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Figure 1. HyperFields is a hypernetwork that learns to map text to the space of weights of Neural Radiance Fields (first column). After

training, HyperFields is capable of generating in-distribution scenes - unseen during training - in a feed forward manner (second column),

and for out-of-distribution prompts HyperFields can be fine-tuned to yield scenes respecting prompt semantics with just a few gradient

steps (third column).
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Abstract

We introduce HyperFields, a method for gener-

ating text-conditioned Neural Radiance Fields

(NeRFs) with a single forward pass and (option-

ally) some fine-tuning. Key to our approach

are: (i) a dynamic hypernetwork, which learns

a smooth mapping from text token embeddings to

the space of NeRFs; (ii) NeRF distillation train-

ing, which distills scenes encoded in individual

NeRFs into one dynamic hypernetwork. These

techniques enable a single network to fit over a

hundred unique scenes. We further demonstrate

that HyperFields learns a more general map be-

tween text and NeRFs, and consequently is ca-

pable of predicting novel in-distribution and out-

of-distribution scenes — either zero-shot or with

a few finetuning steps. Finetuning HyperFields

benefits from accelerated convergence thanks to

the learned general map, and is capable of syn-

thesizing novel scenes 5 to 10 times faster than

existing neural optimization-based methods. Our

ablation experiments show that both the dynamic

architecture and NeRF distillation are critical to

the expressivity of HyperFields.
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1. Introduction

Recent advancements in text-to-image synthesis methods,

highlighted by the works of Ramesh et al. (2021); Yu et al.

(2022), have ignited similar interest in the field of text-to-

3D synthesis. This interest has grown in tandem with the

emergence of Neural Radiance Fields (NeRFs) (Mildenhall

et al., 2020; Yu et al., 2021b; Jain et al., 2021), which is a

popular 3D representation for this task, due to their ability

to robustly depict complex 3D scenes.

To date, most text-conditioned 3D synthesis methods rely

on either text-image latent similarity matching or diffusion

denoising, both of which involve computationally intensive

per-prompt NeRF optimization (Jain et al., 2022; Poole et al.,

2022; Lin et al., 2022). Bypassing the need for per-prompt

optimization remains a non-trivial challenge.

We propose to solve this problem through a hypernetwork-

based neural pipeline, in which a single hypernetwork (Ha

et al., 2016b) is trained to generate the weights of individ-

ual NeRF networks, each corresponding to a unique scene.

Once trained, this hypernetwork is capable of efficiently

producing the weights of NeRFs corresponding to novel

prompts, either through a single forward pass or with min-

imal fine-tuning. Sharing the hypernetwork across multi-

ple training scenes enables effective transfer of knowledge

to new scenes, leading to better generalization and faster

convergence. However, we find that a naive hypernetwork

design is hard to train.

Our method, HyperFields, overcomes these challenges

through several design choices. We propose predicting the

weights of each layer of the NeRF network in a progres-
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HyperFields: Towards Zero-Shot Generation of NeRFs from Text

sive and dynamic manner. Specifically, we observe that the

intermediate (network) activations from the hypernetwork-

predicted NeRF can be leveraged to guide the prediction of

subsequent NeRF weights effectively.

To enhance the training of our hypernetwork, we introduce

a distillation-based framework rather than the Score Distil-

lation Sampling (SDS) used in Poole et al. (2022); Wang

et al. (2022). We introduce NeRF distillation, in which we

first train individual text-conditioned NeRF scenes (using

SDS loss) that are used as teacher NeRFs to provide fine-

grained supervision to our hypernetwork (see Fig. 2). The

teacher NeRFs provide exact colour and geometry labels,

eliminating noisy training signals.

Our NeRF distillation framework allows for training Hyper-

Fields on a much larger set of scenes than with SDS, scaling

up to 100 different scenes without any degradation in scene

quality. Importantly, NeRF distillation is agnostic to the

choice of text-to-3D model, so that HyperFields can learn

high-quality and complex scenes from the latest generative

model in a plug-and-play fashion. We show results of our

method trained on high-detail scenes from Prolific Dreamer

in Figures 7, 8 and 11.

Once trained, our model can synthesize novel in-distribution

NeRF scenes in a single forward pass (Fig. 1, second

column) and enables accelerated convergence for out-of-

distribution scenes, requiring only a few fine-tuning steps

(Fig. 1, third column). We clarify our use of the terms

“in-distribution” and “out-of-distribution” in Sections 4.1

and 4.2 respectively. These results suggest that our method

learns a semantically meaningful mapping. We justify our

design choices through ablation experiments which show

that both the dynamic hypernetwork architecture and NeRF

distillation are critical to our model’s expressivity.

