
Generating In-Distribution Proxy Graphs for Explaining Graph Neural
Networks

Zhuomin Chen 1 Jiaxing Zhang 2 Jingchao Ni 3 Xiaoting Li 4 Yuchen Bian 5 Md Mezbahul Islam 1

Ananda Mohan Mondal 1 Hua Wei 6 Dongsheng Luo 1

Abstract

Graph Neural Networks (GNNs) have become
a building block in graph data processing, with
wide applications in critical domains. The grow-
ing needs to deploy GNNs in high-stakes appli-
cations necessitate explainability for users in the
decision-making processes. A popular paradigm
for the explainability of GNNs is to identify ex-
plainable subgraphs by comparing their labels
with the ones of original graphs. This task is
challenging due to the substantial distributional
shift from the original graphs in the training set
to the set of explainable subgraphs, which pre-
vents accurate prediction of labels with the sub-
graphs. To address it, in this paper, we propose a
novel method that generates proxy graphs for ex-
plainable subgraphs that are in the distribution of
training data. We introduce a parametric method
that employs graph generators to produce proxy
graphs. A new training objective based on infor-
mation theory is designed to ensure that proxy
graphs not only adhere to the distribution of train-
ing data but also preserve explanatory factors.
Such generated proxy graphs can be reliably used
to approximate the predictions of the labels of ex-
plainable subgraphs. Empirical evaluations across
various datasets demonstrate our method achieves
more accurate explanations for GNNs.

1Knight Foundation School of Computing and Information
Sciences, Florida International University, Miami, USA 2New
Jersey Institute of Technology, Newark, USA 3Department of
Computer Science, University of Houston, Houston, USA 4Visa
Research, USA 5Amazon Search A9, USA 6School of Computing
and Augmented Intelligence, Arizona State University, Tempe,
USA. Correspondence to: Zhuomin Chen <zchen051@fiu.edu>,
Dongsheng Luo <dluo@fiu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

(a) Explanation process (b) OOD problem

Figure 1. Examples of the explanation process and out-of-
distribution problem. (a) is the explanation process for a graph
learning model. The original graph G undergoes an explanation
process, resulting in an explanation graph G′ that highlights the
most significant features and relationships; (b) shows the explana-
tion graph G′ is out of distribution where the GNN is trained.

1. Introduction
Graph Neural Networks (GNNs) have emerged as a pivotal
technology for handling graph-structured data, demonstrat-
ing remarkable performance in various applications includ-
ing node classification and link prediction (Kipf & Welling,
2017; Hamilton et al., 2017; Veličković et al., 2018; Scarselli
et al., 2008). Their growing use in critical sectors such as
healthcare and fraud detection has escalated the need for
explainability in their decision-making processes (Wu et al.,
2022; Li et al., 2022; Zhang et al., 2024). To meet this
demand, a variety of explanation methods have been re-
cently developed to interpret the behavior of GNN models.
These methods primarily concentrate on identifying a sub-
graph that significantly impacts the model’s prediction for a
particular instance (Ying et al., 2019; Luo et al., 2020).

A prominent approach to explain GNNs involves the Graph
Information Bottleneck (GIB) principle (Wu et al., 2020).
This principle focuses on extracting a compact yet infor-
mative subgraph from the input graph, ensuring that this
subgraph retains sufficient information for the model to
maintain its original prediction. A key aspect of the GIB
approach is evaluating the predictive capability of such a
subgraph. Typically, this is accomplished by feeding the
subgraph into the GNN model and comparing its prediction
against that of the complete input graph.

Although it is intuitively correct, the underlying assump-
tion of the aforementioned approach – GNN model can

1

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

make accurate predictions on explanation subgraphs – may
not always hold. As shown in Figure 1, explanation sub-
graphs can significantly deviate from the distribution of
original graphs, leading to an Out-Of-Distribution (OOD)
issue (Zhang et al., 2023b; Fang et al., 2023c;a; Zheng et al.,
2024). For instance, in the MUTAG dataset (Debnath et al.,
1991), each graph represents a molecule, with nodes sym-
bolizing atoms and edges indicating chemical bonds. The
molecular graphs in this dataset usually contain hundreds
of edges. In contrast, the NO2 functional group, identified
as a key subgraph influencing positive mutagenicity in a
molecule, comprises merely 2 edges. This stark contrast in
structural properties leads to a significant difference in the
distributions of explanation subgraphs and original graphs.
Since the model was trained with original graphs, the relia-
bility of predictions on subgraphs is undermined due to the
distribution shifting problem.

