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Abstract. The tumor cell population in cancer tissue has distinct molecular char-
acteristics and exhibits different phenotypes, thus, resulting in different subpopu-
lations. This phenomenon is known as Intratumor Heterogeneity (ITH), a major
contributor to drug resistance, poor prognosis, etc. Therefore, quantifying the lev-
els of ITH in cancer patients is essential, and many algorithms do so in different
ways, using different types of omics data. DEPTH2 algorithm utilizes transcrip-
tomic data to assess ITH scores and exhibits promising performance. However, it
quantifies ITH using all genes, limiting the identification of ITH-related prognos-
tic genes. We hypothesize that a subset of key genes is sufficient to quantify the
ITH level, and this subset of key genes could be ITH-related prognostic genes.
To prove our hypothesis, we propose an unsupervised deep learning-based frame-
work using Concrete Autoencoder (CAE) to select a subset of cancer-specific key
genes for ITH evaluation. For the experiment, we used gene expression profile
data of breast, kidney, and lung cancer tumor cohorts from the TCGA repository.
Multi-run CAE identified three sets of key genes for each cancer cohort. Com-
paring ITH scores derived from all genes and CAE-selected key genes showed
similar prognostic outcomes. Subtypes of lung cancer displayed consistent ITH
distributions for both gene sets. Based on these observations, it can be concluded
that a subset of key genes, instead of all, is sufficient for ITH quantification. Our
results also showed that many key genes are prognostically significant and can be
used as therapeutic targets.

Keywords: Concrete Autoencoder · Deep Learning · Gene Expression ·
Intratumor Heterogeneity · ITH

1 Introduction

Intratumor Heterogeneity (ITH) refers to different types of tumor cell subpopulations
within a tumor [1]. Even though these cell subpopulations have the same origin (tumor
tissue, patient), they exhibit different phenotypes and molecular characteristics. ITH is
one of the main challenges for targeted cancer therapy, as the difference in tumor cells
and their microenvironments makes it harder for targeted cancer therapy to eradicate
cancer cells [2, 3]. Therefore, an accurate assessment of ITH is essential to understand
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the tumor dynamics and the development of effective and durable therapeutic strategies.
ITH causes can vary depending on different levels, such as the genome, epigenome,
transcriptome, etc. [4]. For example, reduced DNA damage mechanisms, microenviron-
mental factors (hypoxia, acidosis, etc.) [5], subclonal evolution [2], etc., contribute to
ITH at the genomic level. The methylation of tumor suppressor genes is an example of
ITH at the epigenomic level [6]. Different gene expression patterns contribute to ITH at
the transcriptome level, which is observed to mirror ITH at the genomic or epigenomic
level or both [5, 7]. This makes transcriptomic data suitable for quantifying ITH.

Different algorithms for quantifying ITH exist, such as ABSOLUTE [8], MATH
[9], EXPANDS [10], and PhyloWGS [11]. These algorithms use genomic data, such
as – copy number alterations (CNA), somatic mutation profiles, etc. Some algorithms
take advantage of transcriptome profile that mirrors ITH at the genomic and epigenomic
level, such as – tITH [12], sITH [13], DEPTH [14], and DEPTH2 [15]. In contrast
to other ITH evaluation techniques, such as DEPTH and others, the DEPTH2 method
assesses ITH independently of normal controls. This implies that it can be utilized for
all tumor gene expression profiles regardless of the availability of corresponding normal
samples’ gene expression data. tITH requires protein-protein interaction (PPI) network
along with gene expression data. Unlike tITH, DEPTH2 calculates the ITH score using
only gene expression data.

Though the DEPTH2 method is statistically sound, the drawbacks are- (i) it uses
expression values of all genes (~20,000) in calculating the ITH score and (ii) it can-
not guide finding the prognostically significant genes. We argue that not all genes are
related to ITH, and a subset of key genes is sufficient to calculate the ITH score at the
transcriptome level.

This study presents a deep learning-based computational framework that utilizes an
unsupervised concrete autoencoder (CAE) to identify key genes for quantifying Intra-
tumor Heterogeneity (ITH). The framework selects a subset of key genes from Breast
Invasive Carcinoma (BRCA), Kidney Renal Carcinoma (KIRC), and Lung Adenocarci-
noma (LUAD) using expression profile data from the TCGA repository. The ITH scores
are then calculated using all genes and the selected key genes. The results demonstrate
that using the subset of 100 key genes outperforms all ~20,000 genes in terms of survival
and prognostic outcomes for the three cancer types. The key genes exhibit consistent
levels of ITH across cancer subtypes and show potential as prognostic markers and ther-
apeutic targets. This study highlights the effectiveness of a reduced set of key genes
in quantifying ITH at the transcriptome level. The overall framework is depicted in
Supplementary Fig. S1.