Our successful application of dynamic hypernetworks to

this difficult problem of generalized text-conditioned NeRF

synthesis suggests a promising direction for future work on

generalizing and parameterizing neural implicit functions

through other neural networks.

2. Background and Related Work

Our work combines several prominent lines of work: neu-

ral radiance fields, score-based 3D synthesis, and learning

function spaces using hypernetworks.

2.1. 3D Representation via Neural Radiance Fields

There are many competing methods of representing 3D data

in 3D generative modeling, such as point-clouds (Nichol

et al., 2022; Zhou et al., 2021), meshes (Michel et al., 2021;

Hong et al., 2022; Metzer et al., 2022; Zeng et al., 2022),

voxels (Sanghi et al., 2021; 2022), and signed-distance fields

(Wang et al., 2021; Yariv et al., 2021; Esposito et al., 2022).

This work explores the popular representation of 3D scenes

by Neural Radiance Fields (NeRF) (Mildenhall et al., 2020;

Xie et al., 2021; Gao et al., 2022). NeRFs were originally

introduced to handle the task of multi-view reconstruction,

but have since been applied in a plethora of 3D-based tasks,

such as photo-editing, 3D surface extraction, and large/city-

scale 3D representation (Gao et al., 2022).

There have been many improvements on the original NeRF

paper, especially concerning training speed and fidelity

(Chen et al., 2022a;b; Müller et al., 2022; Sun et al., 2021;

Yu et al., 2021a). HyperFields uses the multi-resolution

hash grid introduced in InstantNGP (Müller et al., 2022).

2.2. Score-Based 3D Generation

While many works attempt to directly learn the distribution

of 3D models via 3D data, others opt to use guidance from

2D images due to the vast difference in data availability.

Such approaches replace the photometric loss in NeRF’s

original objective with a guidance loss. The most common

forms of guidance in the literature are from CLIP (Rad-

ford et al., 2021) or a frozen, text-conditioned 2D diffusion

model. The former methods minimize the cosine distance

between the image embeddings of the NeRF’s renderings

and the text embedding of the user-provided text prompt

(Jain et al., 2022; Chen et al., 2022a; Jain et al., 2021).

Noteworthy 2D diffusion-guided models include DreamFu-

sion (Poole et al., 2022) and Score Jacobian Chaining (SJC)

(Wang et al., 2022), which feed noised versions of images

rendered from a predicted NeRF into a frozen text-to-image

diffusion model (Imagen (Saharia et al., 2022) and StableD-

iffusion Rombach et al. (2021), respectively) to obtain what

can be understood as a scaled Stein Score (Liu et al., 2016).

Our work falls into this camp, as we rely on score-based

gradients derived from StableDiffusion to train the NeRF

models which guide our hypernetwork training.

We use the following gradient motivated in DreamFusion:

∇θL(ϕ, g(¹)) ≜ Et,c

[

w(t)(ϵ̂φ(zt; y, t)− ϵ)∂x
∂θ

)
]

(1)

which is similar to the gradient introduced in SJC, with the

key difference being SJC directly predicts the noise score

whereas DreamFusion predicts its residuals. We refer to op-

timization using this gradient as Score Distillation Sampling

(SDS), following the DreamFusion authors. Followup work

has aimed at improving 3D generation quality (Wang et al.,

2023; Metzer et al., 2023; Chen et al., 2023), whereas we

target an orthogonal problem of generalization and conver-

gence of text-to-3D models.

Connections to ATT3D: We note that our work is concur-

rent and independent of ATT3D (Lorraine et al., 2023). We

are similar in that we both train a hypernetwork to generate

2



HyperFields: Towards Zero-Shot Generation of NeRFs from Text

Figure 2. Overview. Our training pipeline proceeds in two stages. Stage 1: We train a set of single prompt text-conditioned teacher NeRFs

using Score Distillation Sampling. Stage 2: We distill these single scene teacher NeRFs into the hypernetwork, through a photometric

loss between the renders of the hypernetwork with the teacher network, which we dub our distillation loss.

NeRF weights for a set of scenes during training and gen-

eralize to novel in-distribution scenes without any test time

optimization. On top of the in-distribution generalization

experiments, we also demonstrate accelerated convergence

to novel out-of-distribution scenes (defined in 4.2), which

ATT3D does not.

