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ABSTRACT

Graph Neural Networks (GNNs) are neural models that leverage the dependency
structure in graphical data via message passing among the graph nodes. GNNs
have emerged as pivotal architectures in analyzing graph-structured data, and their
expansive application in sensitive domains requires a comprehensive understand-
ing of their decision-making processes — necessitating a framework for GNN
explainability. An explanation function for GNNs takes a pre-trained GNN along
with a graph as input, to produce a ‘sufficient statistic’ subgraph with respect to
the graph label. A main challenge in studying GNN explainability is to provide
fidelity measures that evaluate the performance of these explanation functions.
This paper studies this foundational challenge, spotlighting the inherent limitations
of prevailing fidelity metrics, including Fid+, Fid↑, and Fid!. Specifically, a
formal, information-theoretic definition of explainability is introduced and it is
shown that existing metrics often fail to align with this definition across various
statistical scenarios. The reason is due to potential distribution shifts when sub-
graphs are removed in computing these fidelity measures. Subsequently, a robust
class of fidelity measures are introduced, and it is shown analytically that they are
resilient to distribution shift issues and are applicable in a wide range of scenarios.
Extensive empirical analysis on both synthetic and real datasets are provided to
illustrate that the proposed metrics are more coherent with gold standard metrics.
The source code is available at https://trustai4s-lab.github.io/fidelity.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become a cornerstone for processing graph-structured data,
achieving impressive outcomes across various domains such as node classification and link predic-
tion (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018; Scarselli et al., 2008).
However, with their proliferation in sensitive sectors like healthcare and fraud detection, the demand
for understanding their decision-making processes has grown significantly (Zhang et al., 2022a; Wu
et al., 2022; Li et al., 2022). To address this challenge, explanation techniques have been proposed
for GNNs, most commonly focusing on identifying a subgraph that dominates the model’s prediction
in a post-hoc sense (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021).

In the design and study of explainable GNNs, both model design and choice of evaluation metrics are
important. While most efforts have primarily been made to develop new network architectures and
optimization objectives to achieve more accurate explanations (Ying et al., 2019; Luo et al., 2020;
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Yuan et al., 2021), in this paper, we underscore the critical importance of choosing the right evaluation
metrics for the achieved explanations. In an ideal scenario, quantitative evaluation of an explanation
subgraph can be achieved by comparing it with a gold standard or ground truth explanation (Ying
et al., 2019). Yet, in real-world applications, such ground truth explanation subgraphs are a rarity,
often making direct comparisons impracticable. In lieu of this, surrogate fidelity metrics, namely
Fid+, Fid↑, and Fid!, have been included to gauge the faithfulness of explanation subgraphs. At
its core, the intuition driving such fidelity metrics is straightforward: if a subgraph is discriminative to
the model, the prediction should change significantly when it is removed from the input. Otherwise,
the prediction should be maintained. Hence, Fid+ is defined as the difference in accuracy (or
predicted probability) between the original prediction and the new predictions of non-explanation
subgraph which is obtained by masking out the explanation subgraph (Pope et al., 2019; Bajaj et al.,
2021), and Fid↑ measures the difference between predictions of the original graph and explanation
subgraph (Yuan et al., 2022). As prevailing standards, these Fidelity metrics and their variants
have been widely used in existing popular platforms, such as GraphFramEx Amara et al. (2022),
GraphXAI (Agarwal et al., 2023), GNNX-BENCH (Kosan et al., 2023), and DIG (Liu et al., 2021).

Although intuitively correct, we argue that the aforementioned Fidelity metrics come with significant
drawbacks due to the impractical assumption that the to-be-explained model can make accurate
predictions of the explanation subgraph (in Fid↑) or non-explanation subgraph (in Fid+). This does
not hold in a wide range of real-world scenarios, because when edges are removed, the resultant
subgraphs might be Out Of Distribution (OOD) (Fang et al., 2023c;b). For example, in MUTAG
dataset (Debnath et al., 1991), each graph is a molecule with nodes representing atoms and edges
describing the chemical bonds. The functional group NO2 is considered the dominating subgraph
that causes a molecule to be mutagenic. The explanation subgraph only consists of 2 edges, which
is much smaller than whole molecular graphs. Such disparities in properties introduce distribution
shifts, putting the Fidelity metrics on shaky grounds, because of the violation of a key assumption in
machine learning: the training and test data come from the same distribution (Hooker et al., 2019).

To build an evaluation foundation for eXplainable AI (XAI) in the graph domain, In this paper, we
investigate robust fidelity measurements for evaluating the correctness of explanations. There are
several non-trivial challenges associated with this problem. First, the to-be-explained GNN model
is usually evaluated as a black-box model, which cannot be re-trained to ensure the generalization
capacity (Hooker et al., 2019). Second, the evaluation method is required to be stable and ideally
deterministic. As a result, complex parametric methods, such as adversarial perturbations (Hase et al.,
2021; Hsieh et al., 2021), are not suitable as the results are affected by randomly initiated parameters.

We provide an information theoretic framework for GNN explainability. We define an explanation
graph as a subgraph of the input that satisfies two conditions: 1) the explanation graph is an (almost)
sufficient statistic of the input graph with respect to the output label, and 2) the size of the explanation
graph is small compared to the input graph. Based on this, we provide two notions of explainability,
namely, explainability of a classification task and explainability of a classifier for the task (Definitions
2 and 3). We quantify the relation between these two notions for low-error classifiers and classification
tasks (Theorem 1). Computing the resulting information theoretic fidelity measure requires knowledge
of the underlying graph statistics, which is not possible in most real-world scenarios of interest. We
propose a generalized class of surrogate fidelity measures that are robust to distribution shift issues in
a wide range of scenarios (Proposition A.4). Our contributions are summarized as follows.
• We pioneer in spotlighting the inherent shortcomings of widely accepted evaluation methodologies

in the explainable graph learning domain.
• Grounded in solid theoretical underpinnings, we introduce novel evaluation metrics that are resilient

to distribution shifts, enhancing their applicability in real-world contexts. This metric notably
approximates evaluations conducted with ground truth explanations more closely.

• Through rigorous empirical analyses on a diverse mix of synthetic and real datasets, we validate
that our approach resonates well with gold standard benchmarks.

2 PRELIMINARIES

Random Graphs: We parameterize a (random) labeled graph G by a tuple (V, E ;Y,X,A), where i)
V = {v1, v2, ..., vn} is the vertex set1, ii) E → V ↑ V is the edge set, iii) Y is the graph class label

1We use node and vertex interchangeably.
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taking values from finite set of classes Y , iv) X ↓ Rn↓d is the feature matrix, where the i-th row of
X , denoted by Xi ↓ R1↓d, is the d-dimensional feature vector associated with node vi, i ↓ [n], and
v) A ↓ {0, 1}n↓n is the adjacency matrix. The graph parameters (Y,A,X) are generated according
to the joint probability measure PY,A,X . Note that the adjacency matrix determines the edge set E ,
where Aij = 1 if (vi, vj) ↓ E , and Aij = 0, otherwise. We write |G| and |E| interchangeably to
denote the number of edges of G. Throughout this paper, we use lower-case letters, such as g, y,x,
and a, to represent realizations of the random objects G, Y,X and A, respectively. Given a labeled
graph G = (V, E ;Y,X,A), we denote the corresponding graph without label as G, and parameterize
it by (V, E ;X,A). The induced distribution of G is represented as PG, and its support by G.
Graph and Node Classification Tasks: In the classification tasks under consideration, we are given:

• A set of labeled training data T = {(Gi, Yi)|Yi ↓ Y, i ↓ [|T |]}, where (Gi, Yi) corresponds to the
i-th graph and its associated class label. The pairs (Gi, Yi), i ↓ [|T |] are generated independently
according to an identical joint distribution induced by PY,X,A.

• A classification function (GNN model) f(·) trained to classify an unlabeled input graph G into
its class Y . It takes G as input and outputs a probability distribution PY on alphabet Y . The
reconstructed label Ŷ is produced randomly based on PY .

In node classification tasks, each graph Gi denotes a K-hop sub-graph centered around node vi, with
a GNN model f trained to predict the label for node vi based on the node representation of vi learned
from Gi, whereas in graph classification tasks, Gi is a random graph whose distribution is determined
by the (general) joint distribution PY,A,Z, with the GNN model f(·) trained to predict the label for
graph G based on the learned representation of G. Formally we define a classifier as follows.
Definition 1 (Classifier). For a classification task with underlying distribution PY,X,A, a classier
is a function f : G ↔ !Y . For a given ω > 0, the classifier is called ω-accurate if P (Ŷ ↗= Y ) ↘ ω,
where Ŷ is produced according to probability distribution f(G).

2.1 INFORMATION THEORETIC MEASURES FOR QUANTIFYING EXPLAINABILITY

In this section, we introduce two different but related notions of explainability, namely, explainability
of a classification task, and explainability of a classifier for a given task. The interrelations between
these two notions are quantified in the subsequent sections.

