
https://doi.org/10.1007/s10664-023-10320-z

What kinds of contracts do ML APIs need?

Samantha Syeda Khairunnesa1 · Shibbir Ahmed2 · Sayem Mohammad Imtiaz2 ·
Hridesh Rajan2 · Gary T. Leavens3

Accepted: 1 March 2023 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Recent work has shown that Machine Learning (ML) programs are error-prone and called for
contracts for ML code. Contracts, as in the design by contract methodology, help document
APIs and aidAPI users inwriting correct code. The question is: what kinds of contracts would
provide the most help to API users? We are especially interested in what kinds of contracts
helpAPI users catch errors at earlier stages in theMLpipeline.Wedescribe an empirical study
of posts on Stack Overflow of the four most often-discussedML libraries: TensorFlow, Scikit-
learn, Keras, and PyTorch. For these libraries, our study extracted 413 informal (English)
API specifications. We used these specifications to understand the following questions. What
are the root causes and effects behind ML contract violations? Are there common patterns of
ML contract violations?When does understandingML contracts require an advanced level of
ML software expertise? Could checking contracts at the API level help detect the violations
in early ML pipeline stages? Our key findings are that the most commonly needed contracts
for ML APIs are either checking constraints on single arguments of an API or on the order
of API calls. The software engineering community could employ existing contract mining
approaches to mine these contracts to promote an increased understanding of ML APIs. We
also noted a need to combine behavioral and temporal contract mining approaches.We report
on categories of required ML contracts, which may help designers of contract languages.

Communicated by: Carlo A. Furia

B Samantha Syeda Khairunnesa
skhairunnesa@fsmail.bradley.edu

Shibbir Ahmed
shibbir@iastate.edu

Sayem Mohammad Imtiaz
sayem@iastate.edu

Hridesh Rajan
hridesh@iastate.edu

Gary T. Leavens
Leavens@ucf.edu

1 Department of Computer Science and Information Systems, Bradley University,
Peoria, Illinois, USA

2 Department of Computer Science, Iowa State University, Ames, USA

3 Department of Computer Science, University of Central Florida, Orlando, USA

123

Published online: 17 October 2023

Empirical Software Engineering (2023) 28:142

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10320-z&domain=pdf

Empirical Software Engineering (2023) 28:142

Keywords Machine Learning · API contracts · Empirical software engineering ·
Software engineering for machine learning

1 Introduction

Software developers are increasingly integrating machine learning (ML) into systems using
ML libraries’ application programming interfaces (APIs). However, ML software is bug-
prone (Zhang et al. 2018b; Islam et al. 2019; Humbatova et al. 2020) and like traditional
software could benefit from adopting a design-by-contract methodology (Islam et al. 2019).
Contracts can specify the expected behavior of an API and help client code use the API
correctly, e.g., a contract might require that the fit method be applied to a model before
calling the predict method. Another example can be given using the MaxPooling2D
method for retaining the most prominent features of the feature map in a convolutional
neural network (CNN). There is a contract on the MaxPooling2D method’s argument,
data_format, based on the shape of the input image. If the input image has the shape (N,
C, H, W), then the value for the argument data_format is set to channels_first. If
the input has the shape (N, H,W, C), then data_formatmust be set tochannels_last.
Here, the letters N, H, W, and C represent the following: the number of images in the batch,
the height of the image, the width of the image, and the number of channels of the image.

There is a rich body of prior work that can be grouped into two categories: work on
contracts for non-ML software and work on ML software.

The first category, contracts for non-ML software, can be further divided into two
types: behavioral and temporal. Behavioral contracts (Hoare 1969; Meyer 1988; Pradel
and Gross 2009; Pǎsăreanu and Rungta 2010; Nguyen et al. 2014; Khairunnesa et al.
2017) specify acceptable program states, typically for calls to individual methods in an
API. For instance, in the Java Development Kit (JDK) String class, the precondition
‘beginIndex<=endIndex’ must be true before calling method subString(begin
Index,endIndex). The contracts that belong to this category are preconditions (as in the
example), or postconditions (constraints ensured by the execution of the call) for a method in
question. There are also class invariants that capture the constraints for all methods in a par-
ticular class. Temporal contracts (Manna and Pnueli 1992; Gruska et al. 2010; Nguyen et al.
2009; Wasylkowski et al. 2007) encode the correct ordering of calls, possibly among multi-
ple APIs. For example, in Python, after creating a threading.Lock object, once a thread
makes a call toLock.acquire(), that thread should eventually call Lock.release().

The notion of contracts in this study is similar to the kinds of contracts described just
before this phrase. We have used the same definition of (behavioral and temporal) contracts
in this study. A contract specifies the correct usage of an API and an incorrect usage is a
contract violation.

The second category is about ML software and its bugs (Zhang et al. 2018b; Islam et al.
2019; Humbatova et al. 2020) and bug fixes (Sun et al. 2017; Islam et al. 2020). These works
study either the implementation of ML library APIs or usage information about those APIs.
Zhang et al. (2018b) and Humbatova et al. (2020) focused on understanding the defects in
different ML libraries. The authors (Zhang et al. 2018b) noted that the defect might come
from various sources, e.g., program code, execution environment, library framework itself,
etc. In contrast, the focus of this study is to gain an understanding ofMLAPI contracts. Islam

123

142 Page 2 of 37

Empirical Software Engineering (2023) 28:142

et al. (2019) reported on API misuse. API misuse can be detected if contract obligations are
specified. Sun et al. (2017) investigated the issues in various ML libraries to understand
the bug-fix patterns in these libraries, whereas Islam et al. (2020) studied the deep neural
network (DNN) models to understand the bug-fix patterns. In our study, we focused on ML
API contracts and corresponding breaches. Suppose a user maintains a contract obligation
for an ML API. In that case, if the API demonstrates exceptional behavior upon exiting, the
issue may be present in the implementation of the API.

Our work focuses on investigating the kinds of contracts required to establish the correct
usage ofMLAPIs. The main question is:what are the kinds of contracts required to establish
the correct usage of ML APIs? We observe that ML software is different from traditional
software in several ways. In ML software, problem-solving is largely dependent on training
data and subject to precise settings of hyper-parameters (Zhang et al. 2018b). A prior work
by Humbatova et al. (2020) suggested that choice of loss function/optimizer, missing/redun-
dant/wrong layers, etc. are distinctive bugs in ML software. Also, incorrect use of ML APIs
may not always lead to crashes, but may instead lead to slower performance or statistically
invalid results. In this study, we did not aim to check the reliability of the ML systems.
Instead, we looked at the errors occurring in ML programs due to the incorrect usage of ML
APIs.

We studied four popular ML libraries: TensorFlow, Scikit-learn, Kerasand PyTorch and
studied posts from the Q&A forum Stack Overflow (SO) that contain one of these libraries in
a tag. The dataset (labeled SO posts, queries, source codes, etc.) generated during our study
are available in the figshare repository, https://figshare.com/s/c288c02598a417a434df. This
dataset includes a total of 1565 posts, from which we manually curated posts that hold 413
contracts for relevant ML APIs. We use this data to answer the following research questions:
RQ1 (Root Cause and Effect): What are the root causes and effects behind ML contract
violations?
RQ2 (Patterns): Are there common patterns of ML contract violations?
RQ3 (Contract Comprehension Challenges): When does understanding ML contracts
require an advanced level of ML software expertise?
RQ4 (Contract Violation Detection): Can checking contracts at the API level help detect
the violation in early ML pipeline stages?

These questions, and the data that support their answers, help to answer the main question,
i.e., they enable researchers and practitioners to pinpoint where immediate support is required
in terms of contracts for ML APIs. The key findings from our study are summarized in
Table 1.

The contributions of our paper are the following. We provide a taxonomy for ML API
contracts and corresponding root causes. This taxonomy (§2.3) added five new leaf node
categories of contracts (with respect to the leaf categories observed in traditional behavioral
and temporal contracts) observed in our study. The work also identified the stages of ML
pipelines inwhich the violations occur (API contract violation locations) or affect the software
and presented a dedicated classification (§2.4). To our knowledge, this is the first work
that attempts to understand the types of required contracts needed to prevent problems that
may arise when using these ML APIs in software systems. In §3, in addition to answering
the research questions, we analyze the outcomes related to contract breaches. Finally, we
provide recommendations to researchers, consumers, and producers ofMLAPIs based on the
findings.

123

Page 3 of 37 142

https://figshare.com/s/c288c02598a417a434df

Empirical Software Engineering (2023) 28:142

Table 1 Findings and Insights

RQ Findings Actionable Insight

RQ1 Most frequent contracts for ML APIs:
(§3.1.1)

This is a good news because the software
engineering (SE) community can employ
some existing contract mining approaches

1. Constraint check on single arguments of
an API.

to also mine contracts for ML APIs; but
there might be a need to combine

2. Order of API calls that become a
requirement eventually.

behavioral and temporal contract mining
approaches that have been independently
developed thus far

RQ4 ML API contracts that are commonly
violated occur in earlier ML pipeline
stages (§3.4).

A verification system with ML contract
knowledge can explain whether a bug in
the ML system that used those APIs
stemmed from an API contract breach.

RQ3 The absence of precise error messages
(§3.1.2) due to system failures makes
contract comprehension and violation
detection more challenging.

As domain experts can understand the
challenging ML contracts (§3.3),this
knowledge encoded as contracts can
enable improved debugging mechanisms.

RQ1 ML APIs require several type checking
contracts specific to ML (§3.1.1) and
inter-dependency (Table 6) between
behavioral and temporal contracts.

Programming methodology and tools for
design by contract should include sufficient
expressiveness for these additional types of
contracts seen in ML APIs.

2 Methodology

2.1 Overview

A In this study, we used Stack Overflow (SO) to investigate API contracts’ requirements
for the most-asked about and widely-used ML libraries and frameworks. SO is a forum for
software development professionals and enthusiasts. In recent years SO has served as an
open repository for conducting studies on software engineering topics (Zhang et al. 2018a;
Cai et al. 2019; Aghajani et al. 2019; Beyer and Pinzger 2014; Barua et al. 2012; Rosen and
Shihab 2015; Cummaudo et al. 2020). SO, as a forum, maintains a strict moderation policy,
promotes a peer-reviewing mechanism, and incorporates a reward system for encouraging
quality answers from the software developers (StackOverflow Reputation 2023). Moreover,
it has a vibrant user community and includes software developers from all walks of life,
experiences, etc. StackOverflow Survey (2017). As a result, it offers a wealth of well-vetted
information on numerous software development topics. As such, SO makes an excellent
source for our study, as the primary goal of this study is to derive ML contracts from peer-
reviewed and well-vetted content for the reliability of the findings. To capture the contracts,
analyzing the large code corpus of API usages (Wasylkowski et al. 2007; Nguyen et al. 2009;
Khairunnesa et al. 2017) or the implementation of the software itself Cousot et al. (2013) are
both well-known techniques. Our chosen methodology is closer to the former (Fig. 1).

B We used the SO forum’s tags to identify the relevancy of a post to an ML library;
if the question’s tag contained an ML library name, it was considered a post related to that
library and was thus a candidate to be studied in this work.

123

142 Page 4 of 37

Empirical Software Engineering (2023) 28:142

Fig. 1 Overview of the adopted methodology

We ranked the top ML libraries using the frequency of these tags, resulting in these four
as the object of our study: TensorFlow, Scikit-learn, Keras, and PyTorch.

C Next we filtered these posts based on a set of defined criteria that are described in
detail in §2.2.

D The second and third authors (labelers), both with a strong background in ML, were
given background information on contract literature. Then they were given hands-on training
with sample SO posts as described in §2.6.

E After the training process, 10% of the filtered dataset is used by the first three authors
to develop the taxonomies used to label the filtered posts. Two iterations were needed to
propose the final taxonomy presented here. The process is described in detail in §2.5.