2 Materials and Methods

2.1 Dataset Collection

We collected gene expression datasets of BRCA,LUAD, and KIRC cancers from the
UCSC Xena Browser database [16]. Each dataset contains expression profiles of 20,530
mRNAs. The number of tumor samples for each cancer type was as follows: BRCA
(1097 samples), LUAD (533 samples), and KIRC (517 samples).
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2.2 Concrete Autoencoder to Select Cancer-Specific Key Genes

Concrete Autoencoder (CAE) [17], an unsupervised deep learning approach is used to
identify cancer-specific key genes. CAE identifies features most informative for a given
dataset [18–23]. CAE differs from the standard Autoencoder in the encoder part, where
CAE employs a concrete selector layer (See Fig. S2). This selector layer is based on
Concrete distribution [24], a relaxed variant of discrete distribution. Unlike the encoder
part of the CAE, the decoder part resembles closely with the standard Autoencoder. The
selector layer is used to incorporate discrete distribution into deep learning algorithms.
For example, CAE uses it to learn a subset of the most informative features and produce
minimum reconstruction error. In the learning phase, the selector layer learns a subset of
features, which depends on a hyperparameter called Temperature (T), which is gradually
lowered during the training phase to a low value using a simple annealing scheduling.
This gradual decrease in temperature helps the concrete distribution to learn and select
a definite subset of features [17]. In the selector layer, each unit selects a unique feature
with the highest probability from the original feature space. Thus, CAE selects the most
informative subset of features, and the reconstruction of the original feature space using
the selected subset of features produces minimum reconstruction error. In the original
Autoencoder, the features learned at the encoder part are latent features, whereas those
learned at CAE are actual features. CAE was trained on each gene expression data of
BRCA, KIRC, and LUAD, and 100 features were selected in each run. While training
CAE, the dataset was divided randomly into 80/20 split for training and testing. Details
of hyperparameter tuning are in Table S1.

2.3 Training CAE

Figure S3 shows the characteristics curve forCAEor an instance of the training behaviors
of CAE for the LUAD dataset. The hyperparameter, Temperature (T), was reduced
using a simple annealing schedule from 10 to 0.1 from the start epoch to the last. The
reconstruction errors (loss) for the training and validation sets are plotted using blue and
red curves, respectively. It shows that both errors were relatively high during the early
training phase, as expected, and both reached a minimum plateau at the end. Also, the
mean-max probability finally approaches 1.0 (yellow curve). TheCAEwas implemented
using Keras (https://keras.io/). Experiments were conducted on the high-performance
cluster with NVIDIA Quatro K620 GPU with 384 cores and 2 GB memory devices.

2.4 ITH Level Estimation Method

To calculate the Intratumor Heterogeneity (ITH) score, we used a scoringmethod named
- Deviating Gene Expression Profiling Tumor Heterogeneity, or DEPTH2 in short [15],
defined as –
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where,
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where T is the tumor sample for which the score is being calculated. Gi is the i-th
gene, and m is the number of genes. ex(Gi,T ) expression of gene Gi in sample T. It
assigns a score to each patient. It is based on standard deviations of the z-score of the
gene expression value variations. If a tumor displays similar z-scored expression values
across most genes, it will have a lowDEPTH2 score and a lower ITH level. In contrast, if
there is variation in gene expression alterations, the tumor will receive a higher DEPTH2
score. This score indicates how much the gene expressions deviate from the norm for all
tumors and genes within the matrix. We calculated the ITH score for each cancer patient
of BRCA, KIRC, and LUAD employing DEPTH2 using two sets of genes. One score
uses all the genes, and the other uses only the key genes selected by multi-run CAE.

2.5 Survival Analysis

Survival Analysis was performed to check whether two groups of patients based on high
and low ITH scores are significantly distinguishable in prognosis. In our analysis, the
event of interest is the death of cancer patients.

