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Abstract: A method is proposed for analyzing asymptotic stability in the conical approximation
of a hybrid system. Specifically, this paper introduces the conical transition graph (CTG) to
simplify the analysis of asymptotic stability in conical approximations by converting solutions to
a hybrid system into walks through a discrete graph. By exploiting the fact that pre-asymptotic
stability in a conical approximation implies pre-asymptotic stability in the original system, a
CTG-based approach can establish asymptotic stability in hybrid systems that have nonlinear
flow maps and jump maps without needing to construct a Lyapunov function.
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1. INTRODUCTION

For continuous— and discrete—time systems, local asymp-
totic stability can be determined by linearizing the system
and checking the eigenvalues of the resulting Jacobian
matrix. For hybrid systems, however, the same ease is cur-
rently unavailable. In the conical approximation of a hybrid
system, the flow and jumps sets are approximated by tan-
gent cones, and the flow and jump maps are approximated
by constant or linear approximations (Goebel et al., 2012,
Ch. 9). It was shown in (Goebel and Teel, 2010, Thm. 3.3)
that the conical approximation of a hybrid system can
be used to determine if a point is pre-asymptotically
stable. Namely, if a point is pre-asymptotically stable with
respect to the conical approximation, then the center of
the approximation in the original hybrid system is locally
pre-asymptotically stable. (The prefix “pre-” indicates that
some maximal solutions may terminate in finite time due
to the solution leaving the region of the state space where
it is permitted to evolve.) The utility of (Goebel and Teel,
2010, Thm. 3.3) is currently limited, however, by the fact
that it is still generally difficult to show that the origin of
a conical approximation is pre-asymptotically stable. The
purpose of this paper is to close this gap by introducing
the conical transition graph (CTG) as a tool to determine
asymptotic stability in conical approximations.

While there are limited results for analyzing stability
of hybrid systems via conical approximations, there are
numerous other approaches for stability analysis in the
literature (Tuna and Teel, 2006; Goebel and Sanfelice,
2018) and (Goebel et al., 2012, Thm. 7.30). Discrete
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graphs ! have been used to evaluate stability of switched
dynamical systems including discrete-time linear systems
(Philippe et al., 2016), discrete-time nonlinear systems
(Kundu and Chatterjee, 2016), and continuous-time linear
systems (Langerak and Polderman, 2005). In contrast to
the existing methods for switched systems, the present
work is (to the best of our knowledge) the first graph-
theoretic approach to analyze asymptotic stability in non-
switched hybrid systems (i.e., systems where components of
the state vector may range over a continuum at jumps). In
the context of reachability analysis, Bogomolov et al. (2017)
introduced conical abstractions as a graph-based method
to compute infinite-horizon reachable sets for linear hybrid
automata.

The conical transition graph is designed to simplify the
analysis of asymptotic stability of isolated equilibria by
creating a simplified representation of ways that solutions
to a hybrid system can evolve continuously (called flows)
or evolve discretely (called jumps). Collectively, we refer
to flows and jumps as transitions. In particular, the CTG
is a directed graph with set-valued weights assigned to
each arrow. Each vertex in the CTG represents either the
origin 0,, € R” or a point in the unit sphere S*~! C R,
where each point v € S"~! acts as a representation of all
the points in the ray {rv |r > 0} spanned by v. In this
way, we consider the projection of R onto S*~*U{0,,}, as
shown in Fig. 1. Roughly speaking, each arrow in the CTG
represents the ways that solutions to a hybrid system, as
projected onto S"~! U {0,,}, can transition (flow or jump)
between points in S~ U {0,,}. The weight of each arrow
contains all possible relative changes in magnitude that
a solution can exhibit when it undergoes the transition.
Asymptotic stability can be determined from the products

I Throughout, we use graph in the sense of discrete graph—that is,
a set of vertices connected by edges or arrows.



of walks through the CTG. Products converging to zero
indicate convergence of solutions to the origin.

Fig. 1. The evolution of solutions to a hybrid system on
R3 (left) are reduced in the CTG (right) to discrete
transitions on S?, which we label as flow arrows and
Jump arrows. In the right image, solid blue curves
indicate continuous-time flows projected onto S2.

2. PRELIMINARIES

For notation, we use N :={0,1,2,...} and R>¢ := [0, c0).

