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Abstract
Log-structured systems are widely used in various applica-
tions because of its high write throughput. However, high
garbage collection (GC) cost is widely regarded as the pri-
mary obstacle for its wider adoption. There have been nu-
merous attempts to alleviate GC overhead, but with ad-hoc
designs. This paper introduces MiDAS that minimizes GC
overhead in a systematic and analytic manner. It employs
a chain-like structure of multiple groups, automatically seg-
regating data blocks by age. It employs analytical models,
Update Interval Distribution (UID) and Markov-Chain-based
Analytical Model (MCAM), to dynamically adjust the number
of groups as well as their sizes according to the workload I/O
patterns, thereby minimizing the movement of data blocks.
Furthermore, MiDAS isolates hot blocks into a dedicated
𝐻𝑂𝑇 group, where the size of 𝐻𝑂𝑇 is dynamically adjusted
according to the workload to minimize overall WAF. Our
experiments using simulations and a proof-of-concept pro-
totype for flash-based SSDs show that MiDAS outperforms
state-of-the-art GC techniques, offering 25% lower WAF and
54% higher throughput, while consuming less memory and
CPU cycles.

1 Introduction
Log-structured systems are widely used in various ap-

plications such as key-value stores (e.g., LSM-trees [36,
40]), file systems (e.g., F2FS [28]), and storage firmware
(e.g., FTLs [18, 22, 24, 31]). Log-structured systems not only
provide high write throughput with fairly good latency, but are
also well-suited for emerging storage media that only supports
append-only writes such as NAND flash-based devices [3, 9],
ZNS [6, 34, 45], and SMR [1, 2, 17] drives.

Despite such benefits, the high garbage collection (GC) cost
of log-structured systems is considered its major impediment.
Log-structured systems divide the storage space into fixed-
size segments, each several MiB in size, while the segments
themselves comprise 4KiB data blocks. A segment is the unit
of space allocation and GC, and a 4KiB block is the unit
of reading and writing data. Log-structured systems append
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new versions of data blocks to segments, leaving old ones as
garbage that must be cleaned up through GC later. During
GC, a victim segment with garbage blocks is identified, valid
(or live) blocks are copied to another segment, and finally
the new freed victim segment is returned for future writes.
Relocating live blocks causes numerous extra reads and writes.
A common metric to measure the impact of extra writes during
GC is the write amplification factor (WAF), which is the ratio
of the total number of blocks written to storage to the number
of blocks written by the user.

Many studies have been conducted to alleviate the overhead
caused by GC. These studies try to reduce WAF by employ-
ing two main techniques: victim selection [15, 23, 38] and
data placement [10, 11, 27, 33, 33, 37, 42, 44, 49–51]. Despite
these many efforts, existing techniques often fail to minimize
WAF because of the following two limitations. The first is
inaccurate prediction of block lifespan, that is, distinguishing
hot and cold blocks. Hot blocks (frequently updated blocks)
have short lifespan while cold blocks (infrequently updated
blocks) have long lifespan. While the notion of hot and cold
is well accepted, the boundary between hot and cold is rela-
tive according to workload and typically changes over time.
Existing techniques cannot efficiently define such a boundary,
thereby making inaccurate classification of data blocks. This
results in data blocks with varying lifespans being mixed up
in the same segment causing many live block copies during
GC. The second is inefficient partitioning of storage space.
To group blocks with similar lifespan together, existing tech-
niques maintain groups of segments and segregate data blocks
with similar lifespan to a designated group. Current state-of-
the-art techniques typically work with 2–8 groups. Unfortu-
nately, the number of groups and their sizes are decided in an
ad-hoc manner resulting in suboptimal WAF.

In this paper, we propose MiDAS, a Migration-based Data
placement technique with Adaptive group number and Size
configuration for log-structured systems. MiDAS employs a
chain-like structure comprising multiple groups, with each
group 𝐺𝑖 linked to the subsequent group 𝐺𝑖+1. Incoming data
blocks are initially written to the first group 𝐺1 and thereafter,
only valid blocks from one group 𝐺𝑖 are moved to the next
group 𝐺𝑖+1 automatically segregating data blocks by age.
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MiDAS optimizes the number of groups and their sizes
according to the characteristics of the workload so that the
number of valid block copies between segments is minimized.
This is done by making use of analytical models, Update Inter-
val Distribution (UID) and Markov-Chain-based Analytical
Model (MCAM). By monitoring long-term trends of block
updates, UID tells us how many blocks in a group remain
valid and move to the next group. By leveraging the chained
organization of groups in MiDAS, MCAM accurately pre-
dicts the WAF value given a specific group configuration.
Using UID and MCAM, MiDAS explores a wide range of
group configurations and finds one that minimizes WAF.

To further reduce WAF, MiDAS also isolates hot blocks
in a group called 𝐻𝑂𝑇 . To identify hot blocks, MiDAS does
not rely on simple heuristics. Instead, MiDAS sends selected
blocks that are soon to be invalidated to the 𝐻𝑂𝑇 group,
which is dynamically adjusted according to changing work-
loads in balance with other groups to minimize overall WAF.

While MiDAS is designed for log-structured systems, this
paper specifically focuses on data placement for flash-based
SSDs for evaluation. Accordingly, we have implemented
MiDAS on the FTL, and all experiments are conducted at
the SSD level. To understand the effectiveness of MiDAS, we
conduct a simulation study using I/O traces collected from
various benchmarks and real-world systems. We compare
MiDAS to four state-of-the-art GC techniques: CAT [10],
AutoStream [51], MiDA [37], and SepBIT [44]. Our results
show that MiDAS can provide 25% lower WAF compared
to the other techniques, on average. We also implement a
proof-of-concept prototype of MiDAS in an SSD controller
and confirm that MiDAS not only provides lower WAF and
higher throughput, but exhibits better memory efficiency and
consumes fewer CPU cycles than SepBIT, which is the best-
performing state-of-the-art (SOTA) technique. We also in-
clude a discussion on the applicability of MiDAS to other
log-structured systems.

2 Background and Related Work
2.1 Victim Selection Policies
A victim selection policy decides a victim segment with the
goal of minimizing the number of live block copies during
GC. Three commonly used policies are (i) FIFO [15, 38], (ii)
Greedy [38, 47], and (iii) Cost-Benefit [10, 23, 38].

FIFO chooses the oldest segment as a victim. FIFO is
simple to implement, but often misses opportunities to select
better segments with fewer live blocks as victims.

Greedy selects the segment with the lowest utilization 𝑢

(the fraction of blocks still live) as 𝑢 determines the number
of valid block copies. It reclaims the largest fraction of the
segment space 1-𝑢 after GC. Greedy, however, often selects
segments containing hot blocks, which need not be copied
during GC as they will soon be invalidated [15, 38, 47].

Cost-Benefit (CB) aims to minimize GC cost by consider-
ing both the utilization and age of the segment [38] trying to

avoid unnecessary copies of hot blocks. CB calculates scores
for individual segments and selects one with the minimum
score. A commonly used score is 𝑢

𝑎𝑔𝑒×(1−𝑢) , where age repre-
sents how long the segment has been alive since its creation.

CB exhibits lower WAF than FIFO and Greedy. Despite
its higher complexity, CB is widely adopted for low GC cost.
The effectiveness of the victim selection policy, however, is
highly correlated with the data placement policy being used.

2.2 Data Placement Policies
Various data placement policies have been proposed to further
reduce WAF. The fundamental idea behind data placement is
to group together data blocks with similar invalidation time,
that is, the blocks that are likely to be invalidated at a similar
time. Before writing a user data block (a user-written block)
or relocating a live block from a victim segment to another,
the data placement policy estimates the expected invalidation
time of the block and then assigns it to an appropriate segment
that is holding blocks with similar invalidation time. Then, as
the blocks in the segment are all invalidated at similar times,
this assists in generating dead segments, which contain only
invalid blocks. Dead segments do not require any live block
copies, so WAF can be significantly reduced.

The key here is in accurately estimating the invalida-
tion time of a block. While many strategies have been sug-
gested [21, 25, 33, 44, 49, 50], one or a combination of the
following three attributes of a block is commonly used: (i)
update frequency [10, 11, 27, 33, 42, 51], (ii) latest update
interval [44, 50], and (iii) age of the block [33, 37, 44, 49].

2.3 Review of Prior Techniques
Here, we present four SOTA GC techniques, CAT [10], Au-
toStream [51], MiDA [37], and SepBIT [44], focusing on the
data placement method used. CAT [10] categorizes a data
block into two types, hot and cold, based on its update fre-
quency and assigns it to either a hot or cold segment group.
It dynamically changes the sizes of groups by moving live
blocks over groups during GC.

AutoStream [51] designed for Multi-Streamed SSDs [16]
attempts to finely categorize data blocks at the host level with
support from the storage device. AutoStream counts the num-
ber of updates of data blocks on the host side and classifies
them based on update frequency. Then, it sends data blocks
with group IDs determined by their update frequencies to the
SSD. Owing to the limit of being designed in the confines of
an SSD, the number of groups is usually set to five [21].

MiDA [37] utilizes the age of a block for data placement. It
creates a chain of segment groups, each of which is connected
to a neighboring group. Incoming blocks are first written to
Group 1, the head of the chain, with an age of 0. If it remains
valid until being selected as a victim for GC, it is moved to the
next group, Group 2, with an age of 1, and so on. In this way,
it clusters data blocks with similar ages in the same group.
There is no specific limit on the number of groups, but MiDA
maintains up to eight groups by default.
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Fig. 1. WAF of ORA and existing SOTA techniques

SepBIT [44] employs both the latest update interval and
age of a block. For a newly written block, it estimates the
invalidation time based on its latest update interval – the time-
span since the block was last written – and assigns the block
to hot or cold groups. When relocating a live block during
GC, SepBIT measures the age of the block and sends it to an
appropriate GC group. The total number of groups, including
hot, cold, and GC groups, is six. SepBIT uses a threshold-
based heuristic to decide a target group where data blocks are
assigned.

