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barycentric coordinates from more general skinning weights; to en-

sure that a linear deformation of the cage vertices leads to a linear

deformation �eld inside the cage, every point in the interior must

equal the linear combination of the cage vertices with its barycentric

coordinates as coe�cients. Moreover, we might expect barycentric

weights to be smooth and/or local, although these considerations

may be understood as objectives rather than hard constraints.

Existing methods for computing barycentric coordinates typi-

cally fall into two categories. Classically, a number of barycentric

coordinate functions are expressed in closed-form [Ju et al. 2005;

Lipman et al. 2007] or via relatively simple algorithms. These co-

ordinates are fast to evaluate but often add assumptions on the

cage vertices (e.g., convexity) to satisfy the required properties of

barycentric coordinates; moreover, they are in�exible in the sense

that they each provide a single means of computing coordinates

rather than allowing users to optimize for coordinates best suited

for a given application. More recently, Joshi et al. [2007] and Zhang

et al. [2014] pose the computation of generalized barycentric coor-

dinates as a convex optimization problem. This approach promises

global satisfaction of the constraints de�ning barycentric coordinate

functions and suggests the possibility of optimizing for customized

barycentric weights for a given application or artistic intention, but

the current models rely on a mesh-based discretization and opti-

mization technique customized to a speci�c smoothness objective

functions.

In this paper, we introduce variational barycentric coordinates

(VBCs), a �exible mesh-free framework that allows us to optimize

for generalized barycentric coordinates given a boundary cage and

a di�erentiable objective. VBCs are built on a simple mathematical

observation, namely that all generalized barycentric coordinates

can be expressed as weighted averages of simplex barycentric coor-

dinates of all the simplices generated by connecting cage vertices.

With this observation in place, we can represent the set of general-

ized barycentric coordinates for a given cage using the machinery

of neural networks, which allow us to e�ciently operate in the

high-dimensional space of all possible simplices. Beyond total vari-

ation, we can then optimize using customized objectives tailored to

di�erent tasks and applications.

VBCs o�er several departures from and advantages over classical

generalized barycentric coordinate functions. Most importantly, our

formulation is general and operates in the space of valid barycentric

coordinates by construction. We o�er a di�erentiable representation

of the entire function class of barycentric coordinate functions, as

well as some examples for the possible design choices one could

make by incorporating di�erent optimization objectives. We also

o�er a mathematically justi�ed means of computing and optimiz-

ing the total variation of our model in the presence of possible

discontinuities.

Furthermore, our formulation is de�ned in terms of the cage

vertices, allowing us to support cages composed of meshes, triangle

soups, or point clouds. When it is acceptable to restrict to fewer

degrees of freedom at the cost of excluding some possible coordinate

functions, we o�er a practical modi�cation to the algorithm that

not only enforces locality but also signi�cantly reduces the memory

and compute required.

To demonstrate the bene�ts of our approach, we provide a thor-

ough qualitative evaluation as well as comparisons with previous

work. We additionally o�er a quantitative analysis of the di�erent

performance trade-o�s introduced by our approach.

Contributions. In summary, we introduce:

• a mathematical formulation that expresses generalized barycen-

tric coordinates as convex combinations of simplex coordinates,

• a computational model that uses our formulation to constrain

neural networks to the function space of barycentric coordinates,

• heuristics that help make our model practically tractable while

simultaneously enforcing a notion of locality in our coordinates,

• a way of approximating and optimizing several common smooth-

ness energies—such as total variation and the Dirichlet energy—in

the context of discontinuous neural �elds,

• experiments that demonstrate how our coordinates can be com-

bined with familiar deformation-aware energies or used to solve

inverse deformation problems, and

• a thorough evaluation and comparison that con�rms the validity

and practical usefulness of our model on a variety of 2D and 3D

shapes.

2 RELATED WORK

2.1 Generalized Barycentric Coordinates

Manymethods have been proposed to compute generalized barycen-

tric coordinates. A complete survey is outside the scope of our discus-

sion; we refer the reader to existing surveys [Floater 2015; Hormann

and Sukumar 2017] for a comprehensive introduction. Here, we

mention a few particularly relevant works to our formulation.

Barycentric coordinates go back at least as far as Möbius [Coxeter

1969, p. 217], who used them to de�ne a coordinate system on the

inside of a triangle, parametrized by the triangle vertex positions.

They have since been generalized to polygons [Floater 2003] and

higher dimensions [Floater et al. 2005; Ju et al. 2005].

