


Gaussian primitive locations from this distribution. We make

the sampling operation differentiable via a reparameteriza-

tion trick that couples the density of a sampled Gaussian

primitive to the probability of that location. When receiving

a gradient that would increase the opacity of a Gaussian at

a 3D location, our model increases the probability that the

Gaussian will be sampled at that location again in the future.

We demonstrate the efficacy of our method by showcas-

ing, for the first time, how a 3D Gaussian splatting represen-

tation can be predicted in a single forward pass from just a

pair of images. In other words, we demonstrate how 3D Gaus-

sians can be integrated in an end-to-end differentiable system.

We significantly outperform previous black-box based light

field transformers on the real-world ACID and RealEstate10k

datasets while drastically reducing both training and render-

ing cost and generating explicit 3D scenes.

2. Related Work

Single-scene novel view synthesis. Advancements in neu-

ral rendering [50] and neural fields [29, 42, 57] have rev-

olutionized 3D reconstruction and novel view synthesis

from collections of posed images. Recent approaches gen-

erally create 3D scene representations by backpropagating

image-space photometric error through differentiable ren-

derers. Early methods employed voxel grids and learned

rendering techniques [27, 31, 40], and more recently, neu-

ral fields [2, 28, 29, 57] and volume rendering [27, 29, 49]

have become the de-facto standard. However, a key hurdle

of these methods is their high computational demand, as

rendering usually requires dozens of queries of the neural

field per ray. Discrete data structures can accelerate render-

ing [6, 12, 25, 30] but fall short of real-time rendering at high

resolutions. 3D Gaussian splatting [19] solves this problem

by representing the radiance field using 3D Gaussians that

can efficiently be rendered via rasterization. However, all

single-scene optimization methods require dozens of images

to achieve high-quality novel view synthesis. In this work,

we train neural networks to estimate the parameters of a

3D Gaussian primitive scene representation from just two

images in a single forward pass.

Prior-based 3D Reconstruction and View Synthesis. Gen-

eralizable novel view synthesis seeks to enable 3D recon-

struction and novel view synthesis from only a handful of

images per scene. If proxy geometry (e.g., depth maps) is

available, machine learning can be combined with image-

based rendering [1, 22, 36, 56] to produce convincing re-

sults. Neural networks can also be trained to directly regress

multi-plane images for small-baseline novel view synthe-

sis [45, 53, 60, 61]. Large-baseline novel view synthesis,

however, requires full 3D representations. Early approaches

based on neural fields [32, 41] encoded 3D scenes in indi-

vidual latent codes and were thus limited to single-object

scenes. Preserving end-to-end locality and shift equivariance

between encoder and scene representation via pixel-aligned

features [14, 23, 39, 52, 58] or via transformers [35, 54]

has enabled generalization to unbounded scenes. Inspired

by classical multi-view stereo, neural networks have also

been combined with cost volumes to match features across

views [5, 7, 18, 26]. While the above methods infer inter-

pretable 3D representations in the form of signed distances

or radiance fields, recent light field scene representations

trade interpretability for faster rendering [10, 37, 43, 46, 47].

Our method presents the best of both worlds: it infers an

interpretable 3D scene representation in the form of 3D

Gaussians while accelerating rendering by three orders of

magnitude compared to light field transformers.

Scale ambiguity in machine learning for multi-view ge-

ometry. Prior work has recognized the challenge of scene

scale ambiguity. In monocular depth estimation, state-of-

the-art models rely on sophisticated scale-invariant depth

losses [11, 13, 33, 34]. In novel view synthesis, recent single-

image 3D diffusion models trained on real-world data rescale

3D scenes according to heuristics on depth statistics and con-

dition their encoders on scene scale [4, 38, 51]. In this work,

we instead build a multi-view encoder that can infer the

scale of the scene. We accomplish this using an epipolar

transformer that finds cross-view pixel correspondences and

associates them with positionally encoded depth values [16].

