

Closing Equity Gaps: Identifying How an Ecological Belonging Intervention in Engineering Affects Students

Linda DeAngelo¹, Allison F. Godwin², Kevin R. Binning¹, Natascha Trellinger Buswell³, Erica McGreevy¹, Christian D. Schunn¹, Eric T. McChesney¹, Matthew Bahnson⁴, Maricela Bañuelos³, Liwei Chen¹, Beverly Conrique¹, Carlie L. Cooper⁵, Charlie Díaz¹, Gerard Dorvè-Lewis¹, Anne-Ketura Elie¹, Rachel K. Forster¹, Kevin J. Kaufman-Ortiz⁴, & Danielle Lewis⁶

¹University of Pittsburgh ²Cornell University, ³University of California, Irvine, ⁴Carnegie Mellon University, ⁵Purdue University, ⁶University of Georgia, ⁶University at Buffalo

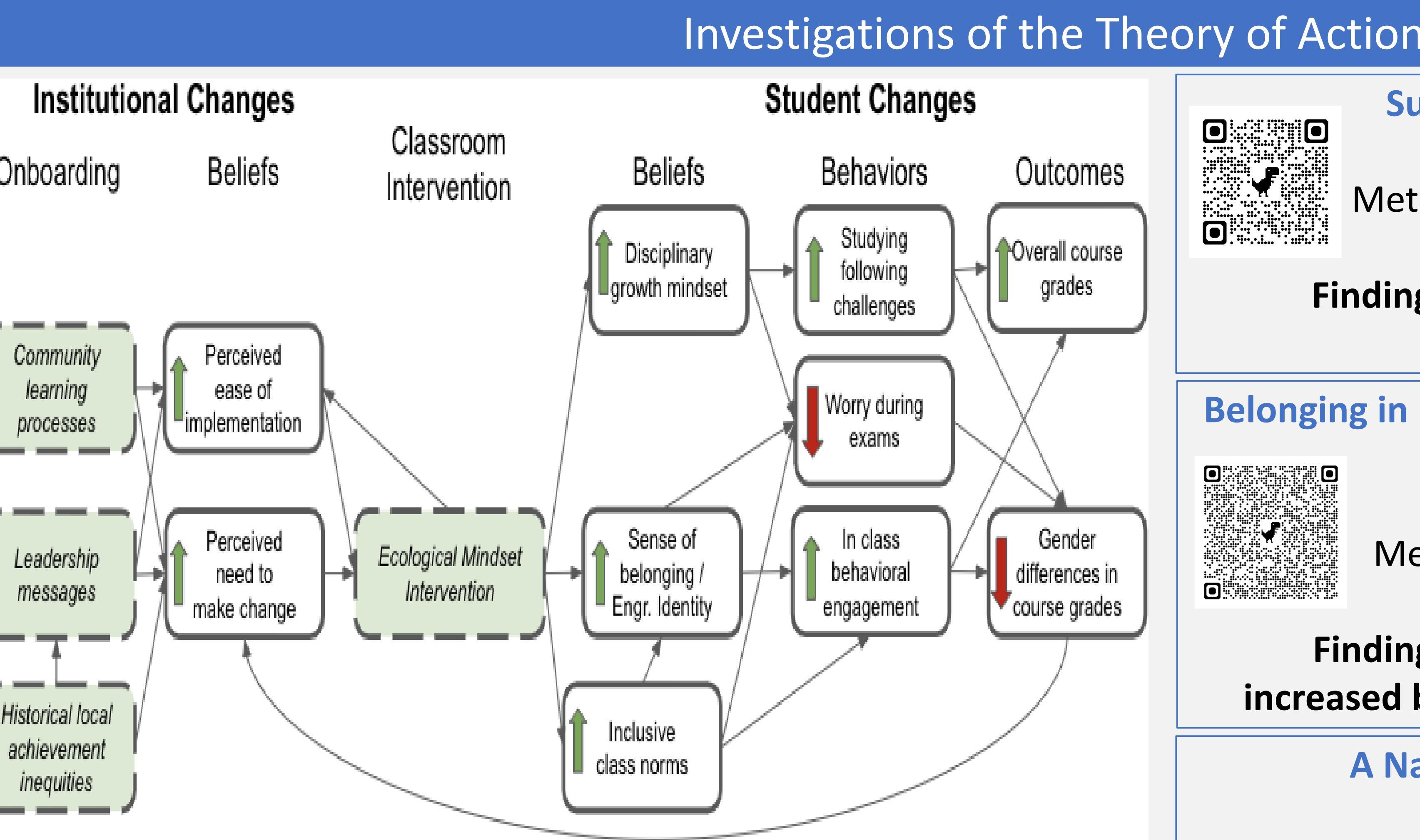
June 16-18, 2024

Washington D.C., U.S.