The Euclidean norm of v € R™ is written |v|. We write

the inner product between v; and vy in R™ as (vy, vg).

The zero vector in R™ is denoted 0,,. The domain of a
function f is written dom f. Given a set S C R", we write
the closure as S. The unit sphere in R™ is denoted by
Srl:={zeR" ’ |z| =1}, and the unit sphere plus the
origin is written as

Syt i=s""tu{0,}. (1)
The normalized radial vector function nrv : R™ — S{~1 is
defined for each v € R™ as

nrv(v) i= {%ﬁ”'v w7 o @)

2.1 Hybrid Systems

We consider hybrid systems on R” written as
& = f(x), zeC,
H: { n f(@) (3)
" =g(z), z€D,

with state z € R™, flow set C' C R", flow map f : C — R",
jump set D C R", and jump map g : D — R™. The system
H can be written compactly as H = (C, f,D,g). The
continuous-time system formed by removing the discrete
dynamics of H is written as (C, f).

A hybrid time domain E is a subset of R>o X N such that
for every (T, J) € E, there exists a sequence
O=to<t1 < <ty =T
such that
En(0,T] x{0,1,...,J}) @)
= ([to,t1] >} {0 U ([tr,ta] x {1 U= U ([t sty x{ T}).
Each t1, to, ..., ty in (4) is called a jump time in E. If

tj_1 < tj, then [t;_1,t;] is called an interval of flow in E.

A function ¢ : dom ¢ — R™ is called a hybrid arc if dom ¢
is a hybrid time domain and ¢ is absolutely continuous
on each interval of flow in dom ¢. A hybrid arc ¢ is called
complete if sup{t + j | (¢,j) € dom ¢} = co. If a hybrid arc
satisfies the dynamics of a hybrid system H, then it is a
solution of H. See (Goebel et al., 2012; Sanfelice, 2021).

Definition 1. Given a hybrid system H on R™, a point
z. € R™ is said to be

e stable for H if for all € > 0, there exists 6 > 0 such that
for every solution ¢ to H with |¢(0,0) —z.| < 4, we have
that |@(t,j) — x«| < e for all (¢,j) € dom ¢.

o pre-attractive for H if there exists p > 0 such that for
each solution ¢ to H with |¢(0,0) —z.| < u, we have that
(t,7) — |o(t,§) — x| is bounded and, if ¢ is complete,
then

A [6(t7) — 2| = 0.

e pre-asymptotically stable (pAS) for H if x, is stable and

pre-attractive for .

2.2 Conical Approximations

Let S C R” be nonempty and let € S. The contingent
cone Tg(x) is the set of all vectors v € R™ such that there
exist a sequence of positive real numbers h; — 07 and a
sequence of vectors v; — v such that z + h;v; € S for all
i € N (Aubin and Frankowska, 2009). For any S C R™ and
x € S, the contingent cone of S at z is a cone, meaning that
for all x € Tg(x) and all & > 0, we have that ax € Ts(x).

For any x € R", we write the open ray from the origin
through x as ray(z) := {ax € R” | @ > 0} and the corre-
sponding closed ray as Tay(z) := {axz € R" | a > 0}.

The following assumption is necessary for the conical

approximation of a hybrid system H to be well-defined

at a point x, € R”.

Assumption 1. For a given hybrid system H := (C, f, D, g)

and x, € R", suppose that the following conditions hold:

(A1) If ., € D, then g(z.) = z. and g is continuously
differentiable at ..

(A2) If z, € C, then f is continuous at ..

(A3) If 2, € C and f(x,) =0,, then f is continuously
differentiable at z..

Definition 2. (Goebel et al. (2012)). Given a hybrid sys-
tem H = (C,f,D,g) and a point z, € R™ that satisfy
Assumption 1, the conical approximation of H at x, is

o Fy e L (@), if f(2.)#0 5. _
il f@)'{Ac<x—x*>,iff<m*>=o, ¢:=Tolz.)
vt =g(z):=Ap(z —.), D:=Tp(x.),
of P (5)

where Ag := —=(x,) and A4, := 8—9(37*) are the Jacobian
x x

matrices of g and f at x., respectively.