Given a classification task with underlying distribution PY,X,A, an explanation function for the task
is a mapping ” : G ≃↔ (Vexp, Eexp) which takes an unlabeled graph G = (V, E ;X,A) as input and
outputs a subset of nodes Vexp → V and subset of edges Eexp → Vexp ↑ Vexp. Loosely speaking, a
good explanation (Vexp, Eexp) is a subgraph which is an (almost) sufficient statistic of G with respect
to the true label Y , i.e., I(Y ;G|1”(G)) ⇐ 0, where we have defined2:

I(Y ;G|1”(G)) ↭
∑

gexp

P”(G)(gexp)
∑

y,g

PY,G(y, g|gexp → G) log
PY,G(y, g|gexp → G)

PY (y|gexp → G)PG(g|gexp → G)
.

In practice, a desirable explanation function is one whose output size is significantly smaller than the
original input size, i.e., EG(|”(G)|) ⇒ EG(|G|). This is formalized below.
Definition 2 (Explainable Classification Task). Consider a classification task with underlying
distribution PY,X,A. An explanation function for this task is a mapping ” : G ↔ 2V ↑ 2E . For a
given pair of parameters ε ↓ [0, 1] and s ↓ N, the task is called (s,ε)-explainable if there exists an
explanation function ” : G ≃↔ (Vexp, Eexp) such that:

i) I(Y ;G|1”(G)) ↘ ε, ii) EG(|Eexp|) ↘ s.

A similar notion of explainability can be provided for a given classifier as follows.
Definition 3 (Explainable Classifier). Consider a classification task with underlying distribution
PY,X,A and a classier f : G ↔ !Y . For a given pair of parameters ϑ ↓ [0, 1] and s ↓ N, the

2I(Y ;G|1!(G)) can be alternatively written as EG→(I(Y ;G|!(G
→
) → G)), where PY GG→ = PY GPG→ .
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classifier f(·) is called (s, ϑ)-explainable if there exists an explanation function ”(·) such that

i) I(Ŷ ;G|1”(G)) ↘ ϑ, ii) EG(|Eexp|) ↘ s,

where ”(G) = (Vexp, Eexp) and Ŷ is generated according to the probability distribution f(G). The
explanation function ”(·) is called an (s, ϑ) explanation for f(·).

3 FIDELITY MEASURES FOR EXPLAINABILITY

3.1 EXPLAINABLE TASKS VS EXPLIANABLE CLASSIFIERS

It should be noted that the explainability of the classification task (Definition 2) does not imply nor
is it implied by the explainability of a classifier for that task (Definition 3). For instance, the trivial
classifier whose output is independent of input is explainable for any task, even if the task is not
explainable itself. In this section, we characterize a quantitative relation between these two notions of
explainability. To keep the analysis tractable, we introduce the following condition on ”(·):

Condition 1: ⇑g, g↔ : ”(g) → g↔ ⇓ ”(g↔) = ”(g). (1)

Condition 1 holds for the ground-truth explanation in many of the widely studied datasets in the
explainability literature such as BA-2motifs, Tree-Cycles, Tree-Grid, and MUTAG datasets which are
discussed in Section 5. An important consequence of Condition 1 is that if ”(·) satisfies the condition,
then I(Ŷ ;G|1”(G)) = I(Ŷ ;G|”(G)). In the following, under the assumption of Condition 1, we
show that if the classifier has a low error probability, then its explainability implies the explainability
of the underlying task. Conversely, we show that if the task is explainable, and its associated Bayes
error rate is small, then any classifier for the task with an error close to the Bayes error rate is
explainable. The following provides the main result of this section.
Theorem 1 (Sufficient Conditions for Equivalency of Task and Classifier Explainability). Con-
sider a classification task with underlying distribution PY,X,A, parameters ϑ,ε, ω ↓ [0, 1], and an
integer s ↓ N. Then,

1. If there exists a classifier f(·) for this task which is ω-accurate and (s, ϑ)-explainable, with the
explanation function satisfying Condition 1, then, the task is (s,ε↔)-explainable, where

ε↔ ↘ ϑ + hb(ω) + ω log (|Y|⇔ 1),

and hb(p) ↭ ⇔p log p⇔ (1⇔ p) log 1⇔ p, p ↓ [0, 1] denotes the binary entropy function. Particu-
larly, ε↔ ↔ 0 as ϑ, ω ↔ 0.

2. If the classification task is binary (i.e. |Y| = 2), is (s,ε)-explainable with an explanation function
satisfying Condition 1, and has Bayes error rate equal to ω→, then any (ω→ + ϖ)-accurate classifier
h(·) is (s, ϱ)-explainable, where

ϱ ↭ hb(ς) + ς, ς ↭
(
2
↖
2ω→ +

↖
φ
)2

2
, φ ↭ ϖ + emax(ω

→,ε)⇔ ω→,

ϖ ↓ (0, 9ω→ ⇔ emax(ω
→,ε)),

and emax(·) is defined in Proposition 1. Particularly, ϱ ↔ 0 as ϖ, ω→,ε ↔ 0.

The proof of Part 1) follows from the definition of explainability in Definitions 2 and 3, and Fano’s
inequality. The proof of Part 2) uses the following intermediate result, which proves the existence of
an explainable classifier for any explainable task, whose error is close to that of the Bayes classifier.
Proposition 1 (Existence of Accurate and Explainable Classifiers for Explainable Tasks). Con-
sider a classification task with underlying distribution PY,X,A, parameters ε, ω ↓ [0, 1], and an
integer s ↓ N. Assume that the task is (s,ε)-explainable with an exaplantion function satisfying
Condition 1. Further assume that the classification task has a Bayes error rate equal to ω→. Then,
there exists an ω-accurate and (s, 0)-explainable classifier f(·), such that

ω ↘ emax(ω
→,ε), (2)
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where we have defined

emax(x, y) ↭ argmax
z

{z|eRF (z) ↘ hb(x) + x log (|Y|⇔ 1) + y}, x, y ↓ [0, 1]

eRF (z) ↭
(
1⇔ (1⇔ z)

⌊
1

1⇔ z

⌋)(
1 +

⌊
1

1⇔ z

⌋)
ln

(
1 +

⌊
1

1⇔ z

⌋)

⇔
(
z ⇔ (1⇔ z)

⌊
1

1⇔ z

⌋)⌊
1

1⇔ z

⌋
ln

⌊
1

1⇔ z

⌋
, z ↓ (0, 1).

In particular, ω ↔ 0 as ω→,ε ↔ 0.

The complete proof of Proposition 1 is provided in Appendix A.1, and the proof of Theorem 1 is
provided in Appendix A.2.

3.2 SURROGATE FIDELITY MEASURES FOR QUANTIFYING EXPLAINABILITY

Definitions 2 and 3 provide intuitive notions of explainability along with fidelity measures expressed
as mutual information terms, however, in most practical applications it is not possible to quantitatively
compute and analyze them. To elaborate, let us consider the mutual information term in condition i)
of Definition 3. Estimating the mutual information term, I(Ŷ ;G|1”(G)) is not practically feasible
in most applications since G has large alphabet size. To address this, prior works have considered
alternative surrogate fidelity measures for evaluating the performance of explanation functions.
At a high level, an ideal surrogate measure Fid→ : (f,”) ≃↔ R↗0 must satisfy two properties:
i) The surrogate fidelity value Fid→(f,”) must be monotonic with the mutual information term
I(Ŷ ;G|1”(G)) given in Definition 3, so that a ‘good’ explanation function with respect to the
surrogate fidelity measure is ‘good’ under Definition 3 and vice versa, and ii) there must exist an
empirical estimate of Fid→(f,”) with sufficiently fast convergence guarantees so that the surrogate
measure can be estimated accurately using a reasonably large set of observations. These conditions
are formalized in the following two definitions.
Definition 4 (Surrogate Fidelity Measure). For a classification task with underlying distribution
PY,X,A, a (surrogate) fidelity measure is a mapping Fid : (f,”) ↔ R↗0, which takes a pair
consisting of a classification function f(·) and explanation function ”(·) as input, and outputs a
non-negative number. The fidelity measure is said to be well-behaved for a set of classifiers F and
explanation functions S if for all pairs of explanation functions ”1,”2 ↓ S and classifiers f ↓ F ,
we have:

I(Ŷ ;G|1”1(G)) ↘ I(Ŷ ;G|1”2(G)) ↙⇓ Fid(f,”2) ↘ Fid(f,”1). (3)

The condition in equation 3 requires that better explanation functions in the sense of Definition 3
must have higher fidelity when evaluated using the surrogate measure.
Definition 5 (Rate of Convergence Guarantee). Let Ti = {(Gj , Yj)|j ↘ i}, i ↓ N be a sequence
of sets of independent and identically distributed observations for a given classification problem. A
fidelity measure Fid(·, ·) is said to be empirically estimated with rate of convergence ↼ if there exits
a sequence of functions Hn : Tn ≃↔ F̂ idn, n ↓ N such that for all ω > 0, we have:

P (|Fid(f,”)⇔ F̂ idn(f,”)| > ω) = O(n↑ω),

for all classifiers f and explanation functions ”.