On the technical side, we primarily differ in our novel dy-

namic hypernetwork architecture. Our hypernetwork gener-

ates the MLP weights of the NeRF, while ATT3D outputs

the weights of the hash grid in their InstantNGP model. Im-

portantly, our hypernetwork layers are conditioned on not

just the input text prompt, but also the activations of the

generated NeRF MLP (3). We show through our ablations

that this dynamic hypernetwork conditioning is essential to

the expressivity of our network, as it enables the network

to change its weights for the same scene as a function of

the view that is being rendered. In contrast, in ATT3D, the

generated hash grid is the same regardless of the view being

rendered, potentially resulting in the loss of scene detail.

Finally, ATT3D is built on Magic3D (Lin et al., 2022) which

is a proprietary and more powerful text-to-3D model than

the publicly available stable DreamFusion model (Tang,

2022) that we use in most of our experiments. We show that

our model is capable of learning high quality and complex

NeRF scenes produced by more powerful models such as

ProlificDreamer without reduction in generation quality 4.3.

2.3. HyperNetworks

Hypernetworks are networks that are used to generate

weights of other networks which perform the actual task

(task performing network) (Ha et al., 2016a). Many works

attempt to use hypernetworks as a means to improve upon

conditioning techniques. Among these, some works have

explored applying hypernetworks to implicit 2D represen-

tations (Sitzmann et al., 2020; Perez et al., 2017; Alaluf

et al., 2021), and 3D representations (Sitzmann et al., 2019;

2021; Chiang et al., 2021). Very few works apply hypernet-

works to radiance field generation. Two notable ones are

HyperDiffusion and Shape-E, which both rely on denoising

diffusion for generation (Erkoç et al., 2023; Jun & Nichol,

2023). HyperDiffusion trains an unconditional generative

model which diffuses over sampled NeRF weights, and thus

cannot do text-conditioned generation. Shap-E diffuses over

latent codes which are then mapped to weights of a NeRF

MLP, and requires teacher point clouds to train. Due to

the memory burden of textured point clouds, scene detail

is not well represented in Shap-E. Both of these methods

have the same limitations of slow inference due to denoising

sampling. In contrast, our method predicts NeRF weights

dynamically conditioned on the 1) text prompt, 2) the sam-

pled 3D coordinates, and 3) the previous NeRF activations.

An interesting class of hypernetworks involve models con-

ditioned on the activations or inputs of the task-performing

network (Chen et al., 2020). These models take the fol-

lowing form: let h, g be the hypernetwork and the task

performing network respectively. Then W = h(a), where

W acts as the weights of g and a is the activation from

the previous layer of g or the input to g. These are called

dynamic hypernetworks, as the predicted weights change

dynamically with respect to the layer-wise signals in g. Our

work explores the application of dynamic hypernetworks to

learning a general map between text and NeRFs.

3. Method

Our method consists of two key innovations, the dynamic

hypernetwork architecture and NeRF distillation training.

We discuss each of these two components in detail below.

3.1. Dynamic Hypernetwork

The dynamic hypernetwork consists of the Transformer T
and MLP modules as given in figure 3. The sole input to

the dynamic hypernetwork is the scene information repre-

sented as a text description. The text is then encoded by a

frozen pretrained BERT model, and the text embedding z

is processed by T . Let conditioning token CT = T (z) be

the intermediate representation used to provide the current

scene information to the MLP modules. Note that the text

3
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Figure 3. The input to the HyperFields system is a text prompt, which is encoded by a pre-trained text encoder (frozen BERT model). The

text latents are passed to a Transformer module, which outputs a conditioning token (CT). This conditioning token (which supplies scene

information) is used to condition each of the MLP modules in the hypernetwork. The first hypernetwork MLP (on the left) predicts the

weights W1 of the first layer of the NeRF MLP. The second hypernetwork MLP then takes as input both the CT and a1, which are the

activations from the first predicted NeRF MLP layer, and predicts the weights W2 of the second layer of the NeRF MLP. The subsequent

scene-conditioned hypernetwork MLPs follow the same pattern, taking the activations ai−1 from the previous predicted NeRF MLP layer

as input to generate weights Wi for the i
th layer of the NeRF MLP. We include stop gradients (SG) to stabilize training.

embeddings z can come from any text encoder, though in

our experiments we use frozen BERT embeddings.

In addition to conditioning token CT, each MLP module

takes in the activations from the previous layer ai−1 as

input. Given these two inputs, the MLP module is tasked

with generating parameters Wi for the ith layer of the NeRF

MLP. For simplicity let us assume that we sample only one

3D coordinate and viewing direction per minibatch, and

let h be the hidden dimension of the NeRF MLP. Then

ai−1 ∈ R
1×h. Now the weights Wi ∈ R

h×h of the ith

layer are given as follows:

Wi = MLPi(CT, ai−1) (2)

The forward pass of the ith layer is:

ai = Wi ∗ ai−1 (3)

where ai ∈ R
1×h and * is matrix multiplication. This

enables the hypernetwork MLPs to generate a different set

of weights for the NeRF MLP that are best suited for each

given input 3D point and viewing direction pair. This results

in effectively a unique NeRF MLP for each 3D point and

viewing direction pair.

