set, which is set E in our case, to be convex. This requirement will deteriorate
the d dependence of the mizing time bound since ||Tg§ —TZCHTV forz,z € E can no longer be
controlled under a large step size h as ours. This motivates us to introduce the more flexible
notion of s-conductance profile that extends the commonly used conductance profile (Goel
et al., 2006; Chen et al., 2020) and s-conductance (Lovdsz and Simonovits, 1993). Analysis
based on the s-conductance profile leads to a better warming parameter dependence than
that obtained in Chewi et al. (2021); Belloni and Chernozhukov (2009) without affecting our
obtained dimension dependence (based on s-conductance). A complete proof of this theorem
is included in Appendiz B.1. Similar analysis can also be carried over for analyzing general
smooth and strictly log-concave densities to improve the warming parameter dependence (e.g.
Chewi et al., 2021; Belloni and Chernozhukov, 2009).

7. Numerical Study

In this section, we conduct an empirical study to explore how the performance of MALA
varies across different dimensions and sample sizes when targeting different Bayesian pos-
teriors.

7.1 Set up

We carry out the experiment using two examples: Bayesian linear regression and Bayesian
median regression. For Bayesian linear regression, the corresponding Bayesian posterior is
given by:

1 ~
amean (g | X (MY o exp ( —5 2 |Ivi- Xfey\2) ©(0), 0¢cR
i=1
For Bayesian median regression, the Bayesian posterior is given by

m n 1 - v
amed(g | x >)o<exp(_2;m_xfe\)n(e), 6 c R

We choose the parameter dimension d from the set {15, 20, 30,40, --- ,100} and sample size
n from {500, 1000, 2000, 5000, 500(d/15),500(d/15)%/2,500(d/15)2}. The covariates X are
generated from a multivariate Gaussian distribution with zero mean and identity covariance
matrix. For Bayesian linear regression, we generate a random error variable e follows
a standard normal distribution, and for Bayesian median regression, e follows a Laplace
distribution with location parameter ;1 = 0 and scale parameter b = 2. The response
variable Y is given by Y = XT0* + e with 6* = (1,1,---,1). We consider the parameter
space © = [—100,100]? and the prior is chosen to be a uniform distribution over . We

then use MALA to sample from the Bayesian posterior 7€ and 7™¢d,
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Figure 1: Plots (a) and (c) report the average acceptance probabilities of MALA when
sampling from the posterior in Bayesian quantile regression (denoted as 7°4) and

Bayesian linear regression (denoted as ") respectively, across various sample

sizes (n) and dimensions (d), with the step size h = cd~sn~L. Plots (b) and (d)
present the relationship between the logarithm of the effective sample size and
the logarithm of the dimension for sampling from 7°d and 7" respectively.
As we can see, when the sample size inlcreases with the dimension at a rate of d2,
by choosing steps sizes with scaling d~3n~!, the acceptance probabilities roughly
remain constant and the change in the logarithmic effective sample sizes exhibit
slopes close to —% for both examples of Bayesian linear regression and median
regression. On the other hand, when n remains a constant, in both cases, the
acceptance probabilities will decrease as d becomes larger, and the changes in
the logarithmic effective sample size exhibit slopes smaller than —%. However,
compared to m™°d, the decreases in acceptance probability and effective sample
size are much slower for sampling from 7)'°*". In particular, when n increases
with d at a linear rate, the acceptance probabilities for m**" roughly remain
med

constant, while there is obvious decrease in the acceptance probabilities for ).
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7.2 Results

In general, estimating the mixing time of a Markov chain is a challenging task. Instead,
we utilize the effective sample size (Gelman et al., 1995) as a metric to assess the mixing
of MALA. The effective sample size of N Markov samples, denoted as N.g, quantifies the
amount of information lost due to correlations in the chain, and plays a role similar to the
number of independent draws in the standard central limit theorem (Brooks et al., 2011).
The effective sample size of a sequence is formally defined in terms of the autocorrelations
within the sequence at different lags, i.e., Nog = #{’ilpt’ with p; being the autocorrela-
tion at lag t. Details of the estimation of Neg can be found in Section 11.5 of Gelman et al.
(2013). It is worth noting that, theoretically, the ratio 57— can be controlled by the inverse
of the spectral gap (Kloeckner, 2019), which governs the convergence of the Markov chain.

Taking into account our theoretical findings regarding the convergence of MALA with
an appropriate warm start, we compute the effective sample sizes after a burn 1n period
of 1000 iterations, totaling 5000 iterations. We choose the step size h= c1d™ sn- 1 where
c1 = 4.28 for Bayesian median regression and c¢; = 1.39 for Bayesian linear regression.
These choices of ¢; ensure that the overall acceptance probability in each example closely
approximates 0.574 as suggested by Roberts and Rosenthal (1998). The preconditioning
matrix I is chosen to be the identity matrix.

Figure 1 present the trends of the average acceptance probability and the logarithm of
the effective sample size when sampling from 7ed mean - considering varying sample
sizes and dimensions. When n remains unchanged for varying d, we observe a decrease
in the acceptance probability as d grows larger in both cases. Additionally, the trends of
the logarithmic effective sample size exhibit slopes smaller than —%. The reason for this
phenomenon is that, the deviance gy of the target posterior from the Gaussian distribution,
stated in Theorem 3, will increase with d when the sample size remains unchanged. Conse—
quently, when d is sufficiently large, the mixing time will deviate significantly from O(d 3)
ancll the acceptance probability will decrease rapidly when employing a step size of order
d~3n~'. Another interesting observation is that the decreases in acceptance probability and
effective sample size are much slower when sampling from 7'°*" compared to sampling from
amed - One factor results in this phenomenon can be the smoothness of the loss function used
mean - which aids the convergence of the Gibbs posterior to the Gaussian distribution.
Specifically, Lemma 18 in Appendix B.3 demonstrates that a Gibbs posterior with a smooth
loss function will converge to a Gaussian distribution with a rate of O(n~1/2) for a fixed
d, while the Gibbs posterior used in Bayesian quantile regression approaches a Gaussian
distribution at a rate of O(n_l/ 4). Therefore, under the same n and d, the approximation
error gg for m*°*" is much smaller than ﬂ?ed. Additionally, we can see from Figure 1 that,

and 7

inmw

for achieving a constant acceptance probability and effective sample size at an order of d=s
when d ranges from 15 to 100, the condition d = O(y/n) is required for sampling from 74,
while the condition d = O(n) suffices for sampling from 7¢".

8. Conclusion and Discussion

In this paper, we studied the sampling complexity of Bayesian (pseudo-)posteriors using
MALA under large sample size, covering cases where the posterior density is non-smooth
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and/or non-log-concave. A variant of MALA that includes a preconditioning matrix was
also considered. While our analysis for the preconditioned MALA suggests an adaptive
MALA with a data-driven preconditioning matrix may be preferable, its rigorous theoretical
analysis may leave as our future work. When applying our main result to Bayesian inference,
we mainly considered the Gibbs posterior, while similar analysis may carry over to other
types of Bayesian pseudo-posterior, such as Bayesian empirical likelihood (Lazar, 2003),
and we leave this for future research. Another challenge lies in constructing a suitable
warm start that satisfies log My < ds. Obtaining a warm start efficiently for general non-
log-concave sampling can be challenging. However, the asymptotic Gaussian nature of the
Bayesian posterior may aid in the construction of such a warm start, and it is possible
to develop specific algorithms tailored to particular problems that leverage the Gaussian
asymptotics. For instance, in Bayesian quantile regression, one can determine the point
estimator 6 using linear programming and utilize the Gaussian asymptotic properties of the
posterior to construct initializations. A more detailed exploration of this topic is left for
future research.
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Appendix

We summarize some necessary notation and definitions in the appendix. We use 14 to
denote the indicator function of a set A so that 14(x) = 1 if 2 € A and zero otherwise.
For two sequences {a,} and {b,}, we use the notation a, < b, and a, = b, to mean
a, < Cb, and a, > Cb,, respectively, for some constant C' > 0 independent of n,d.
In addition, a, =< b, means that both a, < b, and a, 2 b, hold, and a, = O(b,) if
an S by an = O(by) if a, < b,. We use N(F,d,,e) to denote the e-covering number of
F with respect to pseudo-metric d,,. Throughout, C, ¢, Cy, co, C1, c1, ...are generically
used to denote positive constants independent of n, d whose values might change from one
line to another. We denote £2?(7) to be the space of square integrable functions under
measure m. For a transition kernel 7' : © x B(0) — R of a reversible Markov chain with
invariant distribution 7, where B(©) is the Borel-sigma algebra on O, the Dirichlet form
E : Lo(m) X Lo(m) — R associated with the transition kernel T is given by E(g,h) =

3 Joyeor(9(@) = 1(y))*T (@, dy)m(dz).
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Appendix A. Additional Results
A.1 Additional Simulation

In this section, we carry out experiment using Bayesian linear regression with the following
posterior

1 — ~
men ()X ) o exp (= 57 Vi - XFOIP)m(0), 0 € R
i=1

for exploring the impact of the preconditioning matrix and initial distribution in MALA. We
set the sample size n = 2000 and choose the parameter dimension d from set {10, 15, 20, 30, 50}.
The covariates X are generated from a multivariate Gaussian distribution with zero mean
and the covariance matrix ¥ given by a diagonal matrix with elements

1 1 1
(‘/g"/g;""/g’ﬁ’ﬁ""’ﬁ)'

. Al

We consider two choices for the preconditioning matrix: one is the inverse (mini-batch) em-
pirical gram matrix S, = (m ™! Py X j)?]r)_l, which is an estimator to the covariance ma-
trix n =121 of the posterior rescaled by n. Here, we consider values of m = {200, 500, 2000}.
The other choice is the standard identity matrix. For the initial distribution, we also consider
two options: one is N (5, n_lim) with 6 being the regression point estimator, as suggested
in Corollary 7; and another choice is the standard normal distribution A (0, I;). Figure 2
displays the minimum number of iteration required for achieving a Gelman-Rubin statistic
smaller than 1.1, which is a common-used rule for determining the burn-in period (Flegal
et al., 2008; Roy, 2020; Gelman and Rubin, 1992). We observe that choosing the initial
distribution as N (6, n_lim) allows the chain to converge in a very short period, whereas
using N (0, I;) requires a much longer time for convergence. Furthermore, we note that
the mini-batch size does not significantly affect the required burn-in period, as choosing
m = 200 is sufficient for fast convergence.

Figure 3 illustrates the largest step size allowed for achieving an average acceptance
probability close to 0.57, as well as the effective sample size, after a total number of 5000
iterations with a burn-in period of 1000. We observe that utilizing the inverse empirical
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Figure 2: The figure shows the minimal burn-in period required to attain a Gelman-Rubin
statistic below 1.1. It compares two scenarios: MALA with an initial distribu-
tion of NV(0, I3) and a preconditioning matrix of I;, and MALA with an initial
distribution of N (9 S /n) and a preconditioning matrix of Sm. We can see
the utilization of 3,,, for constructing the initial distribution and preconditioning
matrix can significantly accelerates the convergence of MALA.

gram matrix enables a larger step size and leads to a larger effective sample size. Addition-
ally, we find that the best performance is achieved when the batch size m is chosen to be
equal to the sample size n. This is because a larger batch size provlides a better elstimator
for 5! = (E[X X])™!, resulting in a rescaled covariance matrix $2,(E[X X])~!32, with a
smaller condition number. However, when d < 20, choosing m = 500 instead of using the
full batch does not result in significant loss in performance.

A.2 Lemmas Related to s-conductance Profile

Lemma 10 (Mixing time bound via s-conductance profile) Consider a reversible,®
irreducible,? C-lazy'® and smooth Markov chain'' with stationary distribution . For any
error tolerance ¢ € (0,1), the mazimal mizing time in x? divergence of the chain over

8. A Markov chain with transition kernel 7' : X x B(X) — R and stationary distribution y is called reversible
if pu(dz)T(z,dy) = p(dy)T'(y,dz) holds for any z,y € X.

9. A Markov chain with transition kernel 7' : X x B(X) — R is irreducible if for all z,y € X, there is a
natural number & > 0 so that T* (z,dy) > 0, where T* is the k-step transition kernel.

10. A Markov chain is said to be (-lazy if at each iteration, the chain is forced to stay at previous iterate
with probability (. The laziness of Markov chain is also assumed in previous analysis based on s-
conductance (Lovédsz and Simonovits, 1993) and conductance profile (Chen et al., 2020).