F Next, these labelers identified contracts implicitly present in SO posts. We obtained
162, 122, 103, and 26 contracts, respectively, from the previously curated posts. Table 2
shows a summary of the dataset for each library in our study. For each SO question, we
used the taxonomy of contracts (including proposed categories) from §2.3 to investigate the
available information from the question and accepted answer to decide the type of contract
obligation missing in the question and marked in the response. Hence, if the SO response
describes the correct way of using an API of interest violated in the question, we identify
that as a contract for the API that was implicitly present in SO posts. We have also used

Table 2 Dataset for Empirical Study on ML Contracts

Library SO # Posts # Contracts

Criteria 1. Criteria 2. Criteria 3. Criteria 4.

TensorFlow 24368 2205 1400 605 162

Scikit-learn 12506 1641 1127 551 122

Keras 12300 1285 821 333 103

PyTorch 2500 439 313 76 26

Total 51674 5570 3661 1565 413

123

Page 5 of 37 142

Empirical Software Engineering (2023) 28:142

the taxonomies presented in §2.4 and §2.5 to complete the labeling in this stage. In §2.3,
we describe the process of identifying the contract violation and potential contract for ML
APIs with example SO posts from our study. Then, the first author, with expertise (of approx.
6 years) in contracts, reviewed the identified contracts and the SO post the contracts were
extracted from. This served two purposes: it ensured that the identified contracts were correct
and helped to reduce the threat of missing contracts that was implicitly present in the dataset
from the second and third authors. The first author found only a handful of contracts missed
by these two labelers. However, these missing contracts were found by at least one of the two
labelers. Therefore, we did not note any new contracts this way. If one labeler identified a
contract and the other did not, as they performed their labeling using the proposed taxonomy,
this was identified as one of the reasons behind creating a conflict between the two labelers.
We discussed in §2.6 how we resolved the conflicts in our study.

G As the labeling process is completed, we analyze our labeled dataset. Additionally,
we have created a separately filtered dataset (a subset of the original) based on the question
scores and analyzed questions with a relatively high score (in the range of 30-339). The
intuition behind further separating these posts is that an author may ask one question, and
only a handful of ML API users might run into it. Then another SO question may be inquired
by someone but up-voted by hundreds of others who have the same problem. Thus, the
intuition behind further separating these filtered posts was to understand how many ML API
users are struggling with each problem. This separate dataset was compared against the entire
dataset to be vigilant about the representative issues and respective conclusions we draw from
the posts in §3. This subset is selected with the following criteria: select high-quality posts
and keep manual efforts manageable. To that end, to ensure high-quality posts, we select
posts having better than average scores (avg. 18.9). To keep the manual effort manageable,
we find a trade-off between sample size and its statistical power. We specifically choose 30
as a cut-off to have reasonable confidence in this additional study while keeping manual
efforts manageable (about 90% confidence level with a 5% margin of error), resulting in 222
posts. We discarded posts if they did not capture any information regarding correct usage
of ML APIs. Additionally, we grouped the discarded SO posts that we could not label as
containing contracts during the manual curation step. We were unable to label some posts
due to the following reasons: posts asking general clarification questions, unresolved issues
with specific APIs of interest, an API unidentified in a post, a solution involving tuning, or a
dependency between an unrelated API and a related API. For instance, in some of these posts,
the ML API users is usually curious about performing a task at hand or inter-library code
transformation and refactoring. To illustrate, in one SO post1, the author is knowledgeable
that they can use the summary()API from Keras to print a model summary. Yet, they want
to know how to do the same using Pytorch. Even if these posts are of interest to ML API
users, these do not fall into the category of contract requirements. In our study, the number
of total unlabelled posts is 1159, and the number of total unlabelled posts with a score of or
higher 30 is 161.

H Finally we present our result in detail in §3. However, we did not add the statistics
for unlabeled posts in RQs, as these posts did not unveil any ML contracts.

1 https://stackoverflow.com/questions/42480111/

123

142 Page 6 of 37

https://stackoverflow.com/questions/42480111/

Empirical Software Engineering (2023) 28:142

2.2 Filter Dataset

We processed the collected posts further to enable a classification scheme for contracts. We
followed twomain steps to filter these posts. The initial step is an automatic pre-processing of
the collected posts based on the following criteria: 1. Within these posts, authors asking the
question must include some code snippet(s). We reason that a question post discussing these
libraries and including snippets of code is more likely to have difficulty with API contracts,
thus may show challenges related to contract violation for relevant APIs.ss Furthermore,
posts with code enable identifying the ML APIs being used. We have collected a total of
51674 posts with this filtering criteria. 2. We further filter the posts having a score higher
than five based on the guidelines from prior works (Nasehi et al. 2012; Zhang et al. 2018b;
Islam et al. 2019, 2020) to ensure that posts are of high quality. This additional criterion
produced a total of 5570 posts. 3. We considered posts with accepted answers (having a
score higher than five) only, as those answer posts have successfully identified and resolved
the problem faced by the author of the question post. The criterion for including accepted
answers to the dataset follows prior studies (Islam et al. 2019; Zhang et al. 2019; Islam et al.
2020 that have argued that if the answer of a post is not accepted, then that answer might not
have addressed the issue. This step enabled us to collect 3661 posts in total. The steps up
to this point are automatic. All queries to filter datasets according to this set of criteria are
provided in the figshare repository2.

4. Furthermore, the accepted answers frequently contain code, and we expect that these
code snippets focus on the required contracts for ML APIs.

Additionally, we manually checked if the accepted answer to a post clearly describes
the API contracts using text (without code). If this is true, we also consider such a post. The
question posts in our study provided uswith the contract violationsML software is susceptible
to and the accepted answer posts directed us towards the contracts. Thus, the considered SO
posts capture both contract violations and potential contracts. After these stages, we curated
a total of 1565 posts; the posts specific to each of TensorFlow, Scikit-learn, Keras, PyTorch
contained 605, 551, 333, and 76 posts (Table 2), respectively.

The posts obtained aftermanual filtering each contain at least oneMLAPI-related contract
but may contain more. Our study observed a blend of behavioral and temporal contracts for
MLAPIs.We called this a hybrid category in our classification (in §2.3). The posts fromwhere
we have extracted such contracts are the source behind multiple contracts from a single post.
If multiple contracts were present in a single post, we extracted all contracts and labeled these
using our taxonomy. For instance, in one SO post (SO post 6), it contained two contracts. The
API in question is random_shuffle() from the TensorFlow library. The first extracted
contract is to specify the argument seed with the desired value. The second extracted contract
is to calltf.random_shuffle() and then calltf.reset_default_graph(). And
the random_shuffle()API will ensure a shuffled Tensor if the contract is maintained
in either of the ways mentioned.

Besides, the SO forum has a general strategy to tackle duplicate questions with the same
(potential) answers. Users can flag a question on SOif it is analogous to a previously posted
question concerning a concept. According to SO, the reasoning behind marking duplicate
questions is that users should not discuss duplicate questions, but anyone with the same query
can refer to the previously posted discussions. In our study, we have found 359 unique con-
tracts from a total of 413 contracts reported. SO’s strategy for flagging duplicating questions
has enabled us to collect many unique ML contracts.

2 https://figshare.com/s/c288c02598a417a434df

123

Page 7 of 37 142

https://figshare.com/s/c288c02598a417a434df

Empirical Software Engineering (2023) 28:142

We note that the forum may contain other relevant ML API posts but not included in our
dataset if the posts do not contain any contract or match the filtering criteria mentioned above.
We have inspected the impact of imbalance in our dataset across libraries and address this in
SO3.5.

Next, we present a classification for ML API contracts and associated root causes in §2.3.
This classification is used to identify and label posts with ML contracts. §2.5 demonstrates
the taxonomy of the effects of these root causes of contract violations. Finally, we present a
classification to identify locations of ML API contract violation (§2.4) based onML pipeline
stages.

2.3 Classification of ML contracts andViolation Root Causes

To label the contracts forMLAPIs found in our dataset, we developed a classification scheme
that categorizes different types of contracts originating from these APIs.

As mentioned earlier, the literature mainly discusses two types of contracts: behavioral
and temporal.

Typically, behavioral contracts for APIs consist of assertions that are required to be true
before calling the API (preconditions) and assertions that must be valid upon exiting the API
method (postconditions). In contrast, temporal contracts are those that capture the required
order of API calls to ensure proper behavior. Both types of contracts are also observed in
non-ML APIs, and we build our classification on top of this well-established classification.
Building on an existing classification scheme helped us to not reinvent known ideas (Glaser
1978) related to API contracts. Student authors in this work used open coding to build the
extension appropriate for ML APIs.

Process Researchers advocate using open coding to create any taxonomy (Sarker et al. 2000);
it is best that the researchers perform the task themselves rather than rely on a third party.
The authors worked as a group initially to perform the coding and sampled 10% data to that
purpose. This strategy had several advantages, e.g., a consistent decision to choose between
existing concepts and create a new one; categories became more exact while differences
became more evident than individually proposed taxonomy categories, and it also provided
an opportunity to properly train the two labelers. We used axial coding (Corbin and Strauss
2008), a technique that helps to collapse core themes involving qualitative data. In other
words, it organizes the codes developed during open coding. This technique is used for
cases where conceiving sub-categories seems necessary for any central component inside
the classification schema. To elaborate, in our study, as we analyzed and labeled the SO
posts with identified contracts, we looked at how these sub-categories could be grouped into
central categories, so that the central category could encompass a number of different posts.
In some cases, these central categories (axes) are from the state-of-the-art taxonomy, e.g.,
data type-related contracts, but in other cases, a new abstract category seemed appropriate,
e.g., selection. For instance, the codes such as Primitive Type, Built-in Type, etc., are well-
established codes that describe different categories of type-related contracts. We used axial
coding to identify that these contracts can be collapsed into the sub-core theme of checking
Data Type-related contracts. Similarly, we organized sub-core core categories eventually
into core categories. For instance,Data Type is organized under the core category Single API
Method. We further use relational and variational sampling (Corbin and Strauss 1990) using
SO data to support or contradict the relationship between sub-categories and core categories.
These sampling techniques facilitated explaining relations between theoretically relevant

123

142 Page 8 of 37

Empirical Software Engineering (2023) 28:142

Table 3 Type of Contracts for MLAPIs (Symbols and at the end of leaf components designate novel
categories)

Level 1 Level 2 Level 3

Primitive Type (PT)
Built-in Type (BIT)
Reference Type (RT)

Data Type (DT)

ML Type (MT)
Single API Method (SAM)

Intra-argument Contract (IC-1)
Boolean Expression Type (BET)

Inter-argument Contract (IC-2)
Always (G)

API Method Order (AMO)
Eventually (F)
SAM-AMO Interdependency (SAI) SAM (Level 3) ∧ AMO(Level 2)

SAM (Level 3)
AMO (Level 2)

Hybrid (H)
Selection (SL)

Comb. of SAM(Level 3) and
AMO(Level 2)

Green cells indicates the behavioral contract. Blue denotes temporal contract and Orange cells indicate
the hybrid respectively

categories through gathering data (depending on the frequency of similarity or variation)
on each group, e.g., considering conditions, consequences, etc., on a case-by-case basis. For
example, we located instances of the leaf categoryMLtype in our dataset that describes special
type-related contracts that is only present in ML APIs. The multiple samples we collected
indicated that the reason behind this contract violation is the input of an unacceptable input
type, and the effect, if explicitly present in the samples, is crash. The frequency of such
similarity confirmed the relationship between the category MLtype and the category Data
Type. This is an example of relational sampling, precisely.

New Categories We found four new categories during our initial study (marked with in
Table 3). After the initial study, the labelers individually studied the rest of the posts and
were at liberty to suggest additional categories if the need arose (detail on labeling in §2.6).
The labelers conducted an in-person meeting under the supervision of a moderator to discuss
the suggested additional categories and these reconciliation effort resulted in one additional
category (marked with in Table 3).