In summary, first, most GC techniques based on invalida-
tion times usually group segments into 2–8 groups, and this
number of groups is decided without any justification. We are
aware of some prior studies that address this by dynamically
changing the number of GC groups [42, 48]. For instance,
Multilog estimates the update frequency of a block by em-
ploying both the LRU and Oracle algorithms [42]. If a block’s
update frequency falls below the average, a colder group is
created, and the block is demoted to this group. Also, a com-
prehensive analysis of the best number of GC groups across
various workloads is provided by Yadgar et al. [48]. How-
ever, these studies did not consider how the number of groups
should change as the workload dynamically changes. Second,
the size of the group, though dynamic in a limited way, is
determined without considering what size is most appropriate
to accommodate the incoming blocks destined for the group.
We are not aware of any prior work that tackles this issue.

3 Motivation: Current GC Techniques
In this section, we analyze the limitations of current SOTA
GC techniques through quantitative observations, which serve
as motivation of our work MiDAS.

3.1 Experimental Setup
To evaluate the effect of current SOTA GC techniques, we
implement the techniques within the FTL of flash-based SSDs,
and make use of two benchmarks, YCSB-A [13] that runs on
MySQL and Varmail of the Filebench benchmark [43]. The
number of 4KiB blocks written by YCSB-A and Varmail are
4.4 billion (16.4 TiB) and 4 billion (14.9 TiB), respectively.
To repeat the experiments under the same environment, the
I/O traces of these benchmarks are collected and fed to a
trace-driven simulator that implements the victim selection
and data placement policies of the various GC techniques.
The simulator models a 128GiB storage space with 64MiB
segments. The experimental setup is detailed in §5.

To objectively evaluate the performance of the existing tech-

Table 1: Ranges of invalidation times for 𝐶1–𝐶6 in ORA
C1 C2 C3 C4 C5 C6

Range <250K 250K–5M 5M–14M 14M–28M 28M–62M >62M

niques, we compare them with an oracle algorithm (ORA)
that minimizes WAF through offline analysis of the collected
traces. Through this analysis, the invalidation time of every
block is obtained, which is then used to assign blocks with
similar invalidation times to the same segment group. Note,
however, that deciding the optimal number of segment groups
and group sizes is an NP-hard problem [29]. Thus, we per-
form k-means clustering [20] over the traces to find the best
number of groups that accommodates data blocks with simi-
lar invalidation time. We also empirically decide the size of
individual groups such that WAF is lowest. Note that ORA
does not adjust the group size during victim selection because
their sizes are decided a priori.

The four SOTA techniques reviewed in §2.3 are compared
against ORA. According to their original design, the number
of segment groups is set to 2, 5, 8, and 6 for CAT, AutoStream,
MiDA, and SepBIT, respectively. The victim selection policy
is CB as it provides the best performance.

Fig. 1 shows the WAF results. Note that when reporting
WAF values, throughout the paper, we consistently start from
base 1 for the 𝑦-axis. ORA is effective with WAF being closest
to 1.0 for both YCSB-A and Varmail. CAT shows the worst
WAF. AutoStream, MiDA, and SepBIT, which maintain mul-
tiple groups for data placement and use more sophisticated
invalidation time prediction, exhibit lower WAF. However,
we still see a large gap between the existing techniques and
ORA. In the following, we conduct a series of experiments to
analyze where this discrepancy is coming from.

3.2 Analysis based on ORA
Accuracy of invalidation time prediction: We first evaluate
how the accuracy of invalidation time prediction varies per
prediction approach. Invalidation time is defined to be the
number of user-written blocks, in 4KiB units, which are writ-
ten between the time the block of interest is written to and the
time it becomes invalid. Blocks with shorter invalidation time
generally mean they are hotter.

To objectively evaluate prediction accuracy, we utilize the
classifications of blocks by ORA that accurately groups data
blocks depending on their actual invalidation times through
offline analysis. The analysis results in ORA dividing the
data blocks into six categories, C1, C2, ..., C6, depending
on their hotness. C1 represents the hottest blocks (invalida-
tion time < 250K), C6 represents the coldest (invalidation
time > 62M), and the rest are in between. Table 1 lists the
ranges of invalidation times for C1, C2,..., C6.

Fig. 2 illustrates the accuracy of predicting invalidation
times for the YCSB-A1 workload using three different ap-
proaches: the latest update interval (employed in SepBIT),

1The results trend and discussions are similar for Varmail and thus, are
not presented in the interest of space.
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Fig. 2. Accuracy of block invalidation times for YCSB-A
according to prediction techniques

Table 2: Size of each group per technique for YCBS-A (unit:
segment): fixed values for ORA, while the rest are averages
through workload processing

Group number 1 2 3 4 5 6 7 8
ORA 9 17 35 45 133 1,809 - -
CAT 184 1,864 - - - - - -

AutoStream 2 3 2 1,336 705 - - -
SepBIT 2 1 17 2 85 1,941 - -
MiDA 7 79 95 126 128 117 98 1,398

update frequency (utilized in CAT and AutoStream), and the
age of a block (employed in SepBIT and MiDA). In Fig. 2,
we visualize the prediction accuracy of these techniques in a
heatmap, comparing them to ORA. The 𝑥-axis represents the
category of blocks that are decided by ORA through offline
analysis. The 𝑦-axis represents the category of blocks that are
predicted by each approach, also in an offline manner. More
specifically, we first categorize each block as 𝐶𝑖 based on
ORA. Then, we categorize the blocks again, this time using
the specific approach. For example, say there is a block A that
is categorized as 𝐶2 with ORA. Then, with the latest update
interval approach, say, we observe that block A is updated
at time 200K, which is in the 𝐶1 range. Then, this block A
will be a miscount that reduces the accuracy of the (𝐶2, 𝐶2)
zone of Fig. 2(a) and that contributes to the (𝐶2, 𝐶1) zone.
Thus, the intensity of the diagonal zones shows how accurate
each approach is relative to ORA, while the non-diagonal
zones show how much they are contributing to the inaccuracy.
Ideally, if the predictions of each approach were perfect, we
would only observe dark diagonal zones.

From Fig. 2, we find that the existing approaches show
higher accuracy on different categories of block hotness. For
latest update interval and update frequency, the prediction
accuracy of hot blocks (e.g., C1), that is, those with short
invalidation times, is relatively high. However, for cold blocks
(e.g., C6), the prediction is much less accurate. We observe,
for example, from Fig. 2(b), that blocks that actually belong to
C6 are incorrectly categorized as other 𝐶𝑖s, even including C2.
Conversely, the age-based technique, Fig. 2(c), shows lower
accuracy than the other two for hot blocks, but it excels in
identifying the coldest blocks (𝐶6). We do see, however, that
many coldest blocks are being mispredicted as other blocks
(𝐶1, ...,𝐶5). This is likely due to the fact that many of coldest
blocks are still in transit and moving towards the coldest block
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Fig. 3. Impact of group size on WAF for YCSB-A
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Fig. 4. Distribution of blocks over groups for YCSB-A

at the end of the experiments.
Effect of group number and size: Once we have assessed the
individual block’s hotness, they need to be grouped together
according to their hotness. ORA, which accurately assesses
hotness, through offline analysis, came up with six groups of
sizes as shown in the ‘ORA’ column of Table 2. Fig. 3(a),
where the 𝑥-axis is the size of Group 1 and the 𝑦-axis is WAF,
shows how WAF changes as the ORA Group 1 size is varied.
It shows that ORA chose the appropriate Group 1 size and that
even with an accurate hotness assessment, incorrectly setting
the group size can amplify WAF. As analysis determined that
six groups show the best WAF for ORA, altering the number
of groups will show similar WAF amplification.

3.3 Analysis of SOTA Techniques
As discussed, inaccurate data placement comes from two
sources, inaccurate hotness predictions and inaccurate group
configurations, that is, group number and size. We now at-
tempt to quantify these issues for the four SOTA techniques.

Fig. 4 illustrates the distribution of data blocks over seg-
ment groups for the SOTA techniques. We observe that re-
sults for AutoStream based on the update frequency and
SepBIT based on the update interval coincide well with the
findings shown in Fig. 2, with Group 1 comprising mostly
of 𝐶1, the hot blocks. However, as shown in Table 2, the
sizes for Groups 1 to 3 for these techniques are considerably
smaller than those of ORA, leading to many of the hot blocks
overflowing to other colder groups. We observe that for Au-
tostream, with only five groups, the hot blocks are scattered
among all the groups. Similarly, the results of the age-based
MiDA technique, which generates eight groups, also coincide
well with the findings shown in Fig. 2, with the coldest blocks
fully filling Group 8 and forming the majority of Groups 5–7,
while Group 1 shows some of its space being occupied by
colder blocks. We also observe that CAT cannot perform well
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due to being fixed to two groups resulting in an intermix of
hot and cold blocks.

To show the effect of group size on WAF, we manually
control the size of Group 1 while running YCSB-A for MiDA
and SepBIT. The results are shown in Fig. 3(b). Note that in
our setup, as well as in typical systems, the total number of
segments is fixed. Thus, as Group 1 size increases, the other
groups will become smaller. The red dots in the figure show
the average size of Group 1 and their original WAF values.
We observe that by increasing the group size to only about 20
segments, both MiDA and SepBIT can reduce WAF by about
5.5% and 7.7%, respectively. However, further increasing the
group size results in higher WAF due to the size reduction in
subsequent groups. Based on these observations, the challenge
becomes how to determine the number of groups to maintain
and what the sizes of these groups should be such that WAF
may be minimized.
Impact of victim selection: Lastly, we consider the effect
of victim selection on WAF. To this end, we measure the
WAF values of the five techniques with three victim selection
policies: FIFO, Greedy, and CB.

Fig. 5 shows the results, from which we make two obser-
vations. First, each technique exhibits the lowest WAF when
employing CB, which is a predictable outcome. This is be-
cause CB provides sufficient time for hot blocks to become
invalid. Second, ORA exhibits almost the same WAF values,
regardless of which victim selection policy is used. Even
with FIFO, which is the simplest and where other techniques
suffer, ORA can achieve low WAF. This is an interesting,
yet expected result. If data blocks are perfectly distributed
over different segment groups according to exact invalidation
times and the group sizes are set sufficiently large, the old-
est segment in the group will have the least number of valid
blocks that will not be invalidated for a long time, eventually
trickling down to the last group. As a result, FIFO, Greedy,
and CB all behave similarly, showing almost the same WAF.