In graphics and geometry processing, barycentric coordinates are

used for interpolation and deformation. The cage polygon/polyhedron

parameterizes motions of a complicated interior domain in 2D/3D

[Chen et al. 2010; Deng et al. 2020; Hormann and Sukumar 2008;

Huang et al. 2006; Li and Hu 2013; Lipman et al. 2007, 2008; Weber

et al. 2009]. Beyond these basic applications, barycentric coordi-

nates are a part of methods for distance computation [Rustamov

et al. 2009], image registration [Weistrand and Svensson 2015], mesh

generation [Gregson et al. 2011], �nite elements [Wicke et al. 2007],

and subdivision [Liu et al. 2020].

Later works on generalized barycentric coordinates use the ge-

ometry of the domain’s interior to produce coordinates that are

aware of local distances; this approach yields more natural-looking

animations [Joshi et al. 2007]. Unlike early attempts to de�ne gen-

eralized barycentric coordinate functions, many of these works

pose computation of the coordinates as an optimization problem

over the space of possible coordinate functions. The recent Local

Barycentric Coordinates [Zhang et al. 2014] are geometry-aware

barycentric coordinates obtained via minimizing an energy con-

taining the Total Variation (TV) of the coordinate functions. This

method was recently accelerated by Tao et al. [2019]. Wang et al.

[2015] optimize the Laplacian energy with a modi�ed boundary
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term to produce cage-free barycentric coordinates with simple con-

trol vertices instead of control cages. Stein et al. [2018] construct

cage-free barycentric coordinates using the Hessian energy with nat-

ural boundary conditions, later generalizing the method to curved

surfaces [Stein et al. 2020].

In general, closed-form expressions of geometry-aware, locally

supported barycentric coordinates are di�cult to obtain. Anisimov

et al. [2017] provide closed-form locally-supported barycentric co-

ordinates using a Delaunay triangulation of the cage polygon, but

their method does not support polyhedra in 3D.

Lastly, Floater [1997] formulates one simple choice of barycentric

coordinates in the context of mesh parameterizations as a special

case of the formulation presented in §4.1. Besides the di�erent ap-

plication domain, Floater’s formulation does not support polytopes

and is not guaranteed to satisfy the necessary properties on concave

polygons (see Figure 3 for a failure case). Importantly, our method

relies on a neural representation together with an optimization pro-

cedure, whereas Floater [1997] uses a closed-form formula. This is a

key component of our method, as one of our main goals is to enable

users to tune weights using arbitrary objectives.

2.2 Neural Networks for Interpolation and Deformation

Recentwork has demonstrated the potential of treating fully-connected

networks as continuous, memory-e�cient representations of gen-

eral functions, shape parts, objects, or scenes by mapping each

coordinate to a value stored at that coordinate. These networks are

commonly referred to as neural �elds [Xie et al. 2022]. Our method

parametrizes barycentric coordinates using neural �elds.

In geometry processing, neural �elds have been used to parame-

terize distributions over shape boundary vertices for Linear Blend

Skinning (LBS) [Jeruzalski et al. 2020]; note that LBS weights are

not the same as barycentric coordinates, as they do not satisfy the

reproduction property. Neural �elds can also be used to forgo mesh

discretizations entirely and perform geometry processing tasks on

the �eld directly [Yang et al. 2021]. Yifan et al. [2020] use a neural

network to learn cage-based shape deformations. Neural representa-

tions are also popular to solve physics problems formulated as PDEs

on a variety of geometries [Li et al. 2021; Raissi et al. 2019; Rao et al.

2021; Sukumar and Srivastava 2022]. Deforming Neural Radiance

Fields (NeRFs) is a popular use-case for cage-based deformation

[Peng et al. 2022; Yuan et al. 2022], with applications such as model-

ing dynamic human bodies [Peng et al. 2021] or reconstructions of

scenes with deformation [Park et al. 2021].

Beyond neural �elds, Tan et al. [2018] use variational autoen-

coders to model mesh deformation. Luo et al. [2020] model linear

elasticity using neural networks. Jiang et al. [2020] learn deforma-

tions by learning �ows between shapes. Chentanez et al. [2020]

model deformations on triangle meshes using convolutional neural

networks. Aigerman et al. [2022] learn intrinsic mappings between

meshes using neural networks.

3 PRELIMINARIES

We will begin by introducing the broad mathematical de�nition

of generalized barycentric coordinates for an arbitrary polytope

cage P ⊂ R3 with  boundary vertices V(P) = {v8 | 1 ≤ 8 ≤  }.