3. Background: 3D Gaussian Splatting

3D Gaussian Splatting [19], which we will refer to as 3D-GS,

parameterizes a 3D scene as a set of 3D Gaussian primi-

tives {gk=(µk,Σk,αk,Sk)}
K

k
which each have a mean µk,

a covariance Σk, an opacity αk, and spherical harmonics co-

efficients Sk. These primitives parameterize the 3D radiance

field of the underlying scene and can be rendered to produce

novel views. However, unlike dense representations like neu-

ral fields [29] and voxel grids [12], Gaussian primitives can

be rendered via an inexpensive rasterization operation [33].

Compared to the sampling-based approach used to render

dense fields, this approach is significantly cheaper in terms

of time and memory.

Local minima. A key challenge of function fitting with prim-

itives is their susceptibility to local minima. The fitting of a

3D-GS model is closely related to the fitting of a Gaussian

mixture model, where we seek the parameters of a set of

Gaussians such that we maximize the likelihood of a set of

samples. This problem is famously non-convex and gener-

ally solved with the Expectation-Maximization (EM) algo-

rithm [8]. However, the EM algorithm still suffers from local

minima [17] and is not applicable to inverse graphics, where

only images of the 3D scene are provided and not ground-

truth 3D volume density. In 3D-GS, local minima arise when

Gaussian primitives initialized at random locations have to
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ACID RealEstate10k Inference Time (s) Memory (GB)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Encode ↓ Render ↓ Training ↓ Inference ↓

Ours 28.27 0.843 0.146 26.09 0.863 0.136 0.102 0.002 14.4 3.002

Du et al. [10] 26.88 0.799 0.218 24.78 0.820 0.213 0.016 1.309 314.3 19.604

GPNR [46] 25.28 0.764 0.332 24.11 0.793 0.255 N/A 13.340 3789.9 19.441

pixelNeRF [58] 20.97 0.547 0.533 20.43 0.589 0.550 0.005 5.294 436.7 3.962

Table 1. Quantitative comparisons. We outperform all baseline methods in terms PSNR, LPIPS, and SSIM for novel view synthesis on

the real-world RealEstate10k and ACID datasets. In addition, our method requires less memory during both inference and training and

renders images about 650 times faster than the next-fastest baseline. In the memory column, we report memory usage for a single scene and

256× 256 rays, extrapolating from the smaller number of rays per batch used to train the baselines where necessary. Note that we report

GPNR’s encoding time as N/A because it has no encoder. We bold first-place results and underline second-place results in each column.

extending the neural network f as

φ, δ,Σ,S = f(F[u]). (8)

Summary. Algorithm 1 provides a summary of the proce-

dure that predicts the parameters (µ,Σ,α,S) of a pixel-

aligned Gaussian primitive from the corresponding pixel’s

feature F[u].

5. Experiments

In this section, we describe our experimental setup, evaluate

our method on wide-baseline novel view synthesis from

image pairs, and perform ablations to validate our design.

5.1. Experimental Setup

We train and evaluate our method on RealEstate10k [61],

a dataset of home walkthrough videos downloaded from

YouTube, as well as ACID [24], a dataset of aerial landscape

videos. Both datasets include camera poses computed by

SfM software, necessitating the scale-aware design discussed

in Section 4.1. We use the provided training and testing splits.

Because the prior state-of-the-art wide-baseline novel view

synthesis model by Du et al. [10] only supports a resolution

of 256× 256, we train and evaluate our model at this reso-

lution. We evaluate our model on its ability to reconstruct

video frames between two frames chosen as reference views.

Baselines. We compare our method against three novel-

view-synthesis baselines. pixelNeRF [58] conditions neural

radiance fields on 2D image features. Generalizable Patch-

based Neural Rendering (GPNR) [46] is an image-based

light field rendering method that computes novel views by

aggregating transformer tokens sampled along epipolar lines.