3.4 Lessons Learned: A Summary
From the results above, we make the following three key ob-
servations. Observation #1. Current SOTA techniques are in-
accurate in predicting hotness of data. However, latest update
interval and update frequency based prediction approaches
tend to predict hot data relatively well, while, in contrast,
age-based prediction approaches tend to predict cold data rel-
atively well. A mix of these methods should help improve
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Fig. 6. Overview of MiDAS

overall predictions. Observation #2. The number of segment
groups and their sizes have a critical impact on GC efficiency.
Effort should be put into finding group number and size values
that minimize WAF. Observation #3. FIFO is equally efficient
as any elaborate policy when group sizes are properly set.
With a correct data placement framework, FIFO should suf-
fice as a victim selection policy.

4 Design of MiDAS
In this section, we present MiDAS, a technique that automat-
ically determines the number of segment groups and their
sizes to minimize WAF according to the given workload. As
§3.2 illustrates, MiDAS separates the cold blocks using an
age-based policy as does MiDA and separates hot blocks us-
ing update intervals as does SepBIT. In the following, we
first give a high level overview of MiDAS, focusing on the
relations among the key components such as the 𝐻𝑂𝑇 group,
UID, and MCAM. Then, in the subsequent subsections, each
of these components are described in detail along with how
these components interact.

4.1 Overview of MiDAS
Fig. 6 depicts the overall organization of MiDAS with 𝑁 +1
segment groups, one 𝐻𝑂𝑇 group and 𝑁 cold groups, 𝐺1, 𝐺2,
..., 𝐺𝑁 . From 𝐻𝑂𝑇 to 𝐺𝑁 , each segment group is linked to
its next group, which creates a chain of segment groups. Upon
arrival of a user-written block, the block is determined to be a
hot block or not (described in §4.2). Hot blocks are directed
to the 𝐻𝑂𝑇 group, while others are sent to 𝐺1, bypassing
𝐻𝑂𝑇 . Every segment group, including 𝐻𝑂𝑇 , has a designated
size. Once the group becomes full with data blocks, a victim
segment is selected from that group. Then, live blocks from
this victim are migrated to the next group, 𝐺1 for 𝐻𝑂𝑇 and
𝐺𝑖+1 for 𝐺𝑖 . The freed segment is returned to the original
group. The last group, 𝐺𝑁 , does not have a next group. Thus,
valid blocks from the victim are sent to 𝐺𝑁 again, and the
free segment is returned to 𝐺𝑁 as well.

Based on the observation in §3.2, the update interval can
be used as a useful means of detecting hot blocks with short
invalidation times. MiDAS segregates hot blocks into the sep-
arate 𝐻𝑂𝑇 group based on their update intervals. To prevent
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cold blocks from being incorrectly categorized and being
mixed with hot blocks in 𝐻𝑂𝑇 (as seen in CAT), MiDAS
sends only data blocks with short update intervals to 𝐻𝑂𝑇 .
At the same time, to prevent hot blocks from being sent to
cold segments owing to limited 𝐻𝑂𝑇 group space (as seen in
SepBIT), MiDAS dynamically adjusts 𝐻𝑂𝑇 to have sufficient
space to accommodate the identified hot blocks.

As we have also learned from §3.2, the age-based method
is effective in separating cold blocks. Therefore, MiDAS seg-
regates data blocks with the same age in the same group,
sending older blocks to the next group. Here, age is defined to
be the migration count from one group to another, as is done
in MiDA. All data blocks in 𝐺𝑖 thus have the same age of
𝑖−1. One exception is the last group 𝐺𝑁 , where data blocks
come from 𝐺𝑁−1 and from itself, that is, 𝐺𝑁 . The ages of
blocks in 𝐺𝑁 are greater than 𝑁 −2.

The most crucial issue in designing MiDAS is to decide the
number of groups and their sizes, so that the number of valid
block copies between groups is to be minimized. To make
accurate decisions, MiDAS monitors long-term behaviors
of block updates and creates an Update Interval Distribution
(UID) model. Given a segment group with a specific size, UID
tells us how many blocks in the group stay alive and move
to the next group. By leveraging the chained organization
of segment groups, MiDAS employs a Markov-Chain-based
Analytical Model (MCAM) that accurately predicts WAF for
a given group configuration. By integrating UID and MCAM,
we can explore a range of group configurations, which enables
us to determine the most effective combination of the number
of groups and group sizes that minimizes overall WAF.

If a proper group configuration is chosen by UID and
MCAM, segment groups would have sufficiently large space
so that blocks are invalidated prior to eviction. This allows
MiDAS to manage each segment group as a FIFO queue and
to use the simple FIFO victim selection policy.

If I/O patterns of the workload are irregular and change
significantly over time, our models, UID and MCAM, which
rely on past history to forecast future behavior, may not make
accurate decisions. Then, MiDAS simply falls back to the
basic MiDA technique.

4.2 Hot Block Separation
Prior data placement techniques take various approaches to
define a boundary between hot and cold. MiDA simply segre-
gates hot from cold blocks by sending old blocks to the next
group in the chain. CAT and AutoStream explicitly define a
hot-cold boundary based on update frequency (i.e., update
counts), but with disappointing results.

SepBIT uses a more advanced approach to define a hot-
cold boundary. It internally maintains a queue and pushes
block numbers of every user-written block into the queue.
Then, user-written blocks referenced again within the queue
are sent to a designated hot group. The length of the queue is
set to the average resident time, which is the time user-written

blocks remain in the hot group before being removed. The
queue length depends on the hot group size, which is adjusted
by CB. This is an interesting and novel approach where it
tries to segregate hot blocks from the rest of the blocks by
adjusting the queue length based on the lifetime of the hot
blocks, that is, blocks residing in the hot group.

Unfortunately, SepBIT tends to misbehave owing to how
its hot group size is decided. For example, let us assume that
SepBIT accurately segregates hot blocks in the hot group.
Then, many dead blocks are generated from the hot group and
are quickly removed due to using CB. This reduces the aver-
age resident time, which in turn shrinks the queue size. This
results in only a few hot blocks being sent to the hot group,
even though many more hot blocks may exist. Conversely, if
many cold blocks are mistakenly sent to the hot group, the
length of the queue is likely to grow because it takes longer
to evict blocks from the hot group. As a result, SepBIT may
assign even more cold blocks to the hot group.

MiDAS tackles the limitations that the prior techniques
have by taking two unique approaches: (i) tight admission
control to the 𝐻𝑂𝑇 group and (ii) dynamic size adjustment of
the 𝐻𝑂𝑇 group. The first, tight admission control, is similar
to the approach of SepBIT, but MiDAS is more conservative
when deciding a block to be hot. Similar to how SepBIT
promotes blocks from the queue to the hot group, MiDAS
promotes, from 𝐺1, data blocks that are soon to be invalidated
to the 𝐻𝑂𝑇 group. Similar to how SepBIT maintains the av-
erage resident time to set the queue length, MiDAS maintains
the same value and refers it as the threshold time. The differ-
ence, though, is that this threshold time is used to decide if
the 𝐺1 to 𝐻𝑂𝑇 promotion should occur or not, instead of, for
setting the queue length. Specifically, MiDAS compares the
update interval of the block to the threshold time, and only
blocks that are updated three times2 within the threshold time
are confirmed and promoted to 𝐻𝑂𝑇 . Note that the choice to
use the update interval to identify hot blocks is based on §3.2.

The second unique approach of MiDAS is that the size
of 𝐻𝑂𝑇 adapts to the workload. As we have seen in §3,
as hotness is a relative notion, segregating hot blocks from
the rest is not a simple matter, which is compounded by the
difficulty of setting the size of the group that will hold the
hot blocks. In MiDAS, the size of 𝐻𝑂𝑇 is determined in
conjunction with the rest of the group such that the overall
WAF is minimized. The key technical issue, then, is how to
estimate the impact of the group size adjustment, including
that of 𝐻𝑂𝑇 , on overall WAF, without reorganizing the actual
group sizes, which is costly. MiDAS can accurately predict
expected WAF using MCAM and UID as explained below.

4.3 Prediction of WAF using MCAM
We now explain MCAM, a Markov-Chain-based Analytical
Model, to predict the WAF value of a given group configura-
tion. Note that Bux and Iliadis calculate WAF using a Markov

2A 2-bit counter is used for this, whose overhead is analyzed in §5.1.
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Fig. 7. Diagram of MCAM and WAF prediction process using
MCAM as states transition

Chain for uniform workloads [8]. However, this prior work
does not address multiple GC group scenarios needed for
MiDAS, which, as depicted in Fig. 6, forms a chain of seg-
ment groups where live data blocks migrate between adjacent
groups. Thus, we design MCAM to predict WAF across vari-
ous group configurations, applicable to any workload pattern.
If the input workload is in a steady state, MCAM is able to
predict the value of WAF accurately by simulating the flow
of data blocks moving over segment groups.

MCAM consists of states that blocks can be in and the
transition probabilities between those states. Blocks can be in
one of two states: valid (V) and free (Free). The valid state
is categorized into finer states, VH and VGi , for 𝑖 = 1, ..., 𝑁 ,
according to which group (i.e., 𝐻𝑂𝑇 or 𝐺𝑖) the block is valid
in. Hereafter, we use the index 𝑖 to always represent the range
1, ..., 𝑁 unless otherwise stated. Free indicates the state of
the block that is invalidated, reclaimed, and ready to use.