We call a hybrid system H a conical hybrid system if the
conical approximation of H at 0, is H itself. Namely, a
hybrid system # = (C, f, D, §) is a conical hybrid system
if ¢ and D are closed cones, f is either constant or linear,
and g is linear. If f is constant we say the conical system
# has constant flows and if f is linear, then we say that #
has linear flows.

An important property of conical hybrid systems is that
their dynamics are radially homogenous—that is, a conical
hybrid system behaves the same way at all distances from
the origin, except for scaling effects.

Proposition 1. Given a conical hybrid system H, let ¢ be
a solution to H and, for any r > 0, let



o {1, if 73{ has linear flows
r 1/r, if # has constant flows.
Then, for each r > 0, the hybrid arc 1, defined by
U (t,j) :=rd(art,j) Y(apt,j) € domo
is also a solution to .

(6)
(7)

The following result establishes local pre-asymptotic sta-
bility in a hybrid system via pre-asymptotic stability in its
conical approximation.

Theorem 1 (Goebel and Teel (2010), Thm. 3.3). Suppose a
hybrid system H and a point x, € R™ satisfy Assumption 1.
Let # be the conical approximation of H at x,. If 0, is
pAS for #H, then x, is locally pAS for H.

2.8 Directed Graphs with Set-valued Weights

This work relies on definitions from graph theory, provided
in this section. See (Diestel, 2017) for details.

A directed graph G = (V, A) consists of a set of vertices V
and a set of arrows A that point between vertices. Each
arrow in G starts at some vertex v; € V and ends at some
vertex vy € V. We write an arrow from v to vg as v; — vs.
In a directed graph, an arrow can have the same start and
end point (v; = ), in which case it is called a loop.

We also allow for multiple arrows that have the same start
and end points. To distinguish between such arrows, we
assign each arrow a label. An arrow with the label “L” is
written as a" = v; Ly vy, In this work, we use only two
labels: “F” and “J,” which stand for “flow” and “jump.”
Thus, for v1,v9 € V, there can be at most two distinct
arrows v 5 v and vy 2y vo. If the label is irrelevant for a
particular point of discussion, then it can be omitted.

A weighted directed graph G = (V, A, W) is a directed
graph (V, A) that also includes a weight function W that
defines a weight for each arrow in A. In a typical weighted
graph, the weight function assigns a real number to each
arrow, but in this work we use set-valued weights. Thus,
the weight function is a set-valued map W : A = R that
maps each arrow a in A to a set of real numbers W(a) C R.

Given a graph G = (V, A, W), a walk w through G is a
sequence of N € {1,2,...}U{oco} arrows in A, denoted
w=(ag, a1, ..., AN_1) =Vg —> V] —> Vg —> -+ —> Up,

such that a; = v; - v;41 foreach ¢ =0,1,..., N — 1.

For a finite-length walk w = (ag, ag,...,an_1), the set-

valued weight of w is defined as

N-—1
W(w) :{kark TkvelcV:V(octk),...,N—1}' (8)

If we let N = oo, then W(w) may not be well-defined
because the infinite product [[y- 7, in (8) may not
converge. For this paper, however, it is sufficient to define
W(w) if and only if [];2 , rx converges to 0 for every choice

of {rr}. For an infinite-length walk w := (a1, a2,...), we
have that W(w) = {0} if and only if
A ] re =0 ©)

for every sequence {ry};>, with r, € W(ay) for all £ € N.

For an arrow a € A, we write the supremal weight of a
as W(a) := sup W(a). Similarly, for a walk w, we define
W(w) := sup W(w).

3. CONICAL TRANSITION GRAPH

The CTG is designed to be a simplified representation
of a conical hybrid system # to facilitate the analysis of
pre-asymptotic stability. To this end, we exploit properties
of conical hybrid systems, along with assumptions on the
continuous dynamics of the hybrid system, so that the
CTG can be used to establish that the origin of # is pAS.

If we consider any ray from the origin and allow every point
in the ray to evolve according to the dynamics of 7, then
that ray is (in a sense) preserved by the dynamics. Using
this observation, the first simplification in the CTG comes
from using the nrv function to map R to S§~' so that

each point p € S ! represents every point in ray(p).