3.2.1 THE OOD PROBLEM IN EVALUATING SURROGATE FIDELITY MEASURES

One class of surrogate fidelity measures has been considered in several recent works (e.g., (Pope
et al., 2019; Yuan et al., 2022)) are the Fid+, Fid↑, and Fid! measures:

Fid+ ↭ E(P̂ (Y )⇔ P̂+(Y )), F id↑ ↭ E(P̂ (Y )⇔ P̂↑(Y )), F id! ↭ Fid+ ⇔ Fid↑, (4)

where P̂ (·) is the distribution given by f(G), P̂+(·) is the distribution given by f(Gi ⇔ ”(Gi)),
P̂↑(·) is the distribution given by f(”(Gi)), G⇔”(G) is the subgraph with edge set E ⇔ Eexp for
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”(G) = (Vexp, Eexp), and T is a set of independent observations T = {(Gi, Yi), i = 1, 2, · · · , |T |}.
As mentioned in (Yuan et al., 2022), these fidelity measures can be empirically estimated by

F̂ id+ ↭ 1

|T |

|T |∑

i=1

P̂ (yi)⇔ P̂+(yi), F̂ id↑ ↭ 1

|T |

|T |∑

i=1

P̂ (yi)⇔ P̂↑(yi), F̂ id! ↭ F̂ id+⇔F̂ id↑.

It should be noted that the rate of convergence of this empirical estimate is ↼ = 1
2 (e.g., using the

Berry- Esseen theorem (Billingsley, 2017)). The following proposition shows that these measures are
well-behaved for a class of deterministic classification tasks and completely explainable classifiers.
Proposition 2 (Well-Behavedness of Fid! on Deterministic Tasks). Consider a deterministic
classification task for which the induced distribution PG has support G consisting of all graphs with
n ↓ N vertices, the graph edges are jointly independent, and X ↓ Zn↓d, where Z is a finite set.
Further assume that the graph label is Y = 1(gexp → G) for a fixed subgraph gexp, so that the task
is deterministic. Let f(G) = 1(gexp → G) be the 0-correct classifier. Let S = {”p(g|p ↓ [0, 1]} be
a class of explanation functions, where P (”p(g) = gepx|gexp ↓ g) = p and P (”p(g) = ↽|gexp ↓
g) = 1⇔ p, p ↓ [0, 1]. The Fid! fidelity measure is well-behaved for all explanation functions in S .

The proof is provided in Appendix A.3. Proposition 2 shows that Fid! is well-behaved in a specific
set of scenarios, where the task is deterministic and the classifier is completely explainable. However,
we argue that it is not well-behaved in a wide range of scenarios of interest which do not have these
properties. This is due to the OOD issue mentioned in the introduction. To elaborate, for a good
classifier, which has low probability of error, the distribution f(G) must be close to PY |G(·|G) on
average, i.e., EG(dTV (f(G), PY |G(·|G))) should be small, where dTV denotes the total variation. As
a result, P̂ (Y ) in equation 4 is close to PY |G(Y |G) on average. However, this is not necessarily true
for the P̂+(Y ) and P̂↑(Y ) terms. The reason is that the assumption EG(dTV (f(G), PY |G(·|G))) ⇐
0 only ensures that f(G) is close to PY |G(·|G) for the typical realizations of G. However, G⇔”(G)

and ”(G) are not typical realizations. For instance, in many applications, it is very unlikely or
impossible to observe the explanation graph in isolation, that is, to have G = ”(G). As a result,
P̂+(Y ) and P̂↑(Y ) are not good approximations for PY |G(Y |G ⇔ ”(G)) and PY |G(Y |”(G)),
respectively, and Fid+, F id↑ and Fid! are not well-behaved. This is observed in our empirical
analysis in Section 5, and the notion is analytically investigated in a toy-example in Appendix B.

3.2.2 A ROBUST CLASS OF SURROGATE FIDELITY MEASURES

Generally, in scenarios where ”(G) and G⇔”(G) are not typical with respect to the distribution of
G, the Fid! measure may not be well-behaved. We address this by introducing a class of modified
fidelity measures by modifying the definitions of Fid+ and Fid↑ in equation 4. To this end, we
define the stochastic graph sampling function Eε : G ≃↔ Gε with edge erasure probability ⇀ ↓ [0, 1].
That is, Eε(·) takes a graph G as input, and outputs a sampled graph Gε whose vertex set is the
same as that of G, and its edges are sampled from G such that each edge is included with probability
⇀ and erased with probability 1⇔ ⇀, independently of all other edges. We introduce the following
generalized class of surrogate fidelity measures, and show that they are robust to OOD issues in a
wide range of scenarios:

Fidε1,+ ↭ E(P̂ (Y )⇔ P̂ε1,+(Y )), F idε2,↑ ↭ E(P̂ (Y )⇔ P̂ε2,↑(Y )), (5)

Fidε1,ε2,! ↭ Fidε1,+ ⇔ Fidε2,↑, (6)

where ⇀1,⇀2 ↓ [0, 1], P̂ (·) is the distribution given by f(G), P̂ε1,+(·) is the distribution given by
f(G⇔ Eε1(”(G))), P̂ε2,↑(·) is the distribution given by f(Eε2(G⇔”(G)) +”(G)).

Note that if ⇀1 = 1 and ⇀2 = 0, we recover the original fidelity measures, i.e., Fid1,+ = Fid+,
Fid0,↑ = Fid↑, and Fid1,0! = Fid!. On the other hand, if ⇀1 = 0 and ⇀2 = 1, we have
G ⇔ Eε1(”(G)) = Eε2(G ⇔ ”(G)) + ”(G) = G. Consequently, in this case there would be no
OOD issue, however, the resulting fidelity measure is not informative since Fid0,1,!(f,”) = 0, for
all classifiers f and explanation functions ”. Loosely speaking, if PY |G(y|g), y ↓ Y is ‘smooth’ as a
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function of g, then OOD does not manifest and ⇀1 ⇐ 1,⇀2 ⇐ 0 yields a suitable fidelity measure
(e.g., Proposition 2). On the other hand if PY |G(y|g), y ↓ Y is not smooth, then ⇀1 < 1 and ⇀2 > 0
would yield a suitable fidelity measure as this choice avoids the OOD problem. The generalized
fidelity measures can be empirically estimated by

F̂ idε1,ϑ,+ ↭ 1

|T |

|T |∑

i=1

1

|Aϑ
|Eexp|(⇀1)|

∑

k1↘B|Eexp|,ω1,ε

∑

E≃Eexp:
|E|=k1

P̂Ei(yi)⇔ P̂Ei↑E(yi)

F̂ idε2,ϑ,↑ ↭ 1

|T |

|T |∑

i=1

1

|Aϑ
|Ei|(⇀2)|

∑

k2↘B|Ei|,ω2,ε

∑

E≃Ei:
|E|=k2

P̂Ei(yi)⇔ P̂E⇐Eexp(yi)

F̂ idε1,ε2,ϑ,! ↭ F̂ idε1,ϑ,+ ⇔ F̂ idε2,ϑ,+,

where ω > 0, Bϖ,ε,ϑ, ⇁ ↓ N,⇀, ω > 0 denotes the interval [⇁(⇀ ⇔ ω), ⇁(⇀ + ω)], the set Aϑ
ϖ(⇀), ⇁ ↓

N,⇀ ↓ [0, 1], ω > 0 is the set of ω-typical binary sequences of length ⇁ with respect to the Bernoulli
distribution with parameter ⇀, i.e., Aϑ

ϖ(⇀) ↭ {xϖ ↓ {0, 1}ϖ
∣∣| 1ϖ

∑ϖ
i=1 1(xi = 1) ⇔ ⇀| ↘ ω}, the

distribution P̂E(yi) is the probability of yi under the distribution f(GE), where GE is the subgraph of
G with edge set restricted to E , and T = {(Gi, Yi)|i ↓ [|T |]} is the set of observations, where Ei is
the edge set of Gi, i ↓ [T ]. Using the Chernoff bound and standard information theoretic arguments,
it can be shown that for fixed ⇀1,⇀2 and ω = O(

√
1
|E| ), these empirical estimates converge to their

statistical counterparts with rate of convergence ↼ = 1
2 as |T | ↔ ∝ for large input graph and

explanation sizes (e.g., (Csiszár & Körner, 2011)).

We show that Fidε1,ε2,! is well-behaved for a general class of tasks and classifiers, where the
original Fidelity measure, Fid1,0,! is not well-behaved. Specifically, we assume that there exists a
set of motifs gy, y ↓ Y , such that

P (Y = y|G = g) =






1 if gy → g and ⇑y↔ ↗= y : gy→ ⊋ g,
0 if ′!y↔ ↗= y : gy ⊋ G, gy→ → G
1
|Y| otherwise.

.

Furthermore, given n ↓ N and ϖ, ω ↓ [0, 1], we assume that the graph distribution PG and the trained
classifier fϱ(·), satisfy the following conditions. The graph has n vertices. There exists a set G of
input graphs, called an ω-typical set, such that PG(G) > 1⇔ ω, and

P (fϱ(g) = f→(g)) = (
1

d(G, g) + 1
)ϱ, (7)

where f→(·) is the optimal Bayes classifier, i.e., f→(g) = y if gy → g, and f→(g) = argmaxy PY (y),
otherwise.3. The distance between the graph g and the set of graphs G is defined as d(G, g) ↭
ming→↘G d(g↔, g), and the distance between two graphs is defined as their number of edge differences.
Proposition 3 (Well-Behavedness of Fidε1,ε2,! Fidelity Measure). In the classification scenario
described above, Consider the class of explanation functions S , which consists of stochastic mappings
” : g ≃↔ Gexp where P (Gexp = gy|G = g) = p for any g such that ′!y : gy ↓ g and Gexp = ↽,
otherwise. Then,

Fidε1,+ ∞ω→ ⇔ ω⇔ P (A)

1⇔ ω
((1⇔ p+ pmax

y
PY (y)) + 1⇔ (

1

k + 1
)ϱ)⇔ P (Ac)⇔ 1⇔ P (B↔)⇔ ω

Fidε2,↑ ↘ω→ ⇔ P (A)(1⇔ 2
k2

2n2 )(
1

k + 1
)ϱp

F idε1,ε2,! ∞ ⇔ω⇔ P (Ac)⇔ 1⇔ P (B↔)⇔ P (A)

1⇔ ω
((1⇔ p+ pmax

y
PY (y))+

1⇔
(

1

k + 1

)ϱ

) + P (A)

1⇔ 2

k2

2n2

(
1

k + 1

)ϱ

p.