Classification Scheme Next, we described our obtained classification schema in detail. Fur-
thermore, all categories included in this classification are shown in Table 3. At the top level,
we presented three central contract component levels: contracts involving Single APIMethod,
contracts involving API Method Order, and contracts that required a Hybrid of preceding
categories. The first fundamental category, Single API Method (SAM), in our classification
scheme captures preconditions/postconditions involving a single API method. This core cat-
egory is based on behavioral contracts. Next, MLAPIs often require particular call orderings
to demonstrate normal behavior; we classify contracts specifying such order asAPIMethod
Order (AMO). This category is based on temporal contracts. Subsequently, we classified
these categories into sub-classes until we could find a leaf category that denoted the contract
of a particular type for ML APIs. For each such class, we explained the root cause of that
contract violation subsequently.

123

Page 9 of 37 142

Empirical Software Engineering (2023) 28:142

2.3.1 Type of Contracts Involving Single API Method (SAM)

The first sub-category of Single API Method (SAM) contract concerns type checking that is
required Data Type (DT) of API arguments.

This subclass consists of four types of contract:

Primitive Type (PT) This represents the ML API argument type can be a primitive type, e.g.,
float,int,bool,number,None, and the rest. For instance, in SO post 1, thedecode()
method from theTensorFlowlibrary expects abyte string. The root cause of this contract
violation is an input of an unacceptable type.

Stack Overflow post 1 Example post with contract

Stack Overflow post 2 Example post with contract

Built-in Type (BIT) The contracts involving more complex built-in types (such as dict,
list, tuple, and array). For example, in SO post 2, concat() from the Tensor-
Flowlibrary expects the first argument to be of array type. The root cause of this contract
violation is an input of unacceptable type.

Reference Type (RT) This category of contracts can involve either internal class object, i.e.,
referenced class objects within the API class, or external class object, i.e., external variable
referenced from separate modules of theML library. For example, in SO post 3, a contract for
the API KerasRegressor() from Kerasis shown. The argument accepts a function, an
instance of a class that implements the call method or None. As the argument build_fn
of this API accepts reference type as one of its expected argument types, we classify this
under the reference type category. The root cause of this contract violation is that an input of
unacceptable type is supplied to the method.

123

142 Page 10 of 37

Empirical Software Engineering (2023) 28:142

Stack Overflow post 3 Example post with contract

ML Type (MT) This final contract component of data type contains ML types. ML types are
a multidimensional array with a uniform type (float16, float32, complex16, etc.),
particularly designed for ML pipelines to achieve accelerated performance (i.e., ease of use
with GPU).

For instance, in SO post 4, an ML Type related contract is captured stating that the
matmul() API from the TensorFlowlibrary requires that both of the arguments should
be a Tensor with one of the following types: float16, float32, float64, int32,
complex64, complex128.

Stack Overflow post 4 Example post with contract

Another example of this type of contract 5 is that the first two arguments for the fit()
API should have the type of a numpy array or a list of numpy arrays. The root cause
of this contract violation is an input of unacceptable type supplied to the method. This post
also shows that the API has a supplementary contract concerning argument dependency, as
discussed below.

Stack Overflow post 5 Example post with contract

123

Page 11 of 37 142

Empirical Software Engineering (2023) 28:142

The API method can also involve Boolean assertions related to its argument values,
Boolean Expression Type (BET), instead of only type related checks. We classify these
types of contracts into two subclasses:

Intra-argument contracts (IC-1) IC-1 specifies preconditions related to a single argument of
the API. These contracts may involve both comparisons and logical combinations.

Stack Overflow post 6 Example post with contract

An example of an IC-1 contract is given in SO post 6, which shows an ML API users
trying to use the TensorFlow API random_shuffle() to shuffle a Tensor, a, with some
set seed value. One of the solutions mentioned in the accepted answer says that to do that,
one should specify the argument seed with the desired value, e.g., the argument seed gets
the value 42. The root cause of this contract violation is that acceptable input value is not
supplied to (the random_shuffle()) method.

Inter-argument contracts (IC-2) IC-2 contracts involve more than one argument to an API
method, possibly using comparisons or logical expressions. For example, in SO post 4, the
matmul()API from TensorFlowrequires that the type of the second argument shouldmatch
the type of the first argument. A comparison expression can express this contract, so it belongs
to IC-2. The root cause of this contract violation is that the (matmul()) API is missing input
value/type dependency between arguments. Another example 7

for this category isnn.softmax_cross_entropy_with_logits(), anAPI from
TensorFlow, which requires that the logits and labels arguments must have the same shape
(i.e., [batch_size, num_classes]).

Stack Overflow post 7 Example post with contract

123

142 Page 12 of 37

Empirical Software Engineering (2023) 28:142

2.3.2 Type of Contracts Involving API Method Order (AMO)

Multiple APIs can be involved in an AMO contract. There are two sub-categories as follows:

Always (G) Always contracts are AMO contracts that hold at each point of history. For exam-
ple, as shown in SO post 8, for TensorFlow, the call to the method,
tf.wholeFileReader() must be followed by another method call, tf.train.
start_queue_runners() to avoid hanging. The root cause of this contract violation is
that the always required order between these calls is not followed.

Stack Overflow post 8 Example post with contract

Stack Overflow post 9 Example post with contract

Eventually (F) Eventually contracts are AMO contracts where the ordering is only required
at some point in history. In other words, this specifies that a required API ordering must be
true at some point in this program’s execution history far enough in the future. For instance, in
SO 9, the author is trying to solve a sequential classification (input data where order matters)
task. In the model, they used the LSTM() API to return a sequence and then output it as
a Dense() object. The activation function has a one-to-one correspondence with the type
of classification being performed. For that reason, the sigmoid function is rightly used.
However, in the model, they used the LSTM()API to return a sequence and then output it as
a Dense() object. This method order of APIs demonstrates an incorrect API method order,
as the order in the question post is missing a TimeDistributed() API call.

Note that the code is correct for a many-to-one task in natural language processing (NLP).
However, in this question, the user asks for amany-to-many solution, inwhich case it becomes
mandatory to applyTimeDistributed(). Therefore, using theTimeDistributed()
API only becomes a requirement after the LSTM()API is used to return a sequence. The root
cause of this contract violation is that in a state where a call to a method (LSTM()) returns

123

Page 13 of 37 142

Empirical Software Engineering (2023) 28:142

(a sequence), another call to a method (TimeDistributed()) should have occurred.
Thus, in this 9, this eventually contract is violated because the author did not know that the
TimeDistributed()API is a requirement to be called eventually after the LSTM()API
is used to return a sequence.

2.3.3 Type of Contracts Involving Hybrid (H) of SAM and AMO

The Hybrid (H) category involves a blend of behavioral and temporal contracts. This cate-
gory has two subclasses:

Stack Overflow post 10 Example post with contract

SAM-AMO Inter-dependency (SAI) SAI contracts have a dependency between behavior and
method orders. This dependency could be in either direction, i.e., the program’s state
could determine the order of API calls, or the order of API calls could require that some
condition must hold. For example, in 10, if an ML API users uses the SVM-based clas-
sifier SVC as the estimator parameter for GridSearchCV() with Scikit-learn, then
preprocessing.scale() must precede this call. Since the order of the method calls
GridSearchCV() and preprocessing.scale() APIs is dependent upon the value
given to the parameter of GridSearchCV(), it belongs to the SAI contract category.
The root cause of this contract violation is that the value being passed to one method call
(GridSearchCV()) requires a temporal ordering between the two (GridSearchCV()
and preprocessing.scale()) methods.

The leaf components of this subclass contain all contract cases that we derived individually
for the SAM and AMO categories. For example, if an intra-argument contract, IC-1 of an
API determines an always (G), order of two APIs like the example above then, it belongs to
SAM (Level 3) ∧ AMO (Level 2).

Any dependency between SAM related leaf nodes, e.g., primitive type, built-in type,
ML type, etc. and AMO related leaf nodes, i.e., G and F, belong to this category.

Selection (SL) The final subclasses in our classification are those contracts that involve a
choice when it comes to enforcing an API related contract. If the choices only belong
to the contract components of SAM or AMO, then we categorize the contracts into either
SAM (Level 3) or AMO (Level 2), respectively. For instance, in SO post 11, the author
wants to convert two numpy arrays to Tensors and uses TensorDataset() from the
PyTorchlibrary. The arguments of this API must either be of Double or Float type. The
API then confirms DoubleTensor conversion upon exiting. Hence, there are two choices
of category SAM (specifically IC-2) to maintain the contract for this API, and we mark
this with SAM (Level 3) category. The root cause of this contract violation is that the
client did not follow one of the two choices (providing arguments of Double or Float
types).

123

142 Page 14 of 37

Empirical Software Engineering (2023) 28:142

Stack Overflow post 11 Example post with contract

Another example can be seen in the SO post 12, where the author of the post is
using the Keraslibrary to create a neural network. Then they want to initialize and
fit the neural network weights and save these weights. Next, they want to use these
saved weights and predict some output values given the inputs. However, they had
issues using the load_weights() API to collect the saved weights. The answer post
explains that as one uses the load_weights() API, one has to maintain an order
between two other related APIs (compile and predict). One expected order is call-
ing load_weights(), compile(), predict(). The order alternative is calling
compile(), load_weights(), and predict() at some point in history. As both
choices involve AMO, this belongs to the AMO (Level 2) category. The root cause of this
contract violation is that the client did not make one of the two choices (maintaining the
method order between the related APIs).

Stack Overflow post 12 Example post with contract

In comparison, if the choices involve both SAM and AMO, then we categorize the
contract as a combination type contract Comb. of SAM and AMO. For example, in
SO post 6, we observe such a combination. The accepted answer respondent mentions
two alternative ways to maintain correctness when using the tf.random_shuffle API.
The first choice is setting the argument seed for this API to some desired value. The
second is maintaining an order between invocations of tf.random_shuffle() and
tf.reset_default_graph(). Since the same contract breach can be resolved through
either a behavioral or temporal contract that involves tf.random_shuffle()API, there
is a selection involved as to which one to be adopted. Documentation should include all
choices to maintain contracts for an API method. The root cause of this contract violation is
that the client did not make one of the two choices (providing an acceptable seed value or

123

Page 15 of 37 142

Empirical Software Engineering (2023) 28:142

Table 4 Contract Violation Locations

Data Preprocessing TheseAPIs pre-process data before feeding it toMLmod-
els.

Model Construction These APIs are used to build ML models, either from
scratch, by accessing a predefinedmodel, or by compiling
constructed models.

Model Evaluation APIs used to estimate the generalization accuracy of a
model.

Model Initialization APIs used for initializing a predefinedmodel, e.g., anAPI
to load random weights for a model.

Train Describes APIs that determine values for weights and
biases of a model.

Prediction Describes APIs that predict an outcome after training.

Hyper-parameter Tuning Describes APIs that change hyper-parameter(s) that con-
trol the learning process.

Load Describes APIs that load or store data from external stor-
age.

using an acceptable method ordering) for the API to function properly. Researchers should
emphasize the need to be able to express such requirements to users, who can choose to satisfy
the requirements of a library either by maintaining a temporal order or by some state-based
change. Therefore, the practitioners can design and develop a contract checking mechanism
for ML API calling orders to facilitate the end-users.

2.4 Classification of ML Contract Violation Locations

As we investigated the requirements for ML contracts, we also classified the API locations
of the contracts being violated.

We based this classification on prior works (Guo 2017; Islam et al. 2019), and used a
similar open coding strategy as we did when conceiving the classification for contract types.
The categories are explained in Table 4.

2.5 Classification of Effects

Weused a prior work (Islam et al. 2019) for classifying the effects to the root causes discussed
in §2.3. It has six categories: bad performance (BP), crash (C), data corruption (DC), hang
(H), incorrect functionality (IF), and memory out of bound (MOB). We have added one
category Unknown (U) besides these categories to identify cases that remain non-classified.
The details about this classification of effect are discussed in Table 5.