Several pioneering studies have attempted to address this
distributional challenge (Fang et al., 2023c; Zhang et al.,
2023b;a). For example, CGE regards the GNN model as
a transparent, fully accessible system. It considers the
GNN model as a teacher network and employs an additional
“student” network to predict the labels of explanation sub-
graphs (Fang et al., 2023c). As another example, MixupEx-
plainer (Zhang et al., 2023b) generates a mixed graph for the
explanation by blending it with a non-explanatory subgraph
from a different input graph. This method posits that the
mixup graph aligns with the distribution of the original input
graphs. However, this claim is predicated on a rather sim-
plistic assumption that the explanation and non-explanatory
subgraphs are independently drawn. However, in real-world
applications, these methods often face practical limitations.
The dependence on a “white box” model in CGE and the
oversimplified assumptions in MixupExplainer are not uni-
versally applicable. Instead, GNN models are usually given
as “black boxes”, and the graphs in real-life applications do
not conform to strict independence constraints, highlighting
the need for more versatile and realistic approaches to the
OOD problem.

In response to these challenges, in this work, we introduce
an innovative concept of proxy graphs to the realm of ex-
plainable GNNs. These proxy graphs are designed to be
both explanation-preserving and distributionally aligned
with the training data. By this means, the predictive capa-
bilities of explanation subgraphs can be reliably inferred
from the corresponding proxy graphs. We begin with a thor-
ough investigation into the feasible conditions necessary
for generating such in-distributed proxy graphs. Leverag-
ing our findings, we further propose a novel architecture
that incorporates variational graph auto-encoders to produce
proxy graphs. Specifically, we utilize a graph auto-encoder
to reconstruct the explainable subgraph and another varia-
tional auto-encoder to generate a non-explanatory subgraph.

A proxy graph is then obtained by combining two output
subgraphs of auto-encoders. We delineate our main contri-
butions as follows:

• We systematically analyze and address the challenge of
the OOD issue in explainable GNNs, which is pivotal for
enhancing the reliability and interpretability of GNNs in
real-world applications.

• We introduce an innovative parametric method that in-
corporates graph auto-encoders to produce in-distributed
proxy graphs that are both situated in the original data dis-
tribution and preserve essential explanation information.
This facilitates more precise and interpretable explana-
tions in GNN applications.

• Through comprehensive experiments on various real-
world datasets, we substantiate the effectiveness of our
proposed approach, showcasing its practical utility and
superiority in producing explanations.

2. Notations and Preliminary
2.1. Notations and Problem Formulation

We denote a graph G from an graph set G by a triplet
(V, E ;X), where V = {v1, v2, ..., vn} is the node set and
E ⊆ V × V is the edge set. X ∈ Rn×d is the node feature
matrix, where d is the feature dimension and the i-th row is
the feature vector associated with node vi. The adjacency
matrix of G is denoted by A ∈ {0, 1}n×n, which is deter-
mined by the edge set E such that Aij = 1 if (vi, vj) ∈ E ,
Aij = 0, otherwise. In this paper, we focus on the graph
classification task, and node classification can be converted
to computation graph classification problem (Ying et al.,
2019; Luo et al., 2020). Specifically, for graph classification
task, each graph G is associated with a label Y ∈ Y . The
to-be-explained GNN model f(·) has been well-trained to
classify G into its class, i.e., f : G 7→ {1, 2, · · · , |Y|}.