In practice training with minibatch size 1 is impractical, so

during training we sample a non-trivial minibatch size and

generate weights that are best suited for the given minibatch,

as opposed to weights unique to each 3D coordinate and

viewing direction pair as illustrated above.

In order to generate a unique set of weights for a given

minibatch we do the following:

ai−1 = µ(ai−1) (4)

Wi = MLPi(CT, ai−1) (5)

Where µ(.) averages over the minibatch index. So if the

minibatch size is n, then ai−1 ∈ Rn×h, and ai−1 ∈ R
1×h

and the forward pass is still computed as given in equation

3. This adaptive nature of the predicted NeRF MLP weights

leads to the increased flexibility of the model. As shown in

our ablation experiments in Figure 9, it is an essential piece

to our model’s large scene capacity.

3.2. NeRF Distillation

As shown in figure 2, we first train individual DreamFusion

NeRFs on a set of text prompts, following which we train

the HyperFields architecture with supervision from these

single-scene DreamFusion NeRFs.

The training routine is outlined in Algorithm F, in which at

each iteration, we sample n prompts and a camera viewpoint

for each of these text prompts (lines 2 to 4). Subsequently,

for the ith prompt and camera viewpoint pair we render

image Ii using the ith pre-trained teacher NeRF (line 5).

We then condition the HyperFields network ϕhf with the

ith prompt, and render the image I
′

i from the ith camera

view point (line 6). We use the image rendered by the pre-

trained teacher NeRF as the ground truth supervision to
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HyperFields (line 7). For the same sampled n prompts and

camera viewpoint pairs, let I
′

1 to I
′

n be the images rendered

by HyperFields and I1 to In be the images rendered by the

respective pre-trained teacher NeRFs. The distillation loss

is given as follows:

Ld =

∑n
i=1(Ii − I

′

i)
2

n
(6)

We observe through our ablations in Figure 10 that this sim-

ple distillation scheme greatly helps HyperFields in learning

to fit multiple text prompts simultaneously, as well as learn

a more general mapping of text to NeRFs.

4. Results

Figure 4. Zero-Shot In-Distribution Generalization. We train

HyperFields on a 9x8 grid of object/color combination scenes, and

hold out a subset of combinations. The faded scenes are in the

training set and the bright scenes are the trained model’s zero-shot

predictions of the holdout set.

We evaluate HyperFields by demonstrating its generaliza-

tion capabilities, out-of-distribution convergence, amorti-

Top-1 Top-3 Top-5 Top-6 Top-10

Unseen 57.1 85.7 85.7 90.4 95.2

Seen 69.5 88.1 94.9 94.9 96.6

Table 1. CLIP Retrieval Scores: We report the average retrieval

scores for the scenes shown in Fig. 4. We achieve similar scores

between the seen and unseen prompts, indicating that our zero-shot

generations are of similar quality to the training scenes.

zation benefits, and ablation experiments. In Sec. 4.1 and

Sec. 4.2 we evaluate the model’s ability to synthesize novel

scenes, both in and out-of-distribution. We quantify the

amortization benefits of having this general model com-

pared to optimizing individual NeRFs in Sec. 4.4. Finally,

our ablations in Sec. 4.5 justify our design choices of dy-

namic conditioning and NeRF distillation training.

4.1. In-Distribution Generalization

Fig. 4 shows the results of training on a subset of combina-

tions of 9 shapes and 8 colours, while holding out 3 colours

for each shape. Our model generates NeRFs in a zero-shot

manner for the held-out prompts (opaque scenes in Fig. 4)

with quality nearly identical to the trained scenes.

We call this in-distribution generalization as both the shape

and the color are seen during training but the inference

scenes (opaque scenes in Fig.4) are novel because the com-

bination of color and shape is unseen during training. For

example: “Orange toaster” is a prompt the model has not

seen during training, though it has seen the color “orange”

and the shape “toaster” in its training set.

We quantitatively evaluate the quality of our zero-shot pre-

dictions with CLIP retrieval scores. The support set for the

retrieval consists of all 72 scenes (27 unseen and 45 seen)

shown in Fig. 4. In Table 1 we compute the top-k retrieval

scores by CLIP similarity. The table reports the average

scores for top-k retrieval, separated by unseen (zero-shot)

and seen prompts. The similarity in scores between un-

seen and seen prompts indicates that our model’s zero-shot

predictions are of similar quality to the training scenes.