2.6 Labeling

The classification schemes described in §2.3, §2.4, and §2.5 were used to label all 1565
collected SO posts. First, the second and the third authors with strong ML background, have
familiarized themselves with contract literature. The authors have all studied key papers in
the area of software specification and design-by-contract methods. Then we trained these
two authors to understand the classification schema with the help of some example posts. In

123

142 Page 16 of 37

Empirical Software Engineering (2023) 28:142

Table 5 Contract Violation Effects

Bad Performance Common effect in ML software; ML API users face
model problems even though they use deep learning APIs
correctly because APIs in these libraries are abstract.

Crash Frequent effect in ML. In fact, any kind of contract viola-
tion can lead to aCrash.A symptomof the crash is that the
software stops running and prints out an error message.

Data Corruption This happens when the data is corrupted while flowing
through the network, and a user gets unexpected output.
This effect is a consequence of misunderstanding theML
APIs.

Hang Hang is caused when ML software ceases to respond to
inputs due to slow hardware or inappropriate ML algo-
rithm. Software running for a long period of time without
providing the desired output is considered as a symptom.

Incorrect Functionality It occurs when the software behaves unexpectedly with-
out any runtime or compile-time error due to the incorrect
output format, model layers not working desirably, etc.

Memory Out of Bound ML software often halts due to the unavailability of the
memory resources for the wrong model structure or not
having enough computing resources to train a model.

Unknown Sometimes the effect of ML contract violation is
unknown. We have added this category for cases that
remain non-classified.

this training process, the two authors were shown multiple examples for each category in the
classification schema. The examples were demonstrative of where the contract is broken for
an ML API and how the accepted answer describes the correct usage for that precise API.
Then, each rater performed independent labeling of these posts in two iterative rounds. The
10% sampled data analyzed for the classification coding scheme and the first iterative round
of labeling served as part of the training process for the labelers. To measure the inter-rater
agreement, we have used Cohen’s Kappa coefficient (Viera et al. 2005) as labeling progressed
at 1%, 2%, 5%, 10%, and continued in this fashion. We have followed the methodology used
in prior works (Höst et al. 2005; Chatterjee et al. 2020; Islam et al. 2019, 2020) to reconcile
inter-rater disagreements at fixed intervals. During first iterative round, at 5% and 10%, we
report the Kappa coefficient to be 40% and 51%, respectively. The low value of the agreement
directed the raters to meet more frequently (at each 2%) for a second iterative round during
the first few intervals to clarify the labels that raters were using for each post. During these
meetings, raters discussed the reasoning behind cases where a strong disagreement occurred
in a moderator’s presence. We continuously checked the Kappa coefficient at these intervals,
and even if the Kappa value fluctuated we reached values over 80% after completing labeling
22% of the posts for the entire dataset. According to Sim and Wright (2005), a Kappa
coefficient value higher than 0.80 is considered as almost perfect agreement.

3 Results

Themain question we asked is about what contracts are most needed byMLAPI users. In this
section, we present the quantitative data (e.g., representing contract violation patterns, root

123

Page 17 of 37 142

Empirical Software Engineering (2023) 28:142

TensorFlow

Comb. of SAM (Level 3) and AMO (Level 2) AMO (Level 2) SAM (Level 3) SAM (Level 3)  AMO (Level 2)
Eventually (F) Always (G) Inter-argument Contract (IC-2) Intra-argument Contract (IC-1) ML Type (MT)

Reference Type (RT) Built-in Type (BIT) Primitive Type (PT)

Fig. 2 Comparison of ML Contract types of all filtered posts (D1) and subset with score ≥ 30 (D2) in ML
libraries

cause, effect, contract comprehension challenges, etc.) to show the places where immediate
support for contracts is needed. Hence, we analyze the results from our SO study to answer
the research questions from §1, report our findings on the original (and the filtered subset)
dataset described in §2.1, and discuss implications and actionable insights.

3.1 Contract Frequency, Root Cause, and Effect of Contract Violations

In this subsection, we answer RQ1 by presenting the required types of ML contracts, the
root causes of contract violations, and related effects.

3.1.1 Required ML Contracts and Associated Root Causes

To explore required ML contracts and the root causes behind contract violations, we use the
leaf contract types from our classification (§2.3) schema. Table 6 shows the frequency of
each type of contract from the classification found in our dataset. Figure 3 demonstrates the
corresponding root causes. Figure 2 shows the statistical comparison of ML Contracts for
two datasets (all filtered posts and the subset containing posts with scores of 30 or higher).

Required ML Contract We identify that breaking the contract on the single argument of an
API (IC-1) and eventually (F) required API method orders are the most frequent type of

123

142 Page 18 of 37

Empirical Software Engineering (2023) 28:142

Ta
bl
e
6

St
at
is
tic
s
of

M
L
C
on
tr
ac
ts
in

SO

C
on

tr
ac
tT

yp
es

M
L
L
ib
ra
ry

O
ve
ra
ll

Te
ns
or
F
lo
w

Sc
ik
it
-l
ea
rn

K
er
as

P
yT
or
ch

Pr
im

iti
ve

Ty
pe

(P
T
)

0.
63

%
1.
65

%
0.
97

%
0.
00

%
0.
01

%

B
ui
lt-
in

Ty
pe

(B
IT
)

1.
88

%
5.
79

%
1.
94

%
3.
85

%
3.
18

%

R
ef
er
en
ce

Ty
pe

(R
T
)

0.
63

%
2.
48

%
3.
88

%
3.
85

%
2.
20

%

M
L
Ty

pe
(M

T
)

15
.0
0%

14
.0
5%

16
.5
0%

15
.3
8%

15
.1
6%

In
tr
a-
ar
gu

m
en
tC

on
tr
ac
t(
IC

-1
)

20
.6
3%

33
.8
8%

34
.9
5%

23
.0
8%

28
.3
6%

In
te
r-
ar
gu

m
en
tC

on
tr
ac
t(
IC

-2
)

3.
75

%
1.
65

%
0.
97

%
3.
85

%
2.
44

%

A
lw
ay
s
(G

)
11

.2
5%

7.
44

%
7.
77

%
11

.5
4%

9.
29

%

E
ve
nt
ua
lly

(F
)

19
.3
8%

15
.7
0%

10
.6
8%

23
.0
8%

16
.3
8%

SA
M

(L
ev
el
3)

∧
A
M
O
(L
ev
el
2)

7.
50

%
8.
26

%
7.
77

%
0.
00

%
7.
33

%

SA
M

(L
ev
el
3)

4.
38

%
2.
48

%
0.
97

%
3.
85

%
2.
93

%

A
M
O
(L
ev
el
2)

6.
25

%
1.
65

%
5.
83

%
3.
85

%
4.
65

%

C
om

b.
of

SA
M

(L
ev
el
3)

an
d
A
M
O
(L
ev
el
2)

8.
75

%
4.
13

%
7.
77

%
7.
69

%
7.
09

%

123

Page 19 of 37 142

Empirical Software Engineering (2023) 28:142

28.4%

21.5%
16.4%

14.7%

9.3%

7.3% Unacceptable Input
Value

Missing Input Value/Type Dependency

Unacceptable Input
TypeMissing Required

State-specific
Method Order

Missing Input Value-Method
order Dependency

Missing Required
Method Order

Missing Options

2.4%

Fig. 3 Distribution of root causes behind ML contract violations

contracts violated. We observe that the lack of domain knowledge, and incomplete error
messages are some of the reasons why ML API users struggle with the IC-1 category. For
example, in SO post 6 the author struggled to grasp the difference between graph level seed
and operation level seed when using the tf.random_shuffle API. In addition, some
ML APIs are involved in AMO contracts that require particular method orders. This required
method order is often a source of confusion. For the posts with score ≥ 30 in PyTorchlibrary
(2), all observed contracts belong to AMO category. However, the number of posts with
a score of 30 and higher and containing a contract from the PyTorchlibrary is very low (3
contracts). Thus, we refrain frommaking any additional observations for this case. To analyze
further why the required contracts mentioned in this finding are commonly violated, we have
randomly sampled ML APIs from our dataset and studied the documentation for these APIs
to investigate if the documentation is complete. We have analyzed API documentation from
the Keras and TensorFlow libraries and observed that many of these incorrect usages of APIs
are not documented, especially the corner cases. As an instance, the function RELU is a valid
activation function for ML layer APIs in TensorFlow. However, it should not be used if the
layer API in question is the output layer of the model in a multi-label classification.

The SE community can employ existing contract mining approaches (Zhong et al. 2020;
Reger et al. 2013; Lemieux et al. 2015; Lemieux 2015; le and lo 2018) tomine these contracts
and enhance library documentation.

123

142 Page 20 of 37

Empirical Software Engineering (2023) 28:142

We have observed ML type checking (MT) is the next major category, considering all
posts. For instance, in one SO post3, the ML API users is trying to use a predefined model
through aTensorFlowAPIseq2seq(). ThisAPI essentially consists of two recurrent neural
networks. The encoder part processes the input and the decoder generates the output. To cap-
ture this, seq2seq() contains two arguments encode_inputs and decode_inputs.
The contract requirement for these arguments according to the accepted answer is that if
the input has some shape [n], then both of the arguments are required to have a shape of
[batch_size × n]. We also note that, the ML-type checking error is more common (for
the posts with score ≥ 30) in the Scikit-learn library compared to other libraries. This is one
of the key findings that is different when we compared the original curated dataset and the fil-
tered dataset with posts scored 30 or higher. This observation can be attributed to the fact that
the other studied ML libraries incorporate some type checking system, unlike Scikit-learn.
As a result, a TensorFlowor a Kerasor a PyTorchprogram is less likely to contain type errors.
For instance, we have described that in the SO post 4, the matmul() API from the Tensor-
Flowlibrary requires that both of the arguments assume that the same Tensor types will be
provided by the caller of the API. Therefore, supplying anything other than the allowed type
will cause a type error and the program to crash. In contrast, Scikit-learndoes not require
its program to be strongly typed and relies on Python’s default type system. This situation
highlights the need for type regulation in the ML framework. A runtime assertion checking
tool could help catch such contract violations; such a tool could be built, for example, by
enhancing an off-the-shelf (e.g., PyContracts Graham et al. (2010)) tool that can detect vio-
lations of the ML-type contracts we propose. We note that some of the type issues may be
caused by the dynamically typed nature of the programming language, Python, and are out
of the scope for this paper.

Additionally, we see that one other new category (dependency between behavioral and
temporal contracts) in our classification is required for significant number of APIs. Contract
languages and type checking tools (Lehtosalo 2012; Seshia et al. 2018; Jothimurugan et al.
2019) should add sufficient expressiveness for these additional types of contracts seen in ML
APIs.

We note that the behavioral contracts reported in this study are largely preconditions.
However, we found some postconditions as well. For instance, in SO post4, the author is
using the tensorflow.session() method to return a Session object. A Session
is a class that is used to run TensorFlow operations. Then calling the run() method on this
Session object allows evaluation of the Tensor. In the example post cited above, the
Tensor is a constant String. It is supplied as the value used for the argument Fetches.
We know that any value in a Tensor holds the same data type with a known (or partially
known) shape. In this example, the value returned by run() has the same shape as the
Fetches argument. Now one can decode this output data as needed. The contract we see
in this SO post is a postcondition. The contract for the tf.io.decode_raw() API is
"returns a binary string (python 2), byte string (python 3)" upon exiting the API call.

Primary Root Cause We identify that supplying unacceptable input values to APIs is the
primary root cause behind contract violation in ML. The ML API users fail to recognize

3 https://stackoverflow.com/questions/33762831/
4 https://stackoverflow.com/questions/40904979/

123

Page 21 of 37 142

https://stackoverflow.com/questions/33762831/
https://stackoverflow.com/questions/40904979/

Empirical Software Engineering (2023) 28:142

54.66%

55.37%

66.02%

42.31%

18.63%

14.05%

11.65%

15.38%

21.74%

26.45%

14.56%

26.92%

TensorFlow

Scikit-learn

Keras

Pytorch

0% 25% 50% 75% 100%

Bad Performance

Crash

Data Corruption

Hang

Incorrect Functionality

Memory Out of Bound

Unknown

Fig. 4 Distribution of ML contract violation effects

acceptable input values often for several reasons, e.g., misunderstanding a hyper-parameter
setting. The undesired input values found in our study can be utilized as test cases in ML sys-
tems and avoid some of these contract breaches.