Following the existing works (Ying et al., 2019; Luo et al.,
2020; Yuan et al., 2022; Huang et al., 2024), the explanation
methods under consideration in this paper are model/task
agnostic and treat GNN models as black boxes — i.e., the
so-called post-hoc, instance-level explanation methods. For-
mally, our research problem is described as follows:

Problem 1 (Post-hoc Instance-level GNN Explanation).
Given a to-be-explained GNN model f(·) and a set of graphs
G, the goal of post-hoc instance-level explanation is to learn
a parametric function so that for an arbitrary graph G ∈ G,
it finds a compact subgraph G∗ ⊆ G that can “explain” the
prediction f(G). The parametric mapping Ψψ : G 7→ G∗ is
called an explanation function, where G∗ is the alphabet of
G∗, and ψ is the parameter of the explanation function.

2

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

2.2. Graph Information Bottleneck as the Objective
Function

The Information Bottleneck (IB) principle, foundational in
learning dense representations, suggests that optimal rep-
resentations should balance minimal and sufficient infor-
mation for predictions (Tishby et al., 2000). This concept
has been adapted for GNNs through the Graph Information
Bottleneck (GIB) approach, consolidating various post-hoc
GNN explanation methods like GNNExplainer (Ying et al.,
2019) and PGExplainer (Luo et al., 2020). The GIB frame-
work aims to find a subgraph G∗ to explain a GNN model’s
prediction on a graph G as (Zhang et al., 2023b):

G∗ = argmin
G′

I(G,G′)− αI(Y,G′), (1)

where G′ is a candidate explanatory subgraph, Y is the
label, and α is a balance parameter. The first term is the
mutual information between the original graph G and the
explanatory subgraph G′ and the second term is negative
mutual information of Y and the explanatory subgraph G′.
At a high level, the first term encourages detecting a small
and dense subgraph for explanation, and the second term
requires that the explanatory subgraph is label preserving.

Due to the intractability of mutual information between Y
and G′ in equation 1, some existing works (Wu et al., 2020;
Miao et al., 2022) derived a parameterized variational lower
bound of I(Y,G′):

I(Y,G′) ≥ EG′,Y [logP (Y |G′)] +H(Y), (2)

where the first term measures how well the subgraphs pre-
dict the labels. A higher value indicates that the subgraphs
are, on average, more predictive of the correct labels. The
second term H(Y) quantifies the amount of inherent unpre-
dictability or variability in the labels. By introducing equa-
tion 2 to equation 1, a tractable upper bound is used as the
objective:

G∗ = argmin
G′

I(G,G′)− αEG′,Y [logP (Y |G′)], (3)

where H(Y) is omitted due to its independence to G′.

The OOD Problem in GIB. In the existing research, the
estimation of P (Y |G′) is typically achieved by applying
the to-be-explained model f(·) to the input graph G′ (Ying
et al., 2019; Miao et al., 2022). A critical assumption in
these approaches involves the GNN model’s ability to ac-
curately predict candidate explanation subgraphs G′. This
assumption, however, overlooks the OOD problem, where
the distribution of explanation subgraphs significantly devi-
ates from that of the original training graphs (Zhang et al.,
2023b; Fang et al., 2023a;c;b; Zheng et al., 2024; Amara

et al., 2023). Formally, let PG be the distribution of the train-
ing graphs, and PG′ be the distribution of the explanation
subgraphs. The core issue in the GIB objective function is
caused by PG ̸= PG′ . This distributional disparity under-
mines the predictive reliability of the model f(·), trained on
PG when applied to subgraphs from PG′ . As a result, the
predictive power of explanations provided by f(G′) is an
unreliable approximation of P (Y |G′) in equation 3.

3. Graph Information Bottleneck with Proxy
Graphs

In this section, we propose the concept of proxy graphs to
mitigate the aforementioned OOD issue. A proxy graph
not only retains the label information present in G′ but also
conforms to the distribution of the original graph dataset.
Specifically, we assume that proxy graphs G̃ are drawn
from the distribution PG and reformulate the estimation of
P (Y |G′) by marginalizing over the distribution of proxy
graphs as follows:

P (Y |G′) = EG̃∼PG
[P (Y |G̃) · P (G̃|G′)]. (4)

In equation 4, we address the OOD challenge by predict-
ing Y using a proxy graph G̃ instead of directly using G′.
This approach is particularly effective when the conditional
probability P (Y |·) is approximated by the model f(·). To
facilitate the maximization of the likelihood as outlined
in equation 4, we further approximate P (G̃|G′) with a pa-
rameterized function, denoted as Qϕ(G̃|G′). The formal
representation is thus given by

P (Y |G′) = EG̃∼PG
[P (Y |G̃) ·Qϕ(G̃|G′)], (5)

where ϕ denotes model parameters.