We also include a brief review of the special case of barycentric

coordinates of triangles and tetrahedra in this section, as we will be

using them as a building block for our model.

We write barycentric coordinate functions for a polytope P as

functions U8 : P → R+ and denote by UUU = [U1, . . . , U ]
⊤ the corre-

sponding vector-valued barycentric coordinate function. For UUU to

be useful as interpolation weights, the de�nition of barycentric co-

ordinates includes a number of constraints that the functions must

satisfy [Floater 2015; Floater et al. 2006]. In particular, a function UUU

is said to be valid if it ful�lls the barycentric coordinate constraints

for all x ∈ P:

• Non-negativity. U8 (x) ≥ 0;

• Partition of unity.
∑
8 U8 (x) = 1;

• Reproduction.
∑
8 v8U8 (x) = x ; and

• Lagrange property U8 (v 9 ) = X8 9 ,

where X8 9 is the Kronecker delta. Previous work has additionally

identi�ed locality—the idea that coordinates should be non-zero

only within a small neighborhood of their vertices—as an optional

desirable property for barycentric coordinates [Zhang et al. 2014].

As an example use case for generalized barycentric coordinates,

suppose we deform the polytope vertices v8 to new positions v′8 . We

can extend this deformation to interior points x via the following

map:

iUUU (x ; P
′) =

∑ 

8=1
U8 (x)v

′
8 . (1)

Thanks to the Lagrange property, we have iUUU (v8 ) = v
′
8 for all bound-

ary vertices 8 . Moreover, thanks to the reproduction property, when

v8 = v
′
8 for all boundary vertices 8 , the map becomes the identity:

iUUU (x) = x .

Simplex barycentric coordinates. For triangles and tetrahedra, this

de�nition leads to unique barycentric coordinates. In particular, for

a triangle in the plane, T ⊂ R2 with vertices V(T) = {v1, v2, v3},

and a point x ∈ P, the triangle barycentric coordinates are the

solution to the linear system
[
v1 v2 v3

1 1 1

]
UUU (x ;T) =

[
x

1

]
. (2)

As long as x is inside the triangle and the v8 are a�nely independent,

the solution is unique and satis�es the desired constraints.

In the general case of an arbitrary cage, the linear system above

usually is underdetermined, and therefore, the barycentric coordi-

nate functions are not unique. Instead, they lay somewhere in the

feasible set de�ned by the constraints. The feasible setA of general-

ized barycentric coordinates at a point x is a ( −3−1)-dimensional

simplex. To ensure that our computed coordinates always lie in A,

we need to optimize in the constrained space of feasible coordi-

nate functions rather than the larger space of all possible smooth

functions.

4 VARIATIONAL BARYCENTRIC COORDINATES

We are now ready to introduce our formulation of generalized

barycentric coordinates. We begin by introducing the optimiza-

tion problem at the heart of our formulation in §4.1 and then o�er a

computational representation of the function space of valid barycen-

tric coordinates in §4.2. Additionally, we show that not only are
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5.5 Inverse Deformation Energy

Variational barycentric coordinates can be used to solve inverse

deformation problems: given a 3D model in its rest pose,S, a cage P

surrounding that model, and a deformation of the model,S′, we look

for a deformation of the cage, P′, such that the deformation induced

by iUUU (S; P
′) best approximates S′. Common use-cases are �nding

the deformation of a human body model to best �t a registered 3D

scan or �nding a cage-based deformation that best approximates

the result of a physics simulation as a way of amortizing compute.

Our model allows us to tackle inverse deformation problems by

jointly optimizing our coordinates and the deformed cage vertex

positions. We demonstrate the usefulness of VBC for the inverse

physics simulation problem in Figure 12 .

Given a set of uniformly randomly drawn samples on the surface

of the undeformed mesh, (x1, . . . , x# ) ∈ S, and the corresponding

points on the deformed mesh (x′1, . . . , x
′
#
) ∈ S′, we can compute

the mean absolute distance to measure the error between the de-

formation produced by the optimized map and the target mesh. In

addition, we add a regularization term that encourages the norm of

the deformed mesh Laplacian to be as close as possible to that of

the ground-truth mesh. For each sample x8 , we compute the norm

of the Laplacian at the neighboring triangle vertices and interpolate

them onto x8 . Our inverse deformation energy is given by

I(S,S′) =
�(S)
#

∑#
8=1



iUUU (x8 ) − x
′
8




2

+_
(
∥ΔiUUU (x8 )∥2 −



Δx′8



2

)2
,

(20)

where Δx denotes the interpolated vertex Laplacian at x , �(S) de-

notes the area ofS and _ is a user-speci�ed regularization parameter

that we keep �xed at 10−4.