3.1.2 Effects of Contract Violations

To realize the effects of the contract violations, we have used the classification of effects
from a prior work Islam et al. (2019) mentioned in §2.5. Figure 4 illustrates the distribution
of contract violation effects across libraries.

Crash (C) The majority of contract violations for ML APIs lead to a crash in the software
and we observe the range within 42.31%-66.02%. This result varies only for PyTorch with
post score ≥ 30. Scikit-learn has the most examples of contract violations that have lead
to crashes among the chosen libraries. As an instance, in SO post 4, violating the inter-
argument contract (IC-2), would result in a crash for the program. Researchers might
build a new automated repair tool inspired by existing repair tools (Le Goues et al. 2012;
Mechtaev et al. 2016; Pei et al. 2014; Long and Rinard 2015). In this regard, mined con-
tracts could be utilized that lead to crashes and act as a preemptive measure for the code.

Incorrect Functionality (IF) The next frequent (15.33% on average) effect that we observed in
terms of contract violation is causing incorrect functionality in ML software. ML API users

123

142 Page 22 of 37

Empirical Software Engineering (2023) 28:142

apprehend the deviant behavior either from experience or through the logical organization
of the ML model.

However, the library Keras shows a lower percentage. This divergence in frequency can
be explained by the fact that Keras is a high-level deep learning library; thereby hiding many
complicated implementation details which reduces the chance of running into IF. Since the
compiler cannot catch incorrect functionality, our dataset can become a benchmark through
contract annotation to detect this effect. ExpertMLAPI users can further rank these particular
contract violations (e.g., scary, troubling, concern) to provide a hint of severity for these IFs as
many bug detection tools (such asBugramWang et al. (2016), SalentoMurali et al. (2017)) do.

Contract violation-effect correlation To determine the effect of breaking a contract, we used
the information explicitly available in the SO post we labeled. Even so, we hypothesize that
by observing the type of contract violation, it is possible to make an informed guess on the
corresponding effect. For instance, Islam et al. reported that the violation of type or shape
usually results in a crash during runtime (Islam et al. 2019). One SO post 5 author was not
sure how to use the API DataLoader() from the PyTorch library. The answer post lists
that the API in question requires that the argument type should be a subclass of Dataset
class. Even though it was not explicitly described on the post, such a type checking contract
violation would result in a crash. Python being a loosely typed language, type mismatch may
go unnoticed during compilation. it usually crashes for mismatches in the expected type or
shapes (Islam et al. 2019).

To test this hypothesis on learning from other ML libraries regarding violation-effect
correlation, we obtained the conditional probabilities,

Pr(E = effecti | V = violationj)

which describe how likely a certain effect (effecti) follow given a contract violation
(violationj). Then, we utilized the Jensen-Shannon divergence (JSD) (Endres and Schin-
delin 2003) measure to compute the distance between two probability distributions, E and
V . The divergence ranges from 0 to 1, where 0 indicates perfect similarity, and 1 indicates
no similarity.

In our experiment, we observed that the violation-wise effect distribution is similar
across chosen libraries. The result shows that eventually (F) required method order, ML
type checking (MT), and intra-argument contracts (IC-1) demonstrated a divergence score
of 0.08, 0.11, and 0.14, respectively, with 10% support, indicating a similar effect dis-
tribution across libraries. This experiment agrees with our hypothesis. Therefore, the SE
community can learn from contract violations of the same category for ML libraries and
estimate unexpected behaviors of other ML libraries with similar effects in code. Further-
more, this experiment also shows an application of the proposed classification schema.

Error message In case of system failure, the crash or error message helps API users debug
the code and identify the root cause. In the SO post 13, the author had received the error

5 https://stackoverflow.com/questions/44429199/

123

Page 23 of 37 142

https://stackoverflow.com/questions/44429199/

Empirical Software Engineering (2023) 28:142

message in the listing below when they tried to load weight on a predefined model. It
could be an exhausting task to understand the problem by only examining the error mes-
sage. The answer to this post registers that the error occurs as the ML API users missed
redefining the model architecture before loading weights. We find an error message inad-
equate if the error message is present in the author’s post, and the response demonstrates
that the error message presented does not reflect the incorrect usage for the API in ques-
tion. Additionally, since domain experts can explain these challenging ML contracts (see
§3.3), such extracted contracts can be encoded in a contract-checking tool. Such a tool,
as a result, can enable improved debugging mechanisms for ML software developers.

Stack Overflow post 13 Example post demonstrating inadequate error message
In our study, we found only a handful of contract violations that require runtime checks.

For example, if overfitting happens during training, regularization-related APIs are necessary
for the ML model stack. Additionally, we have found cases where runtime checks against
the state alone are insufficient without more context. For example, in Keras, it is required
to call BatchNormalization() between the linear and non-linear layer APIs in the
model to achieve better performance. Thus, in this case, the presence of temporal history and
an assertion check is required. For such kinds of ML contracts, we can extend the traditional
design-by-contract approachMeyer (1992) to assert those contracts during runtime and utilize
the contract violation message accordingly to inform the correct usage of ML APIs to the
users.

In summary, we observed that the majority of the ML contracts are similar to traditional
contracts, and Finding 1 indicates this. The contracts involvingML type checking and depen-
dency between behavioral and temporal contracts are specific and needed by ML software.
Interestingly, we report there are contracts that can be formalized as in traditional contracts,
however, the contract violation effect is often different, e.g., bad performance, incorrect
functionality, etc.; i.e., issues about performance and accuracy are more common in ML
software.

3.2 Common Patterns for Contracts

This section highlights common patterns of contracts in the dataset, i.e., we analyze the com-
mon patterns of ML contract violations observed in our study. In section §3.1, we noted that
IC-1, F, MT are the most frequently occurring patterns across libraries. These contracts are
atomic in the sense that there is no dependency between behavioral and temporal contracts
in these. We further investigated more complex contract patterns, including combinations
of two or more atomic contracts, when answering RQ2. These types of patterns belong to
the high-level category hybrid in our classification schema. Recall that hybrid contracts con-
tain combinations, choices, or dependencies between the behavioral and temporal contracts.

Patterns involving < F > Our result shows that F contracts (about the method order-
ings at a certain point in history) are the places ML API users struggle most, compared

123

142 Page 24 of 37

Empirical Software Engineering (2023) 28:142

9.66%

2.66%

0.96%

0.72%

0.48%

0.48%

0.48%

0.24%

<F, IC-1>

<IC-2, F>

<F, F>

<F, IC-1, MT>

<G, IC-1>

<IC-1, IC-1>

<F, IC-1, F>

<F, IC-1, F, IC-1>

Fig. 5 Patterns of ML Contracts

to G (always orderings); see Figure 5. For instance, we described that in SO post 10, the
parameter choice for the GridsearchCV() API dictates whether it must be preceded
by preprocessing.scale() API. In contrast, it is not always obvious for patterns
involving F, e.g., ML API users sometimes use a pooling layer after a convolution layer to
downsample the feature collected in the previous layer. Thus, this order is not mandatory
for all program points. But, if the order is used6, then the API user should make sure the
parameter strides of tf.nn.conv2d() is compatible with the ksize and strides
parameters of the pooling layer (e.g., tf.nn.max_pool()) in TensorFlow. Violations of
such hybrid patterns can be found using unit tests that capture variants of these patterns and
testers should be aware of capturing these variants.

3.3 Difficulty in Contract Comprehension

In this section, we analyzed when the challenges are observed behind understanding ML
contracts.Discovering categories ofMLcontracts is challenging because a significant number
of SO posts do not contain contracts with accepted answers. Furthermore, the SO reputation
of the user giving an answer does not necessarily determine whether an answer reveals a
challengingMLcontract. To discover the correlation betweenMLcontracts and user expertise
in terms of the contract violation issue and to answer RQ3, we have conducted an experiment
that discerns respondent reliability and resolving time. We gather evidence from various
perspectives described below to develop an educated guess. Prior work (Zhang et al. 2019)
analyzes the scores of SO post to comprehend the types of deep learning questions are more
difficult.

Inspired by that study, we have leveraged the SO reputation score to determine the overall
expertise of a user. In our study, we slightly adapted the SO reputation score, and named it
the reliability score. The reputation metric is often used to measure a user’s expertise level
on SO, because it summarizes the overall impression of that user’s SO activity. We observe
that a user can earn a reputation for various topics unrelated to ML-related skill sets. As a
result, this metric poses a significant threat when we want to assess the expertise of a user

6 https://stackoverflow.com/questions/34092850/

123

Page 25 of 37 142

https://stackoverflow.com/questions/34092850/

Empirical Software Engineering (2023) 28:142

in resolving ML contracts specifically. The Reliability score tries to mitigate this threat to
an extent. Moreover, our adapted metric incorporates the number of accepted answers into
account for higher confidence in the metric.

As an example, let us say, we are interested to know if a particular user from an SO post7

is an expert in Keras. While the user has a high reputation score (26,164), they only have a
score of 6 when filtered through the Keras tag from answering two questions. This indicates
that this user has accumulated most of his reputation from other areas. So, to measure the
expertise level of a user, we consider their score only on relevant tags. Since we have only
included posts having accepted answers for this study, we refined this score to prioritize users
having more accepted answers, which we call their reliability score, measured as follows:

reliabili t yScore = totalScore × (total Accepted Answer + C)

(total Answer + C)
.

Since a usermay have no accepted answers, whichwould reduce their reliability score to 0;
we add an equal constant value,C > 0 to both numerator and denominator of accepted answer
percentage of the reliability score to prioritize among authors who do not have accepted
answers. Here, we have used 1 as the value of C in the study. For example, suppose two
users A and B have obtained a total score of 1200 and 80 respectively by answering an equal
number of questions without any accepted answers. In this case, the reliability score would
be zero, had it not been for the normalization constant, and both the authors would be rated
equally. As author A has achieved a significantly higher score compared to author B for the
same number of questions answered, adding C to the accepted answer fraction adds priority
to the author with a higher answer score.

The dataset includes average resolve time for each type of contract, considering the time
required to get accepted answers from the study and reliability score for these respondents.

We fitted the dataset in a linear regression model first. However, it violated multiple
assumptions such as linearity and normality assumptions of residuals of linear regression.
Therefore, we choose the kernel ridge regression technique, a non-parametric (without any
underlying assumptions about distributions of the dataset), and non-linear technique (Murphy
2012). We used radial basis function (RBF) as a kernel for fitting nonlinearity of the dataset
and a gamma value of 0.1 chosen through trial-and-error analysis. Since, in our dataset, we
only included the accepted answers, the regression model predicts a minimum expected level
of a user to solve the problem successfully. To that end, we use leaf contracts as features
and the reliability scores as a target variable. Considering that features are categorical data,
we converted them into a one-hot encoded vector to feed into the model. Table 7 shows the
expected reliability scores and average resolve time for a SO post respondent to comprehend
different contracts for all ML libraries. For example, to respond to an intra-argument contract
(IC-1) from the TensorFlow library, a respondent’s expected reliability score is 5.26, and
the average resolve time is 265.33 hours. Additionally, reliability scores are comparable
for respondents within a library. Contract components with a support of less than 10% are
excluded from consideration.