11. We say that the Markov chain satisfies the smooth chain assumption if its transition probability function
T can be expressed in the form T'(z, dy) = 0(z,y) dy + a0, (dy) where 6 is a transition density function
and 6, is the Dirac measure at z.
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Figure 3: Plot (a) illustrates the logarithm of the maximum step size allowed to achieve an
average acceptance probability close to 0.57 for various preconditioning matrices
and dimensions. Plot (b) illustrates the relationship between the logarithm of the
effective sample size and the logarithm of the dimension. The results demonstrate
that choosing the preconditioning matrix based on the inverse of the empirical
gram matrix enables the use of larger step sizes and leads to a higher effective
sample size. Additionally, the disparity between different cases for various values
of m becomes more pronounced as the dimension d increases. This is because
the approximation error of f]m increases with higher dimensions, necessitating a
larger batch size for accurate estimation.

My-warm starts can be bounded as

1
16 5 d,U 64 e dU

. 6, /\4 S —_— YR + T o ®2(L)’
Tle( 0) ¢ /4 U(I)%(U) ¢ % U(I)g(%)

M

2
16ME

where s =

We can calculate the second term of the upper bound above explicitly as : 4)62% y log (ST\@)
s\3
The next lemma shows that the s-conductance profile can be lower bounded given one can:
1. prove a log-isoperimetric inequality for u; 2. bound the total variation distance between
T(x,-) and T(z,-) for any two sufficiently close points x, z in a high probability set (not
necessarily convex) of u, which will be referred to as the overlap argument.

Lemma 11 (s-conductance profile lower bound) Consider a Markov chain with Markov

transition kernel T and stationary distribution p. Given a tolerance € € (0,1) and warming
parameter My, if there are two sets K, E, and positive numbers A, ¥, w so that
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_ p(NK

1. the probability measure of p constrained on K, denoted as p|x(+) ﬁ, satisfies

the following log-isoperimetric inequality:

: )
min {pt|x (51), plr(S2)}/

plk(S3) > X-t-min {ulr(S1), plx(S2)} - \/Iog (1 +

for any partition'? K = Sy U So U Sy satisfying infres, 2es, |2 — 2| > ¢;

2. for any x,z € E, if ||[v — z|| <, then |[T(z,-) — T(z,")|[tv <1 —w;

3. it holds that u(E) > 1 — (\p A1) 25> and p(K) > 1~ (Mp A1) 256M2,
0

then the s-conductance profile ®4(v) with s = can be bounded from below by

E2
16 M2
w o, A 1
P > —m 1, —/log (1 4+ —) ¢.
)2 % minf1, 20 o (14 3) |

By combining this lemma with Lemma 10, we obtain that if the assumptions in Lemma 11
hold, then the miXing time of the chain can be bounded as
Cy

C 2 CCIQ A%y~ log(log My) + w? A7) log ; (11)

for some universal constant C. Therefore, the problem of bounding the mixing time can
be converted to verify the assumptions in Lemma 11.

Tmix (&, Mp) < log My +

A.3 Lower Bound of Mixing Time

Theorem 12 (MALA mixing time lower bound) Consider a positive definite precon-
dmomng matriz I € R and the target distribution deﬁned as a multivariate normal T =
N(0,J71), where J € R¥™? is a covariance matriz with 2012 = diag(p2, p2,- -+, p2,p1)-
Assume 1 < g = Zf < ¢ - d? for some c1,co > 0. Then there exists an integer N that
depends only on c1, ca and universal constants cs, cq such that for any d > N, My > 2, step
size h > 0 and tolerance € € (0,1), the %-lazy version of preconditioned MALA for sampling
from T has the following mizing time lower bound in x? divergence

(e M) 2 e () log (2.

A proof of Theorem 12 is provided in Appendix B.3, part of which is adapted from Chewi
et al. (2021); Wu et al. (2022). Note that the worst-case construction used in Wu et al. (2022)
does not satisfy our condition A. As a result, our lower bound has a different dimension
dependence of d'/3 than that in Wu et al. (2022) of d'/2. Additionally, unlike Theorem
1 of Chewi et al. (2021), which considers a standard Gaussian target distribution (i.e.,
k = 1), our lower bound has an explicit linear dependence on the condition number. From
Theorem 3 and Theorem 12, we can see that when log (MO"“) = O(d%), our mixing time
upper bound and lower bound match up to some logarithmic terms of (d, k) and a double
logarithmic term of M.

12. U}]:1 A; forms a partition of set 2 means 2 = U}I:1 Aj and {A4;}/_, are mutually disjoint.
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Appendix B. Proof of Main Results
B.1 Proof of Theorem 3 (MALA mixing time upper bound)

Note that combined with Lemma 10, if the assumptions in Lemma 11 holds, we have

C o[ = 1
e " av +/ A2y / A2yl
Tmix(&; ft0) < (w vlog(1+ v 0
C 4
log My + C—l A~ 21/1_2 log(log Mp) + w >\_21/;_2 log -,

(12)
where the last inequality follows equation (18) of Chen et al. (2020). Now it remains to
verify the assumptions in Lemma 11. Fix a lazy parameter ¢ e (0 ,%] Consider a linear

transformation G : R? — R defined as G(0) = v/nl— ( 9), and let jiy = G4, denote
the push forward measure of G by uy for k € N and 7. denote the push forward measure
of G by m,. Then it holds that

A (A
My = sup MO(): sup LUO()

A (>0 (A) AR (4)>0Tloc(A)

Moreover, by the invariability of x? measure to linear transformation, we have x2(juy, m,) =
X (,uk,moc) Define Q(&,-) be the density function of the multivarite normal Ng(§ —

hIzVV, (I 5), 2h I4), and the corresponding Markov transition kernel

T(s,dw:[l— (1-0- [ A& 1) dy| 1) + (1= O Qlen) e, ) ay

with

g(& ) — 1A NIOC(Z/)Q(ZJ ﬁ)

Wloc(g)Q(& )

We have the following lemma.

Lemma 13 For any k € N, pi, = G puy, is the probability distribution obtained after k steps
of a Markov chain with transition kernel T and initial distribution pg.

It remains to calculate the mixing time of fi converging to ., which is equivalent to
verify the assumptions in Lemma 11 for Markov transition kernel T'(¢,-) with stationary

distribution 7jec. Recall K = {z : ||T_%$|| < R}. By Condition A, firstly we have

sup |V, (17€) — 1“Tlr%turég\ = sup|V,(€) — lgTjg\ < 2o

feny 2 ¢eK 2
~1 ~ ~1 ~1 ~1 ~1 = o~ L

sup |[12VV,(I28) — 12 JI2¢| = il}g}lh(vvn(&) — JO| < a1z

= 4 op’
€eBg

and Tee(€ € BR/2) = Wn(!!\/ﬁf_%(ﬁ —0)|| < R/2) > 1 — exp(—4&)) - hple . We then verify
the log-isoperimetric inequality in the following lemma.
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Lemma 14 Let K = B%/Q, consider any measurable partition form K = S5,US,U S5 such
that infgzes, zes, ||z — 2| > t, we have
VP

N~ - 1 1
2 texp(74€0)mln{TrIOC|K(Sl)’7T10C|K(S2)}log2 (1+min{%loc|f('(51),%]OC|R(SQ)}).

Tloc| 5 (53) =

We then show that ||T'(z,-) — T(y,-)||rv can be bounded with high probability in the
following lemma.

Lemma 15 There exists a set E so that Tec(E) > 1 — exp(—4&y) - 25;;2’)1 and for any
0

x,z € E with ||z — z|| < ‘f, we have ||T(x,-) — T(z,)||rv < 1— ‘3’(19(4;2%)’

Thus the first and second assumptions in Lemma 11 holds with A = @ exp(—4&y), ¥ =
exp(—2&p)
1

% and w = . Moreover, for the third assumption in Lemma 11, by hp; < cod™3,

for small enough ¢y, we have

2e2h V2h \/p1 _ 2
c 2p1 < il exp(—4¢&y) ° 5
M 24 2 256 M

exp(—4&p) -

Thus all the assumptions in Lemma 11 are satisfied. The desired result then follows from
equation (12).

B.2 Proof of Theorem 12 (MALA mixing time lower bound)

Without loss of generality, we assume I = I4. Otherwise, similar as the proof of The-
orem 3, we could transform the measures pux and 7™ by the scale matrix I 2 and study
the convergence of the transformed measures. We utilize the following lower bound on the
x2-divergence via Dirichlet form.

Lemma 16 (Corollary 7 of Wu et al. (2022)) Le T be the transition kernel of a reversible
Markov chain with invariant distribution ™. For any € > 0 and any z'm'tial distribution

bo < 7 satisying *{so, ) < 00, let ho = %2 if £(hos o) /X (0, ) < & with E(-.) being
the Dirichlet form associated with T, then its mizing time in x*-divergence has a lower

bound . )
L (E(ho o)\~ X*(po, )
mix 9 Z - — 1 —_— .
T (8 ILLO) 4 (XQ(,U/OJT)) og ( &_2

Then, we state the following lemma for bounding & (ho, ho)/x? (1o, )-

Lemma 17 Consider the target distribution @ = Ng(0, J 1) with J = diag(pz, p2,- - , p2, p1)
and 1 < Kk = ﬁ—f <c1-d°, then

1. There exists a 2-warm initial distribution o with x?(uo, 7) > % so that for any h €
(0, p%), denote hy = %, then for any ¢ € [0,1], the term E(ho, ho)/x?(po, ™) under
the C-lazy version MALA transition kernel with step size h satisfies

E(ho, ho)

< 60p1h
(MO) )
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2. When My > 2, there exists an My-warm initial distribution pf with x*(uh, 7) = Mo—1
and a constant N that depends only on c1,ca so that when d > N, denote hy = %,
1
for any h € (w, o0), for any ¢ € [0,1], the term &(hg, ho)/x*(ug, ™) under the
od 3

P
(-lazy version MALA transition kernel with step size h satisfies

E(ho, ho) 8
T o 2
X2 (py, ) ~ Kd

ol

So when d > N V 3, ifh>w,wehave

p2d3
kd 1 Kds
su Tmix (€, —1 —) > lo
2—War§ o ( MO) 46 ( 2) 46 g( )
1
when h < w, we have p1h < 1 and thus,
p2d3
1 1 ds 1
1, — Ras3
SUP  Tmix(€, o) > 7P11h 110%(7) > —————— log()-

9—warm pip ~ 240 52" 7 1920(log(dk))s b€’

Proof is completed.

B.3 Proof of Theorem 5 (Complexity of MALA for Bayesian sampling)

Without loss of generality, we can assume the learning rate o = 1, as otherwise we can take
0(X,0) =a-0(X,0). We only need to verify that the Assumptions in Theorem 3 holds for
the Bayesian Gibbs posterior. We state the following Lemmas to verify Condition A.

b1 1 1 .
SR AT 20— TFentan  sreteety - Under Conditions

B.1-B.4, if d < c(+-2-)"2 for a small enough constant ¢, then there exist (n,d)-independent

logn
constants c1,C,Cy so that it holds with probability at least 1 — cyn~2 that for any & € RY
with 1 < ||&]| < Cy/n,

ETH g 1+ logn 3 1 Lty | 5 [logn
— < Y Y2 P} 72
V(€)= 55| < 0 (IR + el + a5 ey 2

Lemma 18 Let kg9 =

iy Vogn
a7 gl B R,

nBl/Q
~ logn 14 logn
|70 = | < € (422 4 e -+ a5 e 2EE

%) with VVy (€) = jﬁ ;Q(X jﬁ +7) - jﬁv(logw)(jﬁ +6).

We provide in the following lemma a tail inequality for the Gibbs posterior .
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Lemma 19 Under Condition B.1-B.4. when d < ¢
where

log for a small enough constant c,

b1 1

L4793+ [(270) V (1 + ) (1 + B1))] "3 Yo+ ((27) V (74 + 272 +70) V (272 + 270))
1 1

A A ,
L+2y+6v+4v2+71  27+2%0+27+(2V (1 +7))

R3 =

then there exist (n, d)-independent constants c1, ca, cs so that it holds with probability at least
1 —cn~2 that

NI (f+)>

Tn (\/51\17%(9—9)\\ > 1172,V < exp(—t?)+eaexp (—egnd 0 (d- M AdT20T22)),
)\min(J)

where J = T%Haj%

By Condition B.1, we have [[Ho«||,, < Cd and |||7-[9_*1|H0p < Cd». Moreover, since

=~ _ ~ 1o >
I o1 Tllop < ClIHa ol Hg ly, and 1T loplI(T2 Ho-T2)"Hly, < C [[Hg ll,,» we can
obtain that there exists constants Co,C3 so that for any R = |HI_5|H \}% with

>0, and set K = {z: |I-"/2z| < R}, we have K C {z : |[z|| < Cod 7> +C5td® }. Then
by Lemma 18, for any ¢t = C (d%5 + v/logn) (note that 5 > 1), we can find a constant ¢

so that when d < clng;, we have

~ ~ 2 1
Tl 250l Vi (€) = Horg | < a5,
eK

So in this case the step size parameter h= h/n in Theorem 3 satisfies

-1
h<co- |:p2(2d11” +d%(10g M(;d/f)% + (log M(::d/{)é)]

Then by the assumption log(222) < Oy (d" 4 logn), using Lemma 19 and d < ¢

ep1 logn?

we can obtain that there exists a large enough C1 so that for t = C4 (d%5 + logn),

T (K) = 7rn<\/ﬁ\|l 20— 6)| > |HI‘§H| ft?)) >1- h]f\’f. So the Assumptions in
min 0

Theorem 3 are satisfied.