We now discuss transitions between states and, for clarity,
refer the reader to the leftmost figure in Fig. 7 as an exam-
ple with four groups (𝐻𝑂𝑇 , 𝐺1, 𝐺2, and 𝐺3). For transitions
from VH to VG1 and from VGi to VGi+1 , where VGN+1 = VGN (which
means that VGN transitions into itself), live blocks in the victim
segment chosen for GC are moved from the source to the desti-
nation. The rest of the blocks are invalidated and then become
free, which forms the transitions from VGi to Free. Suppose
that a fraction of valid blocks in the victim segment of 𝐺1
is 0.4, on average. Then, the transition probability, which is
the probability that blocks in one state move to another state,
from VG1 to VG2 is 0.4 and the transition probability from VG1
to Free is, naturally, 0.6. In MiDAS, user-written blocks are
stored in free blocks and then assigned to either 𝐻𝑂𝑇 or 𝐺1.
Thus, two transitions, from Free to VH (0.7 in Fig. 7) and
from Free to VG1 (0.3 in Fig. 7), represent the movement of
user-written blocks to 𝐻𝑂𝑇 and 𝐺1, respectively. The sum of
the two transition probabilities is always 1.0. All the blocks
destined for 𝐻𝑂𝑇 are expected to be invalidated before evic-
tion, and thus, the transition probability from VH to Free is
assumed to be 1.0 at all times.

Let us now discuss how WAF is predicted with MCAM us-
ing Fig. 7. We denote the progress of states as step 𝑆𝑘 . For the
moment, assume that the transition probabilities are given as

in the figure. How these are obtained will be discussed in §4.4.
Let us also assume that, at the initial step, 𝑆0, we have 100
user-written blocks come in and the transition probabilities
to 𝐻𝑂𝑇 and 𝐺1 are 0.7 and 0.3, respectively. Thus, we have
70 and 30 blocks in 𝐻𝑂𝑇 and 𝐺1, respectively. At the next
step, 𝑆1, 12 blocks in 𝐺1 are moved to 𝐺2, while the other
18 blocks are moved to Free by the transition probabilities
from VG1 to VG2 (0.4) and from VG1 to Free (0.6). No blocks
in 𝐻𝑂𝑇 move to 𝐺1; instead, all blocks (70 blocks) move to
Free as we expect all blocks in 𝐻𝑂𝑇 to be invalidated.

This transition to the next step is repeated in similar manner
until the number of blocks in each group converges, whose
condition is met when the number of blocks in each state no
longer changes. (Note that this process has been shown to
converge [7].) 𝑆𝑛 of Fig. 7 shows an example of how the con-
verged results would look like. Then, WAF can be predicted
using the converged values by making use of the number of
user writes, obtained with VH and VG1 in 𝑆𝑛 as user writes
are sent to either 𝐻𝑂𝑇 and 𝐺1, and GC writes, obtained by
summing the number of blocks in VG2 and VG3 at 𝑆𝑛. Thus,
for our Fig. 7 example, WAF at 𝑆𝑛 is estimated to be 1.63 (=
(27.6+11.8+4.7+16.5)/(27.6+11.8)).

To validate WAFs predicted from MCAM, we compare
measured and predicted WAF values for 50 randomly cre-
ated group configurations. For evaluation, we make use of the
YCSB-A and Varmail benchmarks. We first run the bench-
mark in a prototype of MiDAS implemented in a real-world
system (see §5.2 for more details) and measure WAF values
for the 50 configurations. While executing the benchmark,
we also collect I/O traces and measure the average transi-
tion probabilities between segment groups. Then, we replay
the collected traces on an MCAM simulator configured with
the transition probabilities that we measured. We find that
MCAM only shows an average error rate of 0.84% and 0.7%,
with a maximum error rate of 2.82% and 2.33% for YCSB-A
and Varmail, respectively, which confirms that, given a group
organization, MCAM produces accurate WAF predictions.

To predict WAF from MCAM, however, we must provide
the transition probabilities between segment groups. In the
next subsection, we show how MiDAS estimates transition
probabilities and how they are supplied to MCAM at runtime.

4.4 Estimating Transition Probabilities
To estimate the transition probabilities supplied to MCAM,
we introduce UID (Update Interval Distribution). Fig. 8 illus-
trates the UID model, where the 𝑥-axis is the update interval
and the 𝑦-axis represents the probability that blocks have the
corresponding update interval. That is, UID is a probability
mass function (PMF) of the update intervals of user-written
blocks. How UID is obtained is described in §5.1, but in the
meantime, we assume we have the UID, such as Fig. 8.

UID is used to obtain the probability of whether a block
remains valid after a specific period of time, which can be
directly translated into a transition probability for MCAM.
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Fig. 8. Estimating transition probabilities using UID

We describe how this is done using the example in Fig. 8.
Recall the unit of time in our system is defined as the number
of user-written blocks. For simplicity sake, let us for now
ignore 𝐻𝑂𝑇 and assume only three segment groups, 𝐺1, 𝐺2,
and 𝐺3 each of size 1,000 exists, and that each segment is
of 100 blocks. (We shall come back to 𝐻𝑂𝑇 later.) User-
written blocks are first sent to 𝐺1 and then only valid blocks
are moved to 𝐺2. After 1,000 segments are written to 𝐺1,
𝐺1 becomes full and the victim segment at the tail of the
group is selected for GC. (Recall from Fig. 6 that MiDAS
uses the FIFO victim selection policy.) The number of live
blocks moved to 𝐺2 can be calculated based on UID. As the
UID represents the probability of a user-written block being
invalidated after a particular time interval, the sum of the
probabilities of the update interval ranging from 1 to 1,000 is
the probability of the blocks being invalid after 1000 writes.
Let us assume, from Fig. 8, that this is 0.6, which means the
transition probability from 𝐺1 to 𝐺2 is 0.4. Thus, out of the
100 blocks in the victim segment, 40 is transitioned to 𝐺2.

In a similar manner, we can obtain the transition probability
between 𝐺2 and 𝐺3. However, to fill up 𝐺2, an additional
2,500 user-writes, that is, time steps, need to happen as only
40% of the user-written blocks are eventually sent to 𝐺2.
Once 𝐺2 is filled with blocks, the segment at the tail of 𝐺2
is selected as the victim. Now, let us consider how many
valid blocks exist in this victim segment. To explain this,
we define a new term, waiting period (denoted 𝑊𝐺𝑖 ), which
refers to the number of user-written blocks required to fill up
a specific segment group 𝐺𝑖 . For our example, 𝑊𝐺1 = 1000,
while 𝑊𝐺2 = 2500. Essentially, 𝑊𝐺𝑖 is the elapsed time (i.e.,
the number of user-written blocks) from when a new block
comes into group 𝐺𝑖 to when the block is evicted from the
group. Now, given the UID for our workload, the sum of the
probability measures for the period of 𝑊𝐺𝑖 is the probability
of the block becoming invalid. For our example, let us assume
𝑊𝐺2 is 0.14 (Fig. 8). Then, the sum of probability measures
that the block remains valid is 0.26 (= 0.4−0.14). Thus, the
total expected number of valid blocks expected to be moved
to 𝐺3 from the victim segment is 65 (= 100× 0.65) as the
transition probability is 0.65 (= 0.26

0.14+0.26 ).
Generalizing in this manner, the transition probability from

VGi to VGi+1 ,𝑇𝑉𝐺𝑖→𝑉𝐺𝑖+1
, is given by Eq. (1) (but not for 𝑖 = 𝑁),

where 𝑝 𝑗 is the probability for update interval 𝑗 , 𝑚𝑎𝑥 is the
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Fig. 9. Estimating transition probabilities, including 𝐻𝑂𝑇

maximum update interval of UID, and 𝑊 is the sum of the
waiting periods of the groups, 𝐺1 through 𝐺𝑖−1.

𝑇𝑉𝐺𝑖→𝑉𝐺𝑖+1
=

∑𝑚𝑎𝑥
𝑗=𝑊+𝑊𝐺𝑖

𝑝 𝑗∑𝑚𝑎𝑥
𝑗=𝑊 𝑝 𝑗

, (1)

where 𝑊 =

{ ∑𝑖−1
𝑘=1𝑊𝐺𝐾 if 𝑖 > 1

0 otherwise.

Transition probabilities including 𝐻𝑂𝑇: Let us now bring
back VH into the picture. To do that, we need to consider the
transition probabilities from Free to VH and from Free to VG1 .
Recall from Fig. 7 that the sum of the two must be 1.0. As
mentioned earlier, user-written blocks are sent to either 𝐻𝑂𝑇

or 𝐺1, and this decision is made by referring to the threshold
time. Based on this, we obtain the transition probability from
Free to VH, 𝑇𝐹𝑟𝑒𝑒→𝑉𝐻 , by summing the probabilities of the
update intervals shorter than the threshold time in UID (0.4
in Fig. 9(a)). Thus, the transition probability from Free to
VG1 , 𝑇𝐹𝑟𝑒𝑒→𝑉𝐺1

, is 1−𝑇𝐹𝑟𝑒𝑒→𝑉𝐻 . Now, a keen reader will re-
member that blocks are sent to 𝐻𝑂𝑇 only when it is observed
that the latest update interval is less than the threshold time
three times. Thus, the above explanation is not entirely cor-
rect. However, we find that not taking this into account still
keeps the prediction accuracy within a maximum of 5% error.
Thus, we make use of the above approximation.

Now returning back to the process that calculates the
𝑇𝑉𝐺𝑖→𝑉𝐺𝑖+1

, we now exclude the probabilities for update in-
tervals that are shorter than the threshold time by dividing
the UID into two, UID for 𝐻𝑂𝑇 and UID for 𝐺1–𝐺𝑁 , as de-
picted in Figs. 9(b) and (c). As mentioned above, user-written
blocks with update intervals shorter than the threshold time
are sent to 𝐻𝑂𝑇 . All blocks are also assumed to be invali-
dated in 𝐻𝑂𝑇 . Thus, for UID of 𝐺1–𝐺𝑁 , the probabilities
for update intervals that are shorter than the threshold time
are 0. We also need to consider the transition probability
of Free to VG1 when calculating 𝑊𝐺1 , resulting in the equa-
tion 𝑊𝐺1 = size of 𝐺1 × 1

𝑇𝐹𝑟𝑒𝑒→𝑉𝐺1
. Taking the same example

where 𝐺1 size is 1,000 blocks and𝑇𝐹𝑟𝑒𝑒→𝑉𝐺1
is 0.6, only 60%

of the user-written blocks are sent to 𝐺1. Thus, 𝑊𝐺1 increases
to 1,667, not 1,000, as 𝑊𝐺1 = 1,000× 1

0.6 . For the rest of the
groups, we go through the same process as before to get their
𝑊𝐺𝑖 . Finally, the transition probabilities for 𝑇𝑉𝐺𝑖→𝑉𝐺𝑖+1

can
be obtained using Eq. (1).
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Transition probability for 𝐺𝑁 : As the last group 𝐺𝑁 com-
prises blocks of various ages as well as transitions to itself, the
above analysis does not hold for 𝐺𝑁 . Thus, to predict 𝑊𝐺𝑁 ,
we make use of the analytical model proposed by Desnoy-
ers [15]3. This model accurately predicts WAF for techniques
without data separation (e.g., PageFTL [18]), where user-
written blocks and GC copied blocks are placed in the same
group, which is what is happening to the last group in MiDAS.