A general observation is that F contracts have respondents with comparatively higher reli-
ability scores, ranging from 6.38 to 8.77, compared to other types of contracts. Consequently,

7 https://stackoverflow.com/users/5098368/

123

142 Page 26 of 37

https://stackoverflow.com/users/5098368/

Empirical Software Engineering (2023) 28:142

Ta
bl
e
7

E
xp
ec
te
d
re
lia
bi
lit
y
sc
or
e
of

re
sp
on
de
nt
s
to

co
m
pr
eh
en
d
di
ff
er
en
tc
on
tr
ac
ts

L
ib
ra
ry

M
L
C
on
tr
ac
t(
L
ea
f)

R
el
ia
bi
lit
y

A
ve
ra
ge

R
es
ol
ve

A
ve
ra
ge

Fi
rs
tA

ns
w
er

Sc
or
e

T
im

e
(h
)

E
la
ps
ed

T
im

e
A
cc
ep
te
d
(%

)
(h
)

Te
ns
or
F
lo
w

IC
-1

5.
26

26
5.
33

23
8.
62

79

M
T

5.
76

71
.0
3

14
.5
5

64

SA
M
(L
ev
el
3)

∧A
M
O
(L
ev
el
2)

4.
51

13
6.
65

20
.2
5

67

F
6.
38

82
1.
93

51
9.
05

77

G
10

.1
6

32
0.
48

17
4.
77

61

Sc
ik
it
-l
ea
rn

IC
-1

8.
16

56
2.
52

50
3.
27

71

M
T

10
.8
8

78
8.
50

25
2.
18

59

F
8.
15

47
.8
5

0.
28

71

K
er
as

IC
-1

4.
68

23
5.
23

3.
65

86

M
T

5.
18

19
.8
8

11
.1
0

82

F
8.
20

10
79

.8
8

51
3.
60

62

P
yT
or
ch

IC
-1

6.
60

84
.3
8

0.
00

10
0

M
T

4.
83

25
.4
5

0.
00

10
0

F
8.
77

97
.5
8

0.
00

83

123

Page 27 of 37 142

Empirical Software Engineering (2023) 28:142

the average resolve time for these ranges from 47 to 1080 hours (approximately). We reason
that this difficulty is because F contracts are not as evident as G contracts, since F contracts
must only eventually hold before the program terminates. From our dataset, it is possible
to provide a benchmark for experts who can resolve F contract violations. This benchmark
could be used by the SO forum, for example, to recommend newML-related posts to specific
experts. Furthermore, F contracts often rely on an implicit assumption; a significant research
direction could be automating ML program repair tools such as DLFix (Li et al. 2020) to
resolve this contract violation.

Surprisingly, we found that for Scikit-learn, ML API users mostly struggle with type
checking contracts. The reliability score for this case is 10.88, and the average resolve time
is 788.50 hours. We realize that Scikit-learnprovides off-the-shelf ML algorithms for super-
vised and unsupervised learning, whereas, the other DNN libraries we have chosen allow
API users to implement these deep learning algorithms and neural networks. Therefore,
deep neural network (DNN) ML API users have some level of expertise towards ML type
checking compared to the API users who use higher-level ML libraries such as Scikit-learn.
Additionally, the DNN libraries in our study have typing rules to address type checking
issues as discussed in §3.1. There are contract-checking tools (e.g., PyContracts Graham
et al. (2010)) that can check simple non-ML contracts. So, we recommend writing a similar
extension tool that supports scipy, CSR matrix type checking, etc. Scikit-learn users
can avoid type errors using such an extension tool. Additionally, such extensions can enforce
these contracts through static or dynamic analysis. To further verify our findings, we obtain
two more measures: the average elapsed time between the post time of first response and
the response that is accepted, and the percentage of time the first answer is accepted. We
annotate this as average elapsed time, and the first answer accepted in Table 7. A low rate
of the first answer marked as accepted and higher elapsed time would generally indicate a
difficulty in contract comprehension. We found that this additional evidence also confirms
our finding that F contracts are usually harder to comprehend. We notice a relatively lower
rate for accepting the first answer and higher elapsed time between a successful resolution
and an initial attempt for the findings presented.

3.4 Localizing Contract Violations to Pipeline Stages

This section groups APIs into categories depending on the ML pipeline stage (described in
§2.4) to explore RQ4. Islam et al. (2019) report that even for a subclass of ML contract
violations that leads to bugs, bug localization is very challenging. This motivated us to
study the stage of the APIs. Our goal was to identify the pipeline stages where contracts
are frequently violated. Figure 6 depicts the distribution of the locations where the ML API
contract violation occurred.

Model Construction and Data Preprocessing We observe that 30.1% of contract violations
occur during themodel construction stage (across allSO posts for all libraries).As an example,

123

142 Page 28 of 37

Empirical Software Engineering (2023) 28:142

30.1%

15.9%

15.2%

13.7%

10.5%

7.6%

4.6%

Model
Construction

Model
Evaluation

Model
Initialization

Prediction

Train

Data
Preprocessing

Load

Hyper-parameter Tuning

2.4%

Fig. 6 Distribution of ML contract violation stages from SO posts

the SO post 14 using Kerasfailed to use a softmax activation in the final layer but chooses
the value categorical_crossentropy as the loss function afterward. Here both the
APIs involved, Dense and Compile, are from the model construction stage. In this case,
the lack of contract checks results in the error propagating to the training and the prediction
stages.

Stack Overflow post 14 Example post demonstrating contract violation in early ML pipeline
stage

Weobserve thatAPIs fromearly pipeline stages aremore susceptible to contract violations.
This observation is crucial because ML pipelines often have inherent dependencies between
pipeline stages. Violating contracts for APIs from early pipeline stages can lead to errors
propagating to subsequent stages. We speculate from our data that further investigation in
this area is needed. For instance, a possible future direction could be designing a verification
system (as in prior work Sankaran et al. (2017); Dvijotham et al. (2019)) with ML contract
knowledge. Contracts could explain cases where a bug in the ML system is caused by an API
that has a location early in the pipeline compared to where the error is registered. Catching
the errors early in an ML system can enable better performance and help reduce costs.

123

Page 29 of 37 142

Empirical Software Engineering (2023) 28:142

Train and Model Evaluation Training is one of the stages across all libraries that are prone to
contract violation. 15.2% of the contract violations occur in APIs designed to train models.
One of the primary reasons behind this is that current ML API documentation is insufficient
on the topic of effects of optional parameters on the model’s accuracy rate. Contracts can
document the appropriate relationship in regard to accuracy for such optional parameters in
MLAPIs found in our study. As an instance, one SO post8 author talks about using the Scikit-
learn API linear_model.SGDClassifier,partial_fit() due to dealing with
the large size of training data. However, the ML API user was unaware that the required con-
tract is to shuffle the data provided as the arguments for this API. User’s unawareness here can
be considered towards insufficient documentation. Additionally, we observe a rate of 15.9%
in terms of model evaluation stage related contract violations. Training and model evaluation
stages are significantly important since, together, they can explain the trustworthiness of the
model.

Model Initialization Model initialization is the stage where DNN APIs are susceptible to
violating contracts. The contract violations at this stage generally show a correlation towards
the crash and bad performance effects. An example of model initialization stage discussed
in one SO post9, the argument for keras.backend.set_session API should be a
TensorFlow session. We group this example under the model initialization stage since the
API in question sets up the environment. Automated tools (e.g., Auto-Net Mendoza et al.
(2019)) that can build DNNs without human interventions can make use of API contracts
from this stage to perform better and avoid crashes.

3.5 Threats to Validity

Internal threats The first internal threat to the validity of our results is the classification
scheme we used to identify ML contracts. To alleviate this threat, we have prepared the clas-
sification on top of well-established contract categories (Pradel and Gross 2009; Khairunnesa
et al. 2017; Leavens et al. 2006). We have followed an open coding scheme only to add cat-
egories novel and ML-specific. The group effort to create the categories helped to make
consistent choices.

To avoid the internal threat of bias in labeling attempts after training, the labelers per-
formed an independent study, and the Kappa coefficient was used to measure inter-rater
agreement. A moderator was present during the reconciliation of disagreements between
raters.

8 https://stackoverflow.com/questions/24617356/
9 https://stackoverflow.com/questions/47167630/

123

142 Page 30 of 37

https://stackoverflow.com/questions/24617356/
https://stackoverflow.com/questions/47167630/

Empirical Software Engineering (2023) 28:142

External threats The first external threat to validity is the reliability of the dataset we have
used to conduct the empirical study. There are two sources of this threat: data source and
data quality. For the data source, we have collected our data from a popular Q&A forum
for software developers, StackOverflow (SO). SO, as a forum, maintains a strict modera-
tion policy, promotes a peer-reviewing mechanism, and incorporates a reward system for
encouraging quality answers from the developers10. Moreover, the latest software developer
survey on the usage of SO forum reveals that its users come from all walks of managerial
hierarchy, countries, experiences, age groups, expertise, races, etc11. As such, a huge user
base, an abundance of topics, and a way to benchmark the quality of the contents make SO a
frequent source in many SE studies (Zhang et al. 2018a; Cai et al. 2019; Aghajani et al. 2019;
Beyer and Pinzger 2014; Barua et al. 2012; Rosen and Shihab 2015; Cummaudo et al. 2020).
Therefore, SO represents real-world ML developers (ML API users) and their concerns well
and makes an ideal candidate for our study.

Next, to ensure good quality posts, we have gathered SO posts that have a high enough
score (Islam et al. 2019) in terms of questions and includes an accepted answer.

We have collected SO posts from four top ML libraries; however, the number of posts that
we collected varies by the library. To measure the impact of this imbalance in the dataset, we
have performed a two-tail test (inequality test) on the contract types for each library. Here,
based on the t-Stat, and t-Critical-two-tail values, 0.178 < 3.182, the observed difference
between the sample means is small enough to say that the average number of contracts
obtained from the four different ML libraries do not differ significantly. This result indicates
that even though the dataset seems unbalanced in terms of the posts’ frequency, the contract
distribution is not unbalanced to a statistically significant extent. Additionally, prior works
have Treude and Robillard (2016); Ellmann (2017) recognized SO as an important source to
extract documentation for other domains. Multiple factors have enhanced the collected SO
post used in this study compared to these prior related works. For example, the SO posts
collected were from the years 2008 and 2021 and thus contained more recent posts than
those used for the paper’s submission. We also added some additional filtering criteria that
suited the paper’s main goal, e.g., the accepted answer post has a score higher than five and
was required to contain code snippets or description that potentially describes a contract.
We furthermore note that we closely followed the guidelines from prior works to conduct
our study; however, there must have been some common SO posts that these previous works
have studied.

Next, the nature of the methodology requires extensive manual work; thus, the number
of libraries we could study is another closely related external threat. To lessen this threat,
we have studied the highly-discussed four ML libraries based on SO trends since 2008. We
have also observed that the number of curated posts for other ML libraries are less significant
compared to the libraries that we have studied. For example, the libraries apache-spark-mllib
and weka have only fourteen and two posts, respectively, for which contracts are relevant.

Furthermore, the SO posts are mostly about contract violations, and the answer posts talk
about the needed contracts posing another external threat. If certain contracts (or violations)
are not present in the dataset, our study will not find them. In essence, this is an out-of-the-
vocabulary problem that is common in data mining techniques. Another possible external
threat source is the need for validating findings with surveys and software developer inter-
views.While additional validations could raise confidence in the results, it is mitigated by the
strict filtering criteria we use.We only look at the answers where at least fivemore users agree

10 https://stackoverflow.com/help/reputation
11 https://survey.stackoverflow.co/2022/

123

Page 31 of 37 142

https://stackoverflow.com/help/reputation
https://survey.stackoverflow.co/2022/

Empirical Software Engineering (2023) 28:142

with the answers than those that disagree (which have been used in the past as a measure of
the reliability of the answer Islam et al. (2019)). Moreover, we ensure that the only accepted
answers by the questioner are studied. Thus, our filtering ensures that the derived contracts
reflect a consensus among the questioner, the responder (via acceptance tag), and at least
five users (minimum answer score pf 5).

Finally, we must also considerMLAPI users expertise in our dataset as a threat to external
validity. We have used a reliability score to mitigate this threat. Instead of using the general
expertise of a software developer, the reliability score measures expertise on ML libraries.
In short, the expertise of an user counts if they have earned the reputation from answering
ML library related questions.

4 RelatedWork

No previous empirical studies have investigated the requirements for ML API contracts, but
some prior work studied related issues.