Appendix C. Proof of Lemmas for Theorem 3 and Theorem 12
C.1 Proof of Lemma 10

Fix an arbitrary € > 0. Suppose Tmix(v/2¢, o) > N = f LT ig%qzv + fl (fggv Then for

any k < N, x%(ug, pr) > 22, where we use x2(-,-) to denote the x? dlvergence, [k to denote
the distribution in %k step of the Markov chain and pu € P(R?) to denote the stationary
distribution. Then we will prove by contradiction that if N < Tmix(\/iE, o), then when

41



TANG AND YANG

k= N, x*(ur, ) < 22, which oppositely implies N > Tiix(v/2¢, 19). Our proof is based on
the strategy used in Chen et al. (2020). We first introduce the following related notations.
For a measurable set S C R? and positive numbers ¢, My , the (e, My)-spectral gap for the
set S is defined as

£(9,9)

A S):= inf ———
S,M()( ) gec‘:]wo(s) Var,u(g)

where
¢y (8) = {9 € La () | supp(g) = { : g(z) >0} C S, 0 < g < My, Var,(g) >},

and
1

£(9.9) = 5 [ (9(0) ~ 9(0))* T dy)u(do),

with T'(x, dy) denoting the Markov transition kernel. Moreover, we can define the (g, My, s)-

spectral profile KE’MO as

AMoy = inf o Ao (9).
s (v) R e, Mo (S)

Define the ratio density

Note that
Eulhi] =1 and  x*(ug, p) = Var,(hg),

and hy(z) < My for all & > 0 (see for example, equation (64) of Chen et al. (2020)). By
tracking the proof of Lemma 11 in Chen et al. (2020), it suffices to show that for any k£ < N,

M, 4
o
and
D2 (v) f 4 1.
—e, M, 16 orall v e [V’ §:| 3
AW 20 ge o (14)
o1 for all v € (5, 00),
with s = 1681\2/12. We first prove claim (13). Define ~;, = \Z/LEL[(::]) = Varijl(h’“), Then for any
0

k<N,

Vary, ((he — 7)) = By [((he — ) +)?] — By (B — vk)+])?

L B, 12] — 20l — (Eplha])?
= Varu(hk) — 2'YkEu[hk]

1
=3 Var, (hg) > €2,

where ()3 = max{0,z}, (i) is due to ((a — b)+)? < a? — 2ab, (a — b); < a, and the last
inequality is due to the assumption that N < Tmix(\/is, {o); moreover, since for any x € R,
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0 < hi(x) < My, we can get (hy — Yi)+ € c;rMO({hk > 7k }), which leads to

@) : E(f.f)
E(hi, hi) = E((hie — V)4 (hie — )+) = Vary (b — ve)+) - inf =,
' ' g T pect v (s Varu(f)

(15)
where (ii) follows from the fact that (a —b)? = (a —c— (b—¢))?> > ((a — )y — (b—c)+)%
Furthermore, We have for any k < N,

MG p(hr = i) = Eul((he — ) +)?) = Vary (b — ) 4) > %Varu(hk) > &%,

On the other hand, by applying Markov’s inequality, we also have

E,,[h] 4
hy > < £ - .

Thus by equation (15), we can get for s = 165%7
0

— 4
g(hk,hk) > — Varlu(hk)A Mo (W)
1w

Then we prove claim (14). For v € [Mio,%], fix any A C R? with s < u(A) < v and
g € ¢ty (A). Then by
27

Eu[/(QQ(w) ~ ¢(y))+ T(,dy)|

—E,[ () - )16 0) > 420) T, dy)]
=E, //+OO y) <t < gz ))dtT(:c,dy)}
- [Tr] [106) <1 < P an)] a

let Hy = {z € R? : g%(z) > t}, we have

| [ 198@ - Fwlr . dyutas)
> [ / 1))+ T(, dy)p(dz)

_/ E [/1(9 (v) <t < ¢*(2))T(x,dy)] at

“+00
/ / T(z, Hf)u(dx) dt.
rEHy

Let t* = sup{t > 0 : u(H;) > s}, note that t* always exists as otherwise, u(g(z) =0) > 1
and thus Var,(g) < Mgs = 12, which is contradictory to the requirement that Var,(g) > .
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Then

| [ 19 - fwlre. dyucas)
> /O ; / T Houldn)at + /;OO / _, Tl Hou(aa) at

> [ ) - 9t 0, u(4)
0
M
_ <Eu[92] - /t ((Hy) dt — st*> - @y (u(A))

(? (]Eu[g2] _ §) - Dy (n(A))
0 SEAl 24 (0(4),

where (i) uses the fact that t* < Mg and when ¢t > t*, u(H;) < s = ;42 and (i77) uses

16
E,l¢%] > Var,(g) > 5 . Moreover, since

[ [ 9@ - P aputas)

\/// )27 (x, dy)p(dx) \/// z)+ g(y))?T (z,dy)p(dx)
< V2(g,9) - \///(292(%’)+292(y))T($,dy)u(dx)
= \/m \/4Eu[92]7

we have

%Eu[f] -0y (u(A) < V/2E(g,9) - \/4Eu[g?]

Elg.9) . Bu(A)
Var,(g) ~ 16

Taking infimum over A C R? with s < u(A) <wv and g € CJ%F’MO (A), we have

2u(4)) _ B2(v)

' > A2 >
)2 B > i >

s<p(A)<v 16 (16)

For the case v > %, consider any A C R? with u(A) > % and g € c:MO(A). Let 0 <+ < M
be the number such that

s<ulfg > Vullg <) < 5.

v always exists as otherwise, there exists 0 < 5 < Mj such that u{g =7} > 1 — 2s, which
leads to Var,(g) < E,[(g —7)?] < 2M@s < €2, and this causes contradiction. We first
consider the case that u({g > ~v}) A p({g <~v}) > s. We have

E(g,9)=E(g—7)(g=7)=2E(g—7)+,(g—7)+) +E(g—7)-, (g —7)-)
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Since for any function h > 0 with p(supp(h)) < %, using Cauchy-Schwarz inequality, it
holds that

2
B = [ P 2 B 5 ()2,

which leads to

Since €2 < Var,(g) <E,[(g — )% and E,[(g — 7)?] = E.[(g — 7)2] + Eu[(g — 7)2], w.lo.g,
> Eu[(92—7)2]

we can assume E,[(g — 7)%] > % Then taking h = (g9 — )4, we can obtain

(9 =)+ (9 =7)+)
(9 =)+ (g=7)+)
2 Var,((g —7)+)
(1 Ef, f) (17)

> —Var,(g)- inf inf
1Vl us)elsrect |, (5) Varu(f)
2770

- 2 ar
where (i) uses B, (g —7)3] > =5 > Y400 and Var, (9 -7)+) > 3Bullg -3 > 5.
and (i) uses (16). Then we consider the case that u({g >~v}) Au({g <~}) <s < u({g >
YH Vu{g <~}). W.lo.g, we can assume p({g > ~v}) > s. Then we can obtain

Eul(g —1)3] = Eul(g — )] — Eul(g — 7)?]
>Eul(g—7)°] - Mgs =Eul(g— )] — = > 22—,

where the last inequality is due to E,[(g — v)?] > Var,(g) > 2. We can then obtain the
desired result by taking infimum over A C R? with p(A) > 3 and g € ¢ M, (4) in (17).

C.2 Proof of Lemma 11

The proof follows from the standard conductance argument in Chewi et al. (2021); Belloni
and Chernozhukov (2009); Dwivedi et al. (2019); Chen et al. (2020). Let s = 57, and let
0

S be any measurable set of R? with s < u(S) <wv < % Define the following subsets:
S1:={o € ST, 5 < 3},
Sy i={z € $T(x.8) < S},

S3 1= (Sl U SQ)C,
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Then same as the analysis in Chewi et al. (2021), if u(S1) < p(S)/2 or u(S2) < wu(S°)/2,
then by the fact that u is stationary w.r.t the transition kernel 7', we have

[ 7@ smtan) = [ TSy - [ T 5)n(d0

S
- / T, S)u(de) = 2 - max{p(S 11 85), u(S° N 55)}

w - p(S)

>
- 4

Then when (S1) A pu(S2) > @, consider x € EN S and z € EN Sy, then ||T, — T ||y >
T(z,8°—T(x,S5° > 1—w, thus ||z —z| > 1, which implies that inf e png, erns, ||z — 2| >
1. Then consider sets ENK NSy and ENK NSy in the log-isoperimetric inequality of pu|x,
we can obtain that

Wi ((B N KNS U(ENK N S)) > Ao min{ulg(E 1 K 1Sy, uli (BN K 1S}

1 1
'by(LﬂmMMmEme&%mmEme&»>
>A-¢-min{u(ENKNS),u(ENK NSy}

1
min{u(ENKNSy),u(ENKN 5’2)})’

-log% (1 +

where the last inequality is due to the fact that the function z log% (1+ %) is an increasing
function. W.l.o.g, we can assume u(ENKNSy) < u(ENKNS;y), then by (ENKNS;)U

(ENKNS2)) CE°UK US; and u(E®) < (M) A1) geinry = LEADS ey < DUADS e
0

can obtain
16\s

127

p(K) + p(E°)

1(S3) + p(E°)
p(K)
> plr(ENKNS)U(ENKNS)))

1
> A4 p(ENKNS))-log? (1+M—)),

p(Ss) +

(ENKNS;
Ot s sy 1
2)\.1/;-(4+4_8)10g2(1+ﬂ(5)+5_8))
4 4 8
p(S), 1 1
ZA'T?'TlOgQ(l—Fm)’

where (i) uses p(ENK NSt) > pu(S1) — w(E) — p(K°), u(S1) > @ > 5 and the function

xlog%(l + 1) is an increasing function. Then by p(S) > s, we can obtain

u(S), 1 4
w(S3) = A Tlog2 (1 + m)a
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hence
/S T(w, S9)u(dz) > % ( / (2, S°)p(dz) + / T(,9) (d:):))
> “u(se) > L2 u(s)log? (14 M(A‘S)),
which leads to
Js T ,U(S) ulda) > w-?))%.¢ -log% <1+ M(ZLS)) > w-?))gqp 'log% <1+%).

Then combining with the result for the first case, we can obtain a lower bound of

ot min{l,M log (1+ %)}

4 9
on s-conductance profile ®4(v) with s = 16‘5;42.
0

C.3 Proof of Lemma 13

Recall the transition kernel associated with gy,

(0, dy) = [1 -1-9)- [40ne0.y) dy] Sa(dy) + (1 — €) - Q(0, ) A(B, ) dy

with

h e . 2h
Q,) = Nd<0 - ﬁIVVn(\/H(Q -9). = I).

ﬂ'n(y)Q(y7 6) .
Wn(Q)Q(Ha y) 7

Then given ¢ € R?, the distribution of G4T(&,-)is
T*(6,dz)

= {1 -(1-9)- /Q*(H, Z)A(9,§+ ﬁ%) dz} (5\/5,]:%(9_5) (dz)
+(1=C)-Q(0,2)A(0,0 + 'f%%) dz,

All,y) =1A

where Q*(0,-) is the density function of Nd(\/ﬁf_%(H —6) — hﬁ%Vn(\/ﬁ(G - 9)), 2hly).
Then by the fact that

Q(9+ %T g"‘ﬁ%) 1 e~ g
QO T T ) = exp (—4h (Hé—z+h12vvn(12z)u |z — & + hI2VV, (T2€)| ))
_ Q9
Q& 2)
we have
T <9+I2 } dz) - [1 (- /A £,2) dz] 1¢(d2)+(1-0)-Q(€, 2) A(€, 2)dz = T(€, dz).

Thus when i1 = Gypr—1, we have fi = Gupui. Then combine with the fact that
fto = G110, we can obtain by induction that ji, = Gy py for k € N.
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C.4 Proof of Lemma 14
To begin with, we consider the following lemma stated in Chen et al. (2020).