Survival Analysis Based on ITH Scores: Samples were sorted in descending order
of the ITH score, and then the top and bottom of the total samples were taken as two
groups. This analysis compared the prognostic importance of ITH scores derived using
all genes and key genes (our study).

Survival Analysis Based on Each Key Gene: The cohort was divided into two groups
based on the median gene expression values. This survival analysis helped identify
prognostically significant genes.

After forming two groups, the Kaplan-Meier curves were plotted, and the Log-rank
test was performed to check the statistical significance of the difference in survival
function.

3 Results and Discussion

3.1 Multi-run CAE to Select Key Genes

Due to the stochastic nature of CAE, themodelwas trained ten times, and in each run, 100
features were selected for each cancer cohort - BRCA, KIRC, and LUAD. Figure 1(a)
shows the stochastic nature of CAE since only 16 genes are common between three
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single-run CAE. In the case of 10-run CAE, the top 100 features were selected from
the combined list sorted in descending order based on the frequency of appearance of
a feature in 10 runs. It is clear from Fig. 1(b) that there are 53 genes common between
three batches of 10 runs, which is more than the common genes (16 genes) in three single
runs. Thus, a multi-run approach was adopted to select the robust set of features.

The top 100 frequent features were chosen to select the key features based on the
assumption that the more frequent a feature in different runs, the more informative the
feature is. The combined lists of features derived from 10-run CAE consist of 469, 527,
and 435 genes for BRCA, KIRC, and LUAD, respectively. The frequency range of the
top 100 features is 3 to 10 for each cancer cohort, which means that the most frequent
features appeared in all ten runs, and the least frequent one appeared in 3 runs.

Fig. 1. Selecting the robust set of features. (a) Venn diagram of three sets of 100 genes from three
single-run CAE; CAE produces only 16 features common between single runs. (b) three sets of
most frequent 100 features from 10-run CAE. 10-run CAE produces more features (53 genes)
common between three batches of runs. Thus, multi-run CAE produces a robust set of features.

3.2 Multi-run CAE Selects Cancer-specific Genes

We investigated whether there were any common genes between two sets or among the
three sets of key genes derived from three cancers, shown by the Venn diagram in Fig.
S4. It shows that there is no common gene between the three gene sets. However, a
few genes are common between each pair of gene sets: 5 between BRCA and LUAD, 3
between KIRC and BRCA, and 3 between KIRC and LUAD. Since the size of each set
is 100 and there are only a few genes common between two sets and none between the
three sets, thus, the key gene sets are cancer-specific.

3.3 All Genes vs. Key Genes in ITH Scoring: Whole Cancer Cohorts

We compared the ITH scores calculated for BRCA, KIRC, and LUAD cohorts using two
different sets of genes: (i) DEPTH2 score calculated using all genes and (ii) DEPTH2
score calculated using only the key genes selected by the multi-run CAE system (our
work). Survival analysis is used to compare the two ITH scores. Figure 2 presents the
results of survival analyses, Kaplan Meier plots, for cancer cohort - BRCA based on
ITH scores derived from all genes (Fig. 2a) and key genes (Fig. 2b).
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Fig. 2. Survival analysis of BRCA cohort. KaplanMeier plots based onDEPTH2 score calculated
using all genes (a) and key genes (b).

It is evident from Kaplan Meier plots that high DEPTH2 scores are related to poor
prognosis, and low DEPTH2 scores have a higher chance of survival.

Survival analysis of BRCA showed a P-value of 0.1383 (not significant) and Hazard
Ratio (HR) of 1.36 using all genes (Fig. 2a), while key genes produced a significant
result with a P-value of 0.0291 and HR of 1.55 (Fig. 2b). The latter case is prognostically
significant (P-value ≤ 0.05) compared to the former, thus validating our claim.

Similarly, better results were found using key genes than all genes both in LUAD
(P-value: 0.0019 vs. 0.109; HR: 1.79 vs. 1.34) and KIRC (P-value: 5.18e−07 vs. 0.0018,
HR: 2.67 vs. 1.78), as shown in Fig. S5a–b and S5c–d.

Our investigation showed that 100 key genes produced better results than all genes
(~20,000) in three types of cancers. Thus, we do not need all genes to evaluate the ITH
scores.