3The assumption in equation 7 captures the infrequency of occurrence of atypical inputs in the training set,
which increases chance of missclassifcation for those inputs and hence gives rise to OOD issues.
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where ω→ is the Bayes error rate, ⇀1 ↭ k
2n2 , ⇀2 ↭ 1⇔ k

2n2 , k < s1 ↭ miny |gy|, A is the event that

′!y : gy → G, and B↔ is the event that
∑n2

i=1 Xi > k, where Xi are independent and identically
distributed realizations of a Bernoulli variable with parameter ⇀1. Particularly, as k, n ↔ ∝ and
ϖ, ω ↔ 0 such that k = o(n) and ϖ = o( 1k ), Fidε1,ε2,! becomes monotonically increasing in p.
Consequently, there exists a non-zero error threshold ωth > 0, such that Fidε1,ε2,! is well-behaved
for all ω→ ↘ ωth.

The proof is provided in Appendix A.4

4 RELATED WORK

Explainable GNNs. To interpret GNN models, previous works (Ying et al., 2019; Luo et al., 2020;
Yuan et al., 2020; 2022; 2021; Lin et al., 2021; Wang & Shen, 2023; Miao et al., 2023; Fang et al.,
2023c; Xie et al., 2022; Ma et al., 2022) tried different methods to offer interpretability. According to
granularity, these explanation methods can generally be divided into two categories: i) instance-level
explanation (Ying et al., 2019; Zhang et al., 2022b; Xie et al., 2022), which offers explanations for
every instance by recognizing important substructures; and ii) model-level explanation (Yuan et al.,
2020; Wang & Shen, 2023; Azzolin et al., 2023), which is designed for providing global decision
rules learned by target GNN models. Within these methodologies, these methods can be classified as
post-hoc explanations (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021) and self-explainable
GNNs (Baldassarre & Azizpour, 2019; Dai & Wang, 2021; Miao et al., 2022), where the former uses
an extra GNN model to elucidate the target GNN and the latter offers explanations while making
predictions. For a comprehensive survey on this topic, please refer to (Yuan et al., 2022).

Evaluation Metrics for Explainable GNNs. To comprehensively evaluate the explanations, both
anecdotal evidence and quantitative measures, such as explanation accuracy, faithfulness, efficiency,
completeness, consistency, are jointly adopted in the literature (Nauta et al., 2022). When ground-
truth explanations are unavailable, fidelity measures and their variants are routinely adopted to
evaluate the quality of explanations (Yuan et al., 2021). For example, DIG (Liu et al., 2021) and
GraphFramEx (Amara et al., 2022) include both Fid+ and Fid↑; GraphXAI (Agarwal et al., 2023)
adopts a variant that utilizes Kullback-Leibler (KL) divergence score to quantify the distance between
predictions of the original graph and subgraph. GNNX-BENCH (Kosan et al., 2023) uses Fidelity
to evaluate both factual and counterfactual explanations. However, the OOD problem of subgraph
explanations is overlooked in these platforms. Concurrently to this work, OAR evaluates post-hoc
explanation subgraphs via analyzing adversarial robustness (Fang et al., 2023a); GInX-Eval evaluates
with a removing and fine-tuning strategy (Amara et al., 2023).

5 EXPERIMENTS

In this section, we empirically verify the effectiveness of the generalized class of surrogate fidelity
measures. We also conduct extensive studies to verify our theoretical claims. Four benchmark datasets
with ground truth explanations are used for evaluation, with Tree-Circles, and Tree-Grid (Ying et al.,
2019) for the node classification task, and BA-2motifs (Luo et al., 2020) and MUTAG (Debnath et al.,
1991) for graph classification. We consider both GCN and GIN architectures (Ying et al., 2019; Xu
et al., 2019) as the models to be explained. Detailed experimental setups, full experimental results,
and extra experiments are presented in the Appendix.

5.1 QUANTITATIVE EVALUATION BY COMPARING TO THE GOLD STANDARD

In adopted datasets, motifs are included which determine node labels or graph labels. Thus, the
relationships between graph examples and data labels are well-defined by humans. The correctness of
an explanation can be evaluated by comparing it to the ground truth motif. Previous studies (Ying et al.,
2019; Luo et al., 2020) usually model the evaluation as an edge classification problem. Specifically,
edges in the ground-truth explanation are treated as labels, and importance weights given by the
explainability method are viewed as prediction scores. Then, AUC scores are considered as the metric
for correctness. In this section, we use a more tractable metric, edit distance (Gao et al., 2010) to
compare achieved explanations with the ground-truth motifs as a Gold Standard metric.

Consider an input graph Gi and let Gi,exp be the ground-truth explanation subgraph, i.e., the motif.
We construct a set of explanation functions, with varying qualities, to evaluate the well-behavedness
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Table 1: Spearman correlation coefficient between metric and gold standard edit distance.
Dataset Fid+ ↑ Fidω1,+ ↑ Fid↑ ↓ Fidω2,↑ ↓ Fid” ↑ Fidω1,ω2,” ↑ AUC

GCN

Tree-Cycles 0.229 -0.990 -0.210 0.990 0.105 -0.990 -1.000
Tree-Grid 0.095 -1.000 0.457 1.000 -0.781 -1.000 -1.000
BA-2motifs -0.924 -1.000 0.819 1.000 -0.990 -1.000 -1.000
MUTAG -0.190 -1.000 -0.276 1.000 -0.105 -1.000 -1.000

GIN

Tree-Cycles 0.200 -1.000 -0.229 1.000 -0.286 -1.000 -1.000
Tree-Grid 1.000 1.000 -1.000 -0.993 1.000 1.000 -1.000
BA-2motifs -0.838 -1.000 0.905 1.000 -1.000 -1.000 -1.000
MUTAG -1.000 -1.000 0.886 1.000 -0.990 -1.000 -1.000

of the proposed fidelity measures. To elaborate, for a given ↼1,↼2 ↓ [0, 1], we construct an ex-
planation function ”ω1,ω2(·) by random IID sampling of the explanation subgraph edges, and the
non-explanation subgraph edges, with sampling rates ↼1 and ↼2, respectively. That is, to construct
”ω1,ω2(Gi), we remove ↼1 ratio of edges from ground-truth explanation Gi,exp via random IID
sampling, and randomly add ↼2 ↓ [0, 1] ratio of edges from Gi ⇔Gi,exp to Gi,exp by random IID
sampling from the non-explanation subgraph. Clearly, the explanation function should receive a
better fidelity score for smaller (↼1,↼2). We sweep ↼1 and ↼2 in the range [0, 0.1, 0.3, 0.5, 0.7, 0.9],
and for each combination (↼1,↼2), we randomly sample 10 candidate explanations. We adopt the
proposed Fidε1,+, Fidε2,↑, Fidε1,ε2,!, where we have taken ⇀1 = 1⇔ ⇀2 = 0.1, as well as their
counterparts to evaluate their qualities. For each combination, we calculate the average metric scores.

As analyzed in previous works (Yuan et al., 2021), fidelity measurements ignore the size of the
explanation. Thus, redundant explanations are usually with high Fid+ and low Fid↑ scores. In the
extreme case, with the whole input graph as the explanation, fidelity measures achieve the trivial
optimal scores. This limitation is inherent and cannot not solved with the proposed metrics. To fairly
compare the proposed metrics with the original ones, for each ↼2, given a fidelity measurement, we
use the Spearman correlation coefficient (Myers et al., 2013) between it and the gold standard edit
distance to quantitatively evaluate the quality of the metric. Then, we report the average correlation
scores in Table 1. The number of sampling in our measurements are set to 50.

We have the following observations in Table 1. First, Fidε1,+ consistently yields correlation scores
near -1.0 with the edit distance. It signifies a robust inverse relationship between the two metrics.
This is in agreement with the requirement in equation 3. In contrast, the original Fid+ metric
exhibits mixed results with half-positive and half-negative correlations. This inconsistency in Fid+
underscores the potential superiority and consistency of our proposed Fidε1,+ in aligning closely
with the edit distance across various datasets. Moreover, the proposed Fidε2,↑ is strongly positively
related to gold-standard edit distance compared to the original Fid↑. we have similar observations
in Fidε1,ε2,! and Fid!. Third, we observe that the AUC score of edge classification, which is
used in previous papers, is perfectly aligned with the gold standard edit distance, which verifies
the correctness of using AUC as the metric. Last, all fidelity measurements fail to evaluate the
GIN classifier on the Tree-Grid dataset. The potential reason is that GIN was designed for graph
classification and its generalization performance on node classification is limited in Tree-Grid dataset.