Lemma 20 (Lemma 16 of Chen et al. (2020)) Let v denote the density of the standard
Gaussian distribution N (0, O'Qld), and let p be a distribution with density u = q -y, where
q is a log-concave function. Then for any partition S, S2, Sz of R, we have

d (51, 52) 1
20

min {p (S1) ,u(52)}> '

We first consider the case J = I where recall J = 12JI2. Then define 7 = N(0,14)| 7, by

the fact that K = B;i% /2 is a convex set and 1z is a log-concave function, using lemma 20,

0 (Ss) > min {4 (S1) , 1 (S2)} log? (1 ( n

we can obtain that for any partition S1, S, S3 of IN(, we have

d(S1,52)

7(S3) 2 =5 % min (7 (S1) 7 (SQ)}log%( + !

min {7 (S1) ,7T(52)}> .

l o~ ~ o~ o~~~
Then recall Fioe| 3 (€) = —E2PEVUZD). ging the fact that sup |V (12€) — 3€77¢] < &,
Jig exp(=Va(T2€))d Fepe

we can obtain that for any measurable set S C K , we have

Focl 2 (S) _ Jorie exp(=Va([2€))d€ [ exp(=4¢7¢)dg
T(S)  [onx exp(—LETE)AE [ exp(—Va(I2€))dé

exp(—2&p) < < exp(2€o).

Thus
Toc| 7 (S3) > exp(—2€0)7(S3)
> d<512752) exp(—2¢p) min {7 (S1),7 (S2)} log% <

(@) d(Sy,Ss)

sEen)
min {7 (S1),7 (52)}

1 1
> —470) min { Toc| = (S1) , Toc| = (S2) F log2 | 1 e — —
> 5 exp( so)mm{m |z (51), Mol ( 2)} 08? < +exp(—250)mln{7rloc|f<(51),7Tloc|f<(52)}>
d(S1,52) o~ _ 1 1
> —" —4 ocl 7 (S y Moc| ¢ S 1 1 . ~ ~ ’
- 2 exp(—420) min {Tioc| 7 (S1) , Toc| 7 (S2) } log? ( +mln{moc;}(Sl)mlocb?(SQ)})
(18)

where (7) uses the fact that = log? (14+1) is an increasing function. For the general case where
J is not necessary an identity matrix, we can define K’ = T K = {z = j%y Cy € I~(}, and
A=J %f , where & is a random variable with density mjoc|z. Thus A has a density

1x/(\) exp(—V,(T2T2)))
[ exp(=Vi(T2J722))dA

mA(A) =
Moreover, for any A € K’, it holds that
o~ 1 N
Va(T2T723) = SATA| < &.
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Then for any partition Si,.S2, 53 of I?, let

S, = jéSl%
Sy = j%52;
Sy = J38s.

Then by the positive definiteness of J. , (EI, :S’;, :Sg) forms a partition for K’, and

d(S1,S) > \/p1d(S1, S2).
Since K’ is a convex set, by applying 7 to statement (18), we can obtain

d(S1, S2)

Fioel7(53) = m2(35) > exp(~420) min {a (30, (32) g (14 )

min {70\(51), 7T>\(52)}

VP1 ~\ . 1 1
> ——d(51,52) exp(—4eg) min { mec| = (S1) , Moe| = (S2) tlog? [ 1+ ——— — .
2 (51, 52) exp(—4%0) {mocl i (S1) el (52)} log min { Tioc| = (S1) , Tioc| 7 (S2) }

Proof is completed.

C.5 Proof of Lemma 15
We first construct the high probability set E as follows: let

M2 _ M? _
oo (oo loe () +2)a) (0 (o () +)).

and J = I2J13. We define B = {¢ € By, : [¢77% — tr(J?)| < ra} N {¢ € B, -
|£Tj2£ - tr(j)} < rq/p2}. By the choice of h, when ¢y is small enough, it holds that

n<va-{(pd (Bd+ra) ) A ) E )

Now we show that F is indeed a high probability set in the following lemma. Note that all
the following lemmas in this subsection are under Assumptions in Theorem 3.

Lemma 21 Consider E = {¢ € Bf, , : €7 T3¢ — te(J?)] < rayn i€ € B}, |7 % —
tr(j)‘ < rg/p2}. If rqg = ( cdlog <€2hp1)p2> (C log (Eth) p%) for a sufficiently large
enough constant ', then Toe(E) > 1 — exp(—4£y) - 22hpr

Mg

We now show that for any z, z € E with ||z —z|| < ‘f , the total variation distance between
T, = T( x,-) and T, = T( z,+) can be upper bounded by 1 — %280). For any =,z € E, we
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consider the following decomposition:

T, — Tel|rv
/ITrry T(z,y)|dy
=T+ 5Bl v [ T Tl
% 1_C/@wyzz(wydy+1—u/@zy (z,9)d
/IQ:cy (2.9) — Qz.p) Az, y)| dy
1= (=) [ min (Aw) @), Al 0)@e0)) dy

<1-0-0 [ win (Aw.0)@a). A 0)@e0) dy
Recall that

Toc (¥) Q( )

A r,y)=1
( y) : 7Tloc(x)Q(a: y)

I

where Toc(x) exp(—Vn(f%x)) and

~ 1 e _
sup ‘Vn(léx) — f:vTJx‘ < &p.
xGB% 2

Define 7 as the density function of Ng(0,J 1), we have

Tioo(y) _ exp(—Va(I7y)) exn( 25 exp(—3y"Jy)
Tloc(Z) _exp(—Vn(f%y)) > exp(~2%)- exp(— xTJa:)

Therefore, denote

A

= exp(—2¢y) -

5l
s

7(y)Q(y, )
Az, y) =1 = ,
= Rte)
we have o
AV(CL',y) >1A eXp(_EEO) i W(y)Q(y,-ﬁ) > exp( 250) Z(IE y)

We can then derive
HTLL‘ - Tz HTV

<1-(1-¢) [ min(A(z,9)Qx,y), A(z,9)Q(zy)) dy
o )

<1—(1-¢)exp(—2&) - /

d
BR

min (A(x,y)Q(x, ). A=, y)Q(=y)) dy

—1- (1 Q) exp(~250)- ( [ A @i+ [ Aendesd

R

l\')\v—l

/ A, )0 ) — A 90 (= v)| dy)
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Then consider the inequality:
| e - Qe A nldy < [ Qo)1= A dy
R R

4 / Oy) (1 — Az y)) dy + 2/ Qs — Qslzv
B,

where we use va to denote the probability measure with density function @(m, -). Moreover,
consider the equation:

[, A= [ @ew) - 0@wnas [ Qe
B,

—1—/ Qx,y)(1 — Az, y)) dy — / Q(x,y) dy
Combined with (20), we can obtain

Ty — T2 ||y

<1—(1-¢)exp(—2&) - (1 — /Bd Qz,y)(1 — A(z,y)) dy — /Bd Qz,y)(1 — A(z,y)) dy

1Ge - By - 1/ Olir,y) dy - 1/ 3(2y) dy)

/\

20
Consider the proposal distribution of MALA for sampling from the Gaussian 7 : = Ny(0, J- b,

Q2 () = Na(x — hJz, 2hly),

whose density is denoted as Q*(x,-). Then HQVm—QVZHTV < ||@z—Q$||TV+ 1Q2 — Q% |y +
1Q: — QZAHTV can be upper bounded by Pinsker’s inequality, that is, for any x € B}iz,

Qs — Q% Iy

\/h2||fzvv W(T2z) — Jz2 _ VREITZ |,
2h - 2v/2

and for any x,z € B?z

A A 1 =hd)(@ =22 _ |z — 2|
1Qz — Q3 ||Tv§2\/ oh < N

Therefore, when ||z — z|| < @ and \/ﬁﬁ”ﬁémop < %, we have

~ 7L
lo—=l VhE| 1],
2v/2h V2

51
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For the term of de (2,9)(1 — A(z,y)) dy, we use Condition A by comparing Q, with
Q2 leading to the followmg decomposition:

/ Q(z,y)(1 — A(z,y)) dy

S/’
54

~ i A ™
§2||Qx—Q$HTv+/‘QA(%?J)_W dy+/Bd 5

CNQ(.T, y) -

(A) (B)
We then state the following lemma for bounding the term (A).

Lemma 22 Consider the choice of (rescaled) step size h in Theorem 3, then when cy is
small enough and x € E, it holds that

/

Our proof of Lemma 22 is technically similar to that of Proposition 38 in Chewi et al. (2021)
for bounding the mixing time of MALA with a standard Gaussian target (i.e. 7 = Ny(0, I)).
The non-trivial part in our analysis lies in keeping track of the dependence on the maximal
and minimal eigenvalues of J. We then bound the term (B) by the following lemma.

T(y)Q (y, x) 1
QA(%?/) - T dy < o1

Lemma 23 Consider the choice of (rescaled) step size h in Theorem 3, then when ¢y is
small enough, for any x € E, it holds that

[, et - ew ol T v 25

Thus when ||z — z|| < ¥ and VhE||12 ]|, < %2,

@(SL’, y)(l - Z(:L‘, y)) dy

Bd

1
< 2/|Qs — Q2 llrv + o7 + =5 (21)

<\ B, & < 2
= Vet e T 78 = 1o

Finally, since for any x € E C Bf% /2

/ Ola.y) dy < / QO (2, y) dy +20n — Q3 v
(B%)e (B%)e

R )]+ VIEITZ
2V/2h V2

< Euengog) |1l =
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Since R > 84/d/Amin(J ) when the constant ¢y in A is small enough, we can obtain

~ 1
Q(z,y)dy < 5
(Bé)e

Then combined with the bound in equation (21) and decomposition (20), we can obtain
that when ¢ is small enough, for any z,z € F with ||z — z|| < @ and ¢ € (0, 3], it holds
that

||Tva: - TVZHTV

<1--Qew-2) (1- [ Qe -Awar- [ Q-G

L 1 ~ 1 ~
_’Qx_QzHTV_2/(3%)CQ($,y)dy_2/( ) Q(z,y)dy>

1-— ~
<1- 5 ¢ exp(—2&p)

)c

<1- exp(l%vo).

C.6 Proof of Lemma 21

We can write T as

Then

det(J) (7L
f{geB%/z‘|§Tj3§—tr(j2)|>rd} (271.)% exp( Vn(sz)) d¢

f Vde“J exp(— Vi (T3€)) de

1 — Toc(F

+ Toc ([I€]] > R/2)-

Then for the denominator, as

g~ L~~~
sup Vi(I76) - {TI%JI%&\ < &,
£eBé
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when R > 8 2 we can obtain that

det
/V exp(Va (I736)) d

1/dt T T7, L
/ : Ug) (T8 v (rhey) de

2

det(J T
50/\/6 §J§§

> exp(

> —exp(—E&p).

l\D\}—t

Furthermore, by Bernstein’s inequality (see for example, Theorem 2.8.2 of Vershynin (2018)),
for & ~ N4(0,Y), it holds that

1, t? t
P(||lz]* — tr(E)] > t) < 2exp(—( A ) (22)
| | ST
We can then obtain
det(J TT,
Toc(E) > 1 — 2exp(28)) / A exp(—ﬂ) d¢
{ler PBe—te(72)>ra}  ( 2
_ det(~) 0 J¢ =
_ 2exp(250)/ ~ B ﬁexp(— 5 )d¢ — Mgl
{leT Pe—te(D>ra/pa}  (2m)2 0
_ . 2e%hpy
> 1 —exp(—4&y) - ———,
Mg

where the last inequality is due to the Bernstein’s inequality in (22).

C.7 Proof of Lemma 22
Recall T = Ng(0,J 1) and Q2 (x,-) be the density of Ng(x — hJz, 2hI,), we have

/ ‘QA@:’y) B F(y)g(igy, x)

:/ L e ly = 2+ hJz|? ~exp 2l Jz —yTJy exp lz =y + hJy|?
(47Th)% 4h 2 4h

L[ (MW | (T T
(47h)% 4h 4h

y_f/};z‘]x in the above integral, then consider u ~ Ng(0, I;) and let

dy

dy

dy,

let u =

1)~ . - N 1
A= {u eR’: ] ‘QhQHJuH? 4 2v2h3 2T Pu— 2v2h3 2T Pu + W3l T — 2n2aT P ) }

W
Ne)
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We can then obtain

T(y)Q* (y, z)
()
(m%J%ﬂuah—

4h

JICCE ay

1 —exp

&, ]

1 ~ ~ - ~ -
=E, [ 1 —exp <—4 (2h2||JuH2 +2v2h2 2T Pu — 2v/2h3 2T Pu + k32T e — 2h2$TJ3£U)) H

< {Eu [ 1 —exp < - %(2h2||ju||2 +2v2h2 2T J2u — 2v/2h3 2T Py + BT e — 2h23:Tj3x)) ‘

“1a(u } } + {Ey [1ac(u)] } + {exp (—leh?’a:Tj‘lm) Ey [14¢(u)]

. (Eu [exp(—3h2(uTj2u - J:Tjgx))} ‘B, [exp(3\fh2xTJ2 )} [exp(3\fh2:vTJ3 )D },
(23)

where the last inequality uses Holder inequality. The first term of the right hand side of
equation (23) can be upper bound by exp(1/49) —1 < 1/48. For the second and third term,

_1 ~, _1
by (1) h < \feopy ® (tr(J?) —H“d)_% and h < \/cor,* with rq = {(\/ ' log s2hp1 H|J2|HF)
(108 ;”,;)f,lp%)}A<p§||K||2> and |K|| > C(£)%; (2) z € BE={z € K : |27 o — tr(J2)] <
rq}, it holds that

mﬁﬂP+hﬂﬁﬂP)

o=

w

R32T e < h3p2ij3x < h3pa(ry +tr(j2)) <ck.