3.4 All Genes vs. Key Genes in ITH Scoring: LUAD Subtypes

In this section, we show the comparison of ITH scores (DEPTH2) for LUAD subtypes
calculated using all genes versus key genes. Of 435 LUAD patients, 55, 34, and 54 are
labeled as Terminal Respiratory Unit (TRU), Proximal Proliferation (PP), and Proximal
Inflammation (PI), respectively. The remaining patients did not have any subtype-based
labels. This molecular subtyping was done in [25]. It is evident from survival analysis
that the TRU subtype is prognostically favorable and has a higher chance of survival
than the PI and PP subtypes combined (Fig. S6).

Figure 3 shows the ITH score distribution for three subtypes, using all genes and
key genes. Min-max normalization on DEPTH2 scores was performed to bring the
distribution to the same scale. It is seen that the subtype TRU has comparatively lower
values in ITH score than other subtypes, which supports the higher chance of survival for
the TRU subtype than PI and PP combined (Fig. S6). It is also clear that the distribution
of ITH scores for three subtypes remained the same for all genes and key genes.

We performed correlation analysis to compare the distribution of theDEPTH2 scores
using all genes and key genes, and the results are shown in Table S2. It is observed that
there is a relatively high correlation between DEPTH2 scores of each subtype of LUAD
cancer using all and key genes. It is clear from the P-values (ns: not significant) in
Fig. 3 that the two scores for each subtype derived using all genes and key genes are
not significantly different. Both all genes and key genes produced the same level of
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Fig. 3. Comparison of ITHscores of threemolecular subtypes ofLUADusing all genes (labeled as
‘all’) and key genes (labeled as ‘key’). Distribution of Min-max normalized ITH score (DEPTH2)
in three molecular subtypes of LUAD in violin plots. The Mann-Whitney-Wilcoxon test between
two distributions was performed, and stars marked the p-value significance. P-value annotation
legend: ns (not significant): 0.05 < p ≤ 1, *: 0.01 < p ≤ 0.05, **: 0.001 < p ≤ 0.01, ***: 0.0001
< p ≤ 0.001, ****: p ≤ 0.0001

difference in ITH between two subtypes. For example, PP and TRU (****), TRU and
PI (*), and PP and PI (***).

Based on these observations, we do not need ~20,000 genes to calculate the ITH
score; only 100 key genes will suffice.

3.5 Survival Analysis of Key Genes

Survival analysis was performed on each key gene from their respective cancer cohort
to identify whether they possess prognostic capabilities. Figure S5 shows the forest plot
of the prognostically significant genes and the summary of survival analyses in terms of
Logrank P-value and Hazard Ratio with a 95% confidence interval. The thresholds for
prognostically significant genes are Logrank P-value ≤ 0.05 and Hazard Ratio, HR �= 1.
Of 100 key genes for BRCA, 15 were prognostically significant, as shown in the forest
plot in Fig. S7. Similarly, for KIRC and LUAD, 30 and 61 genes were prognostically
significant. The list of genes with prognostically significant genes marked as bold is
given in Table S3.

4 Conclusion and Future Direction

This study proposes that a subset of key genes instead of all genes (~20,000) is adequate
for evaluating the ITH scores of individual tumors. To test this hypothesis, a computa-
tional frameworkwas developed using amulti-run concrete autoencoder to select the key
genes from gene expression profile data. Results showed that using only the selected 100
key genes instead of all ~20,000 genes produced better survival and prognostic outcomes
for three cancers (BRCA, KIRC, and LUAD). Our investigation showed that key genes
produce the same levels of ITH at the cancer subtype levels. We also showed that many
of these key genes are prognostically significant, which can be investigated further as
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possible therapeutic targets. This study concludes that a subset of key genes is sufficient
to quantify the ITH at the transcriptome level.

However, this study has its limitations. The intratumor heterogeneity (ITH) is deter-
mined by genetic and epigenetic variation within an individual’s tumor. The transcrip-
tome reflects both types of heterogeneity, meaning that a unique set of genes may dictate
ITH for each patient. However, our study used the same key genes to assess ITH across
all patients for a specific type of tumor, which presents a limitation. The selection of 10
runs in multi-run CAE was arbitrary and may not be optimal for identifying a stable set
of features for BRCA, KIRC, and LUAD cohorts. Despite these limitations, the study
demonstrated that a short list of key genes is effective in assessing ITH levels. In future
research, wewill extend this study to determine the ideal number of runs needed to select
a reliable feature set across different cohorts using multi-run CAE. Additionally, we aim
to create an approach that identifies patient-specific key genes for evaluating ITH.
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