4.5 Configuring Groups with MCAM and UID
We now explain the group configuration selection (GCS) al-
gorithm that finds the most appropriate group configuration.
Given a specific group configuration, UID is able to com-
pute transition probabilities between groups. By feeding the
probabilities to MCAM, the expected WAF of the given con-
figuration can be estimated as discussed in §4.3. Using UID
and MCAM, GCS explores various group configurations to
find the most appropriate one. Exploring every possible group
configuration, however, is infeasible because of the huge ex-
ploration space and high computation cost.

Deciding the number of groups and their sizes: GCS
takes a greedy heuristic approach to find a sufficiently good
solution in reasonable time. GCS has two phases: (i) it roughly
decides the number of groups and group sizes and then, (ii)
fine-tunes the size of each group.

In the first phase, GCS begins with two segment groups:
𝐻𝑂𝑇 and 𝐺1. The primary objective of group partitioning
is to ensure that for the blocks assigned to 𝐻𝑂𝑇 , as many
as possible are invalidated before eviction. The size of the
𝐻𝑂𝑇 group needs to be carefully decided to provide suffi-
cient time for written blocks to be invalidated before eviction.
To achieve this, GCS first assigns data blocks with update
intervals shorter than one segment time (the minimum unit
of UID) to 𝐻𝑂𝑇 and the rest are assigned to 𝐺1, as depicted
in Fig. 10. This figure shows an example where the sum of
the probabilities within the one segment interval is 0.2. Since
the unit of space allocation is a segment, GCS assigns one
segment to 𝐻𝑂𝑇 even if the suggested group size is only a
few blocks smaller than a single segment.

Now that GCS has the initial sizes of 𝐻𝑂𝑇 and 𝐺1, it com-
putes WAF using MCAM as explained in §4.3. GCS repeats
the above step while increasing the time by one segment until
a reduction in WAF is no longer observed. This is depicted in
the leftmost to middle figure transition in Fig. 10. At this point,

3The specific model is presented in our supplemental material [41].

the group sizes for 𝐻𝑂𝑇 and 𝐺1 are determined. With 𝐻𝑂𝑇

size fixed, the same steps are recursively repeated on 𝐺1, that
is, it splits 𝐺1 into two groups, 𝐺1 and 𝐺2, and the size of
𝐺1 increases until the observed WAF is minimized. This is
depicted in the middle to rightmost figures in Fig. 10. GCS
continues to split groups until no noticeable WAF reduction
> 0.5% is observed over five consecutive splits.

After the number of groups and group sizes are decided,
GCS goes through the second phase where the group sizes are
fine-tuned. By allocating segments from the earlier groups,
that is, from 𝐻𝑂𝑇 to 𝐺𝑖 in increasing 𝑖 order, the first phase,
prioritizes the earlier groups. This results in high WAF of
the last group 𝐺𝑁 as it is unlikely to get sufficient segments.
To mitigate this, MiDAS reassigns segments by transferring
one segment from 𝐻𝑂𝑇 to 𝐺𝑁 . Then, the WAF is computed.
If the newly computed WAF is smaller than the old one, the
movement is confirmed. Otherwise, the movement is reverted
back. This is done for the remaining groups, 𝐺𝑖 to 𝐺𝑁 start-
ing from 𝑖 = 1 up to 𝑁 −1, until no more WAF reduction is
observed.

While GCS requires moderate computation, it is invoked
only when a new UID is built to adapt to changes of the work-
loads. Moreover, it does not affect foreground jobs (e.g., write
or read requests) as it is performed in the background.

Updating group configuration: The accuracy of predict-
ing transition probabilities using UID will drop if the work-
load pattern changes over time. Deciding the size of a group
with an incorrect UID may exacerbate overall WAF. To ad-
dress this, MiDAS periodically generates a new UID and uses
the new one if it provides higher accuracy. More specifically,
MiDAS divides time into epochs of the same length and main-
tains two UIDs, one that is currently being used, which was
generated in the previous epoch, and one that we generate in
the current epoch. At the end of each epoch, MiDAS estimates
the lowest possible WAF for the new group organization using
the newly created UID and compares it to the WAF of the ex-
isting group organization with the old UID. If the WAF is not
reduced by more than a certain threshold MiDAS continues to
use the UID. However, if the difference exceeds the threshold,
MiDAS adopts the new group organization based on the new
UID. Currently, the threshold is set to 5%. Note that for the
first epoch where no information about the workload is avail-
able, MiDAS simply employs the age-based MiDA policy
with the CB victim selection policy.

The length of the epoch may have an impact on UID ac-
curacy. A short epoch enables quick adaptation to changes
in workload patterns but can lead to an accuracy drop due
to the small amount of information. A lengthy epoch, on the
other hand, may increase the accuracy of UID, but will make
MiDAS less sensitive to workload changes. We experimen-
tally determine the epoch to be four times the storage capacity.
We evaluate the impact of the epoch length in §6.3.

Handling irregular I/O patterns: While MiDAS provides
high accuracy in predicting transition probabilities using UID
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when workloads have regular I/O patterns, in reality, not all
I/O patterns are regular. In many of the traces that we ana-
lyzed, we observe workloads with high I/O fluctuation and
sudden unexpected I/O pattern changes over time. In such
cases, MiDAS may fail to predict the future behavior of the
workload using UID, resulting in high WAF. Thus, MiDAS
takes a different approach, which we elaborate below.

First, MiDAS needs to check for irregularities. This is done
by regularly checking how much the predicted and actual
transition probabilities differ. This is easy to do as we have
the predicted transition probabilities derived from UID and
the actual transition probabilities can be obtained by keeping
track of the number of valid blocks moved from one group to
another. Once a high error rate is detected between groups, say
between 𝐺𝑘 and 𝐺𝑘+1, MiDAS gives up on adjusting group
sizes for all groups beyond 𝐺𝑘 and simply merges the groups
from 𝐺𝑘 to 𝐺𝑁 into 𝐺𝑘 . This is because the low accuracy
between 𝐺𝑘 and 𝐺𝑘+1 will have a cascading impact on the
accuracy of the subsequent groups. Then, MiDAS falls back
to the simple age-based MiDA technique as we did when
no workload information was available. This is maintained
until an up-to-date UID is generated at the next epoch and
can be used to find a new group configuration. Currently, this
fallback mechanism is invoked when the error rate between
the predicted and actual transition probabilities exceeds 10%.

5 Implementation and Experimental Setup
In this section, we discuss some implementation details in-
cluding methods used to optimize memory. We then detail
our experimental setup.

5.1 Implementation and Resource Overhead
In MiDAS, a chain of the cold groups, each organized as
a simple FIFO queue, is managed using a linked list that
consumes little memory. When the group configuration is
changed, the segments containing data blocks do not physi-
cally move across the groups. Instead, only pointers that point
to the physical location of each segment in the queue are
moved. This allows for simple adjustment of group configu-
rations without any data copy overhead. For example, when
merging two groups, the pointers are relocated to one of the
queues. Conversely, when dividing a single group into two,
MiDAS initially creates a new queue and a free segment for
the newly created group. Subsequently, the pointers from the
segments in the original group are moved upon the activation
of GC in that group.

MCAM requires moderate CPU cycles (we will discuss this
in §6.4) but only needs to keep a few parameters (i.e., tran-
sition probabilities and block counts) that require minimal
memory. For 𝐻𝑂𝑇 and UID, however, MiDAS has to keep
various data structures. We discuss optimizations that we
conduct to reduce memory overhead.
Hot filter: Recall that MiDAS promotes a data block to 𝐻𝑂𝑇

when its update interval is found to be within the threshold

Table 3: Characteristics of each workload

Notation
F-H & 

F-M
V

Y-A 

& Y-F
T-C Ali Ex

Write size (TiB) 15.1 14.9 16.4 & 18.0 16.1 Up to 2.8 Up to 2.9

Device size (GiB) 128 40-200 40

Request 

distribution

Zipfian 

(1.0 & 0.8)
Zipfian - -

Workloads
FIO-H 

& -M
Varmail

YCSB-A 

& -F
TPC-C Alibaba Exchange

time three times. To manage this, MiDAS maintains a 2-bit
hot filter per block in memory. We find that this requires less
than 60MiB per 1TiB storage.
Constructing UID: To construct UID, MiDAS uses two key
data structures: a timestamp table and an interval count table.
The timestamp table records timestamps of block updates to
compute the update intervals of data blocks. To save memory
space, instead of keeping track of all data blocks, we sample
only a subset for timestamp monitoring, with a sampling rate
of 0.01 (one in every 100 blocks). This reduces the timestamp
table size to 10.3MiB per 1TiB storage. The interval count
table keeps track of the number of blocks for specific update
intervals. To reduce the size of the interval count table, we
use a coarse-grained update interval unit of 16K blocks rather
than a block unit. Blocks with update intervals falling within
the range of [1, 16K blocks] are considered to have the same
update interval. In this way, the interval count table reduces
to 256KiB in size per 1TiB storage. The accuracy degradation
by this optimization is less than 3%.