4.2. Accelerated Out-of-Distribution Convergence

We further test HyperFields’s ability to generate shapes and

attributes that it has not seen during training. We call this

out-of-distribution inference because the specified geometry

and/or attribute are not within the model’s training set.

We train our model on a rich source of prompts, across

multiple semantic dimensions (material, appearance, shape).

The list of prompts used is provided in the appendix material

section D using NeRF distillation loss. Post training, we

test our model on the prompts in Fig. 5. The prompts are

5
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Figure 5. Finetuning to out-of-distribution prompts: unseen shape and or unseen attribute. Our method generates out-of-distribution

scenes in at most 2k finetuning steps (row 1), whereas the baseline models are far from the desired scene at the same number of iterations

(rows 2 and 3). When allowed to fine-tune for significantly longer (rows 4 and 5) the baseline generations are at best comparable to our

model’s generation quality, demonstrating that our model is able to adapt better to out-of-distribution scenes.

Model
Golden

Blender

Yarn

Shoes

Yarn

Skateboard

Plaid

Skateboard

Plaid

Lamppost

Strawberry

with tiger

stripes

Our Method (³) 1.3± 0.14 1.0± 0.09 1.3± 0.07 1.3± 0.11 1.4± 0.03 1.1± 0.14
Best DreamFusion Baseline (³) 2.5± 0.11 2.4± 0.13 2.3± 0.11 1.7± 0.09 2.0± 0.09 2.2± 0.08

P-Score (³) 1.0× 10−25 2.01× 10−34 2.8× 10−30 1.1× 10−8 1.3× 10−25 2.0× 10−26

Table 2. Average User-Reported Ranks (N=450): We report the average rank submitted by all users for our method, and compute the

average rank for all 33 of the baselines. We report the average rank of the best performing baseline for each prompt (with ±95% confidence

intervals). Our method is consistently preferred over the best baseline, despite the best baseline consuming 33x more computational

resources than our method to find. We report the p-value for the difference in rank between our method and the next best DreamFusion

baseline, and find it is significant at the 1% level across all our prompts.

grouped based on whether both shape and attribute are un-

seen (column 1, Fig. 5) or just the shape is unseen (column

2, Fig. 5). For example, in “gold blender” both material

“gold” and shape “blender” are unseen during training.

Since these prompts contain geometry/attributes that are

unseen during training, we do not expect high quality gener-

ation without additional optimization. Instead, we demon-

strate that fine-tuning the trained HyperFields model on

SDS loss for the given the out-of-distribution prompt can

lead to accelerated convergence especially when compared

to the DreamFusion baselines.

6
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Figure 6. Prolific Dreamer scenes distilled into HyperFields: We distill 30 high quality and complex scenes generated by Prolific

Dreamer into a single HyperFields model, which underscores the modeling capacity of our novel architecture.

We consider two baselines, 1) Stable Dreamfusion (S):

Publicly available implementation of Dreamfusion trained

from Scratch, 2) Stable Dreamfusion (P): Stable Dreamfu-

sion model Pre-trained on a semantically close scene and

finetuned to the target scene. The motivation in using Stable

Dreamfusion (P) is to have a pre-trained model as a point of

comparison against HyperFields model.

4.2.1. QUALITATIVE EVALUATION

We show out-of-distribution generation results for 8 differ-

ent scenes in Fig. 5. The inset images in the upper left

of row 1 of Fig. 5 are the scenes generated zero-shot by

our method, with no optimization, when provided with the

out-of-distribution prompt. The model chooses the seman-

tic nearest neighbour from its training data as the initial

guess for out-of-distribution prompts. For example, when

asked for a “golden blender” and “glacier knife”, our model

generates a scene with “tiger striped toaster”, which is the

only related kitchenware appliance in the model sees during

training. We pretrain the Stable Dreamfusion(P) baselines

to the same scenes predicted by our model zero-shot. The

pretrained scenes for Stable Dreamfusion(P) are given as

insets in the upper left of row 3 and 5 in Fig. 5.

By finetuning on a small number of epochs for each out-of-

distribution target scene using score distillation sampling,

our method can converge much faster to the target scene

than the baseline DreamFusion models. In row 2 and 3

of Fig. 5, we see that both Dreamfusion(S) and (P), barely

learn the target shape for the same amount of training budget

as our method. In rows 4 and 5 of Fig. 5 we let the base-

lines train to convergence, and even then the quality of the

converged baseline scenes are worse or at best comparable

to our model’s generation quality. On average we see a 5x

speedup in convergence.