Mapping R"™ to ngl reduces the dimension by one and—
more importantly—allows for recurrent walks through the
CTG despite convergence of solutions (see Fig. 1). For
example, suppose that for some v € S*~!, a solution ¢ to
# repeatedly enters ray(v). That is, ¢(ty, ji) € ray(v) for
a sequence of hybrid times {(t, jx)} in dom ¢. Then,

v =nrv(¢(t1, j1)) = nrv(e(ts, j2)) = -
Furthermore, the set of possible rays that ¢ can transition
into from ¢(tx,jr) € ray(v) via a single jump or flow is
the same at every hybrid time (f,jr) in the sequence.
Exploiting this information allows us to uncover patterns
in the behavior of #.

By collapsing R" to Sj~', though, we lose information
about the magnitude (norm) of solutions. Instead, the
weight of each arrow in the CTG typically contains every
possible relative change of magnitude that a solution
(t,j) — o(t,j) can exhibit as (¢,7) — nrv(¢(t,j)) moves
from the arrow’s start vertex to its end vertex (both in
Sgil) via a single jump or a single interval of flow.

The second simplification arising from the CTG is that
it allows us to partition the analysis of pre-asymptotic
stability by considering separately solutions that are even-
tually continuous and solutions that are not eventually
continuous. A hybrid arc is called eventually continuous if
it has an interval of flow after the last jump time in its
hybrid time domain. The aspects of eventually continuous
solutions that are relevant to pre-asymptotic stability in
H = (C,f,D,§) can be determined by analyzing the
continuous-time system (C, f) In particular, our results
assume that 0,, is pAS for (&, f)—which is necessary for
0, to be pAS for # and can be verified using methods
from continuous-time system analysis. Thus, the CTG is
a tool for analyzing the behavior of solutions that are not
eventually continuous.

Assuming that 0, is pAS (and thus stable) for (¢, f)
has the added benefit that if we can show that a given
solution converges to 0, at jump times, then we can
establish asymptotic convergence without analyzing the
trajectories of solutions during intervals of flow. Thus,
when determining whether persistently jumping solutions
converge to the origin (e.g., to establish pre-asymptotic
stability), we can ignore the interior of intervals of flow
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(a) CTG for # in Example 1.

(b) CTG for #’ in Example 2.

Fig. 2. Conical transition graphs from Examples 1 and 2.

and only focus on showing that the solution at jump times
converges. By doing so, we treat flows as discrete tran-
sitions that take solutions from their values immediately
after a jump to their values immediately before the next
jump. This effectively ignores the ordinary time required
to traverse the flow because it is irrelevant for determining
pre-asymptotic stability. Based on this fact, we generalize
a flow that takes a solution ¢ from x©® € R™ to x® € R™
as a flow arrow nrv(z@) % nrv(z®) in the CTG.

We design the CTG as a directed graph with set-valued
weights with vertices that live in qu. Each vector v in
Sp~!is a vertex in the CTG if it is possible for a solution
to H to jump from or to v (i.e., if v € DU g(D)). An
arrow points between vertices v; and vy in the CTG if
a solution to # can move directly from v; to ray(vs) by
a single jump or a single interval of flow. Each arrow is
labeled by the type of transition it represents (either flow
or jump). The weight of the arrow v; — vy stores the
change in the magnitude of a solution that starts at v; and
ends in ray(v2). By multiplying together the weights of all
the arrows in each walk through the CTG, we can analyze
the relative change in distance of solutions from the origin.
Definition 3. Let # = (C,f,D,§) be a conical hybrid
system on R™. Let £ := {“J”, “F”} be a set of labels,
(where J stands for jump and F stands for flow). The CTG
of 1 is a weighted, directed graph G = (V, A, W) where
Y C Sg_l is a set of vertices, A C V2 x L is a set of arrows
between vertices, and W : A = Ry is a set-valued weight
function that assigns a set of nonnegative weights to each
arrow. The set of vertices is defined as

V= (Dug(D))nsSyt. (10)

For each v~ € VND, a jump arrow &’ = v~ L, v points
from v to
v =nrv(g(v ™)) € VN g(D).
The weight of a’ = v™ 2y o™ is the (singleton) set
W(a') == {lg(v )}
There is a flow arrow a* = v Ev® from v©@ € VN §(D)

to v®® € VN D if for some T > 0, there exists a function
[0,T] 3t — £(t) that satisfies

(11)

(12)

§(0) = v (13a)
€)= Few) vie (.7 (13b)
Etyec Vi € (0,7) (13c)
nrv(¢(T)) = v®. (13d)

The weight of each flow arrow a* = v L ¢® ig
W(a") := {|¢(T)| | € satisfies (13) for some T > 0}. (14)

Note that each verter in a CTG is defined as a vector in
Sg~' € R™. We use both terms interchangeably to refer to
elements of ¥V, depending on context.