5.2 Experimental Setup
We carry out experiments using both trace-driven simulations
and a real SSD prototype. An existing SSD simulator [12],
with block I/O traces collected from various environments, is
used to quickly evaluate key performance metrics (e.g., WAF)
of the GC techniques. We also use a real SSD prototype,
where MiDAS is implemented within the FTL, to measure I/O
performance and the overheads associated with the CPU and
memory for system execution. Our SSD prototype is equipped
with a quad-core ARM Cortex-A53 and 256MiB DRAM
for indexing memory. The SSD platform employs a 256GiB
custom flash array card with 16KiB flash page size and 128
pages per block and 8×8 channel. Unless otherwise stated,
the over-provisioning ratio is set to 7.3% as this is typical in
commercial systems [26,39]. For both the simulator and SSD
prototype, we implement the CAT, AutoStream, MiDA, and
SepBIT SOTA GC techniques.

The following write-intensive workloads are used for our
evaluations: FIO workloads [4] whose data access pattern
follows Zipf distribution with theta values of 1.0 (denoted
FIO-H) and 0.8 (denoted FIO-M), where the former and lat-
ter, respectively, represent workloads with skewed and rela-
tively uniform data access patterns; Varmail, the most write-
intensive workload in the Filebench benchmark [43]; YCSB-
A and -F, the write-intensive workloads of the YCSB bench-
mark [13]; TPC-C [14] running on MySQL [46]; 9 Exchange
traces from Microsoft Enterprise Traces [35]; and 25 write-
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Fig. 11. Overall WAF of each technique (the numbers repre-
sent the improvement on WAF by MiDAS relative to SepBIT)

intensive traces from the Alibaba Cloud I/O traces [30], whose
LBA ranges are smaller than 256GB. Note that the traces of
Exchange and Alibaba, individually, are relatively small. For
these two, each trace is run individually and the average re-
sults are reported. The workload summary and details are
shown in Table 3, and we use the abbreviated notations there
to denote the workloads in reporting the results. Before run-
ning the workloads, we fill up 92.7% of the SSD space with
data to make the SSD quickly reach a steady-state condition
that invokes GC regularly. GC is triggered when free space
drops below 0.1% of the total SSD capacity.

6 Experimental Results

6.1 Comparison of GC Efficiency
We first evaluate GC efficiency by comparing the WAFs of
the various techniques. All experiments to measure WAFs are
conducted using the trace-driven simulator. All techniques, ex-
cept for MiDAS, adopt CB, the most efficient victim selection
policy. Fig. 11 shows WAF for each technique. The numbers
on or above each workload bar represent the improvement
on WAF (%) by MiDAS relative to SepBIT, which is the best
performing SOTA technique.

With FIO-H, where data access is highly skewed, a notice-
able WAF reduction is observed. This is because many hot
blocks are filtered out by 𝐻𝑂𝑇 , which reduces the number
of valid block copies during GC. By setting the hot boundary
precisely and adjusting the number of cold groups and their
sizes, MiDAS outperforms the SOTA techniques. (A break-
down of each contributing factor is given and discussed in
more detail in §6.2.) On the other hand, with FIO-M, where
almost all of the data blocks have similar update intervals
with little variations, WAF reduction by hot-cold separation
and group size adjustment is limited.

For Varmail, YCSB-A and -F, and TPC-C, MiDAS reduces
WAF by 8.8–43.3% compared to SepBIT. These workloads
not only have numerous hot blocks but also a significant num-
ber of warm blocks. MiDAS captures these characteristics
with UID and then, changes the group configuration accord-
ingly. As a result, MiDAS ensures that the warm blocks are
invalidated before eviction, significantly reducing unneces-
sary data block copies (see §6.2).

In case of the Alibaba workloads, MiDAS and SepBIT
show similar WAF, with MiDAS showing worse WAF on
average. Recall that the Alibaba workloads are relatively short,
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Fig. 12. Impact of individual components of MiDAS

showing write sizes of 2.23 epochs on average, so most of
the traces end before the obtained UID can reap its benefits.
Moreover, Alibaba workloads show irregular I/O patterns that
increase the inaccuracy of predictions. This leads MiDAS
to incorrect group configurations or to simply fall back to
the MiDA technique. Thus, we see that WAF of MiDAS and
MiDA are also very similar. Exchange also is composed of 9
small workloads and we observe similar irregular I/O patterns.
Still, MiDAS is able to reduce WAF by 6.8% compared to
SepBIT.

Overall, for the workloads we considered, MiDAS reduced
WAF by an average of 25%. If we exclude the workloads
with irregular patterns, Alibaba and Exchange, and the one
with relatively uniform data access, FIO-M, the reduction on
average is 34.7%.

6.2 Impact of Each Component of MiDAS
We analyze the impact of the individual design components
of MiDAS, that is, (i) hot block separation (§4.2), (ii) group
configuration (§4.3–§4.4), and (iii) irregular I/O pattern han-
dling (§4.5). To observe the effect of adding each component,
we start off with MiDA, the basic design that MiDAS takes
from. Then, we add each design component denoted, +Hot-
Sep, +GrpConf, +IrrHand, respectively, one after the other,
observing the performance as each component is added.

Fig. 12 shows how each component improves (or some-
times worsens) WAF. We distinguish the workloads into two
groups, Group 1, those more typical workloads with some
skewness and regularity in data access and the other, Group
2, those whose I/O patterns are largely irregular (Exchange,
Alibaba) and that with low skewness in access (FIO-M), as
they show distinctly different influence.

Those in Group 1 show +HotSep and +GrpConf, individu-
ally, bringing about considerable gains. As explained in §6.1,
+HotSep improves the performance of FIO-H by separating
hot blocks. +GrpConf is effective in Varmail, YCSB-A and
-F, and TPC-C by organizing groups to give sufficient space
to warm blocks. In contrast, +IrrHand shows minimal, if any,
benefits. We see slight gains with Varmail and TPC-C, where
small irregular patterns are detected, which is reflected in
Table 4 as will be explained below.

The results for Group 2 are quite different. We see that
the effect of +HotSep is smaller than for Group 1. In case of
FIO-M, the impact of each component is limited as the block
access is less skewed and has no irregular patterns. Thus, re-
call from Fig. 11 that, for FIO-M, all the techniques, except
Autostream, showed similar WAF. For Alibaba and Exchange
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Table 4: Accuracy of UID in predicting transition probabilities
Workloads F-H V Y-A Y-F T-C Ali Ex F-M

Avg. error (%) 1.82 6.90 2.33 1.78 4.81 11.44 8.16 1.33
Avg. error (%)
w/ +IrrHand 1.82 1.97 2.33 1.78 2.38 4.67 3.36 1.33
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Fig. 13. Impact of length of epoch on generating UID

+GrpConf has a profound negative effect due to their irregular
I/O patterns that make finding suitable group configurations
difficult. The first row in Table 4 lists the average errors be-
tween UID predicted and actual transition probabilities. The
second row is the same error but when +IrrHand is applied.
We see these values coming down for Varmail, TPC-C, Al-
ibaba, and Exchange. Before +IrrHand is applied, MiDAS
is making inaccurate decisions in configuring groups based
on these erroneous predictions. Hence, when +GrpConf is
applied, WAF increases for Alibaba and Exhange. For Var-
mail and TCP-C, the inaccuracy is not as serious, so we see
improvements after applying +GrpConf. We also see that +Ir-
rHand mitigates the negative effect of irregular I/O patterns.

6.3 Miscellaneous Results
Impact of epoch length: We consider epoch lengths of 0.5×,
2×, 4×, and 8× of the storage capacity (128GiB) and ob-
serve the WAFs. Recall that all the earlier experiments were
performed with an epoch length of 4× 128GiB. As shown
in Fig. 13, workloads are largely insensitive to epoch lengths
of 4× and above with the exception of Exchange whose irreg-
ular patterns have strong influence. In contrast, shortening the
length negatively affects most workloads.
Adapting capability: We evaluate how well MiDAS re-
sponds to changes in workload patterns. To see this, we run
YCSB-A from 0 to 1.1 billion (B) time and then switch
to TPC-C until the end of the experiment. While running,
we measure WAF, the number of groups, and 𝐻𝑂𝑇 and 𝐺𝑁

sizes. Fig. 14(a) depicts how WAF changes over time. Adapt-
ing group configuration (+GrpConf) occurs six times dur-
ing the entire process, while irregular pattern handling (+Irr-
Hand) is invoked five times in each epoch. The points where
MiDAS adopts GrpConf and IrrHand are highlighted by the
dotted lines. The group configuration set at 0.25B remains
unchanged until 1.1B due to stable transition probabilities in
the YCSB-A workload (see Table 4). Once TPC-C begins
at 1.1B, the I/O pattern changes dramatically, with IrrHand
merging groups with high error rates to optimize WAF.

Fig. 14(b) shows how the number of groups, the 𝐻𝑂𝑇 and
𝐺𝑁 sizes evolve. We observe that when IrrHand is invoked,
the size of 𝐺𝑁 changes, while 𝐻𝑂𝑇 remains unchanged due
to low error rates. We conclude that MiDAS is effectively
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Fig. 14. MiDAS adapting to workload change

accommodating the needed changes to the groups (number
and size) according to the changes in the workload.
Comparison with ORA: We pointed out the limitations of
the existing techniques in data placement and group size de-
cisions by comparing them with ORA in Fig. 4 and Table 2,
respectively. We now compare MiDAS with ORA to show
how efficiently MiDAS addresses these limitations. Fig. 15(a)
shows the distribution of data blocks assigned to groups for
YCSB-A and the group size of each group (numbers on each
bar). The figure also displays the ratios of block categories,
𝐶1, ... 𝐶6, decided by ORA. Note that the number of groups in
MiDAS is the same as that of ORA and that this was reached
through adjustments. We also observe that most of the hot
blocks categorized as 𝐶1 are assigned to 𝐻𝑂𝑇 . MiDAS also
provides sufficient space to 𝐻𝑂𝑇 so that hot blocks can be
invalidated before being evicted to 𝐺1. However, we observe
that, though much more accurate than the other techniques,
data blocks in cold categories (i.e., C4–C6) account for non-
trivial portions in 𝐺1–𝐺2. This is owing to the age-based
migration policy of MiDAS that writes data blocks to the
former groups and then moves live blocks to the subsequent
groups. Despite such errors, age-based migration enables us to
efficiently segregate cold blocks in the latter groups (𝐺3–𝐺6),
helping reduce overall WAF.