7
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Importantly, DreamFusion(P) which is pre-trained to the

same zero-shot predictions of our model is unable to be

fine-tuned to the target scene as efficiently and at times

get stuck in suboptimal local minima close to the initializa-

tion (see “yarn skateboard” row 3 and 5 in Fig. 5). This

demonstrates that HyperFields learns a semantically mean-

ingful mapping from text to NeRFs that cannot be arbitrarily

achieved through neural optimization. We further explore

the smoothness of this mapping through interpolation exper-

iments in Sec. I of the appendix.

Figure 7. Visual Comparison to ATT3D. We visually compare

scenes packed into HyperFields against the same scenes shown in

ATT3D. NeRF distillation allows HyperFields to inherit the high

generation quality of Prolific Dreamer, so the scenes we generate

are of higher visual quality and complexity.

4.2.2. QUANTITATIVE EVALUATION

Model/Metric CLIP Top-3 KID ³ SSIM ↑

Precision Recall

Stable DreamFusion 0.50 0.37 0.17 0.55

Our Model 0.77 0.63 0.13 0.62

Table 3. The HyperFields-generated renders for the out-of-

distribution prompts (see Fig. 5) demonstrate superior performance

compared to Stable DreamFusion’s renders across multiple met-

rics.

Additionally, in order to get a quantitative evaluation of our

generation quality for the out-of-distribution prompts (in

Fig. 5) we conduct a human study where we ask participants

to rank the render that best adheres to the given prompt in

descending order (best render is ranked 1). We compare our

method’s generation with 33 different DreamFusion models.

1 is trained from scratch and the other 32 are finetuned from

checkpoints corresponding to the prompts in section D. Of

these 33 models we pick the best model for each of the

out-of-distribution prompts, so the computational budget

Figure 8. Prolific Dreamer OOD Comparison. We finetune a Hy-

perFields model trained on the scenes in Fig. 11 on novel attributes,

and compare against the Stable DreamFusion baseline trained for

the same number of steps and double the number of steps.

to find the best baseline for a given prompt is almost 33x

that our of method. Note each of these models, including

ours, are trained for the same number of steps. We report

average user-reported rank for our method and the average

best baseline chosen for each prompt in Tab. 2. We outrank

the best DreamFusion baseline consistently across all our

out-of-distribution prompts.

Furthermore, in Tab. 3 we evaluate our method’s out-of-

distribution generation quality using precision and recall

metrics for top-3 CLIP retrieval tasks. For each given out-

of-distribution prompt (in Fig. 5), we check if the associated

render is among the top three retrievals according to CLIP’s

ranking. Additionally, we assess the quality of our renders

using KID and SSIM scores. Across all these quantitative

metrics, HyperFields outperforms the stable DreamFusion

baseline.

4.3. HyperFields with Prolific Dreamer Teachers

NeRF distillation training means that our pipeline is agnostic

to the choice of text-to-3D model, and thus can inherit high-

quality generation properties from the latest open-source

models. We demonstrate this in Fig. 6, where we generate

teacher NeRFs using Prolific Dreamer (Wang et al., 2023)

and distill them into a single HyperFields model. Our model

generates the distilled scenes with virtually no quality degra-

dation. We provide a visual comparison of our generations

8
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against the same scenes from ATT3D in Fig. 7.

We also show accelerated out-of-distribution convergence of

our high-quality HyperFields model in Fig 8. Note that even

with double the amount of training, the Stable DreamFusion

baseline is unable to match our model’s generation quality.

4.4. Amortization Benefits

The cost of pre-training HyperFields and individual teacher

NeRFs is easily amortized in both in-distribution and out-of-

distribution prompts. Training the teacher NeRFs is not an

additional overhead; it’s the cost of training a DreamFusion

model on each of those prompts. The only overhead is the

NeRF distillation training in stage 2 (Fig. 2), which takes

roughly two hours. This overhead is offset by our ability to

generate unseen combinations in a feedforward manner.

For comparison, the DreamFusion baseline takes approx-

imately 30 minutes to generate each test scene in Fig. 4,

totaling ∼14 hours for all 27 test scenes. Our model can

generate all 27 test scenes in less than a minute, making it

an order of magnitude faster than DreamFusion, even with

the 2 hour distillation overhead.

Our method’s ability to converge faster to new out-of-

distribution prompts leads to linear time-saving for each

new prompt. This implies a practical use case of our model

for rapid out-of-distribution scene generation in a real world

setting. As shown in Fig. 5, the baseline’s quality only

begins to match ours after 3-5x the amount of training time.

Figure 9. Dynamic Hypernet Packing. Without dynamic condi-

tioning, the network collapses the origami/glacier attributes and

stained glass/plaid attributes.