O

Moreover, since for a Gaussian random variable @ ~ N (0, 0?), it holds that
o242

5)

Eexp(tu) = exp(——

E exp(—t?a?) =

1 [1
] <y —.
V1 + 21202 g 202

We can get
E, [exp(tQhQ(xTJNgm — Hju|]2))}

B 11 2em2,(2)
exp(2h? (2T T3z — tr(J? | | T
< exp(th*(z" J tr(J )))j_l exp ( . tQhQ)\j(J2))

d
< exp( t2h27“d H + Ct4h4 (j2))2)
7=1
< exp(t%c) eXP(Ct4h4|”J2H|F)

< exp(tcy +t*Cec t| <, ————,
Pt tOR). <o
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9

T EE
where the last inequality uses h < \/cop, ® (tr(J?) + rd)_% < \/eops ® (tr(J?)) 5 < Vol 2 »
and

~ 1 - 1 -
E [exp(thga:TJ2 )] < exp <2t2h3\xTJ2||2> < exp (2t2h3p2(tr(J2) + Td)> < exp (200 t2> ;
5 o 1 ~ 1 ~
exp(th2zT.J3 )] < exp (2t2h5\xTJ3H2> < exp <2t2h5p§(tr(J2) + rd)> < exp(2c0 t2),

E, [
3 < \J/copy 1 Then by Markov

=

1
where the last inequality uses h < \/copy * (tr(J?) + 14)~

inequality, we can obtain that
3 1 13 t 1
|h2a? J?u| > > < 2inf exp <fc§t2 - 7) =2exp | ——5 | ;
< 96v/2 £>0 2 96v/2 2 (96v/2)2c2
5 1 13 t 1
|h2a J3u| > > < 2inf exp <fc§t2 - 7) = 2exp ——a
< 961/2 >0 2 96+/2 2. (96v/2)2c2

Also, by Bernstein’s inequality in (22), we have
~ ~ 1
. (h2 )||Ju||2 - xTJ%‘ 96> <P, <‘||Ju|2 — tr(J?) ‘ > 96h2 - rd>

~ ~ 1,1
2 2
_ > (
_Pu(]wu\ ()] > (5 co>)
1 /L 1 2
<2exp | —~ 962 260 A (55 — o)
AN TV

1 (& —c co)?
§2€Xp <—/<96 0/\(96 : 0) )))
c co ch

Therefore, when ¢ is small enough, we have

where the last inequality uses h < /co||J?||

By [1 4c(u)]
B (2| Ful]? ~ o7 | > %) + B, ([T Pu| > %iﬁ) B, (| ) > %W)
§2exp<—96d7;00) +2exp< M) +2exp<—2.(%i/§)26§)

and

Ey [14c(u)] 4 exp (—ih3ij4x> Ey [14c(u)]

T7%0))| - Eu [exp(3Vah3aT )| - B, [exp(3v2hiaT Fu)| )

: (Eu [exp<—3h2<ufurr? —z
1

< —.
~ 48
We can then obtain the desired result by combining all pieces
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C.8 Proof of Lemma 23
We first write

[ Qo) - G| 25 ay

_ o Q(yvx) M A

‘/B;g Q8 (y,2) | ww) @ W)W

B ||z — y + RV (L2)|? + [lz — y + Tyl \ | 7(¥) 1a

_/B% 1—exp< 1h > ﬁ(x)Q (y,z) dy.

T ~
Since h < \/cgpy ° (tr(J?) + Td)_% < /Copy * and hng]IH\OpRzE% < ¢p, when ¢y is sufficiently
small, we have for any = € F and y € B%,

|~lle =y + ROTEOVA(Tag)? + o — y + by

4h
pmh+ﬁ€mﬁ%wu@—ﬁ6md%»+%pﬂﬁuy—ﬁ6wd%»
B 4
~1 ~ =1 ~ 71 ~
_ h(2o2R 4 112 llopE) 12 lopZr + 2l — gl oy
- 4

Ve o 2l —yl
< 3 .
<7 CF R )

Thus we can bound

/sz% Q2 (y,z) — @(y,:r)‘ :Ei%dy < /B?2 (exp (@(34_ 2}”5/%’)) _ 1):8;@A(y’x) dy.

Furthermore, by Lemma 22, we can get

/”(y)QA(y,x) W< [@ena |

()

T(y)Q> (v, x)

A T o
Q% (z,y) =)

which leads to
Q% (y,z) — Q(y, x)‘ W g,

/B;g ()

ﬁ(QL/)QA

_ = Y, T

- 25 (exp(\/CO (3+ 2||w ?JH) 1)@ (v, 2) y
24 /g, 4 R/ hp | Z5QA(y,2) dy

- % Bé (eXp <\/4%(3—{— 221‘\/;/73/2”)) - 1)Nd((]+ hzj)il(l‘ — hjx)jh(]_,_ th)fl) dy,
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where the last inequality is due to %QA (y,x) exp(—yT(HhQJ)yA;fyT(x*h‘]‘r)). Consider

u ~ Ng(0, 1), for sufficiently small ¢y, we have

J

(mm<%£@+mm_yM)—QNAU+hﬁTHx—MHL%U+hﬁTde

Id% 4 R\/hpQ
~ ~ ~ _1
NG 21(I + h2J) "Nz — hJx) — x + V2h(I + h2J) 2|

< —
= Eude(O,Id) |:eXp ( 4 (3 + R\/TPZ )> 1
(i) o 12V/2
< Eyony(ou) [exp (Y (3+26 + Rm\|u||)) - 1}

81 2¢o
< . _
< &5 Buasy |0 (G elul)] -1

81 Co
< 20 \/EUNNd(O,Id) [GXP (2R2p2 ||U|2>] -1

81 Cod
< == —~1

~ ~ 1
where (i) is due to ||[(I + h?J) 1 (z — hJx) — x| < R2po|lz|| + hp2llz]| < 2v/hpacd|lz]| <

3 s = . ~ 7(y)
Vhpaei R, and (i4) is due to R > 84/ d/Amin(J). Thus we can obtain fB% Q2 (y,z) — Q(y,x) ?g) dy <

L
72"

C.9 Proof of Lemma 17
C.9.1 PROOF OF STATEMENT (1) OF LEMMA 17

Define the following compact supported function k£ : R — R:

Mw:{2@—ﬁ)te@Ln,

0 otherwise.

Then consider a initial distribution with density function uo(z) = (1 + k(y/p1zq)) - T(x).
This constriction guarantees that

/1
X2 (o, ) = \/51/ "R (i) exp(—21a2) day
T J_ /L 2
P1

1 [t 1
- ,// K2(1) exp(——2) dt. € (0.2,0.21),
27T -1 2

) 14 sup k(t) <2,
veRrd T(T) te(—1,1)

and

lho(e) — holy)] = \“0((;;) )| _\(area) — k(yBTv)| < 2v/PTlea — vl
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Therefore, the spectral gap of this initialization is controlled by

E(ho, ho) 5
L\, 70 - . _ _
X2 (M67 ﬁ) — 10p1 EJEEW’yET(CE,-) [(xd yd) ]

< 10p1 - Eyer ye Ny (v—hpro,2niy) [ (Td — ya)°]

=10p1 - Eq e n(0,1/p1),en(0,1) [(ho1a — V 2h¢)?]
< 20m2h? + 40mh < 60mh.

C.9.2 PROOF OF STATEMENT (2) OF LEMMA 17

Denote sets
o= {a e R o7 5% — ()] < G2l v 24120,)
Ky = {r € R - [T — (7] < Gl ) v 417 op)

Ki={z e R : [¢7% — ()] < (11 v 2411 llop) },

To control the probability of the above events, we utilize the following Bernstein’s inequality:
for x € Ng(0,%),

2
Bl - ()] 2 0 < 2exp (= 5 e A ) (24)

which leads to

P (|ll2)2 = tx(2)] = (VEXISII) V (AT llap) ) < 2exp(—=).

Therefore, for z ~ N4(0,J~1), the probability of events € Ky N K3 N K is inside the
interval of (0.7,1). Then let K1 C R? be an arbitrary measurable set so that the probability
of events x € K = K1 N Ko N K3 N Ky is equal ﬁo (notice that My > 2 and M%) < % < 0.7,
therefore such a set K exists). Then consider a initial distribution with density function

uh(x) = %, it holds that

1

Eig(@)] o h

(o, 7) =

and
su MO(:E) = 1 =
() Elk@)] O

% with hg = i—’?, we claim it suffices to
0>

show the following claim: denote Q*(z,) to be the density function of Ny(z — hJz,2hly),
then for any = € K, there exists a set G, C R? so that

T(y)Q° (y, v)
T(z)QA (z,y)

Then denote for bounding the spectral gap

< exp(—16log(kd)), Vy € Gy, (25)
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and ;
A
GZQ (#,y)dy =1 = —. (26)
Indeed, under claim (25) and (26), we have
g(ho,ho) _ Mg : E:veﬁyET(:v )[(1K( ) - lK( ))2]
X (1o, ) 2(My — 1)
ﬂ—(y)QA(y::U) A
= MO -1 / len W(x)QA(x,y)} 7(2)Q7 (@, y) dydx
M A A —
= Mo -1 /:veK </Gx ﬁ(QC)QA(QC,Q)Q @ w)dy+ Ge Q% (@) dy>7r($) dz
Mo T(y)Q>(y,x) A
< 1R (S Fega e ) o W)
<8
= kd’

where the last inequality uses claim (25) and (26). Now we show the desired claim. First

note that 7(y) Q> (y, ) h- (xf T2z — yT J?y)
DY W% _ exp ( )
T(2)QA(x,y) 4

Let u = y—%u’ then for y € Ng(x—hJxz,2hl;), we have u € Ny(0, I;). Therefore, it suffice

to show that for any 2 € K, there exists a set G/, € R? so that En,0,1)[1c,(w)] > 1 - 3
and

7(V2hu + x — hJz)Q” (V2hu + = — hJx, x)
7(2)QA (2, vV2hu + = — hJx)

< exp(—16log(kd)), VueGh.

Denote the sets

Gr={ueR?: || Ju|? — 2T TPz > —(\/8log(kd) + 5)p§\/g

G2 ={uc R? : 2T %0 > —\/log kd) - (10p§\/g+ 2p§’d)};

G ={ueck?: T %< \/log kd) - (10p3Vd + 2p3d) }.
Then under G, = G N G2 N G2, we have

7(V2hu + x — hJx)Q”(V2hu + x — hJz, )
7(2)QA (x,vV2hu + x — hJx)

1
= exp (4 <2h2HJu||2 +2v2h2 2T J2u — 2v/2h5 2T PP + W32l A — 2h21:TJ3x>>
1
< exp ( -1 <h3a:TJ4x — 2h?(+/8log(rd) + 5)p3Vd
— 2v/2+/log( Hd %\/10p§\f+2pgd+ h3 10,03[4—2,03(1 >>
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Then there exists a universal constant N so that when d > Ny, for any z € K and u € G,

7(V2hu + z — hJz)Q”(V2hu + = — hJz, x)
7(2)QA (x,v2hu + x — hJx)

< exp ( — i(h?’xTﬂ‘ — 6h%\/1og(rd)p log(kd) (h%\/p%d + hg\/pgd)))
< exp ( — i(h?’xTJZL:U — 6h? log(md)p%\/g — 5y/log(kd) (h%\/,o%d +h3 \/pgd)))

7 1 4 1
< exp (— 32log(kd) + 96 logs (kd)d ™6 + 227log3 (kd)d ™ 3).

Therefore, use xk < ¢1 - d°? there exists N2 that depends only on ¢1, co so that when d > N,
for any x € K and u € G,
7(V2hu + x — hJz)Q(V2hu + = — hJx, x)
7(2)QA(z, V2hu + x — hJx)

Now we control the probability u € G!.. Firstly by Bernstein’s inequality, for u € Ng(0, Iy),
we have

< exp (— 161og(rd)).