6.4 Experiments on SSD Prototype
To evaluate throughput and CPU utilization that cannot be
measured from the trace-driven simulator, we implement a
proof-of-concept prototype of MiDAS in a real-world SSD
and carry out a set of experiments. We implement PageFTL,
MiDA, and SepBIT in the SSD platform. Six workloads, Var-
mail, YCSB-A, YCSB-F, TPC-C, Alibaba and Exchange, are
used for the throughput experiments. For Alibaba and Ex-
change, we report the average throughput of the subtraces.

As shown in Fig. 15(b), MiDAS achieves 2.55×, 1.24×,
1.15× higher throughput, respectively, than PageFTL, MiDA,
and SepBIT, on average. Notably, for Varmail, MiDAS, re-
spectively, achieves 3.2×, 1.4× and 1.3× gains. This is be-
cause MiDAS can significantly reduce writes by GC com-
pared to other techniques, evidenced by the WAF values of
4.26, 2.12, 1.91, and 1.52 for PageFTL, MiDA, SepBIT, and
MiDAS, respectively. These are in line with the simulation
results. Moreover, for Alibaba workloads, MiDAS improves
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Fig. 16. Results from our SSD prototype for FIO-U

the throughput by 8.7% compared to SepBIT despite MiDAS
showing higher WAF than SepBIT.

We also conduct experiments to measure the CPU overhead.
To remove the GC impact, we use the FIO workload with
uniform distribution (FIO-U) configured so that the WAFs
of all the techniques become almost identical (1.2) and al-
low only 60% of the entire device to be composed of valid
blocks. We use this configuration to assess I/O throughput
when the techniques handle ordinary user requests without be-
ing impacted by GC. Fig. 16(a) shows that all the techniques,
except for SepBIT, exhibit similar throughput as they have
the same WAF. SepBIT shows the lowest throughput among
the techniques. This is because it incurs high CPU utilization
to maintain the queue as well as to lookup the queue for every
user-written block in order to detect hot blocks. Note that
the negative impact on CPU utilization is particularly signifi-
cant in FIO-U where user-written blocks are dominant. For
garbage-collected blocks, SepBIT does not need to look up
the queue, so CPU overhead is much lower when the GC is
frequently triggered.

Fig. 16(b) shows the CPU utilization of FIO-U over time.
MiDAS shows, on average, only 4.2% and 0.6% higher CPU
utilization compared to PageFTL and MiDA, respectively.
MiDAS is designed to require only a few CPU cycles in
common paths such as reads, writes, and GC. However, we
notice sharp increases in CPU utilization at around 3740s
and 4890s. This is where MiDAS starts to run MCAM to
find the best group configuration. However, its impact on
performance is minimal as this is run in the background. As
shown in Fig. 16(a), MiDAS provides similar throughput as
PageFTL and MiDA.

7 Discussion
In the current stage, our work is limited to a case study for
flash-based SSDs. However, it can be adapted to other log-
structured systems. For instance, for ZNS SSDs, MiDAS can
be integrated into a zoned storage backend (e.g., ZenFS [6])
to reduce the host’s GC overhead, similar to SepBIT [44]. The
segment size in MiDAS is not fixed and thus can be adjusted
to match the characteristics of ZNS SSDs.

However, there could be several hurdles when adapting to
other log-structured systems, such as the LSM-tree. LSM-
trees have chain-like structures that merge-sort data through
progressively larger layers [36,40]. MiDAS’s structure is sim-
ilar, where live blocks migrate to subsequent groups via GC,
and its group configuration could be integrated into LSM-tree
level design. However, a new challenge arises because LSM-
trees keep objects in a sorted order, conflicting with MiDAS’s
assumption that blocks in a segment share similar age. Addi-
tionally, the significantly larger key range of LSM-tree objects
compared to the LBA range leads to an expanded timestamp
table, thereby causing an increased memory footprint. We
plan to address these problems as part of our future work.

Many researchers have discussed write amplification re-
duction techniques in log-structured systems like ZNS and
LSM-tree [5, 19, 32, 52]. However, research that dynamically
applies group configuration based on the workload pattern in
log-structured systems other than flash-based SSDs has not
been explored in great depth. MiDAS can provide useful in-
sights on how to effectively apply group configurations within
general log-structured systems.

8 Conclusion
In this paper, we presented MiDAS, a systematic solution to
mitigate GC overhead for log-structured systems. MiDAS
employs a chain-like structure to organize data by age and
minimize data movement between groups using analytical
models, UID and MCAM. It also isolates hot blocks within a
designated hot group and dynamically adjusts its size against
cold groups in a manner that minimizes overall GC costs. Our
experiments demonstrated that MiDAS outperforms existing
techniques, achieving 25% reduction in WAF and 54% higher
throughput, on average for the workloads considered, all while
being memory-efficient and consuming fewer CPU cycles.

Acknowledgments
We thank our shepherd, professor Ming-Chang Yang, and the
anonymous reviewers for all their helpful comments. This
work was supported by SNU-SK Hynix Solution Research
Center (S3RC), the National Research Foundation of Korea
(NRF-2018R1A5A1060031), the MOTIE (Ministry of Trade,
Industry & Energy) (1415181081), KSRC (Korea Semicon-
ductor Research Consortium) (20019402), and NSF grant
(2312785). (Corresponding author: Sungjin Lee)

USENIX Association 22nd USENIX Conference on File and Storage Technologies    271



References
[1] Abutalib Aghayev and Peter Desnoyers. Skylight—A

window on shingled disk operation. In Proceedings of
the USENIX Conference on File and Storage Technolo-
gies, pages 135–149, 2015.

[2] Abutalib Aghayev, Theodore Ts’o, Garth Gibson, and
Peter Desnoyers. Evolving Ext4 for Shingled Disks.
In Proceedings of the USENIX Conference on File and
Storage Technologies, pages 105–120, 2017.

[3] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark S. Manasse, and Rina Panigrahy.
Design tradeoffs for SSD performance. In Proceedings
of the USENIX Annual Technical Conference, pages 57–
70, 2008.

[4] Jens Axboe. FIO: Flexible I/O Tester Synthetic Bench-
mark. https://github.com/axboe/fio, 2023.

[5] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating Synergies
Between Memory, Disk and Log in Log Structured Key-
Value Stores. In Proceedings of the USENIX Annual
Technical Conference, pages 363–375, 2017.

[6] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R. Ganger,
and George Amvrosiadis. ZNS: Avoiding the Block
Interface Tax for Flash-based SSDs. In Proceedings of
the USENIX Annual Technical Conference, pages 689–
703, 2021.

[7] Pierre Brémaud. Markov chains: Gibbs fields, Monte
Carlo simulation, and queues, volume 31. Springer
Science & Business Media, 2001.

[8] Werner Bux and Ilias Iliadis. Performance of Greedy
Garbage Collection in Flash-Based Solid-State Drives.
Performance Evaluation, 67(11):1172–1186, 2010.

[9] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System Im-
plications of Flash Memory Based Solid State Drives.
In Proceedings of the Eleventh International Joint Con-
ference on Measurement and Modeling of Computer
Systems, pages 181–192, 2009.

[10] Mei-Ling Chiang and Ruei-Chuan Chang. Cleaning
Policies in Mobile Computers Using Flash Memory.
Journal of Systems and Software, 48(3):213–231, 1999.

[11] Mei-Ling Chiang, Paul C.H. Lee, and Ruei-Chuan
Chang. Using Data Clustering to Improve Cleaning
Performance for Flash Memory. Software: Practice and
Experience, 29(3):267–290, 1999.

[12] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and
Sungjin Lee. Lightstore: Software-defined Network-
attached Key-value Drives. In Proceedings of the Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
939–953, 2019.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
ACM symposium on Cloud Computing, pages 143–154,
2010.

[14] The Transaction Processing Council. TPC-C Bench-
mark. https://www.tpc.org/tpcc, 2021.

[15] Peter Desnoyers. Analytic Models of SSD Write Per-
formance. ACM Transactions on Storage, 10(2):1–10,
2014.

[16] Samsung Electronics. Multi-Stream Write SSD. Flash
Memory Summit, 2016.

[17] Garth Gibson and Greg Ganger. Principles of Opera-
tion for Shingled Disk Devices. In Proceedings of the
USENIX Workshop on Hot Topics in Storage and File
Systems, 2011.

[18] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
DFTL: A Flash Translation Layer Employing Demand-
based Selective Caching of Page-level Address Map-
pings. In Proceedings of the International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 229–240, 2009.

[19] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. ZNS+: Advanced Zoned Namespace In-
terface for Supporting In-Storage Zone Compaction. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, pages 147–162,
2021.

[20] John A. Hartigan and Manchek A. Wong. Algorithm
AS 136: A K-means Clustering Algorithm. Applied
Statistics, 28(1):100–108, 1979.

[21] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The Multi-streamed Solid-State Drive.
In Proceedings of the USENIX Workshop on Hot Topics
in Storage and File Systems, 2014.

[22] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: Transactional
FTL for SQLite Databases. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 97–108, 2013.

272    22nd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/axboe/fio
https://www.tpc.org/tpcc


[23] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Mo-
toda. A Flash-Memory Based File System. In Proceed-
ings of the USENIX Annual Technical Conference, pages
155–164, 1995.

[24] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul
Min, and Yookun Cho. A Space-efficient Flash Transla-
tion Layer for CompactFlash Systems. IEEE Transac-
tions on Consumer Electronics, 48(2):366–375, 2002.

[25] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, My-
oungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul
Lee, and Jihong Kim. Fully Automatic Stream Manage-
ment for Multi-Streamed SSDs Using Program Contexts.
In Proceedings of the USENIX Conference on File and
Storage Technologies, pages 295–308, 2019.