Studies of Bugs in ML Programs. Zhang et al. (2018b) and Islam et al. (2019) have
studied bugs for different DNN libraries using two sources:Github and SO. They have studied
frequent bugs found in DNN libraries, root causes, and effects of these bugs. Humbatova et al.
(2020) presented a broad taxonomy of faults that occur inML systems. To that end, they have
surveyed ML developers in addition to studying code from Github and SO. Their taxonomy
contains a category API that broadly categorizes usage faults of ML APIs. However, this
category is too general to apprehend different types of API contracts. A recent work by Islam
et al. (2020) studied the challenges DNN developers face as they debug and subsequently
examined the adopted bug fix patterns. Thung et al. (2012) performed an empirical study on
generalML libraries. In addition to this, the study by Jia et al. (2020) examines the bugs found
in TensorFlowprograms. However, all of these prior works only present a classification for
bugs; they do not identify the types of contracts that would prevent such bugs. In contrast, we
focus on the contracts that the APIs from these libraries require and present a classification
to identify different types of contracts. Contracts differ from bug patterns in that contracts do
not just document incorrectness; they capture conditions needed to ensure correct behavior.
Contracts can also be used to assign blame: if the client violates the contract for an API,
then the client is to blame for incorrectness/bug in the software. On the other hand, if the
client satisfies its part of an API contract, but the API does not satisfy its part, then the API’s
implementation itself is buggy.

Classification of Contracts The notion of contracts for APIs is well-established. Essentially
two kinds of contracts, behavioral and temporal, are most often discussed in the literature
Pradel and Gross (2009); Pǎsăreanu and Rungta (2010); Nguyen et al. (2014); Khairunnesa
et al. (2017); Gruska et al. (2010); Nguyen et al. (2009); Wasylkowski et al. (2007). These
two classes are behavioral and temporal contracts. In our work, we build upon these classes
of contracts and explored their application to ML library APIs. Building on an existing
classification scheme helped us not to reinvent known ideas (Glaser 1978) related to API
contracts. We also highlighted the new categories of specifications that are different than the
non-ML APIs.

A recent study (Leavens et al. 2022) points out the lessons we have learned in the course
of the JML projects. It helps to design specification languages and tools for object-oriented
languages such as Java and other languages. However, this work does not provide insight
into the classes of contracts that Machine learning APIs require and their similarity and

123

142 Page 32 of 37

Empirical Software Engineering (2023) 28:142

dissimilarity to traditional contracts that our work focuses on. Another research (Pandita
et al. 2012) proposes a technique to infer formal contracts from the natural language text of
API documents. Such methodology will not suffice for ML APIs as we illustrate that most
ML software exhibits crashes, and includes bad performance and incorrect functionality not
obtained in the API documentation. Hence, we studied SO posts and characterized the types
of ML contracts. Recently, (Xie et al. 2022) proposed a technique to extract DL-specific
input constraints from API documentation and to test APIs guided by such input constraints.
However, our study pointed out that there are other kinds of contracts specific to ML, such as
temporal contracts found in model architecture or other inter and intra-argument contracts,
which could still be investigated further in the ML domain.

5 Conclusion and FutureWork

ML has been applied in many software systems, including critical systems. However, like
non-ML software, ML software can also be buggy. The presence of bugs gives rise to the
problem of improving the reliability of software that uses ML libraries. ML software can
suffer degradation of reliability in a statistical sense that may not cause obvious failures, thus
detecting improper use of ML APIs can help improve its reliability. This motivated us to
perform a comprehensive study to understand the types of contracts needed for ML APIs.
Our study provides a taxonomy for ML API contracts and for violation location of these
contracts. In this study, the question posts provided us with the ML API contract violations
and the accepted answer posts contained the contracts. The frequent contract violations by
the ML API users indicates the type of contracts that require immediate support. We have
extracted 413 informal ML API contracts. End-users, including people teaching the applica-
tion of ML libraries, can directly use the informal contracts from our study, as informal API
documentation. The SO questions indicate a need for such contracts. Additionally, language
designers can use these informal contracts as examples. The extracted contracts are labeled
with the taxonomy presented in this paper. To help ML API users, libraries can be released
with contracts enforced leveraging this taxonomy.

Our study has presented several key insights. First, many required contracts for
ML libraries are not different than traditional contracts. However, ML API users strug-
gle to maintain these contracts due to lack of domain knowledge, incomplete or ambiguous
documentation, etc. Second, there are distinct ML-specific contracts, e.g., ML type checking.
Additionally, ML APIs demonstrate a coupling between behavioral contracts and temporal
contracts. Moreover, the uniqueness of these contracts allow the client to choose either tem-
poral ordering or a state change. Third, MLAPI users struggle with maintaining temporal
method orders (especially “eventually” constraints) for ML APIs. Fourth, ML API users
often fail to satisfy input-related contracts of ML APIs, making input violations the most fre-
quent root cause of contract violations in ML APIs. Fifth, when the ML contract violations
lead to system failures, the error messages are often inadequate. Finally, a high percentage
of contract violation occurs at early ML pipeline stages. In essence, the contract violation
in an ML API that is used in early pipeline stages may delegate the effect in subsequent
pipelines. The ML APIs from model construction, data preprocessing, etc. can benefit more
from supporting contract checking compared to ML APIs that are used in later pipeline
stages.

From this study, we envision several future directions. The classification described in our
study could be used to design ML contract specification and verification tools. Such tools

123

Page 33 of 37 142

Empirical Software Engineering (2023) 28:142

could help avoid or detect API-related bugs in ML programs or certify that an ML program
is correct. An understanding of contract violations’ root causes and effects described in this
paper could enable better debugging mechanisms and help detect contract violations. Com-
prehending the difficulty of resolving certain ML contract violations can help in designing a
recommendation system for ML API users. For instance, a recommendation system to auto-
matically assign difficult contract violation related questions to expert users can be designed.
Finally, understanding why ML API users make contract violations can help the designers
of ML libraries to develop APIs that are easier to use and less prone to error.

Data Availibility Statement The dataset (labeled SO posts, queries, source codes, etc.) generated during the
study are available in the figshare repository, https://figshare.com/s/c288c02598a417a434df

Declarations

Conflicts of interest The authors declare conflict of interest with the people affiliated with Iowa State Univer-
sity, University of Central Florida, and Bradley University.

References

Aghajani E, Nagy C, Vega-Márquez OL, Linares-Vásquez M, Moreno L, Bavota G, Lanza M (2019) Software
documentation issues unveiled. 2019 IEEE/ACM41st International Conference on Software Engineering
(ICSE) pp 1199–1210

Barua A, Thomas SW, Hassan AE (2012) What are developers talking about? an analysis of topics and trends
in Stack Overflow. Empirical Software Engineering 19:619–654

Beyer S, Pinzger M (2014) A manual categorization of android app development issues on Stack Overflow.
2014 IEEE International Conference on Software Maintenance and Evolution pp 531–535

Cai L,Wang H, Xu B, Huang Q, Xia X, Lo D, Xing Z (2019) Answer Bot: An answer summary generation tool
based on Stack Overflow. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Association for
Computing Machinery, New York, NY, USA, ESEC/FSE 2019, p 1134–1138. https://doi.org/10.1145/
3338906.3341186

Chatterjee P, KongM, Pollock L (2020) Finding help with programming errors: An exploratory study of novice
software engineers’ focus in Stack Overflow posts. Journal of Systems and Software 159. https://doi.org/
10.1016/j.jss.2019.110454

Corbin J, Strauss A (1990) Grounded theory research: Procedures, canons and evaluative criteria. Zeitschrift
für Soziologie 19(6):418–427. https://doi.org/10.1515/zfsoz-1990-0602

Corbin J, Strauss A (2008) Basics of qualitative research (3rd ed.): Techniques and procedures for developing
grounded theory

Cousot P, Cousot R, Fahndrich M, Logozzo F (2013) Automatic inference of necessary preconditions.
In: in Proceedings of the 14th Conference on Verification, Model Checking and Abstract Interpreta-
tion (VMCAI’13), Springer Verlag. https://www.microsoft.com/en-us/research/publication/automatic-
inference-of-necessary-preconditions/

Cummaudo A, Vasa R, Barnett SA, Grundy J, Abdelrazek M (2020) Interpreting cloud computer vision
pain-points: A mining study of Stack Overflow. arXiv:2001.10130

Dvijotham KD, Stanforth R, Gowal S, Qin C, De S, Kohli P (2019) Efficient neural network verification with
exactness characterization. In: Proc. Uncertainty in Artificial Intelligence, UAI, p 164

Ellmann M (2017) On the similarity of software development documentation. In: Proceedings of the 2017
11th JointMeeting on Foundations of Software Engineering, Association for ComputingMachinery, New
York, NY, USA, ESEC/FSE 2017, p 1030–1033, https://doi.org/10.1145/3106237.3119875, https://doi.
org/10.1145/3106237.3119875

EndresDM,Schindelin JE (2003)Anewmetric for probability distributions. IEEETransactions on Information
theory 49(7):1858–1860

Glaser B (1978) Theoretical sensitivity. Advances in the Methodology of Grounded Theory. https://ci.nii.ac.
jp/naid/10028142446/en/

123

142 Page 34 of 37

https://figshare.com/s/c288c02598a417a434df
https://doi.org/10.1145/3338906.3341186
https://doi.org/10.1145/3338906.3341186
https://doi.org/10.1016/j.jss.2019.110454
https://doi.org/10.1016/j.jss.2019.110454
https://doi.org/10.1515/zfsoz-1990-0602
https://www.microsoft.com/en-us/research/publication/automatic-inference-of-necessary-preconditions/
https://www.microsoft.com/en-us/research/publication/automatic-inference-of-necessary-preconditions/
http://arxiv.org/abs/2001.10130
https://doi.org/10.1145/3106237.3119875
https://doi.org/10.1145/3106237.3119875
https://doi.org/10.1145/3106237.3119875
https://ci.nii.ac.jp/naid/10028142446/en/
https://ci.nii.ac.jp/naid/10028142446/en/

Empirical Software Engineering (2023) 28:142

Graham B, Furr W, Kuczmarski K, Biskup B, Palay A (2010) Pycontracts. https://andreacensi.github.io/
contracts//

Gruska N, Wasylkowski A, Zeller A (2010) Learning from 6,000 projects: Lightweight cross-project anomaly
detection. In: Proceedings of the 19th International Symposium on Software Testing and Analysis, Asso-
ciation for Computing Machinery, New York, NY, USA, ISSTA ’10, p 119–130. https://doi.org/10.1145/
1831708.1831723

Guo Y (2017) 7 Steps of ML. https://towardsdatascience.com/the-7-steps-of-machine-learning-
2877d7e5548e, retrieved Aug 2020

Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580. https://
doi.org/10.1145/363235.363259

Höst M, Wohlin C, Thelin T (2005) Experimental context classification: Incentives and experience of sub-
jects. In: Proceedings of the 27th International Conference on Software Engineering, Association for
Computing Machinery, New York, NY, USA, ICSE ’05, p 470–478. https://doi.org/10.1145/1062455.
1062539

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in
deep learning systems. In: ICSE’20: The 42nd International Conference on Software Engineering

Islam MJ, Nguyen G, Pan R, Rajan H (2019) A comprehensive study on deep learning bug characteristics.
In: ESEC/FSE’19: The ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), ESEC/FSE 2019

IslamMJ, Pan R, Nguyen G, Rajan H (2020) Repairing deep neural networks: Fix patterns and challenges. In:
ICSE’20: The 42nd International Conference on Software Engineering

Jia L, Zhong H, Wang X, Huang L, Lu X (2020) An empirical study on bugs inside tensorflows. In: Proc.
DASFAA, p to appear

Jothimurugan K, Alur R, Bastani O (2019) A composable specification language for reinforcement learning
tasks. In: Advances in Neural Information Processing Systems, pp 13021–13030

Khairunnesa SS, Nguyen HA, Nguyen TN, Rajan H (2017) Exploiting implicit beliefs to resolve sparse usage
problem in usage-based specification mining. In: OOPSLA’17: The ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA’17