If an arrow a := v; — vg starts at v; € St (so vy # 0,,),
then the weight of a is the set of all of the possible relative
changes in the magnitude of a solution that transitions
from ray(v1) to ray(vs) via a single jump or interval of
flow. On the other hand, if v; = 0, then the weight of a is
the set of all of the possible absolute changes in magnitude
for a transition from 0,, to ray(vs).

The following example demonstrates the construction of
the conical transition graph for a conical system.

Ezxample 1. Consider the following conical hybrid system
on Rzzo (the non-negative quadrant of R?):

flz):= F)] Veel:={zeRy) |z >z},

0 (15)

o) =2,
Withj > 0.Let vy := [{] and vy := %H],Sog(ﬁ) =Tay v
and D = tay vy. Thus, the set of vertices is
V= ({On} Uray v1 Uray vg) N Sg_l = {0, v1,02}
and the set of arrows is
A=1{0,L0,, vaLyvr, v1 Hvp}.
—_—— ——

Flow arrow

] Vo e Di—Tay[l],

Jump arrows
The CTG of # is depicted in Fig. 2(a). In Example 4, we
continue this example by computing the Weightsvof each
arrow and using the CTG to show 0,, is pAS for H. |

The next example considers a modification to the jump set
from Example 1 such that solutions are not unique.
Ezample 2. Let #' = (&', f,D’,§) be a conical hybrid
system with f, § given in Example 1, and
¢'={zeRy |22 >} and D :=tay[}]Uray[?].

Define v; and v as in Example 1 and let v3 := 715[%] As
shown in Fig. 2(b), the set of vertices is V = {0,,, v1, v2,v3}

and the set of arrows is

A:={0, L 0p, vg Lv1, va Loy, vy Bvs, vy g}
Note that v; has multiple successors and multiple predeces-
sors (the latter is a consequence of § being a singular linear
map that maps all of R onto tay(v1)). This example is
continued in Example 5. |

The need for the weights to be set-valued comes from the
fact that there may be multiple solutions to (13) with
different final magnitudes, |£(T)]|, as in (14). The following
example presents a conical hybrid system with a flow arrow
that has a non-singleton weight.

Ezxample 3. Consider the following conical hybrid system:
. |z =f(x):=-1, C:=Rsy,
ARSI - =

T =g(z) :=x/2, D:=Rxq.

Every maximal solution to 7 evolves by a non-deterministic

combination of flows and jumps until it reaches 0,,, at which

point it must jump from 0,, to 0,, forevermore. Thus, 0,, is
pre-asymptotically stable for #.

The vertex set of the CTG is V = {0, 1} and the arrow
set is A=4{02%0,1%1,1%50,1%1}. Consider, in par-
ticular, the arrow 12 1. For all T € (0,1), the function



£:[0,T] = Rx>q defined by ¢ — £(t) := 1 — ¢ satisfies (13)
with 0@ =1, v® :=1, and [{(T)|=1-T € (0,1). Thus,
151 is a flow arrow in the CTG with set-valued weight
W(1E1)=(0,1). |

In addition to having a non-singleton weight, the flow
arrow 1 5 1 in Example 3 illustrates an exceptional case
that we must consider. In Example 3, the origin is pAS
for 7, so we want every infinite-length walk through the
CTG to have weight {0} (see Theorem 2, below). But, the
weight of w:=1%1%17F% ... is actually W(w) = [0, 1).
To see W(w) contains (0,1), take any s > 0 and let
e = exp(—s/2F1) € W(1 5 1) = (0,1) for each k € N.
Then, by selecting {r;}72 in (8), we compute

H rp = e SA/2HL/AHL/84) — o=5 ¢ (0, 1),
k=0

Alternatively, selecting r := 1/2 € W(1 £ 1) results in
[T 1/2 = 0. Hence, W(w) = [0,1). The crux of the
problem is that by repeatedly transversing the loop 1 51,
the walk w represents a solution that flows part of the way
to the origin, then flows a little more, and a little more, ad
infinitum, without ever jumping. As indicated by the weight
W(w), we can construct such as sequence of flows that will
converge to 0, but also sequences that converge to any value
in [0,1). Fortunately, any finite sequence of sequential flow
arrows can be replaced by a single flow arrow, whereas
any infinite sequence of flow arrows represents a solution
that never jumps, so we analyze it using continuous-time
methods instead of the CTG. Therefore, we exclude walks
with sequential flow arrows from consideration.