1

P (uTJ2u . —((v/8Tog(rd)||2Ip) V (8 log(kd)[| 2], ))) <1-—-.

K

So there exists a universal constant N3 so that when d > N3, it holds with probability at
least 1 — i that

1Tul® = 2" P2 > tr(J?) — (V8log(kd)|7|[g) V (8log(wd) || T [lop) — tr(%) = (BIIT%[I5) v (24]1T2]p)

—(\/810g kd) + 5)p2

Moreover, since for any t € R and « € K,
1
Elexp(tzT J?u)] = exp <2t2$TJ4£L‘>

< exp (5 (7% + (GI70) v @4171,)) )2).
and

1
Elexp(tzT J3u)] = exp <2t2xTJ6:U>

< exp (5 (r(7%) + (GI7M) v @4171,)) ) 2).

by Markov inequality, there exists a universal constant N so that when d > Ny, it holds
with probability at least 1 — % that

T y2u > \/log kd)2p3d + 1003 Vd

and

T pu < \/log(ﬁd )2p5d + 10p3Vd.

We can then obtain the desired result by combining all pieces.
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Appendix D. Proof of Lemmas for Theorem 5
D.1 Proof of Lemma 18

Without loss of generality, we can assume the learning rate @ = 1, as otherwise we can
take (X, 0) = a-¢(X, ). To begin with, we provide in the following lemma some localized
“maximal” type inequalities that control the supreme of empirical processes to deal with
the non-smoothness of the loss function. All the following lemmas in this subsection are
under Condition B.1-B.4.

Lemma 24 There exist positive constants ¢ and v such that it holds with probability larger
than 1 — n=2 that ,

1. Forany,0' € B,(6%),

LY 9(X,0) -1 S0 9(X, 0)—Elg(X, )] +Elg(X, 0] <

o (Ve o - oy + xma).

2. For any 0,0’ € O, ‘% S A(XG0) — LS 6(X,0') — BU(X, 0)] + E[U(X, 0] <

C (\ [l B8R Gz — o] + 1<>§"dS+'v> .

%Z?:l (X, 0) — %Z?:l 0(X;,0') — %2?21 9(X3,0)(0 —

1+vs

SC( AR 0 — 0

3. For any 60,0 € B,(6%),

0) —E[l(X,0)] + E[¢(X,0)] + E[g(X,0)(0 — 0)]

%?wﬂw—ww+wfﬂ)

Recall V,(¢) = n (Rn(0 + %) — Ra(0)) + log (6 + %) —log 7(f), in order to bound the

difference between V,,(£) and fTH%*E using Lemma 24, we should first prove that 9 is close
to 0*. Define a first order approximate to 8: 8° = 0*: IS, H(;klg(Xi, 0*), we have the
following lemma for bounding the difference between 6° and 6*.

Lemma 25 It holds with probability larger than 1 —n=2 that

15— 67 < Cat5 18T 4 o gt 08T
n n

And we resort to the following lemma that provides an upper bound on the ¢y distance
between 6 and 6°.

1
Lemma 26 There exists a small enough positive constant ¢ such that when d < c((logn) 24200 +71) A

I N
(g7 TF2 P20 ), then it holds with probability larger than 1 — ¢ -n~? that

%ZQ(X%@\) :

=1

< C’dlﬂloin +Cd1+%(107gln)%+61_ (27)
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1
”é\_é\o” < Cler;3 +/31(1+%)+’Yo (10571) 1+261 +C Vet loin+c <d1+%+% / IOin) W_
(2%)

* - * * - —1y2
By supgey [l9(X, 6%)|| < C'd7, we have || M. E[g(X, 0%)g(X, 60%)1Hy  |l,, < Crd® ||Hg I, <
Cy d?7+2%0 | which leads to v4 < 279 + 2. Then by Lemma 25 and Lemma 26, when

1
)1+2w+2W2+4W0 A (7
logn

n B1 1
d<c ( )W3+51(1+W4)+2W0—’Y4 A ( )2+2(W+“/0+W1)
- logn logn ’

it holds with probability larger than 1 — ¢y - n~2 that

b0 < catse, [losn 29
n

We can now derive (high probability) upper bound to the term of |V, (§) — ?7{%*5‘ over
1 < ||€]] < Cy/n. Consider the following decomposition:

-5y X.0)-5) |+ n R0+ ) - RO - Blox0) 5 - EHE ova 1L

NZD

The first term can be bounded by Lemma 26, that is

1 ~ €

)

clel PIREE Ly LOE AT
n n

for the second term, by the third statement of Lemma 24, we can obtain that

i ) R - LS xS (RS RG) - Eg(x.5)
‘Rn<e+ g0l = 30D~ (RO + )~ RO oD ﬁ)‘
1+ lognM logn 1+2'Y3 Hfj” 1461 logn\ 2 .
areooBn oL o g [eyreon oy,
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for the third term, by the twice differentiability of R(#) and Lipschitzness of Hg, we can
obtain that

¢ ~ ~ & 7§TH9*5
‘R(Q + \/ﬁ) R(0) — E[g(X, 9)]75 on
4
< -~ —_— *
<o EQE\HH%% Ho H!Op
HE v [logn - I€]|
< Y2 b} RLEALE
<C - d d o +\/ﬁ

3 2
e P Ly
nz n n

Therefore, by combining all these result, when 1 < ||£|| < ¢y/n for a small enough ¢, we can
obtain that

ETHge€ 1+ logn 3
o) - S| < ca g B cas

€+ n 7 Viogn

1
+ TR g2 5 g e,

For the second statement, since when 1 < [|£]| < ¢y/n for a small enough ¢

IVVi(€) — Ho£||

_ H\/lﬁ z_;g(Xi, jﬁ +9) - \}ﬁvuogw](\fﬁ 1 0) — Heet ‘
X6 §} 12ymﬁ>ﬁuxj +0)] + Elg(x,9)
§ | A K
E[g(X, N +0)] —E[g(X,0)] — He=& ‘ H Vlog 7]( N + 0)| .

Then by the first statement of Lemma 24, Lemma 26, the twice-differentiability of R(6)

and Lipschitz continuity of Hy. Similar to analysis for the first statement, we can obtain
that for any 1 < [|£]| < ey/n,

IVVa(€) — Ho-€|

<cvi [dlﬂl"g n gt (loen ”)Wl} e (
n n

ro (il uwﬁ%dm0+cvﬁ

logn
—+4+Cd
T

1
Viogn(Ely 4 prten)

< C d1+’Y

1+ 1
3 Viogn + Cd =R gy |22 4 o e,

64




COMPUTATIONAL COMPLEXITY OF MALA FOR BAYESIAN POSTERIOR SAMPLING

D.2 Proof of Lemma 19

Without loss of generality, we can assume the learning rate o = 1, as otherwise we can take

= - — L IT-12e) < T3 3(Vd+t)
UX,0) = o (X, 6). Denote K = {£: |I7%¢]| < 7 2lop V 7=} Then

e exp(=Vo(€)) € - (2m) 2 det(Hy-)
Jexp(—Va(€)) d¢ - (2m) "2 det(Ho-)
Denote K1 = K¢N{¢ : [[¢]] < c1d™072/n} and Ky = KN {¢ : [[¢]] > cid 072 /n}.

=1
When ¢ € K1, we have [|¢]| > H -
2

T(V(0 ) € K°) =

. So by Lemma 18 and the fact that

Moo & = (I 26) T2 Hg- T2 126 > Apin ()| T 2€)12 > 9(Vd + 1)

and

" Hp€ > Aminme*)HfH? > d i),
we can verify that when d < cp>— for small enough ¢ and K1 = K°Nn{{ : [ <
c1d=7772,/n} for a small enough cl, 1t holds that

T Hoe€
4 b

V(&) > § € K.

So we have

/ exp(—V,(€)) dé - (2m)~$det(Hy-)
Ki

<22 (27r)’§det(,H29 )/K eXp(_gT?ZG*S)dﬁ

d
2

IN

22 - Prg (2] = 4(Vd +1)%)

1

exp(—tQ - 1)7

where the last inequality uses the tail inequality of x? distribution with d degree of freedom
(see for example, Lemma 1 of Laurent and Massart (2000)).

IN

For £ € Ko andé?:é\—i—%, we have
16 — 0| > crd =072,

Moreover, by equation (29) which states that ||6 — 6*
small enough ¢, we have

\/ logn when d < cfi— gil for

66 > Ed

Therefore, by the second statement of Lemma 24, we can conclude
0 1
R(6)~R(0) = R(6) ~R(6") +R(67) ~R(B) = Cd°(d ™" A[|9—67|2) ~ Crd?* \/?
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and

Then if (1) c;d=072/n < || — 0] < d~2, we have

R (0) = Rn(0) > R(6) — R(B) — [Rn(6) — - R(0) +
> O erd—0- 272—Cld7+1+74 /logn C’g\/@ 1y lognds
> Ca 4370272
- 2 )

where the last inequality uses d < cg;c - — for small enough ¢; when (2) 16 —6]| > d~=, then
by © C [-C,C]¢, we can get

Ru(0) — Ru(0) = R(0) — R(0) — [Ru(0) — Ry(8) — R(6) + R(O)]

> Cod ™0 -t \/@ 02\/@d1+v Cy B g4y
n n n

CCl
> dn— ’Yo
2

where the last inequality uses d < cio—- for small enough c¢. So we can obtain that when

§ € Ky,

V(&) =1 (Rn(§+ L Rn(é)) - (w(§+ £ n(§)> > G g0 (@ pg2o2e),
Vn N4D - 4

Thus using d < cl’gggn, we have

/ exp(—Vp(£)) d - (2m) 3 det(Hy-)
K>

d d Cc
< exp ( -3 log(27) + = log (||| He- Op)) - exp (Tl n-d 0 (d A d—Q’Yo—Z’Yz))

2
< exp <% .n-d (d—% A d—270—2’72)>‘

It remains to bound the denominator [ exp(—V,(£))d¢ - (2m)~ %det(’Hg*), we have

/ exp(—Va(€)) € - (2m)~ 2 det(Hy-)

T
> (27T)_gdet(7-[9*)/ exp (— %) d¢
IEN<Ay/d X rmin (H) 2
T
. sup exp (% — Vn(f))
lE11<4+/d/ Amin(Hox)
> exp(—l)
- 4 9

where the last inequality uses Amin(Hg+) > Cd™ 7, d < cfggi and the statements of

Lemma 18. We can then obtain the desired results by combining all pieces.
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D.3 Proof of Lemma 24

We first prove the first statement. It’s equivalent to show that it holds with probability
larger than 1 — 3% that for any 0,60" € B,(6*) and v € S,

S g 0) = S g(X,, ) ~ BT g(X,0)] + Bl g(X, )
=1 =1

§C< logndl-gws HG—G/”&—FIOﬂdI—M)-
n n

Consider a minimal %—covering set A of ST such that A c S?!, then log|A| < dlogn.
For any v € A, define the function class

Go = {d (v g(-,0) —vTg(-,0")) : 0,0 € B.(6")}.

Let G, = {af : a € [0,1], f € G,} be the star hull of G,. Then since sup,cx gep, (9+)9(2, 0)]| <
C'd?, it holds that sup,g v |f(z)] <2C. Consider the local Rademacher complexity as-

sociated with G,,
] ,

where ¢; are i.i.d. samples from Rademacher distribution, i.e., P(g; = 1) = P(g; = —1) =
0.5. We will use the following uniform law, which is a special case of Theorem 14.20
of Wainwright (2019), to prove the desired result.

Lemma 27 (Wainwright (2019), Theorem 14.20) Given a uniformly 1-bounded function
ilass F that is star shaped around 0, let (6*)% > ~ be any solution to the inequality
R, (6;F) < 62, then we have

R,(6;Gy) = ExmEe [ sup
feGy
Ef2S§2

1 n
n ;&‘f(Xi)

LY XD -EFX)]|
sup < 106

rer  VE[f(X)?] +6* B

with probability greater than 1 — c1 exp(—can - (6%)?).