We optimize Equation 20 using a two step procedure. Starting

from a weighted TV barycentric coordinate network, we �rst �nd

the closest-approximating global rotation and scale for the deformed

cage using stochastic gradient descent on the energy in Equation 20

During, this stage, we keep the deformed cage’s local-frame vertex

positions and the network weights �xed. Once a suitable global

rotation and translation of the deformed cage is found, we jointly

optimize the deformed cage’s local-frame vertices and �ne-tune

the barycentric coordinate network. The exact details of the opti-

mization setup for the experiment in Figure 12 are presented in

Section 7.4.

6 COMPUTATIONAL MODEL

Having covered the mathematical underpinnings of our model, in

this section we detail the practical aspects of its implementation.

6.1 Neural Network Model

We model the convex combinations of triangle barycentric coor-

dinates using a neural �eld that maps points on the interior, x to

categorical probability distributions over valid virtual triangles in

2D, i.e. tetrahedra in 3D. To this end, we construct the last network

layer to as many outputs as the total number of triangles in T, re-

gardless of whether they contain x or not. The network outputs

are mapped to a positive value using the softplus activation func-

tion. We zero out the probabilities for all triangles which do not

contain the queried interior point before �nally normalizing the

distribution.

At �rst glance, this approach results in a potentially large network

output layer, as the total number of virtual simplices scales with

O( 3) in 2D and O( 4) in 3D. As a remedy, we will introduce a

simplex pruning strategy in §6.3, which reduces the computational

complexity of our method to O( ) for most common scenarios and

makes our method tractable for more complex cages.

We use a feed-forward network with 5 hidden layers of width 256

and a LeakyReLU [Maas 2013] activation function. Before feeding

the interior coordinates into the network, we �rst encode them

with the hash-grid encoding [Müller et al. 2022], with 16 levels, 4 fea-

tures per level, and smoothstep interpolation. We train the network

using the Adam optimizer Kingma and Ba [2014]. We include the

remaining experimental parameters in Table 1. We have not made a

signi�cant e�ort to tune the architecture or the hyperparameters

of our network, nor have we used any acceleration data structures

to accelerate the process of �nding which triangles contain a given

interior point.

6.2 Smoothing Discontinuities

Explicitly sampling the discontinuities and computing U+8 and U−8
in Equation 14 would add signi�cant additional complexity to our

approach. Instead, we introduce a comparatively simple molli�ca-

tion approach, which allows us to estimate both the interior and

the boundary terms in Equations 14 and 16 with an o�-the-shelf

�nite-di�erence estimator over P.

Assume 5 is zero everywhere on R2 except within a triangle.

One way of thinking about 5 is as a smooth function multiplied by

the 0-1 indicator function of the triangle. In essence, our approach

replaces the indicator function with an appropriate molli�er, such

that the resulting smooth surrogate, 5 ∗
A,X

, approaches 5 as X → ∞.

By carefully choosing the smoothing function, we can ensure that∫
∥∇5 ∗

A,X
∥2 approaches the TV formulation in Equation 14. Once our

model is optimized, we disable the molli�cation to ensure that the

barycentric coordinate constraints are satis�ed during inference.

To accomplish this, we de�ne a smoothing radius A around each

discontinuity, inside of which we rapidly decay the indicator func-

tion to zero, and then smooth it using a scaled logistic function.

Denoting by 3 (x) the signed distance of a point x to the boundary

of a triangle, we de�ne the a ramp function which increases from

linearly from −1 to 1 within the smoothing radius,

'A (x) =




3 (x )
A if 3 (x) ≤ |A |,

1 if 3 (x) > A,

−1 if 3 (x) < −A .

(21)

Finally, we smooth the ramp function using a scaled logistic func-

tion, fX ( G) =
1

1+exp{−XG }
, where X is a user-chosen sharpness pa-

rameter,

5 ∗
A,X

(x) =
fX ('A (x)) − fX (−1)

fX (1) − fX (−1)
5 (x) . (22)

We normalize and recenter fX to ensure continuity at 3 (x) = ±A .

This function has a �1 discontinuity, which does not appear to

a�ect our optimization procedure in practice; we leave to future
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