Definition 4. (Well-formed Walk). We say that a walk w
through a conical transition graph G is well-formed if no
pair of sequential arrows in w are both flow arrows.

4. ESTABLISHING PRE-ASYMPTOTIC STABILITY
VIA THE CONICAL TRANSITION GRAPH

This section presents a result that allows for pre-asymptotic
stability of the origin of a conical hybrid system to be
established by analyzing the CTG.

Theorem 2. Let # = (C, f,D,§) be a conical hybrid sys-
tem with conical transition graph G = (V, A,W). Suppose
the following:

(S1) The origin is pre-asymptotically stable for (C, f).

(S2) There exists M > 0 such that every walk w through
G satisfies W(w) < M.

(S3) Every well-formed infinite-length walk w through G
satisfies W(w) = {0}.

Then, the origin of # is pAS. Moreover, if # is the conical
approximation of a hybrid system ‘H about a point x, € R™,
then x, is locally pAS for H.

When V is finite, condition (S3) is satisfied if and only
if W(w) < 1 for every elementary cycle w in G. A walk
through a graph is called an elementary cycle if it starts
and ends at the same vertex and does not visit any other
vertex more than once. To efficiently check (S3), one can
enumerate over all of the elementary cycles using John-
son’s enumeration algorithm (Johnson, 1975). For a CTG
with |V| vertices, |A| arrows, and ¢ elementary circuits
(not counting cyclic permutations), the worst-case time

complexity of Johnson’s algorithm is O ((|V| + |A])(c + 1)).
Furthermore, if the weight of each arrow is bounded and
V is finite, then (S3) implies (S2).

4.1 Methods for Constructing Conical Transition Graphs

To construct a conical transition graph, one must find
the vertex set V), the set of arrows A, and the weight
function W. Given D and §, the vertex set, the jump
arrows, and the weights of the jump arrows are immediately
available from the definitions in (10)—(12). The main
difficulty in constructing the CTG for a given conical
hybrid system is finding the flow arrows and their weights.

Computing flow arrows is straightforward for a conical hy-
brid system # with constant flows, due to the simple form
of solutions to & = f(0) from xg, namely ¢t — xo + tf(0).
Thus, we provide explicit formulas for finding flow arrows
and their weights for 7 with constant flows.

In the following result, we write the orthogonal component
of a vector v € R™ from the line spanned by a nonzero
vector x € R™ as orth, (v) :== v — ((v, z)/|z|*)z.

Proposition 2 (Flow Arrows — Constant Flows). Let # be

a conical system with constant flows and £(0,) # 0, and
let G be the CTG of H. For any vector v € R", we write
v, = orthg, yv. For each pair of vectors v'” € VN §(D)

and v € VN D, we have that v'® E v® is a flow arrow in
G if and only if
nrv(v(”) = nrv(v), (16a)
v® £ 0, or v #£0,, (16Db)
(0 =0, f(0,)) >0, (16c)
v £0, = @ -0, £(0,)) >0, and (16d)
v + (1 -0 eC VO e[0,1]. (16e)
The weight of any flow arrow a” := v©® £ 0® in G is

{0}, if v® =0,

(0,1), if v =v®=—nrvf(0,)

(1,00), if v =v® =nrvf(0,) (17)
(0,00), if v £nrvf(0,), v =nrvf(0,)

{lo@1/ 1},

Equation (16a) implies that

otherwise (i.e., v'” #£0,, v? #£0,).

v =0, ifandonlyif o= (18)
Furthermore, if v # 0,, and v” # 0,,, then
v /o] = v /o], (19)
as shown in Fig. 3 with v* := v /[v”| = 07 /|v{].