6 CONCLUSION

In this paper, we have comprehensively explored the limitations intrinsic to prevalent evaluation
methodologies in the realm of explainable graph learning, emphasizing the pitfalls of conventional
fidelity metrics, notably their vulnerability to distribution shifts. By delving deep into the theoretical
aspects, we have innovated a novel set of evaluation metrics grounded in information theory, offering
resilience to such shifts and promising enhanced authenticity and applicability in real-world scenarios.
These proposed metrics have been rigorously validated across varied datasets, demonstrating their
superior alignment with gold standard benchmarks. Our endeavor contributes to the establishment of
a more robust and reliable machine-learning evaluation framework for graph learning.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. Let ”(·) be the explanation corresponding to the (s,ε)-explainable task, and let f→(g) ↭
argmaxy↘Y PY |G(y|g) be the Bayes classifier. Define f(g) as the deterministic classifier which
outputs argmaxy↘Y PY |”(G)(y|”(g)) for a given input g. By construction, f(·) is (s, 0)-explainable
since I(Ŷ ;G|1”(G)) = 0. It remains to show that equation 2 holds, where ω is the accuracy of f(·)
and ω→ is the accuracy of f→(·). To this end, note that by the assumption of explainability of the task,
and using the fact that under Condition 1 we have I(Y ;G|1”(G)) = I(Y ;G|”(G)), it follows that:

I(Y ;G|1”(G)) = I(Y ;G|”(G)) ↘ ε ⇓ H(Y |”(G)) ↘ H(Y |G) + ε.

By Fano’s inequality, we have:

H(Y |G) ↘ hb(ω
→) + ω→ log (|Y|⇔ 1) ⇓ H(Y |”(G)) ↘ hb(ω

→) + ω→ log (|Y|⇔ 1) + ε.

On the other hand, by reverse Fano’s inequality (Tebbe & Dwyer, 1968; Kovalevsky, 1968; Sakai &
Iwata, 2017), we have:

H(Y |”(G)) ∞
(
1⇔ (1⇔ ω)

⌊
1

1⇔ ω

⌋)(
1 +

⌊
1

1⇔ ω

⌋)
ln

(
1 +

⌊
1

1⇔ ω

⌋)

⇔
(
ω⇔ (1⇔ ω)

⌊
1

1⇔ ω

⌋)⌊
1

1⇔ ω

⌋
ln

⌊
1

1⇔ ω

⌋
.

Consequently,

eRF (ω) ↘ hb(ω
→) + ω→ log (|Y|⇔ 1) + ε.

This completes the proof.

A.2 PROOF OF THEOREM 1

Proof. Proof of 1): From the assumption that f(·) is (s, ϑ)-explainable, we conclude that there exists
an explanation ”(·) satisfying conditions i) and ii) in Definition 3 and Condition 1 in equation 1.
Then,

I(Y ;G|1”(G)) = I(Y ;G|”(G)) ↘ I(Y, Ŷ ;G|”(G))

(a)
= I(Ŷ ;G|”(G)) + I(Y ;G|Ŷ ,”(G))

(b)
↘ ϑ + I(Y ;G|Ŷ ,”(G))

(c)
↘ ϑ +H(Y |Ŷ ,”(G))

(d)
↘ ϑ +H(Y |Ŷ )

(e)
↘ ϑ + hb(ω) + ω log (|Y ⇔ 1|),

where (a) follows from the chain rule of mutual information, (b) follows from the assumption
that ”(·) is an (s, ϑ) explanation for f(·), (c) follows from the information theoretic identity that
I(X;Y ) ↘ H(X) for all random variables X,Y , (d) follows from the fact that conditioning reduces
entropy, and (e) follows from Fano’s inequality (Cover, 1999).

Proof of 2): Following the proof of Proposition 1, define f(g) as the deterministic classifier which
outputs argmaxy↘Y PY |”(G)(y|”(g)) for a given input g. We have:

P (h(G) ↗= f(G)) ↘ P (h(G) ↗= f→(G)) + P (f(G) ↗= f→(G)) (8)

Define Gς ↭ {g
∣∣|2PY |G(1|g)⇔ 1| ↘ 1⇔ γ}, where γ ↓ [0, 1]. We have,

P (h(G) ↗= f→(G)) ↘ P (G ↓ Gς) + P (G /↓ Gς)P (h(G) ↗= f→(G)|G /↓ Gς). (9)
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Furthermore, following (Devroye et al., 2013, Section 2.4), we have:

ω→ =
1

2
⇔ 1

2
E(|2PY |G(1|g)⇔ 1|) ⇓ E(|2PY |G(1|g)⇔ 1|) = 1⇔ 2ω→.

Consequently, by the Markov inequality, we have:

P (1⇔ |2PY |G(1|g)⇔ 1| ∞ γ) ↘ 2ω→

γ
, γ ↓ [0, 1]

So, P (G ↓ Gς) ↘ 2ϑ↑

ς , γ ↓ [0, 1]. Using equation 9, we get:

P (h(G) ↗= f→(G)) ↘ 2ω→

γ
+ P (h(G) ↗= f→(G), G /↓ Gς), (10)

On the other hand, using (Devroye et al., 2013, Theorem 2.2),

P (h(G) ↗= Y ) = ω→ + 2
∑

g

PG(g)|PY |G(1|g)⇔
1

2
|1f(g) ⇒=f↑(g)

∞ ω→ + 2
∑

g/↘Gϑ

PG(g)|PY |G(1|g)⇔
1

2
|1f(g) ⇒=f↑(g)

∞ ω→ + 2(1⇔ γ)
∑

g/↘Gϑ

PG(g)1f(g) ⇒=f↑(g)),

where in the last inequality, we have used the definition of Gς . Note that
∑

g/↘Gϑ
PG(g)1f(g) ⇒=f↑(g) =

P (G /↓ Gς)P (f(G ↗= f→(G)|G /↓ Gς). Consequently,
P (h(G) ↗= Y ) ∞ ω→ + 2(1⇔ γ)P (G /↓ Gς)P (f(G ↗= f→(G)|G /↓ Gς)

⇓ P (G /↓ Gς)P (f(G ↗= f→(G)|G /↓ Gς) ↘
P (h(G) ↗= Y )⇔ ω→

2(1⇔ γ)
=

ϖ

2(1⇔ γ)
.

Hence, from equation 10, we have:

P (h(G) ↗= f→(G)) ↘ 2ω→

γ
+

ϖ

2(1⇔ γ)
.

Similarly,

P (f(G) ↗= f→(G)) ↘ 2ω→

γ
+

ω⇔ ω→

2(1⇔ γ)
.

From equation 8, we get:

P (h(G) ↗= f(G)) ↘ 4ω→

γ
+

ϖ + ω⇔ ω→

2(1⇔ γ)
.

Minimizing the right-hand-side over γ ↓ [0, 1], we get γ→ =
2
(
4ϑ↑+

⇑
2
↖

ϑ↑(ϱ+ϑ↑ϑ↑)
)

9ϑ↑↑ϱ↑ϑ given that
9ω→ > emax(ω→,ε) + ϖ. Hence,

P (h(G) ↗= f(G)) ↘
↖
2
↖
ω→φ

(
64ω→2 ⇔ 16ω→φ + φ2

)

2
(
⇔8ω→φ + 8

↖
2ω→

↖
ω→φ +

↖
2φ
↖
ω→φ

)

=

(
64ω→2 ⇔ 16ω→φ + φ2

)

2
(
⇔4

↖
2
↖
ω→φ + 8ω→ + φ

)

=
(8ω→ ⇔ φ)2

2
(
2
↖
2ω→ ⇔

↖
φ
)2

=

(
2
↖
2ω→ +

↖
φ
)2

2
↭ ς,

where we have defined φ ↭ ϖ + ω⇔ ω→. Using the data processing inequality and Fano’s inequality,
we get:

I(Ŷ ;G|1”(G)) ↘ I(h(G);G|1”(G)) ↘ hb(ς) + ς log |Y|.
This proof is completed by noting that ω ↘ emax(ω→,ε).
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A.3 PROOF OF PROPOSITION 2

Proof. We need to show that the condition in equation 3 is satisfied for any pair of explanations in S .
We consider two cases:
Case 1: gexp → ”(g) for all g for which gexp → g, that is, whenever the motif gexp is in G, then
the explanation function ”(G) outputs the motif along with potentially other irrelevant edges and
vertices. In this case, it is straightforward to verify that P̂ (y) = 1, P̂+(y) = 1 ⇔ 1(y = 1), and
P̂↑(y) = 1 for all y ↓ {0, 1}. So, Fid+ = P (Y = 1), Fid↑ = 0, and Fid! = P (Y = 1).
Furthermore, I(Ŷ ;G|1”(G)) = 0.
Case 2: If the exists g such that gexp → g but gexp ⊋ ”(g), then for any g such that gexp → g

but gexp ⊋ ”(g), we have P̂ (1) = 1, P̂+(y) = 1(gexp ∈ ”(g) = ↽), and P̂↑(y) = 0. Otherwise,
if gexp ⊋ g we have y = 0 and P̂ (1) = 1, P̂+(y) = 1, and P̂↑(y) = 1. So, Fid+ = P (Y =
1)⇔P (Y = 1, gexp∈”(G) = ↽), Fid↑ = 0, and Fid! = P (Y = 1)⇔P (Y = 1, gexp∈”(G) = ↽).
Furthermore,

I(Ŷ ;G|1”(G)) = H(Ŷ |1”(G)),

where we have used the fact that this is a deterministic classification task. Note that since the graph
edges are pairwise independent, we have:

H(Ŷ |1”(G)) = P (gexp ∈”(g) = ↽)H(Ŷ )+

P (gexp ∈”(G) ↗= ↽)H(Ŷ |1”(G), gexp ∈”(G) ↗= ↽).