Project Summary

Our grant – *Course-based Adaptations of an Ecological Belonging Intervention to Transform Engineering Representation at Scale* – uses an **ecological belonging intervention** approach (Binning, et al., 2020) that requires **one-class or one-recitation/discussion session** to implement and has been shown to erase long-standing equity gaps in achievement in introductory STEM courses. However, given the wide social and cultural heterogeneity across U.S. university contexts (e.g., differences in regional demographics, history, and political climates), **it is an open question if and how the intervention may scale**.

This project brings together an interdisciplinary team of higher education scholars, psychologists, and disciplinary specialists from across three strategically selected universities – University of Pittsburgh (Pitt), Purdue University, and University of California, Irvine (UCI) – to design, test, and iteratively improve an approach to systematically **identify which first and second-year courses would most benefit from the intervention, reveal student concerns that may be specific to that course, adapt the intervention to address those concerns and evaluate the universality versus specificity of the intervention across university contexts**.


This systematic approach also **includes persuasion and training processes for onboarding the instructors** of the targeted courses. The instructor onboarding and the intervention adaptation processes are **guided by a theory-of-action** that is the backbone of the project's research activities and iterative process improvement. A synergistic mixture of qualitative and quantitative methods are used throughout the study.

Research Questions - Students

RQ1: How do students, with a focus on minoritized students (i.e., Black, Latinx, and Indigenous students, women and non-binary students), **describe** their lived **experiences in courses** that show demographic-based achievement differences?

RQ2: How does the **ecological belonging intervention** change **students' feelings of belonging** in the course, their disciplinary-based growth mindset, and **perceptions of academic norms** in the course, major, and engineering overall?

RQ3: What **effect** does the **intervention** have on short- and long-term academic success as measured by **achievement** (course-specific, overall GPA) and choice (retention, engineering career pathways)?

The Nature and Structure of Learning Engagement

McChesney et al. (under review)

Method: 3,003 STEM students, 7 courses, 3 institutions

Analysis: Exploratory, confirmatory, and comparative factor analysis

Findings Highlights: STEM learning engagement depends on the activity space in which it occurs (e.g., exam studying, recitation, group work) as well as behavioral/cognitive distinctions

How Virtual Learning Impedes Women Students' Belonging in Engineering

DeAngelo et al. (2024)

Method: 22 engineering students, 7 focus groups

Analysis: Thematic analysis

Findings Highlights: Virtual learning negatively impacted the development of women engineers' sense of belonging

Engineering Students' Description of Challenges in a First-Year Programming

Rhode et al. (under review)

Method: 29 students in 6 focus groups, 2 institutions

Analysis: Thematic analysis

Findings Highlights: Peer comparisons, gendered interactions, and team conflicts form barriers to underserved engineering student success

Supporting Continued Engineering Enrollment

Bahnson et al. (under review)

Method: 1185 engineering students, 1 institution

Analysis: Multigroup SEM path analyses

Findings Highlights: Intervention is correlated with increased enrollment for BLI students

Belonging in Engineering for Black, Latinx and Indigenous Students

Godwin et al. (2023)

Method: 691 engineering students, 1 institution

Analysis: Repeated-measures ANCOVA

Findings Highlights: Intervention is correlated with increased belonging and higher grades for BLI students

A Narrative Analysis of BLI Sense of Belonging in Engineering at a PWI

Dorvè-Lewis et al. (2023)

Method: longitudinal interviews with 8 BLI engineers, 1 institution

Analysis: Narrative analysis

Findings Highlights: Engagement in a range of communities helps mitigate the negative effects of identity-related obstacles and increases belonging

Race/Ethnicity and Gender Differences in First-Year Engineering Identity

Bahnson et al. (in press)

Method: 834 engineering students, 1 institution

Analysis: SEM path analysis

Findings Highlights: Engineering identity is predicted by self-efficacy, disciplinary interest, and sense of belonging

First-year Women's Interpretations of Self-efficacy after a Belonging Intervention

Nortz et al. (in press)

Method: in-depth interviews with 4 women, 1 institution

Analysis: Thematic analysis

Findings Highlights: Intervention exposure may positively alter meaning-making processes around self-efficacy and -concept