Next we will use Dudley’s inequality (see for example, Theorem 5.22 of Wainwright (2019))
to determine the critical radius 6* in Lemma 27. For f, f' : X — R, define the pseudometric

1) = [ = S FX)2.
=1

Then by uniformly boundness of functions in class G, , we can obtain that

log N(Gy, dy, )

4C
< log — +log N(Gy, dn, %)

4C d’
< log — +log N(B,(6").df, =)

< Cpdlog 2,
£
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where recall that N(F,d,, ) denote the e-covering number of class F w.r.t pseudo-metric
d,. Let

2 2
r. = sup d:(f, f)
fvf/EE'v
E[f2],E[f'?]<62

<8 sup =S (F(X) — BF(X)) + 852
fegGy M 1
E[f2]<62 T

Then by (3.84) of Wainwright (2019), we can obtain that E[r2] < C 62 + C R, (5). Choose
5* = cd3 10% ™ then by Dudley’s inequality,

Ru (") <C 7 \/log
1
—C— 3 1
1 1 n _1
=CE [f rnd21/log£d€ 1(r, <n~ 2)}—1—01@ [\f/ rnd21/log£d€-1(rn>n 2)}
SCd IOgn—FCE{/ ndﬂ/logde]
n vn Jo
< 11/ BT 5 52 R (57),

3

Then if R, (6*) > (6*)?, we can obtain that R, (6*) < 2C% dlo% < 207¢26*2. thus when
c is large enough, §* solves the inequality R,(0*) < (6*)2. Then by Lemma 27 and the
assumption that sup,ega—1 E[(v7 g(X,0) — v g(X, 9’))]2 < Cd»||6 — 0?51, there exists a
constant C' such that it holds with probability larger than 1 — exp(—4dlogn) that for any
0,0 € B,.(0*),

n n

1
T T

- X;,0) — — Xi,0) — EoTg(X,0) + EoTg(X, 0
n;lvg( )n;lvg( ) —Ev"g(X,0) + Eo"g(X,0)

<0 (B T o - B ),
n

By the fact that log|.A| < dlogn, it holds with probability larger than 1 — exp(—3dlogn)
that for any v € A and 0,6 € B,(6%),

v gXZ,O —

1
‘— vl (X5, 0") — Evlg(X,0) + Evl g(X,0)
n

M:

i=1

gC(\/log” 40— 0|+ B ),
n
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Moreover, for any o € S, there exists v € A so that v — ¥|| < 2, hence for any

0,0 € B,(0"),

n n

1 ~T 1 ~T / ~T ~T /
- X;,0)— = X;,0) —EoTg(X,0) + Evlg(X, 0
sup n;lv 9(Xi,0) n;lv 9(X;, 0) —Ev” g(X,0) + Ev” g(X, 0)
d
=sup|— Y vTg(X;,0) — v g(X;,0") —Evl g(X,0) + EvTg(X,0)| + O(—).
sup| E E (X,0) (X,6) (\/ﬁ)

Then, it follows that it holds with probability larger than 1 — exp(3dlogn) > 1 — # that

1 < 1 &
- X;.0)— — X;.0) — Eg(X.60) + Eg(X.0'
n;g( ,0) n;g( ,0") —Eg(X,0) + Eg(X,0')

veSd-1| T =

<o\ o - 4 B ),

The proof of the first statement is then completed. For the second statement, by the
assumption that for any 6,0" € © and x € X, [{(X,0) — {(X,0")| < Cd7||0 — 0'||, we can
obtain that for any 6,6 € ©

1 1
= sup |— Zng(XZ-, 0) — - Zng(XZ-, 0') —EvTg(X,0) + Evl g(X,0)
— —

E[(((X,0) — £(X,0))*] < C*d*[|6 —¢'||%,

and
sup|(X,0) — £(X,0") < CdV(||6] + |¢/])) < Crd=*.
reX

We can therefore prove the second statement using the same strategy as the first state-

1
ment. For the third statement, define §,, = (IOTgL"d_%) A ((k’%)%d_l?‘%)uﬁl. For k =
0,1,---, [logy 3 | + 1, we define the set

{0,0' € B.(6*): |0 — 0| < 6,} k= 0;
Ap =1 {0,0 € B.(6%) : 25716, < [|0 — 0| < 26,} k=1,2,-- [logy 3~ ];
0,0 € B (6) : 27710, < [|0 — 0| <2r} k= [logy 5| + 1.

Then {6,0/ € B, (67)} = Sore2bonl !

the function set

Ay, Fix an integer 0 < k < [log, 2 5-] +1, we consider

L= { e d (U 0) — 00, 0) — (00— 0)) - (0.0) € Ag
2k6,,
Then there exists a constant ¢ such that for any f € Ly, it holds that sup,cy |f(z)| < ¢ and
E[f?(X)] < cﬁd_%cﬂ3 (2F6,)21201 < cd=27(2F5,)201 < ded—27(28716,)%%1. Then
consider the star hull £y of Ly, by (1) d < n"?; (2) the Lipschitzness of ¢; (3) the bound on
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the e-covering number of B,.(0*)w.r.t d7, it holds that
log N(Lg, dp, €)
< log% + log N(Lg, dp, €)
< Cdlog g.

Then similar as the proof of the first statement, we can use Dudley’s inequality and
Lemma 27 to obtain that there exists a constant ¢ such that it holds with probability
at least 1 — 3% that for any (6,0') € Ag,

)iﬁ:g(&'ﬁ) - izn:f(Xi,H/) — % zn:g(Xi,G’)(e -0
2 i=1

i=1

&
I

E((X,0) — EU(X,0') — Eg(X,0')(0 — 9')) ‘

< c( loi"d12”3 L2k 15, log"dlﬂ (2’“—15n)>
1 I
(VQ%”1“3<W O[] +6,)7 1 + =22 (]l — 9W+6))
1 1
<4 (fmweWM %%Mwewu%%)

Then by log, 5~ < log n, consider the intersection of the above events for k = 0,1, - - - , [logy éj +
1, we can obtaln the desired result.

D.4 Proof of Lemma 25
Recall 6° = 0* — n~1 S Hylg( X5, 0%), then by E[g(X, 0*) = VR(6*) = 0, we have

H@wWﬂPZ%*&ﬁ EfHy9(X. 07l

= sup ZUTHQ* 9(X;,0") — EpTH, g(X,07)]| .
veSd—1 n
It remains to derive a high probability bound of the supremum of the above empirical
process. Consider a minimal f—covering set A of S%1 such that A C S%~!, then log |A| <
dlogn. Fix an arbitrary v € s~ 1, then by the assumption that (1) H,. E[g(X;, 0%)T g(X;, 0%)|Hyt <
Cd'ily; (2) for any 0 € ©, R(0) — R(0*) > C'd=°(d=" A ||0 — 6*||?), which leads to
Ho+ = C'd"14; (3) supyex [|9(X,0%)|| < Cd?, we can obtain

sup [l M, g(X,0%)| < cC'arte,
Pt
vES

and
sup E[vl M, g(X,6%))2 < Cd™.

veSd—1

70



COMPUTATIONAL COMPLEXITY OF MALA FOR BAYESIAN POSTERIOR SAMPLING

Therefore using Bernstein-type bound (see for example, Proposition 2.10 of Wainwright
(2019)), we can get there exists a constant ¢ such that it holds with probability larger than

1 — exp(3dlogn) that,
<o(d R /logn n dH,H%logn)'
n n

Moreover, for any o € S?°!, there exists v € A so that v — ¥|| < 2, hence for any
0,0" € B.(0*),

1 n
- > 0T HG (X5, 07) — EvTH (X, 07)
=1

1 n
- > 0T H g(X,0%) — BoTHy g(X,07)
i=1

+ O(d'YO'i"Y

1 n
~ D U H (X, 07) — BB Hp (X, 07)| <
i=1

).

logn
n

Thus by a simple union bound, it holds with probability larger than 1—exp(2dlogn) > 1— #

that
1 T Toi—1 EE logn 1+ logn
— L 9(X;,0") —E L 9(X,0%)] <2C(d —— 4Tt —=0),
LS e st < a0 [T e 8y

We can thus obtain that it holds with probability larger than 1 —n~2 that

llogn +Cd1+w+7010gn_
n
D.5 Proof of Lemma 26

Firstly by Rn(a) < Rn(0%) and R(0) — R(6*) > C'd=0(d~" A ||0 — 6*||?), we can obtain
that

||§<>_9*

~ A~

C'd0(d ™ A0 = 0%[2) < R(O) — R(0%) < R(B) — R(67) — Ra(0) + R(67).

It follows from the second statement of Lemma 24 that

. I 1
d0(d A8 = 07?) < O\ ZERda 0 — 0% + C =2
n
If |6 — 0*| > d~ 7, then

d-0"N < ¢ /logn 1+7”9 9*||+010gnd3+7

On the other hand, as 6 € @ C [~C,C)?, we have || — 6| < 2CV/d, we can then obtain
that when d < ¢35 Toan )2+2(w+m+m

/1 1 /1 1
logn 1+7||9 o | + ognd < 90t logn ognds
n n

< 20\/ed 0N 4 c¢d~ 3V 200tm)
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which will cause contradiction when ¢ is sufficiently small. Hence we have || — 6*|| < d=

and thus
R 1 1
A0 — 07|12 < C'/ Og”d R0 — 0%+ C Og"d +,

which leads to ||§— | < Cy \/b%dfr”*%. We will first show the first statement
of Lemma 26 and use the statement to improve the dependence of d in the bound of
logn j3+7+70
n

By Rn(6) < Rn(6) for any 6 € B,.(6*), we can obtain that

- 9(Xi,0)(0 - )
=1
< Ra() ~ Rul®) — (X))
=1
< |Ru(®) — Ra(d) - * igm, 0)(0 — 0) — R(0) + R(0) +E[g(X,0)(0 — 0)]
i=1

The first term can be bounded using the third statement of Lemma 24, that is
~ ~ 1< ~ o~ o~ ~ ~ ~ o~ o~
‘Rn(9) —Ral0) - > 9(Xi,0)(0 — ) — R(0) + R(0) + E[g(X,0)(0 — )]
i=1

1 lo 1
< O\ ERG T3P 4 0B - g 4 0 (B

The second term can be bounded using the twice differentiability of R around 6*,

~ o~ o~ 1 o o~ o ~
‘R(@ —R(9) ~E[g(X,0)(0 - 0)]| = 5 Sup I g1 1 -eyall 18 = 0|> < Cdllo —9]*.
where the last inequality is due to the assumption that the mixed partial derivatives of R ()

up to order two are uniformly bounded by an (n,d)-independent constant on B,.(6*). Then

we choose 6 = 0 — tw for a t > 0 that will be chosen later. Thus
1225 9(Xi,0)]

Cyt lZg(xi,é) < (BT gy 1B gy 0BT 5 g
n “ n n n
1 1 1
= O Zg X;,0) </ Og"dlmtﬁ Ognd”7 +( Ogn) Jt+ dt.

Choose t = 105 " we have it holds with probability at least 1 — n~2 that

%Zg(Xiﬁ)

=1

< cgosn Cd”%(—log”)%”}l.
n n
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For the second statement, recall §° = §* — 1 LS Hylg(Xi,0). By Lemma 25 and the

assumption that d < c(;5a e )2+2<~/+m+w1> we can obtain ||9<> —H* 10%. We
claim that it suffices to show that
n
1 Z (X; 50) < O g s (1+’Y4)<10gn)1+51 Cd1+vv(72+74)10gn (30)
n — g (3 = n n

holds with probability at least 1 — cn~2. Indeed, under the above statement, we have

IE[g(X,8)] — Elg(X,6°)]]

1< Sl ~ ~ ~
< |53 0060 - £ 39036, 7) - Bla(x. D) + Elo(x. 5|
i=1 i=1
1< ~ 1< ~
=3 9(X3,0)|| + || =D 9(X:,6°)
n =1 n =1
<C (1 / loin = ||9 9<>||ﬁ1 + A2 +8 (1+W4)(7loin)% + d1+“/\/(72+74)loin>7

where the last inequality follows from the first statement of Lemma 24. On the other hand,
by the Lipschitzness of Hy around 6*, we can obtain that,

IE[g(X,0)] — Elg(X,6°)]|

> [Hye (6 — 6°)| — |[E[g(X,0)] — E[g(X,6°)] — Hy- (6 — 6°)]|

= |Hg- (6 — 6°)I| = sup [E[v"g(X,0)] —E[v"g(X,0%)] — o Hy- (6 — 6°)
veSd-1
> p1(He-) |0 — 6° — sup sup [v”( Hygor(1_vg — Hor) (0 — 6°)]
veSd-1t€(0,1)

o~ I
memne—wn—c(d%ﬂﬂm 26 - e<>|r>

where the last inequality uses ||§— 0*|| < Cy bﬂdl+7+% and ]|§° 0*

”4 logn
n

with 74 < 2(70 + ). Hence when d < ¢35 oan )1+27+272+470 for a sufficiently small ¢, we can
obtain that

o) d_70||§— é\oH < llogn e H‘9 9<>||,31 + d—i 48 (1+274)(10gn)% + d1+w(72+74)10gn7
n n

n

which leads to

”§—§°|] <C (d1+2”3+ﬁ V()4 (loin)1+ﬁl VO 0 loin_i_(dvr%Jr% ”Oin>l_lﬁl>'