To illustrate the application of Theorem 2, we return to
the conical hybrid system presented in Example 1.

Example 4. Consider the conical hybrid system # in Ex-
ample 1. The weights of the jump arrows can be easily com-
puted from the definition in (12) to be W(0,, % 0,,) = {0}
and W(va L v1) = {|g(ve)|} = {7v/v2}. By Proposition 2,
the weight of the flow arrow is W(v; Bvp) = {v2}.
In Fig. 2(a), we see that each vertex has a single successor,
so there are exactly three infinite-length walks through G:

Pp— F J F

Wp 1=V U2 U1 5 -
. J F J

Wy 1= Vg Ly vy U2 Ly e

wo :=0p L0, L <o,
and

The weights of each infinite-length walk can be directly
computed, but to illustrate a method for graphs with



Fig. 3. For a flow arrow a" := 0@ Z9® the vector
v* =0 /|[v”| is equal to v”/|v?|. The vectors v*,
@ /||, and v® /|v{?] are colinear on a cylinder of

radius 1 with axis f(0,,).

infinitely-many infinite-length walks, we will use elemen-
tary cycles. There are three elementary cycles in G, namely

co=0p L0, c=v15vLv, ¢ i=v2hv Lo
Using the weights computed above, W(cg) = {0} and

Wier) = W(es) = {(7/V2)(V2)} = {7}
(the equality W(cr) = W(¢,) is a result of ¢z and ¢; being
cyclic permutations of each other). Thus, for all vy € (0,1),
every elementary cycle has a supremal weight less than 1,
so (S3) is satisfied. For comparison, we can also find the
weight of wy without using elementary cycles:

W(wr) = {(V2)(v/V2)(V2)(7/v2)---}

_ J{o}, if vy € (0,1)
" ] undefined, if v > 1.

Furthermore, it is easily shown that (S1) and (S2) are
satisfied. Therefore, by Theorem 2, the point 0, is pre-
asymptotically stable for # when v € (0, 1). |

Ezample 5. (Continuation of Example 2). The CTG of #/
from Example 2, as shown in Fig. 2(b), has three ele-
mentary cycles, not counting cyclic permutations: ¢y :=
0n 2L 0, (with weight {0}), ¢1 1= v1 £ vo Ly vy (with weight
{~}, computed in Example 4), and ¢y = v; B vg L vy,
From the definition of jump arrow weights in (12),
W(vs L v1) = {2v/+/5}. Applying Proposition 2, we find
W(v1 £ v3) = {v/5}. Thus, W(c2) = {(27/V5)(V5)} =
{2v}. Therefore, if v < 1/2, then W(c2) < 1, so we con-
clude that the origin of #’ is pAS for all v € (0,1/2). H

5. FUTURE WORK

Broadly speaking, there are two directions for future
work: 1) Expand the scope of systems for which applying
Theorem 2 is tractable and 2) extend the CTG results to
approximations that are more general than Definition 2.

In the first direction, we highlight two impediments, cur-
rently, to applying Theorem 2. In Proposition 2, we gave
methods for generating flow arrows and their weights for
constant flows, but analogous methods for linear flows
remains an open question. Additionally, checking (S2)
and (S3) in Theorem 2 is difficult when the CTG contains
infinitely-many vertices. The conic abstraction approach

from Bogomolov et al. (2017) offers inspiration for solving
both impediments. Conic abstractions are constructed
by identifying conical regions of the state space where
linear flows are approximately “straight.” This allows for
determining which regions are immediately reachable from
each other region, allowing one to create a directed graph
that describes which regions are reachable from a given
initial set. Similarly, for conical hybrid systems with an
infinite CTG, we envision grouping vertices in the CTG
to form an “abstracted” CTG that is a finite graph such
that satisfaction of (S2) and (S3) by the abstracted CTG
implies satisfaction of (S2) and (S3) by the original CTG.

In the second direction for future work, there are two
generalizations that can be made to conical approximations
(Definition 2) without needing significant modifications to
the CTG-based analysis. In particular, conical approxima-
tions can be extended to allow for hybrid systems with
switching between logical modes as in (Goebel and Teel,
2010, Sec. 7), and for hybrid systems with set-valued flow
and jump maps as in (Goebel and Teel, 2010, Thm. 3.16).
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