4.5. Ablations

We ablate on the activation conditioning in our dynamic

hypernetwork (“without dynamic hypernetwork”) in Fig. 9.

Row 2 shows that even in the simple case of 4 scenes the

static hypernetwork collapses the “glacier” and “origami”

styles, and the “plaid” and “stained glass” styles.

If we attempt to pack the dynamic hypernetwork using just

Score Distillation Sampling (SDS) from DreamFusion, we

experience a type of mode collapse in which the SDS opti-

Figure 10. NeRF Distillation. We compare packing results when

training with score distillation (“No NeRF Distillation”) versus

our NeRF distillation method (“Ours”). The iterative optimization

of score distillation causes mode collapse in geometry.

mization guides similar shapes towards the same common

geometry. See Fig. 10 for an example of this mode collapse.

5. Conclusion

We present HyperFields, a novel framework for generalized

text-to-NeRF synthesis, which can produce individual NeRF

networks in a single feedforward pass. Our results highlight

a promising step in learning a general representation of

semantic scenes. Our novel dynamic hypernetwork archi-

tecture coupled with NeRF distillation learns an efficient

mapping of text token inputs into a smooth and semantically

meaningful NeRF latent space. Our experiments show that

with this architecture we are able to fit over 100 different

scenes in one model, and predict high quality unseen NeRFs

either zero-shot or with a few finetuning steps. Compar-

ing to existing work, our ability to train on multiple scenes

greatly accelerates convergence of novel scenes. In future

work we would like to explore the possibility of general-

izing the training and architecture to achieving zero-shot

open vocabulary synthesis of NeRFs and other implicit 3D

representations.

6. Limitations

Our model is trained through distillation from teacher mod-

els, thus, the quality of our generated scenes is bound by the

quality of the current state-of-the-art open source models.

Similarly, our model inherits the limitations of these SOTA

models. For instance, it is well known that Stable Diffusion

struggles with long prompts with complex compositionality

and janusing, which are also limitations of our model.

Impact Statement

As mentioned above our model inherits limitations from

the teacher models. Similarly, our model inherits potential

harmful biases of the teacher models. Any stereotypes or

biases from the teacher models will be reproduced by our
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model.
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A. Model Details

Baselines: Our baseline is 6 layer MLP with skip connections every two layers. The hidden dimension is 64. We use an

open-source re-implementation (Tang, 2022) of DreamFusion as both our baseline model and architecture predicted by

HyperFields, because the original DreamFusion works relies on Google’s Imagen model which is not open-source. Unlike

the original DreamFusion, the re-implementation uses Stable Diffusion (instead of Imagen). We use Adam with a learning

rate of 1e-4, with an epoch defined by 100 gradient descent steps.

HyperFields: The architecture is as described in Figure 2 in the main paper. The dynamic hypernetwork generates weights

for a 6 layer MLP of hidden dimension 64. The transformer portion of the hypernetwork has 6 self-attention blocks, each

with 12 heads with a head dimension of 16. We condition our model with BERT tokens, though we experiment with T5 and

CLIP embeddings as well with similar but marginally worse success. Similar to the baseline we use Stable Diffusion for

guidance, and optimize our model using Adam with the a learning rate of 1e-4. We will release open-source code of our

project in a future revision of the paper.

We use the multiresolution hash grid developed in InstantNGP Müller et al. (2022) for its fast inference with low memory

overhead, and sinusoidal encodings µ to combat the known spectral bias of neural networks (Rahaman et al., 2018). The

NeRF MLP has 6 layers (with weights predicted by the dynamic hypernetwork), with skip connections every two layers.

The dynamic hypernetwork MLP modules are two-layer MLPs with ReLU non-linearities and the Transformer module has

6 self-attention layers. Furthermore, we perform adaptive instance normalization before passing the activations into the

MLP modules of the dynamic hypernetwork and also put a stop gradient operator on the activations being passed into the

MLP modules (as in figure 3).

B. Packing

Figure 11. Prompt Packing. Our dynamic hypernetwork is able to pack 9 different objects across 12 different prompts for a total of 108

scenes. Dynamic hypetnetwork coupled with NeRF distillation enables packing these scenes into one network.
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Figure 12. Fine-Tuning In-Distribution: seen shape, seen attribute, unseen combination. During training, the model observes every

shape and color, but some combinations of shape and attribute remain unseen. During inference, the model generalizes by generating

scenes that match prompts with previously unseen combinations of shape and attribute, with small amount of finetuning (atmost 1k steps).