Le TDB, Lo D (2018) Deep specification mining. In: Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, Association for Computing Machinery, New York,
NY, USA, ISSTA 2018, p 106–117. https://doi.org/10.1145/3213846.3213876, https://doi.org/10.1145/
3213846.3213876

Le Goues C, Nguyen T, Forrest S, Weimer W (2012) GenProg: A generic method for automatic software
repair. IEEE Transactions on Software Engineering 38(1):54–72

Leavens GT, Baker AL, Ruby C (2006) Preliminary design of JML: A behavioral interface specification
language for Java. SIGSOFT Softw Eng Notes 31(3):1–38. https://doi.org/10.1145/1127878.1127884

Leavens GT, Cok DR, Nilizadeh A (2022) Further lessons from the jml project. The Logic of Software.
Springer, A Tasting Menu of Formal Methods, pp 313–349

Lehtosalo J (2012) mypy. http://mypy-lang.org/index.html retrieved Aug 2020
Lemieux C (2015)Mining temporal properties of data invariants. In: 2015 IEEE/ACM37th IEEE International

Conference on Software Engineering, IEEE, vol 2 pp 751–753
Lemieux C, Park D, Beschastnikh I (2015) General LTL specification mining (T). In: 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), IEEE, pp 81–92
Li Y, Wang S, Nguyen TN (2020) DLFix: Context-based code transformation learning for automated program

repair. In: ICSE’20: The 42nd International Conference on Software Engineering
Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, Association for Computing Machinery, New
York, NY, USA, ESEC/FSE 2015, p 166–178. https://doi.org/10.1145/2786805.2786811, https://doi.
org/10.1145/2786805.2786811

Manna Z, Pnueli A (1992) The Temporal Logic of Reactive and Concurrent Systems. SV, NY
Mechtaev S, Yi J, Roychoudhury A (2016) Angelix: Scalable multiline program patch synthesis via symbolic

analysis. In: Proceedings of the 38th International Conference on Software Engineering, Association for
Computing Machinery, New York, NY, USA, ICSE ’16, p 691–701. https://doi.org/10.1145/2884781.
2884807, https://doi.org/10.1145/2884781.2884807

Mendoza H, Klein A, Feurer M, Springenberg JT, Urban M, Burkart M, Dippel M, Lindauer M, Hutter F
(2019) Towards automatically-tuned deep neural networks. In: Automated Machine Learning, Springer,
pp 135–149

Meyer B (1988) Object-oriented Software Construction. Prentice Hall, NY
Meyer B (1992) Applying "design by contract”. Computer 25(10):40–51. https://doi.org/10.1109/2.161279

123

Page 35 of 37 142

https://andreacensi.github.io/contracts//
https://andreacensi.github.io/contracts//
https://doi.org/10.1145/1831708.1831723
https://doi.org/10.1145/1831708.1831723
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1062455.1062539
https://doi.org/10.1145/1062455.1062539
https://doi.org/10.1145/3213846.3213876
https://doi.org/10.1145/3213846.3213876
https://doi.org/10.1145/3213846.3213876
https://doi.org/10.1145/1127878.1127884
http://mypy-lang.org/index.html
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1109/2.161279

Empirical Software Engineering (2023) 28:142

Murali V, Chaudhuri S, Jermaine C (2017) Bayesian specification learning for finding API usage errors.
In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Association
for Computing Machinery, New York, NY, USA, ESEC/FSE 2017, p 151–162. https://doi.org/10.1145/
3106237.3106284

Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press
Nasehi SM, Sillito J, Maurer F, Burns C (2012)What makes a good code example?: A study of programming q

amp;a in stackoverflow. In: 2012 28th IEEE International Conference on Software Maintenance (ICSM),
pp 25–34. https://doi.org/10.1109/ICSM.2012.6405249

Nguyen HA, Dyer R, Nguyen TN, Rajan H (2014) Mining preconditions of API s in large-scale code corpus.
In: FSE‘14: 22nd International Symposium on Foundations of Software Engineering, FSE’14

Nguyen TT, Nguyen HA, PhamNH, Al-Kofahi JM, Nguyen TN (2009) Graph-basedmining of multiple object
usage patterns. In: Proceedings of the 7th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, Association
for Computing Machinery, New York, NY, USA, ESEC/FSE ’09, p 383–392. https://doi.org/10.1145/
1595696.1595767

Pandita R, Xiao X, Zhong H, Xie T, Oney S, Paradkar A (2012) Inferring method specifications from natural
language api descriptions. In: 2012 34th International Conference on Software Engineering (ICSE), pp
815–825. https://doi.org/10.1109/ICSE.2012.6227137

Pei Y, Furia CA, Nordio M, Wei Y, Meyer B, Zeller A (2014) Automated fixing of programs with contracts.
IEEE Transactions on Software Engineering 40(5):427–449. https://doi.org/10.1109/TSE.2014.2312918

Pradel M, Gross TR (2009) Automatic generation of object usage specifications from large method traces.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering,
IEEE Computer Society, USA, ASE ’09, p 371–382. https://doi.org/10.1109/ASE.2009.60

Pǎsǎreanu CS, Rungta N (2010) Symbolic path finder: Symbolic execution of Java bytecode. In: Proceed-
ings of the IEEE/ACM International Conference on Automated Software Engineering, Association for
Computing Machinery, New York, NY, USA, ASE ’10, p 179–180. https://doi.org/10.1145/1858996.
1859035

Reger G, Barringer H, Rydeheard D (2013) A pattern-based approach to parametric specification mining. In:
2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, pp
658–663

Rosen C, Shihab E (2015)What are mobile developers asking about? a large scale study using Stack Overflow.
Empirical Software Engineering 21:1192–1223

Sankaran A, Aralikatte R, Mani S, Khare S, Panwar N, Gantayat N (2017) DARVIZ: deep abstract represen-
tation, visualization, and verification of deep learning models. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-
NIER), IEEE, pp 47–50

Sarker S, Lau F, Sahay S (2000) Building an inductive theory of collaboration in virtual teams: an adapted
grounded theory approach. In: Proceedings of the 33rd Annual Hawaii International Conference on
System Sciences, pp 10 pp. vol 2

Seshia SA, Desai A, Dreossi T, Fremont DJ, Ghosh S, Kim E, Shivakumar S, Vazquez-Chanlatte M, Yue
X (2018) Formal specification for deep neural networks. In: International Symposium on Automated
Technology for Verification and Analysis, Springer, pp 20–34

Sim J, Wright CC (2005) The kappa statistic in reliability studies: Use, interpretation, and sample size require-
ments. Physical Therapy 85(3):257–268. https://doi.org/10.1093/ptj/85.3.257

StackOverflow Reputation (2023) StackOverflow reputation and moderation. https://stackoverflow.com/help/
reputation, retrieved Jan 2023

StackOverflow Survey (2017) Survey. https://survey.stackoverflow.co/2022/, retrieved Jan 2023
Sun X, Zhou T, Li G, Hu J, Yang H, Li B (2017) An empirical study on real bugs for machine learning

programs. In: 2017 24th Asia-Pacific Software Engineering Conference (APSEC), pp 348–357. https://
doi.org/10.1109/APSEC.2017.41

ThungF,WangS,LoD, JiangL (2012)An empirical study of bugs inmachine learning systems. In: Proceedings
of the 2012 IEEE 23rd International Symposium on Software Reliability Engineering, IEEE Computer
Society, USA, ISSRE ’12, p 271–280. https://doi.org/10.1109/ISSRE.2012.22

Treude C, Robillard MP (2016) Augmenting API documentation with insights from Stack Overflow. In:
Proceedings of the 38th International Conference on Software Engineering, Association for Comput-
ing Machinery, New York, NY, USA, ICSE ’16, p 392–403, https://doi.org/10.1145/2884781.2884800,
https://doi.org/10.1145/2884781.2884800

Viera AJ, Garrett JM et al (2005) Understanding interobserver agreement: the kappa statistic. Fam med
37(5):360–363

123

142 Page 36 of 37

https://doi.org/10.1145/3106237.3106284
https://doi.org/10.1145/3106237.3106284
https://doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1145/1595696.1595767
https://doi.org/10.1145/1595696.1595767
https://doi.org/10.1109/ICSE.2012.6227137
https://doi.org/10.1109/TSE.2014.2312918
https://doi.org/10.1109/ASE.2009.60
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1093/ptj/85.3.257
https://stackoverflow.com/help/reputation
https://stackoverflow.com/help/reputation
https://survey.stackoverflow.co/2022/
https://doi.org/10.1109/APSEC.2017.41
https://doi.org/10.1109/APSEC.2017.41
https://doi.org/10.1109/ISSRE.2012.22
https://doi.org/10.1145/2884781.2884800
https://doi.org/10.1145/2884781.2884800

Empirical Software Engineering (2023) 28:142

Wang S, ChollakD,Movshovitz-Attias D, Tan L (2016) Bugram: Bug detectionwith n-Gram languagemodels.
In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering,
Association for Computing Machinery, New York, NY, USA, ASE 2016, p 708–719, https://doi.org/10.
1145/2970276.2970341, https://doi.org/10.1145/2970276.2970341

Wasylkowski A, Zeller A, Lindig C (2007) Detecting object usage anomalies. In: Proceedings of the the 6th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, Association for Computing Machinery, New York, NY,
USA, ESEC-FSE ’07, p 35–44. https://doi.org/10.1145/1287624.1287632

Xie D, Li Y, KimM, Pham HV, Tan L, Zhang X, Godfrey MW (2022) Docter: Documentation-guided fuzzing
for testing deep learning api functions. In: Proceedings of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, Association for Computing Machinery, New York, NY, USA,
ISSTA 2022, p 176–188. https://doi.org/10.1145/3533767.3534220

Zhang T, Upadhyaya G, Reinhardt A, Rajan H, Kim M (2018a) Are code examples on an online Q&A forum
reliable? a study of API misuse on Stack Overflow. In: Proceedings of the 40th International Conference
on Software Engineering, Association for Computing Machinery, New York, NY, USA, ICSE ’18, p
886–896. https://doi.org/10.1145/3180155.3180260

Zhang T, Gao C, Ma L, Lyu M, Kim M (2019) An empirical study of common challenges in developing deep
learning applications. In: 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), pp 104–115. https://doi.org/10.1109/ISSRE.2019.00020

Zhang T, Gao C, Ma L, Lyu M, Kim M (2019) An empirical study of common challenges in developing deep
learning applications. In: 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), IEEE, pp 104–115

Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L (2018b) An empirical study on Tensor Flow program bugs.
In: Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
Association for Computing Machinery, New York, NY, USA, ISSTA 2018, p 129–140. https://doi.org/
10.1145/3213846.3213866,

Zhong H, Meng N, Li Z, Jia L (2020) An empirical study on API parameter rules. In: ICSE’20: The 42nd
International Conference on Software Engineering

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

Page 37 of 37 142

https://doi.org/10.1145/2970276.2970341
https://doi.org/10.1145/2970276.2970341
https://doi.org/10.1145/2970276.2970341
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1145/3533767.3534220
https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3213846.3213866

	What kinds of contracts do ML APIs need?
	Abstract
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Filter Dataset
	2.3 Classification of ML contracts and Violation Root Causes
	2.3.1 Type of Contracts Involving Single API Method (SAM)
	2.3.2 Type of Contracts Involving API Method Order (AMO)
	2.3.3 Type of Contracts Involving Hybrid (H) of SAM and AMO

	2.4 Classification of ML Contract Violation Locations
	2.5 Classification of Effects
	2.6 Labeling

	3 Results
	3.1 Contract Frequency, Root Cause, and Effect of Contract Violations
	3.1.1 Required ML Contracts and Associated Root Causes
	3.1.2 Effects of Contract Violations

	3.2 Common Patterns for Contracts
	3.3 Difficulty in Contract Comprehension
	3.4 Localizing Contract Violations to Pipeline Stages
	3.5 Threats to Validity

	4 Related Work
	5 Conclusion and Future Work
	References