The unnamed method of Du et al. [10] also combines light

field rendering with an epipolar transformer, but addition-

ally uses a multi-view self-attention encoder and proposes

a more efficient approach for sampling along epipolar lines.

To present a fair comparison, we retrained these baselines

by combining their publicly available codebases with our

datasets and our method’s data loaders. We train all methods,

including ours, using the same training curriculum, where

we gradually increase the inter-frame distance between refer-

ence views as training progresses. For further training details,

consult the supplementary material.

Evaluation Metrics. To evaluate visual fidelity, we com-

pare each method’s rendered images to the corresponding

ground-truth frames by computing a peak signal-to-noise

ratio (PSNR), structural similarity index (SSIM) [55], and

perceptual distance (LPIPS) [59]. We further evaluate each

method’s resource demands. In this comparison, we distin-

guish between the encoding time, which is incurred once

per scene and amortized over rendered views, and decoding

time, which is incurred once per frame.

Implementation details. Each reference image is passed

through a ResNet-50 [15] and a ViT-B/8 vision trans-

former [9] that have both been pre-trained using a DINO

objective [3]; we sum their pixel-wise outputs. We train our

model to minimize a combination of MSE and LPIPS losses

using the Adam optimizer [20]. For the “Plus Depth Regu-

larization” ablation, we regularize depth maps by fine-tuning

with 50,000 steps of edge-aware total variation regularization.

Our encoder performs two rounds of epipolar cross-attention.

5.2. Results

We report quantitative results in Table 1. Our method out-

performs the baselines on all metrics, with especially sig-

nificant improvements in perceptual distance (LPIPS). We

show qualitative results in Fig. 5. Compared to the baselines,

our method is better at capturing fine details and correctly

inferring 3D structure in portions of each scene that are only

observed by one reference view.

Training and Inference cost. As shown in Table 1, our

method is significantly less resource-intensive than the base-

lines. Compared to the next-fastest one, our method’s cost to

infer a single scene (encoding) and then render 100 images

(decoding), the approximate number in a RealEstate10k or

ACID sequence, is about 650 times less. Our method also

uses significantly less memory per ray at training time.

Point cloud rendering. To qualitatively evaluate our

method’s ability to infer a structured 3D representation, we
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[34] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-

sion transformers for dense prediction. In Proceedings of

the IEEE/CVF International Conference on Computer Vision,

pages 12179–12188, 2021. 2

[35] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,

Luca Sbordone, Patrick Labatut, and David Novotny. Com-

mon objects in 3d: Large-scale learning and evaluation of

real-life 3d category reconstruction. In Proceedings of the

International Conference on Computer Vision (ICCV), pages

10901–10911, 2021. 2

[36] Gernot Riegler and Vladlen Koltun. Free view synthesis. In

Proceedings of the European Conference on Computer Vision

(ECCV), 2020. 2

[37] Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs

Bergmann, Klaus Greff, Noha Radwan, Suhani Vora, Mario

Lucic, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene

representation transformer: Geometry-free novel view synthe-

sis through set-latent scene representations. arXiv preprint

arXiv:2111.13152, 2021. 1, 2

[38] Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann,

Hong-Xing Yu, Yunzhi Zhang, Eric Ryan Chan, Dmitry La-

gun, Li Fei-Fei, Deqing Sun, et al. Zeronvs: Zero-shot 360-

degree view synthesis from a single real image. arXiv preprint

arXiv:2310.17994, 2023. 2

[39] Prafull Sharma, Ayush Tewari, Yilun Du, Sergey Zakharov,

Rares Andrei Ambrus, Adrien Gaidon, William T Freeman,

Fredo Durand, Joshua B Tenenbaum, and Vincent Sitzmann.

Neural groundplans: Persistent neural scene representations

from a single image. In Proceedings of the International

Conference on Learning Representations (ICLR), 2022. 2

[40] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deepvox-
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