The latter is an increasing function of P (gexp ∈”(g) = ↽).

It can be observed that Fid! in a decreasing and I(Ŷ ;G|1”(G)) an increasing function of P (gexp ∈
”(g) = ↽). Consequently, the condition in equation 3 is satisfied. This completes the proof.

A.4 PROOF OF PROPOSITION 3

Proof. We have:

ω→ ⇔ ω ↘ E(P̂ (Y )) ↘ ω→,

where the left-hand-side follows from equation 7 since:

E(P̂ (Y )) ∞ P (G)E(P̂ (Y )|G) = P (G)P (Y = f→(G)|G),

along with:

ω→ ↘ P (G)P (Y = f→(G)|G) + P (Gc)

= (1⇔ ω)P (Y = f→(G)|G) + ω ⇓ P (Y = f→(G)|G) ∞ ω→ ⇔ ω

1⇔ ω
.

Furthermore,

E(P̂ε1,+(Y )) ↘ P (G)E(P̂ε1,+(Y )|G ↓ G) + P (Gc)

(a)
↘ P (A)

1⇔ ω
E(P̂ε1,+(Y )|G ↓ G,A) + P (Ac) + ω

(b)
↘ P (A)

1⇔ ω
P (B↔)E(P̂ε1,+(Y )|G ↓ G,A,B) + P (Ac) + 1⇔ P (B↔) + ω

(c)
↘ P (A)

1⇔ ω
E(P̂ε1,+(Y )|G ↓ G,A,B) + P (Ac) + 1⇔ P (B↔) + ω

(d)
↘ P (A)

1⇔ ω
((1⇔ p+ pmax

y
PY (y)) + 1⇔ (

1

k + 1
)ϱ) + P (Ac) + 1⇔ P (B↔) + ω,

where A is the event that ′!y : gy → G, B is the event that the sampling operation removes more than
k edges, and B↔ is the event that in n2 consecutive realizations of a Bernoulli variable with parameter
⇀1, we get more than k ones. In (a) we have used the fact that P (G,A) ↘ P (A). In (b) we have
used the fact that P (B|A,G) ↘ P (B↔). In (c), we have used P (B↔) ↘ 1. In (d), we have used the
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assumption in equation 7, and the fact that the explanation function does not output the motif with
probability (1⇔ p), in which case it is not subtracted in the definition of P̂ε1,+, and it outputs the
motif with probability p in which case the motif is not present in G ⇔ Eε1(”(G)) since k < s1.
Additionally,

E(P̂ε1,↑(Y )) ∞ P (A)(1⇔ 2
k2

2n2 )(
1

k + 1
)ϱp,

where we have used the fact that if A occurs, and the explanation outputs the motif, which happens
with probability p, then the optimal classifier f→ outputs the correct label, and if B↔ does not occur,
then fϱ(·) agrees with f→(·) with probability ( 1

k+1 )
ϱ , and we have bounded 1⇔ P (B↔) ∞ (1⇔ 2

k2

2n2 )
by Hoeffding’s inequality. Consequently,

Fidε1,+ ∞ ω→ ⇔ ω⇔ P (A)

1⇔ ω
((1⇔ p+ pmax

y
PY (y)) + 1⇔ (

1

k + 1
)ϱ)

⇔ P (Ac)⇔ 1⇔ P (B↔)⇔ ω

Fidε2,↑ ↘ ω→ ⇔ P (A)(1⇔ 2
k2

2n2 )(
1

k + 1
)ϱp

F idε1,ε2,! ∞ ⇔ω⇔ P (Ac)⇔ 1⇔ P (B↔)⇔P (A)

1⇔ ω
((1⇔ p+ pmax

y
PY (y))+

1⇔ (
1

k + 1
)ϱ) + P (A)(1⇔ 2

k2

2n2 )(
1

k + 1
)ϱp.

Note that the lower-bound on Fidε1,ε2,! is monotonically increasing in p. To prove that Fidε1,ε2,!

is well-behaved as k, n ↔ ∝ and ϖ, ω ↔ 0, it suffices to show that equation 3 holds. Note that:

I(Y ;G|1”(G)) =
∑

gexp

P”(G)(gexp)
∑

y,g

PY,G(y, g|gexp → G) log
PY,G(y, g|gexp → G)

PY (y|gexp → G)PG(g|gexp → G)

= P”(G)(↽)I(Y ;G) +
∑

y↘Y
P”(G)(gy)I(Y ;G|gy → G). (11)

From the proposition statement, we have:

P”(G)(↽) = P (⫅̸!y : gy → G) + (1⇔ p)P (′!y : gy → G) (12)

P”(G)(gy) = pP (′!y↔ : gy→ → G, y↔ = y), ⇑y ↓ Y. (13)

As a result, from equations 11-13, we have:

I(Y ;G|1”(G)) = P (⫅̸!y : gy → G)I(Y ;G)+
∑

y↘Y
P (′!y↔ : gy→ → G, y↔ = y)((1⇔ p)I(Y ;G) + pI(Y ;G|gy → G)),

where we have used the fact that P (′!y : gy → G) =
∑

y→↘Y P (′!y↔ : gy→ → G, y↔ = y). We note
that I(Y ;G) ↔ H(Y ) and I(Y ;G|gy → G) ↔ 0 as ω→ ↔ 0. So, there exists an error threshold ω→

such that for all ω→ ↘ ωth and y ↓ Y , the term (1 ⇔ p)I(Y ;G) + pI(Y ;G|gy → G) is decreasing
as a function of p. Since the lower-bound on Fidε1,ε2,! is monotonically increasing in p, and
I(Y ;G|1”(G)) is monotonically decreasing in p, we conclude that equation 3 holds and Fidε1,ε2,!

is well-behaved.

B EXAMPLES AND ANALYSIS

An Analytical Example with Distribution Shift for the Fid! Measure: In this example, we
provide an asymptotically deterministic classification scenario where for an errorless classifier f(·),
there exists an explanation function ”1 which is asymptotically optimal in the sense of Definition 3,
but has a worse fidelity score under Fid! compared to a classifier ”2 which generates completely
random outputs. We conclude that Fid! is not well-behaved for this scenario. To elaborate, let us
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consider a classification scenario where G has n ↓ N vertices, and it can be decomposed as the
union of two subgraphs G0 and Gexp. Further assume that G0 is Erdös-Reńyi with edge probability
p ↓ (0, 1) and has n ↓ N vertices. The graph Gexp is equal to Cn with probability q ↓ (0, 1), and it is
equal to an empty graph with probability 1⇔ q, where Cn is the n-cycle v1 ↔ v2 ↔ · · · ↔ vn ↔ v1.
We call the graph G atypical if it has less than than n2p

4 edges. Note that the expected number of edges
in G0 is n(n↑1)

2 p, and by the law of large numbers, as n ↔ ∝, the graph G has more than n2p
4 edges

with probability one. Let us assume that Y = 1 if G is typical and Cn → G, and Y = 0, otherwise.
Let us consider the asymptotically optimal classifier f(G) which outputs Ŷ = 1 if Cn → G and G is
not atypical, and outputs Ŷ = 0, otherwise. Consider the explanation function

”1(G) =


Cn if Cn → G
↽ Otherwise.

Clearly, we have I(Ŷ ;G|1”(G)) ↔ 0 as n ↔ ∝, and hence ”(·) is an (optimal) (n, 0)-explanation
function as n ↔ ∝. Note that, Fid+(f,”1) ↔ 1 ⇔ P (Y = 0), Fid↑(f,”1) ↔ 1 ⇔ P (Y = 0),
and Fid!(f,”1) ↔ 0 as n ↔ ∝. On the other hand, let ”2(G) be the explanation function
which outputs a randomly and uniformly chosen subset of more than n2p

4 edges from G. Then
Fid!(f,”2) = P (Y = 1)⇔ P (Y = 0) = 2q ⇔ 1 which is greater than 0 if q > 1/2. So, the trivial
explanation ”2 receives a higher score under Fid! compared to the optimal explanation ”1.

C EVALUATION ALGORITHMS

In this section, we provide the pseudo-code for computing the proposed Fidε1,+ and Fidε2,↑ in
Alg. 1 and Alg. 2, respectively. Suppose that we have a set of input graphs, {Gi}Ti=1. For each graph
Gi, the explanation subgraph to be evaluated is denoted by ”(Gi). The model to be explained is
denoted by f(·). We have two hyper-parameters, M and ⇀1 in computing Fidε1,+. M is the number
of samples and ⇀1, introduced in equation 5, is the ratio of edges sampled from explanation subgraph.
For Fidε2,↑, we have another hyper-parameter ⇀2 instead, which indicates the ratio of edges sampled
from non-explanation subgraph.

Algorithm 1 Computating Fidε1,+

1: Input: A set of input graphs and their subgraphs {(Gi,!(Gi)}Ti=1, a GNN model f(·), hyperparameters
M and ω1.