C. In-Distribution Generalization with Complex Prompts

For additional attributes (“plaid”, “Terracotta” etc.), our model produces reasonable zero-shot predictions, and after fewer

than 1000 steps of finetuning with SDS is able to produce unseen scenes of high quality. We show these results in Fig. 12

with 8 objects and 4 styles, where 8 shape-style combinational scenes are masked out during training (opaque scenes in

Fig. 12).

D. Out-of-Distribution Convergence

In Fig 5 we show the inference time prompts and the corresponding results. Here we provide the list of prompts used to

train the model: “Stained glass chair”, “Terracotta chair”, “Tiger stripes chair”, “Plaid toaster”, “Terracotta toaster”, “Tiger

stripes toaster”, “Plaid bowl”, “Terracotta bowl”, “Tiger stripes bowl”, “Stained glass couch”, “Plaid couch”, “Tiger stripes

couch”, “Stained glass pot”, “Terracotta pot”, “Tiger stripes pot”, “Stained glass vase”, “Plaid vase”, “Tiger stripes vase”,

“Stained glass table”, “Plaid table”, “Terracotta table”.

Since the training prompts dont contain shapes such as “Blender”, “Knife”, “Skateboard”, “Shoes”, “Strawberry”, “Lamp-

post”, “Teapot” and attributes such as “Gold”, “Glacier”, “Yarn”, “Victorian”, we term the prompts used in Fig 5 as

out-of-distribution prompts–as the model does not see these shapes and attributes during training.

E. User Study Renders

We link to the images (including baselines) used in the user study described in Section 4.2.2 here. All renders are taken from

the same camera angle and the baseline scenes are finetuned with the same number of iterations as our model.
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Figure 13. Generalization Comparison. We train a single HyperFields model and compare Stable DreamFusion. “Stable DreamFusion

(F)” indicates finetuning from an initialized DreamFusion model. “Stable DreamFusion (S)” indicates the DreamFusion model trained

from scratch. Zero-shot results and initializations are shown in the upper left of “Ours” and “Stable DreamFusion (F)”, respectively.

Above each column indicates the number of training epochs for each method add figures in the upper left.

F. Algorithm for training HyperFields

Require: T = {T1, T2, · · · TN} ▷ Set of text prompts

Require: C ▷ Set of Camera view points

Require: θ1, θ2, · · · θN ▷ pre-trained NeRFs

Require: φHF ▷ Randomly initialized HyperFields

Require: R ▷ Differentiable renderer function

1: for each step do

2: Tl, Tm,Tn ∼ T ▷ Sample text prompts from T
3: for Ti ∈ {Tl, Tm,Tn} do

4: Ci ∼ C
5: Ii = R(θi(Ci)) ▷ ith nerf renders image for given camera Ci

6: Ii

′
= R(φHF (Ti, Ci)) ▷ Condition φHF on ith prompt

7: Li = (Ii − Ii

′
)2

8: end for

9: Ld =
∑

i∈{l,m,n}

Li

10: end for

G. HyperFields Trained on Additional Prolific Dreamer Teachers

In addition to the scenes shown in Fig. 6, train HyperFields on a different set of ProlificDreamer teachers and the scenes

generated by our single HyperFields model is shown in Fig. 14. This demonstrates the ability of HyperFields to learn

another varied set of scenes with complex geometries.

H. Multi-View Consistency of Generated Scenes

In Fig. 15, we show multiple scenes generated by a single HyperFields model from various camera poses. Across multiple

views we see that geometry is well formed and consistent with the geometry in other views.

I. BERT Token Interpolation

Another option for interpolation is to interpolate the input BERT embeddings fed in the our Dynamic HyperNet. We show

results in Figure 16 where we interpolate across two chair colors in a Dynamic HyperNet trained on only chair colors. The

interpolation is highly non-smooth, with a single intermediate color shown at ¶ = 0.4 and discontinuities on either end at
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Figure 14. Additional set of Prolific Dreamer scenes distilled into HyperFields model, showcasing the ability of Hyperfields to learn a

significantly diverse set of geometries.
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Figure 15. Renders of various scenes generated by HyperFields from various camera poses. The geometry is well formed and consistent

across multiple views.

Figure 16. BERT Token Interpolation. We show results of interpolating the BERT tokens corresponding to the prompts “yellow chair”

and “purple chair”. In contrast, interpolation on the level of the hypernetwork (“HyperNet”) is smoother than interpolating the BERT

tokens.
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¶ − 0.3 and ¶ = 0.5. On the other hand, our HyperNet token interpolation shown in Figure 10 demonstrates a smooth and

gradual transition of colors across the interpolation range. This demonstrates that our HyperNet learns a smoother latent

space of NeRFs than the original BERT tokens correspond to.
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