Now we show equation (30), using the first statement of Lemma 24, we can obtain that

1 & ~ 1 & ~

- Xi7<>_* Xia ) —E Xvo E X7*

[f D00 D7) B, 7) + B0
logn

<C(=0) +0 28

logn

1+ 1+ 1+
EA A () A+
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Moreover, by the Lipschitz continuity of Hy around 6*, we can obtain that

b 1
IEg(X,8°) — Eg(X,0%) — Hoe (6° — 0%)]| < d|§° — 0*||> < C.at+rst22 250

Therefore, combined with the fact that 1 > | g(X;, 6*) + Ho- (9 —60*) = 0, we can obtain
that it holds with probability at least 1 — en™2 that

n

% Zg(Xia 50)

=1

1 & Sy 1y "
:HnZg(Xi,eO)—nZg(Xfﬁ ~ Mo (0° - 67)
i=1 =1

1 « ~ 1 * b *
< ang(xi,m) _ gZg(xi,e ) — Eg(X,0°) + Eg(X, 0%)

+ [Eg(X,6°) — Eg(X,0%) — Ho-(6° — 67)]|

L (g Josn 1

<cd5 logn

+C d1+7V('Y2 +y4) 25
n

Appendix E. Proof of Remaining Results
E.1 Proof of Lemma 4
Let moc = [v/n(- — g)]#wn and fioc = [vn(- — 5)}#%. We can bound

My = sup HolA)
A: ﬂn(A)>07TTL(A)

) IU’IOC(A)
ACK : o0 (A)>0 Toc(A)
/’Lloc(A) 1
sup .
ACK 1 (A)>0Toc| K (A)  Tloe ()

—~
N

< Ji exp(—32" Jz) dzexp(— 52T z) [ exp(=Va(2)) dwexp(— 32’ Jz) 1
< sup .

seic | [icexp(—3aTT1a) drexp(—§aTJa)  [icexp(—5aT72) dxexp(—v @) ] moc(K)
< SUlprexp —§xTJx) dxexp(—3 1,771 ) . fKexp ~V(2)) dwexp(—3 LT Jx) | 1

xerKeXp —7:UTI Ly )dxexp(—ngJﬂs) xerKexp(—%a:TJx)dzexp( Vn(JU)) Toc (K)’

where (7) uses poc(K) = 0. Since for any function pair fi, f2, it holds that

ot = [ awgiegae= [ aeas

we can obtain that

~ 1 1
Moy < sup exp(|lzf (It = J sup ex 2V —fxTJa: . .
0= supespllst (77! =)o) supexp (2¥ale) = gt el) - 2
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E.2 Proof of Corollary 7

We first verify that under Condition B.3’, Condition B.2 and Condition B.3 holds, where
the function ¢ in Condition B.3 is chosen as the gradient Vyf. Condition B.2 and B.3.1
directly follows from the assumption that ||Vgl(z,0)|| < Cd?. For Condition B.3.2, since

[ Hessg(¢(x, 0))H|c2)p < Cd*, we have for any z € X and 0 € O,

IVol(z,0) = Vol(x,0)|| < VCd»|6 — ¢

and thus
d2(0,0") <VCd||o— .

Then the covering number condition for dj, follows from the fact that the e-covering num-
ber of unit d-ball is bounded by (%)d. Condition B.3.3 directly follows from the as-
sumption that ||]Hess@(€(a:,9))\||c2)p < Cd". Condition B.3.4 follows from the assumption
that Hy' Ag-Hy! < Cd"I,; with Age = E[Vpl(X,0%)Vpl(X,0%)T]. Then the first state-
ment directly follows from Theorem 5. For the second statement, we first verify that
It = |5t > icg Hesso(£(X;, 6)) is a reasonable estimator to Hg- in the following lemma.

Lemma 28 Under assumptions in Corollary 7, let m = |S|, it holds with probability larger
than 1 —n=2 that

T =l < (7B v (075 5By (4 2B,

m m
i —~1 Y0 ntl v3+2v0+5
Then since [[Hy. || < Cd™, d < etz and m > Cad 3, we have
141l < 2Cd,

and

+1 1 7 T
172 He12 = Lalllop, < Illop 1T~ = Heo

op —
< Cd”o(dm;l logn) v (meH logn) y (dH%JF'Y? /logn)
o m m n
1
< =
S5

which leads to 1
5l = T3 Mg 12 < 21

Then by

Hoe = T2 (T2 Hp 12)T 2,

we have B .
1llop < 21Hg- Ml

I llop < 201Ho+ oy,

Thus the requirements for the preconditioning matrix I in Theorem 5 are satisfied with
p2 = 2 and p; = % Finally, we will control the warming parameter using Lemma 4.
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Recall pg = Nd(é\, nflf)‘

F?R(0%)
891‘89j . B

© ff‘%(e Bl<svard)’ where ¢; is a constant so that ¢q > 9V
W/n — = Cc1

sup
i€[d],j€[d]

~ 1 1 92R(67)
< 2 < — K
1721, < V2IHE NI, < \/2di€[3]gjp€[d] a5, < V20

and Lemma 19, we can obtain that
mo (VAT (0 = B)]) < 2v/c1d) > 1 exp(-1).

Moreover, consider K = {¢ : f_%f < 2v/c1d}, then for any ¢ € K, we have

1+

~ _1
&l < 20172 |V erd < 24/2¢1d]H 2, < cod 2

Then by Lemma 3, when d < c% for a small enough ¢, for any £ € K, we have

fT”He*&’ 1
- = > < —.
Vale) - S5 < 2
In addition, for any & € K, we have
T ~1 ~1
sup|eT (17! = Ho)e| = sup |7 (Ig— [7Hg-17)¢]
ek lel<2verd

< 2¢1d||[Ig — T2 Ho- I3,

< 20 (a5 BT (5B | (g, floemy
m m n

1
< ds,

where the last inequality uses d < c% and m > Cy d73+2'70+%. The desired result then

follows from Lemma 4.
E.3 Proof of Lemma 28
Since E[I!] = Hg, we have
It = Heoelllop < IIT71 — Hilllo, + 11+ = Ho-ll,,-

The second term can be bounded using Condition B.1.2 and equation (27) in the proof of

Lemma 18, that is
o~ 1
IHy — Hooll, < CdP|[f— 07| < Cd 2 \/@
> n

The first term can be bounded using Bernstein’s inequality. Let m = |S|, for v,v’ € S¢!
and 60,60 € B,.(6*), we have

\/m—l Z (vTHessg(£(X, 0))v — v'" Hessg(£(X;;, 9’))“’)2

ies (31)
< CVdllv—|| +Cd|6—¢.
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Then consider N, and Aj to be the minimal n~' and n~'d™"™ covering set of S and
B, (6%), then log [N,| < Cdlogn and log [Ny| < Cdlogn. Using the fact that
sup [|Hesso(¢(X,0)]|,, < Cd?;

llop
0eB(0*), XeX

T X T X. 0 2
sup ]E[(UTHeSSQ(E(X, 0))2] < sup E[(U VHX,9) v, 2V€( .0)) } <Cds,
e B, (0%) veSi—1 0.0/ %), 10 —¢']]
veESA—

we can get by Bernstein’s inequality and a simple union bound argument that it holds with
probability at least 1 — n ¢ that for any v € N, and 6 € Np,

1
sup sup (’UT(m_l ZHQSSQ(E(XHH)) o HQ)Q}T> < C (d73+1 10gn) v (d'7327"’2 Ogn)

0€ B, (0*)veSi—1 pyaye m m

E.4 Proof of Corollary 8

We will first check that Conditions B.1-B.3 hold for the quantile regression example under
Condition D.1 and D.2. Consider the loss function

0X,0)= (Y — XT0)(r — 1(Y < X70)),

and its subgradient B B

9(X,0) = (1(Y < XT9) — 1) X.
Then we can write

_ XTo—-XTo~ _ N
R(0) =E[(X,0)] =E[r (Y — XT9)] - E [ / (e + XT9* — XT0) fe(e)ds} .
Taking derivative of R w.r.t 6, we can obtain
VR(0) = —7-E[X] + E[1(Y < XT6)X] = Eg¢(X, ).

Thus, B B s

Ho = E[fo(XT0 - XTo") X XT].
Then for 6 € B, / va(0") with a small enough ¢, it holds that

fo(XTO — XT0%) 21
fe(0) T2
Then by the fact that VR(6*) = 0 and E[XXT] = C’d~*°I,;, we can obtain that for any
6e€Bc (9*)
R(0) = R(07) > Crd="°[|6 — 6" |]*;
on the other hand, for any 6 € BT(Q*)
( c(6 —0%)

0
RO- Vo — o

) R(6%) > Cyd—0 L,
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hence for any 6 € R?,
R(0) = R(6%) = Crd= (™" A [0 —6[]%).
Moreover, for any 6 € © and v € S41,
0T (Hg — Ho-Jv| < vTE er()?Te ~XTgr) - fe(O)’ XXT} v
<CE [pZT(e - a*)\vao?Tv]

<clo- ol (|xe-o)/lo-o1]") @I}

< Cd||o -6,

where the last inequality uses the assumption that sup, cga-1 E[nT)Af | < Cd*. Thus we have
Condition B.1 holds with v9 = ag, 71 = 1, 72 = a1. For Condition B.2, by X = supp(f() C
[~C, C)?, we can obtain ||g(X,0)|| < CV/d, thus for any 0,9’ 10(X,0)—(X,0)| < CVd||§—
¢’| and Condition B.2 and Condition B.3.1 hold with v = 5 For Condition B.3, since for
any 0,0 € ©,

J ZHgXl,H 9(Xi,0") 2J ZHXH 1(Y < X70) —1(Y < XT9'))2

= \/&J % zn:u(y < XT0) —1(Y < XT9'))2,

i=1

by Lemma 9.8 and Lemma 9.12 of Kosorok (2008), the function class F = {1(Y < #7X),6 €
©} is a VC-class with VC-dimension being bouned by d + 3, then using Theorem 8.3.18
of Vershynin (2018) on the covering number’s upper bound via VC dimension, we can verify
Condition B.3.2.

For Condition B.3.3, since for any v € S4~! and 6,6’ € ©,

E(v"g(X,0) —v"g(X,0))* = E[(1(Y < X]'0) — 1(Y < X['6")*(v" X)?]
_ XTovXTo' B _
=E [(UTX)2/~ _ fly—-XTeMX) dy]
XTonXTo
< CE [(UT)?)2\)ZT9 ~ X7y

<C|0-0 sup Ep"X[* < Cd™ |0’ -0
vesd—1

—E[(— (Y = XTO1Y < X[0) + (¥ = XTON1(Y < XT0) —1(Y < XF0)XT(0-0))]

XTovXTe _ o
—E / (v — XT0)2(y — X0%|X) dy

XTOAXTo

< CEIXTo—XTOP <Cd |0 — o).
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Thus Condition B.3.3 holds with v3 = a1 and 81 = % For condition B.3.4, since
E[g(X,0%)g(X,0")T] = E[(7> + 1(Y < XT9) — 2r1(Y < XT0))XXT] = (r — ?)E[XXT],
and J = Hg- = f.(0)E[XXT], we have

(EXXT))2J BIXXT)? = £(0) 'L
and thus v4 = 7p.

Now we verify that the requirements of the I in Theorem 5 are satisfied. Recall I-! =
|S| > ics Xi X!, in order to show that |HI_§J 1I_§H| v |HI2 JI? llop is bounded above by a

constant, we will derive upper bound to the term of H]h( [XXT])Iz — Il Let m =15,
similar as the proof for Lemma 28, we can obtain it holds with probability larger than 1— #

that .
. - I 1
n '3 X X! - E[XXT] ‘ <C sup JERTR b5 oen + a2t Al
- op veSa—1
<cdit logn +al210gn,
m
where the last inequality is due to sup y/E[vTX[* < Cdr sup \/E\UTXP < Cdrt
veSd—1

Then by IE[XXT] = C'd=0[;, and m > Cy d*1T220+3/2165 n we can obtain

7l <

Thus we have

~ e~ ~ ~ =~ 3+2017  [logmn
172 BXXTNIZ = Tallgp < Tl 1T = BIXXTD,, < Crd® .

which leads to 1
Sl = TEXXTNE 220,

Thus
1 ~1 ~1
ife(O)Id < I2Hp12 < 2f(0)],

Furthermore, by
~ 1

Mo = f(0)- T2 (T2 (B[XXT)T2)T 3,

we have

171l < 27O Hg

op — 0p§

1
[ I#Ho+llop

2
*® = 7.(0)
We can then obtain that the requirements for the preconditioning matrix I in Theorem 5
are satisfied with py = 2f.(0) and p1 = £ f.(0).
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