2: Output: Fidω1,+ of {!(Gi)}Ti=1.
3: for each pair (Gi,!(Gi)) do
4: for m from 1 to M do
5: Eω1(!(Gi))) ↔ sample ω1 edges from !(Gi)
6: Gi,m ↔ Gi ↗ Eω1(!(Gi))) # Compute the non-explanation subgraph
7: Fidω1+[i,m] ↔ f(Gi)yi ↗ f(Gi,m)yi
8: end for
9: Fidω1+[i] ↔ 1

M

∑M
m=1 Fidω1,+[i,m]

10: end for
11: Fidω1,+ ↔ 1

T
∑T

i=1 Fidω1,+[i]
12: Return Fidω1,+.

D EXTENSION BEYOND GRAPHS

Some efforts have been conducted to address the distribution shift problem in evaluating general
XAI methods (Hooker et al., 2019). Most of them focus on designing more robust perturbation-based
explanatory methods (Hase et al., 2021; Hsieh et al., 2021; Qiu et al., 2021; Jethani et al., 2023).
For example, ROAR retrains the model with a modified dataset to ensure the generalization of the
classification model (Hooker et al., 2019). Robustness measurements include adversarial perturbations
into metric (Hsieh et al., 2021). However, these methods are designed for grid data and it is non-
trivial to adapt them to graphs. Moreover, these methods require access to the internal parameters of
classification models and are not applicable to black-box models.
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Algorithm 2 Computating Fidε2,↑

1: Input:A set of input graphs and their subgraphs {(Gi,!(Gi)}Ti=1, a GNN model f(·), hyperparameters M
and ω2.

2: Output: Fidω2,↑ of {!(Gi)}Ti=1.
3: for each pair (Gi,!(Gi)) do
4: for m from 1 to M do
5: G

c
i ↔ Gi ↗!(Gi) # Compute the non-explanation subgraph

6: Eω2(G
c
i ) ↔ sample ω2 edges from G

c
i

7: Fidω2,↑[i,m] ↔ f(Gi)yi ↗ f(Eω2(G
c
i ) +!(Gi))yi

8: end for
9: Fidω2,↑[i] ↔ 1

M

∑M
m=1 Fidω2,↑[i,m]

10: end for
11: Fidω2,↑ ↔ 1

T
∑T

i=1 Fidω2,↑[i]
12: Return Fidω2,↑.

In this study, we focus on the graph domain. The notion of explainability considered in this work
is specific to sub-graph explanations. Recall that a graph gexp is a subgraph of g if its vertices can
be ‘aligned’ with a subset of vertices in g such that all edges between the two sets of vertices match.
The subgraph explainability is key in the definition of mutual information I(Y ;G|1”(G), which
is then used to define explainability in Definitions 2 and 3. As a basic foundation, unfortunately,
the definition of mutual information is non-trivial to be extended to general domains. However, the
underlying ideas considered in this paper are general and may be applicable to non-graphical tasks,
which is an interesting avenue for future research.

E DETAILED EXPERIMENTAL SETUP

We use a Linux machine with 8 NVIDIA A100 GPUs as the hardware platform, each with 40GB of
memory. The software environment is with CUDA 11.3, Python 3.7.16, and Pytorch 1.12.1.

E.1 DATASETS

We adopt two node classification datasets and two graph classification datasets with ground-truth
motifs. Specifically, the Tree-Cycles dataset includes an 8-depth balanced binary tree as the base
graph. 80 cycle motifs are then randomly attached to nodes from the base graph. (2) Tree-Grid
is created in a similar way, except that the cycle motifs are replaced with 3-by-3 grids. (3) The
BA-2motifs dataset consists of 1000 graphs. Half of them are obtained by attaching a ‘house’ motif
to a 20-node Barabási–Albert random graph. Other graphs are with 5-node cycle motifs. Graphs are
divided into 2 classes based on the type of attached motifs. For these datasets, we use a 10-dimensional
all 1 vector as node attributes (Ying et al., 2019). We also use a real-life dataset, MUTAG, for graph
classification, which consists of 4,337 molecular graphs. These graphs are labeled based on their
mutagenic effects (Ying et al., 2019). As discussed in (Luo et al., 2020), chemical groups NH2 or
NO2 are used as ground truth motifs.

E.2 CLASSIFICATION MODEL ARCHITECTURES

The GCN model architectures and hyperparameters of layers are the same as the previous work (Luo
et al., 2020). Specifically, for the node classification, a two-stack GCN-Relu-BatchNorm block
followed by a GCN-Relu block is used for embedding. A following linear layer is used for classifi-
cation. For the graph classification, a three-stack GCN-Relu-BatchNorm block is used for compute
node embedding. Global max and mean pooling are used to read out the graph representations. A
linear layer is then used for classification. Similarly, we create GIN models by replacing the GCN
layer with a Linear-Relu-Linear-Relu GIN layer. All the variables are initialized with the default
setting in Pytorch. The models are trained with the Adam optimizer with an initial learning rate of
1.0↑ 10↑3. For each dataset, we follow existing works (Luo et al., 2020; Ying et al., 2019) to split
train/validation/test with 8 : 1 : 1 for all datasets. Each model is trained for 1000 epochs.
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F EXTRA EXPERIMENTAL STUDIES

F.1 EFFECTS OF ⇀1 AND ⇀2 .

As shown in our theoretical analysis, ⇀1 is the rate of removing edges from explanation subgraphs
in Fidε1,+ and ⇀2 is the rate of retaining edges from non-explanation subgraphs in Fidε2,↑. To
empirically verify the effects of these two parameters, we use the GCN model and vary these two
hyper-parameters in the range [0.1, 0.3, 0.5, 0.7, 0.9]. Results of Spearman correlation scores are
shown in Figure 1. We observe that when ⇀1 = 0.1 and ⇀2 = 0.9, the proposed Fidε1,+ and
Fidε2,↑ are strongly aligned with the gold standard edit distance. As ⇀1 increases, the number of
removing edges from explanation subgraphs increases, leading to more a severe distribution shifting
problem. Thus, the Spearman correlation coefficient between Fidε1,+ and edit distance increases.
Specifically, in the Tree-Circles dataset, the correlation even becomes positive when ⇀1 > 0.2. The
similar phenomena can be observed in Fidε2,↑. As ⇀2 decreases, a smaller number of edges will be
added from non-explanation subgraphs, which leads to the distribution shift problem. As a result, the
Fidε2,↑ cannot be reliably aligned with the gold standard metric.

(a) Tree-Circles (b) Tree-Grid (c) BA-2motifs (d) MUTAG

Figure 1: Parameter studies on the effects of ⇀1 and ⇀2.

F.2 CLASSIFICATIONS PERFORMANCE OF GNNS

We evaluate the accuracy performance of GNN models on training, validation, and test sets. The
results are shown in Table 2. Both GCN and GIN achieve good performances in these datasets,
with most test accuracy scores above 0.9. Following routinely adopted settings (Ying et al., 2019;
Luo et al., 2020; Yuan et al., 2021), we can safely assume that both models can correctly use the
informative components(motifs) in the input graphs to make predictions.

Table 2: Accuracy performance of GNN models.

Node Classification Graph Classification
Method Accuracy Tree-Cycles Tree-Grid BA-2motifs MUTAG

GCN

Training 0.99 0.92 1.00 0.82
Validation 1.00 0.94 1.00 0.82

Test 0.99 0.94 0.99 0.81

GIN

Training 1.00 0.98 0.99 0.86
Validation 1.00 0.99 1.00 0.84

Test 0.99 0.97 1.00 0.82

F.3 DISTRIBUTION ANALYSIS

In Section 3.2.1, we argued that the previously studied Fid!, F id↑ and Fid+ surrogate measures
suffer from the OOD problem, since Fid↑ and Fid+ rely on accurate classifier outputs for inputs
”(G) and G⇔”(G), respectively, and Fid! depends on both. In this section, we empirically verify
the aforementioned OOD problem. Specifically, we adopt an AutoEncoder (Kramer, 1991) to embed
the adjacency matrix of a (sub-)graph to a 2-dimensional hidden representation. We choose the graph
classification dataset, BA-2motifs, where all graphs have the same node size. The encoder network
consists of two fully-connected layers, same as that of the decoder network. Cross Entropy is used
as the reconstruction error to train the Autoencoder model. The original graphs, the ground-truth
explanation subgraphs, and the non-explanation subgraphs are used for training.
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The visualization results of these three types of (sub-)graphs are shown in Figure 2(a). We observe that
both explanation subgraphs and non-explanation subgraphs have clear distribution shifts compared to
the original graphs.

(a) Explanation & non-explanation
subgraphs

(b) Down-sampled subgraphs in
Fidω1,+ for ω1 = 0.1.

(c) Up-sampled subgraphs in
Fidω2,↑ for ω2 = 0.9.

Figure 2: Distribution analysis with visualization.

The proposed methods address the challenge by considering ‘down/up-sampled subgraphs’. Specifi-
cally, in Fidε1,+, given a graph G and an explanation subgraph ”(G), as shown in Algorithm 1, we
randomly remove ⇀1 ratio of edges in ”(G) from G and compare the prediction with the original
one. For simplicity, we denote this as a ‘down-sampled’ subgraph. For ⇀1 = 0.1, Figure 2(b) shows
the visualization results of these ‘down-sampled’ subgraphs. We observe that these subgraphs are
in-distributed. Similarly, in Fidε2,↑, we sample ⇀2 ratio of edges from the non-explanation subgraph
and add them to the explanation subgraph. We denote this graph as an ‘up-sampled’ subgraph. The
visualization results with ⇀2 = 0.9 are shown in Figure 2(c), which also verifies the in-distribution
property.