[26] Kingston. Understanding SSD Over-provisioning
(OP). https://www.kingston.com/en/blog/pc-
performance/overprovisioning, 2019.

[27] Kevin Kremer and André Brinkmann. FADaC: A Self-
Adapting Data Classifier for Flash Memory. In Proceed-
ings of the ACM International Conference on Systems
and Storage, pages 167–178, 2019.

[28] Changman Lee, Dongho Sim, Joo Young Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the USENIX Conference on
File and Storage Technologies, pages 273–286, 2015.

[29] Jan Van Leeuwen. Handbook of theoretical computer
science (vol. A) algorithms and complexity. Mit Press,
1991.

[30] Jinhong Li, Qiuping Wang, Patrick P.C. Lee, and Chao
Shi. An In-Depth Analysis of Cloud Block Storage
Workloads in Large-Scale Production. In Proceedings
of IEEE International Symposium on Workload Charac-
terization, pages 37–47, 2020.

[31] Seung-Ho Lim, Hyun Jin Choi, and Kyu Ho Park. Jour-
nal Remap-based FTL for Journaling File System with
Flash Memory. In Proceedings of the International
Conference on High Performance Computing and Com-
munications, pages 192–203, 2007.

[32] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the USENIX
Conference on File and Storage Technologies, pages
133–148, 2016.

[33] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: Random Write
Considered Harmful in Solid State Drives. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies, pages 1–16, 2012.

[34] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind
Krishnamurthy. eZNS: An Elastic Zoned Namespace for
Commodity ZNS SSDs. In Proceedings of the USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 461–477, 2023.

[35] Dushyanth Narayanan, Eno Thereska, Austin Donnelly,
Sameh Elnikety, and Antony Rowstron. Migrating
Server Storage to SSDs: Analysis of Tradeoffs. In Pro-
ceedings of the ACM European Conference on Com-
puter Systems, page 145–158, 2009.

[36] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The Log-structured Merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, 1996.

[37] Hyunseung Park, Eunjae Lee, Jaeho Kim, and Sam H.
Noh. Lightweight Data Lifetime Classification Using
Migration Counts to Improve Performance and Life-
time of Flash-Based SSDs. In Proceedings of the ACM
SIGOPS Asia-Pacific Workshop on Systems, pages 25–
33, 2021.

[38] Mendel Rosenblum and John K. Ousterhout. The De-
sign and Implementation of a Log-Structured File Sys-
tem. ACM Transactions on Computer Systems, 10(1):26–
52, 1992.

[39] Samsung Electronics. Over-provisioning
Benefits for Samsung Data Center SSDs.
https://download.semiconductor.samsung.
com/resources/white-paper/S190311-SAMSUNG-
Memory-Over-Provisioning-White-paper.pdf,
2019.

[40] Russell Sears and Raghu Ramakrishnan. bLSM: A Gen-
eral Purpose Log Structured Merge Tree. In Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, pages 217–228, 2012.

[41] Seonggyun Oh, Jeeyun Kim, Soyoung Han, Jaeho
Kim, Sungjin Lee, and Sam H. Noh. Supplemental
Material of MiDAS. https://github.com/dgist-
datalab/MiDAS/blob/main/MiDAS_supplemental_
material.pdf, 2024.

[42] Radu Stoica and Anastasia Ailamaki. Improving Flash
Write Performance by Using Update Frequency. VLDB
Endowment, 6(9):733–744, 2013.

[43] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A Flexible Framework for File System
Benchmarking. The USENIX Magazine, 41(1):6–12,
2016.

[44] Qiuping Wang, Jinhong Li, Patrick P.C. Lee, Tao
Ouyang, Chao Shi, and Lilong Huang. Separating Data

USENIX Association 22nd USENIX Conference on File and Storage Technologies    273

https://www.kingston.com/en/blog/pc-performance/overprovisioning
https://www.kingston.com/en/blog/pc-performance/overprovisioning
https://download.semiconductor.samsung.com/resources/white-paper/S190311-SAMSUNG-Memory-Over-Provisioning-White-paper.pdf
https://download.semiconductor.samsung.com/resources/white-paper/S190311-SAMSUNG-Memory-Over-Provisioning-White-paper.pdf
https://download.semiconductor.samsung.com/resources/white-paper/S190311-SAMSUNG-Memory-Over-Provisioning-White-paper.pdf
https://github.com/dgist-datalab/MiDAS/blob/main/MiDAS_supplemental_material.pdf
https://github.com/dgist-datalab/MiDAS/blob/main/MiDAS_supplemental_material.pdf
https://github.com/dgist-datalab/MiDAS/blob/main/MiDAS_supplemental_material.pdf


via Block Invalidation Time Inference for Write Am-
plification Reduction in Log-Structured Storage. In
Proceedings of the USENIX Conference on File and
Storage Technologies, pages 429–444, 2022.

[45] Western Digital. Western Digital Ultrastar DC ZN540
Data Sheet. https://documents.westerndigital.
com/content/dam/doc-library/en_us/assets/
public/western-digital/collateral/data-
sheet/data-sheet-ultrastar-dc-zn540.pdf,
2021.

[46] Wikipedia. MySQL. https://en.wikipedia.org/
wiki/MySQL, 2023.

[47] Michael Wu and Willy Zwaenepoel. ENVy: A Non-
Volatile, Main Memory Storage System. In Proceed-
ings of the International Conference on Architectural
Support for Programming Languages and Operating
Systems, page 86–97, 1994.

[48] Gala Yadgar, Moshe Gabel, Shehbaz Jaffer, and Bianca
Schroeder. SSD-Based Workload Characteristics and
Their Performance Implications. ACM Transactions on
Storage, 17(8):1–26, 2021.

[49] Jing Yang and Shuyi Pei. Thermo-GC: Reducing write
amplification by tagging migrated pages during garbage
collection. In Proceedings of the IEEE International
Conference on Networking, Architecture and Storage,
pages 1–8, 2019.

[50] Jing Yang, Shuyi Pei, and Qing Yang. WARCIP: Write
amplification reduction by clustering I/O pages. In
Proceedings of the ACM International Conference on
Systems and Storage, pages 155–166, 2019.

[51] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi,
and Vijay Balakrishnan. AutoStream: Automatic stream
management for multi-streamed SSDs. In Proceedings
of the ACM International Systems and Storage Confer-
ence, pages 1–11, 2017.

[52] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu
Tang, Hong Jiang, Changsheng Xie, and Xubin He. Ma-
trixKV: Reducing Write Stalls and Write Amplification
in LSM-tree Based KV Stores with Matrix Container in
NVM. In Proceedings of the USENIX Annual Technical
Conference, pages 17–31, 2020.

274    22nd USENIX Conference on File and Storage Technologies USENIX Association

https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/data-sheet/data-sheet-ultrastar-dc-zn540.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/data-sheet/data-sheet-ultrastar-dc-zn540.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/data-sheet/data-sheet-ultrastar-dc-zn540.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/data-sheet/data-sheet-ultrastar-dc-zn540.pdf
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/MySQL


A Artifact Appendix
Abstract
MiDAS is a migration-based data placement technique with
adaptive group number and size configuration for reducing
garbage collection overhead in various log-structured systems.
Notably, MiDAS is currently implemented within the FTL of
the real SSD prototype. For artifact evaluation, we provide our
source code and the trace file. Please refer to the README
file at https://github.com/dgist-datalab/MiDAS.

Scope
The artifact includes all the necessary source code required to
run MiDAS as well as the FIO-based workload trace file used
in this study. You can quickly test MiDAS using this trace.

Contents
We provide two Git repositories related to MiDAS: the SSD
prototype-based implementation and the trace-driven simula-
tion. If you evaluate MiDAS using the SSD prototype-based
implementation, you can measure not only the WAFs but
also I/O performance and the overhead associated with the
CPU and memory for system execution. Meanwhile, using
trace-driven simulations, you are limited to WAF evaluations
only. Here, we will explain the contents based on the SSD
prototype-based implementation. There are four main c files
to run MiDAS:

• midas.c: adaptably changes group configuration and reg-
ularly checks irregular patterns at runtime (see §4.5).

• model.c: constructs UID, predicts WAF using MCAM,
and runs GCS algorithm to find the best group configura-
tion based on the observed workload patterns (see §4.3,
§4.4 and §4.5).

• gc.c: selects a victim of GC based on the victim selection
policy and moves live blocks into subsequent groups (see
§4.1).

• hot.c: constructs a hot filter to separate hot blocks from
cold blocks by monitoring incoming data blocks (see
§4.2).

Hosting
We provide the public Git URLs, and the commit hashes for
each repository used during artifact evaluation. MiDAS is
implemented in both a real SSD prototype and trace-driven
simulation. For quick testing of MiDAS, particularly for eval-
uating WAF, using the trace-driven simulation is sufficient.
Additionally, we provide a public Zenodo URL for download-
ing the trace file of the FIO benchmark used in our evaluation.

• Emulated SSD prototype
https://github.com/dgist-datalab/MiDAS
14be7bf7b01fad8db023622e4598fb9e30d8024f

• Trace-driven simulation
https://github.com/sungkyun123/MiDAS-Simulation
a22626529ad625eb4ddbab298752b9116fe6d05a

• FIO-based workload trace file
https://zenodo.org/record/10409599

Requirements
Hardware requirements. We use the Xilinx Virtex® Ultra-
Scale™ FPGA VCU108 platform and customized NAND
flash modules. The customized NAND flash modules used in
this paper are not publicly or commercially available. There-
fore, you may need your own NAND modules compatible
with VCU108 and adequate modifications to the hardware
backend to replicate this work. Acknowledging the challenge
for most researchers to replicate our experimental setup, we
offer an alternative emulation of the prototype via a memory-
based approach (RAM drive). DRAM must be larger than the
device size of trace files + an extra 10% of the device size for
the data structures and OP region to test the trace files. For
example, you need 140GiB size of DRAM to run the trace
file with a 128GiB device size.
Software requirements. There are little special software
requirements to run MiDAS and you only need to install some
packages using apt. The README file in the repository
describes detailed instructions for the installation.
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