To quantitatively evaluate the distribution shifting problem, we first normalize the representation
vector and use KL-divergence to measure the distance between up/down-sampled subgraphs and
the original graphs. The KL divergence between down-sampled subgraphs and original graphs with
respect to ⇀1 is shown in Figure 3(a). When ⇀1 = 1.0, the down-sampled subgraphs degenerate
into non-explanation subgraphs, where the KL divergence is large. For a small value of ⇀1, the KL
divergence is small. In Figure 3(b), we show the KL divergence between up-sampled subgraphs and
original graphs with respect to ⇀2. When ⇀2 = 0.0, the up-sampled subgraphs become explanation
subgraphs, which are out-of-distributed, as evidenced by a large KL divergence value. On the other
hand, with a large value of ⇀2, for example 0.9, we are able to largely alleviate the OOD problem.

(a) Down-sampled subgraphs used in com-
puting Fidω1,+.

(b) Up-sampled subgraphs used in comput-
ing Fidω2,↑.

Figure 3: KL divergence between down/up-sampled subgraphs and original graphs.

F.4 STABILITY ANALYSIS

In the proposed fidelity measurements, we sample M times to compute Fidε1,+ and Fidε2,↑,
respectively. To verify the stability of our measurements. We change the value of M in the range
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(10, 100) and keep ⇀1 = 0.1 and ⇀2 = 0.9. For each value of M , we evaluate the quality of ground-
truth explanations 10 times and report the mean as well as the standard deviation in Fig. 4. Specifically,
for the default setting, M = 50, we also report the comparison of running time between our methods
and their counterparts in Table 3.

We have the following observations. First, as M increases, the proposed metrics are more stable.
Second, our measurements are quite robust as the mean scores are stable with M ranging from 10 to
100. Thus, although our method is slower than the original fidelity measurements, in practice, a small
number of samples are enough to get precise estimations.

Table 3: Running time performance on GT explanation

Node Classification Graph Classification
Model Time(s) Tree-Circles Tree-Grid BA-2motifs MUTAG

GCN Ori. 1.06 3.77 2.98 56.91
Ours 13.34 64.44 48.97 302.38

GIN Ori. 0.63 2.71 2.12 50.99
Ours 7.74 37.65 30.53 198.93

(a) Fidω1,+ on Tree-Circles (b) Fidω2,↑ on Tree-Circles

(c) Fidω1,+ on Tree-Grid (d) Fidω2,↑ on Tree-Grid

(e) Fidω1,+ on BA-2motifs (f) Fidω2,↑ on BA-2motifs

(g) Fidω1,+ on MUTAG (h) Fidω2,↑ on MUTAG

Figure 4: Parameter studies on M .
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F.5 QUALITATIVE EVALUATION

To qualitatively show the quality of different fidelity metrics, in this part, we visualize the fidelity
scores with heat maps. We adopt the GCN model and follow the experimental setting in Sec.5.1.
Results are shown in Fig. 5, 6, 7, and 8. We can observe several phenomena. First, with the same
↼2, a candidate explanation generated by a small ↼1 indicates a smaller edit distance and a better
explanation quality. Thus, for Fid+, the values should decrease as ⇀1 increases. However, as shown
in Fig. 5(a), 6(a), 7(a), and 8(a), the original Fid+ fails to keep the monotonicity. For example,
when looking at the first column of Fig. 7(a), we observe that the Fid+ scores first go up and then
go down with ↼1 increasing and it achieves the highest score when there are 50% edges removed
from the ground-truth explanations. The result shows that Fid+ fails to measure the correctness of
explanations. On the other hand, the new proposed Fidε1,+ is highly monotonic to gold standard
edit distance. We have similar observations with Fid↑ and Fid! on all these datasets.

(a) Fid+ (b) Fid↑ (c) Fid”

(d) Fidω1,+ (e) Fidω2,↑ (f) Fidω1,ω2,”

Figure 5: Fidelity scores with GCN on Tree-Circles. The X-axis value, ↼2 is the ratio of added edges
from the non-explanation subgraph to the candidate explanation. The Y-axis value, ↼1 is the ratio of
edges removed from ground truth in the candidate explanation.

(a) Fid+ (b) Fid↑ (c) Fid”

(d) Fidω1,+ (e) Fidω2,↑ (f) Fidω1,ω2,”

Figure 6: Fidelity scores with GCN on Tree-Grid.
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(a) Fid+ (b) Fid↑ (c) Fid”

(d) Fidω1,+ (e) Fidω2,↑ (f) Fidω1,ω2,”

Figure 7: Fidelity scores with GCN on BA-2motifs.

(a) Fid+ (b) Fid↑ (c) Fid”

(d) Fidω1,+ (e) Fidω2,↑ (f) Fidω1,ω2,”

Figure 8: Fidelity scores with GCN on MUTAG.

F.6 CASE STUDIES

In this section, we adopt case studies to show the effects of the OOD problem in original fidelity
measurement and the robustness of the new proposed metrics. We use both graph classification
datasets, BA-2motifs and MUTAG in this part. For each dataset, we choose a graph. We consider two
candidate explanations: the gold standard one and an adversarial explanation. As shown in Table 4,
the first row is the gold standard explanation and the second row is an adversarial explanation with
an edit distance of 10, which doesn’t contain the label information. The Fid+ scores of these two
explanations are close. Moreover, Fid↑ and Fid! mistakenly suggest that the adversarial explanation
is better. These results further verify that the original fidelity metrics are fragile. On the other hand,
the proposed fidelity metrics are more robust. All Fidε1,↑, Fidε2,↑, and Fidε1,ε2,! successfully
give the correct measurements. We have a similar conclusion in the case study of MUTAG in Table 5.
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Table 4: A case study on BA-2motifs dataset. The bold font indicates the better explanation subgraph
suggested by fidelity measurements.

Explanation Edit Dis. ∋ Fid+ △ Fid↑ ∋ Fid! △ Fidε1,+ △ Fidε2,↑ ∋ Fidε1,ε2,! △

0 -0.012 -0.036 0.024 0.169 0.002 0.167

10 -0.010 -0.052 0.042 0.009 0.103 -0.095

Table 5: A case study on MUTAG dataset. The bold font indicates the better explanation subgraph
suggested by fidelity measurements.

Explanation Edit Dis. ∋ Fid+ △ Fid↑ ∋ Fid! △ Fidε1,+ △ Fidε2,↑ ∋ Fidε1,ε2,! △

0 0.619 0.627 -0.008 0.092 0.303 -0.211

10 0.697 -0.030 0.727 0.056 0.352 -0.296

F.7 ACCURACY BASED FIDELITY

As another variant, accuracy-based Fidelity measurement is also used to evaluate the performance of
explanations (Yuan et al., 2022). Let use {(Ḡi, yi)}Ti=1 denote a set of T of graphs and their labels.
f(·) is the GNN classifier to be explained. For the i-th graph Ḡi, ”(Ḡi) denotes the explanation
subgraph output by an explainer ”(·) acting on Ḡi. The accuracy-based fidelities are defined as
follows.

Fid(acc)+ =
1

T

T∑

i=1

∣∣1(arg maxf(Ḡi) = yi)⇔ 1(arg maxf(Ḡi ⇔”(Ḡi)) = yi)
∣∣

Fid(acc)↑ =
1

T

T∑

i=1

∣∣1(arg maxf(Ḡi) = yi)⇔ 1(arg maxf(”(Ḡi)) = yi)
∣∣

Fid(acc)! = Fid(acc)+ ⇔ Fid(acc)↑

(14)

In a similar way, we formulate our accuracy-based Fidelity measurements, Fid(acc)ε1,+, Fid(acc)ε2,↑ and
Fid(acc)ε1,ε2,!

. We adopt the same setting as Sec. F.5 and show the visualization results in Fig 9,10,11,
and12. We observe consistent improvements achieved by our methods over their counterparts,
indicating their effectiveness in the accuracy-based setting.
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(a) Fid(acc)+ (b) Fid(acc)↑ (c) Fid(acc)”

(d) Fid(acc)ω1,+
(e) Fid(acc)ω2,↑ (f) Fid(acc)ω1,ω2,”

Figure 9: Accuracy-based Fidelity results of GCN on Tree-Circles.

(a) Fid(acc)+ (b) Fid(acc)↑ (c) Fid(acc)”

(d) Fid(acc)ω1,+
(e) Fid(acc)ω2,↑ (f) Fid(acc)ω1,ω2,”

Figure 10: Accuracy-based Fidelity results of GCN on Tree-Grid.
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(a) Fid(acc)+ (b) Fid(acc)↑ (c) Fid(acc)”

(d) Fid(acc)ω1,+
(e) Fid(acc)ω2,↑ (f) Fid(acc)ω1,ω2,”

Figure 11: Accuracy-based Fidelity results of GCN on BA-2motifs.

(a) Fid(acc)+ (b) Fid(acc)↑ (c) Fid(acc)”

(d) Fid(acc)ω1,+
(e) Fid(acc)ω2,↑ (f) Fid(acc)ω1,ω2,”

Figure 12: Accuracy-based Fidelity results of GCN on MUTAG.
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