Given the combinatorial complexity inherent in graph struc-
tures, it is computationally infeasible to enumerate all po-
tential proxy graphs G̃ from the unknown distribution PG ,
which is necessary for calculating equation 5. To overcome
this challenge, we propose to approximate PG with the pa-
rameterized function Qϕ(G̃|G′), and estimate equation 5
with a Monte Carlo estimator that samples proxy graphs
from Qϕ(G̃|G′). That is

P (Y |G′) = EG̃∼Qϕ(G̃|G′)[P (Y |G̃)], (6)

with constraints

Qϕ(G̃|G′) ≈ PG , H(Y |G̃) ≈ H(Y |G′), (7)

where the first constraint ensures that G̃ is sampled from
a distribution that approximates PG , effectively addressing
the OOD challenge. The second constraint guarantees that
the label information preserved in G̃ is similar to that in G′.

3

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Therefore, combining equation 3, equation 6 and equation 7,
our proxy graph-induced objective function becomes:

argmin
G′

I(G,G′)− αEG′,Y [logEG̃∼Qϕ(G̃|G′)[P (Y |G̃)]]

s.t. Qϕ(G̃|G′) ≈ PG , H(Y |G̃) ≈ H(Y |G′).
(8)

Bi-level optimization. In equation 8, we formulate a joint
optimization loss function that aims to identify the opti-
mal explanation alongside its corresponding proxy graphs.
Building upon this, we refine the framework by replacing
the first constraint with a distributional distance measure,
specifically the Kullback-Leibler (KL) divergence, between
Qϕ(G̃|G′) and PG . This leads to the development of a bi-
level optimization model. Formally, the model is expressed
as follows:

argmin
G′

I(G,G′)− αEG′,Y [logEG̃∼Qϕ∗ (G̃|G′)[P (Y |G̃)]]

where ϕ∗ = argmin
ϕ

KL(Qϕ(G̃|G′), PG),

s. t. H(Y |G̃) ≈ H(Y |G′).
(9)

3.1. Derivation of Outer Optimization

For the outer optimization objective, we elaborate on instan-
tiating the first term I(G,G′). Akin to the original graph, we
denote the explanation subgraph G′ by (V, E ′,X), whose
adjacency matrix is A′. We follow (Miao et al., 2022) to
include a variational approximation distribution R(G′) for
the distribution P (G′). Then, we obtain its upper bound as
follows:

I(G,G′) ≤ EG[KL(P (G′|G)||R(G′))]. (10)

We follow the Erdős–Rényi model (Erdős et al., 1960)
and assume that each edge in G′ has a probability
of being present or absent, independently of the other
edges. Specifically, we assume that the existence of an
edge (u, v) in G′ is determined by a Bernoulli variable
A′
u,v ∼ Bern(π′

uv). Thus, P (G′|G) can be decomposed as
P (G′|G) =

∏
(u,v)∈E P (A

′
uv|π′

uv). The bound is always
true for any prior distribution R(G′). We follow an ex-
isting work and assume that in the prior distribution, the
existence of an edge (u, v) in G′ is determined by another
Bernoulli variable A

′′

u,v ∼ Bern(r), where r ∈ [0, 1] is
a hyper-parameter (Miao et al., 2022), independently to
the graph G. We have R(G′) = P (|E|)

∏
(u,v)∈E P (A

′′

uv).
Thus, the KL divergence between P (G′|G) and the above

marginal distribution R(G′) becomes:

KL(P (G′|G)||R(G′))

=
∑

(u,v)∈E

π′
uv log

π′
uv

r
+ (1− π′

uv) log
1− π′

uv

1− r
+ Const.

(11)

By replacing I(G,G′) with the above tractable upper bound,
we obtain the loss function, denoted by Lexp, for training
the explainer Ψ(·).

3.2. Derivation of Inner Optimization

For the inner optimization objective, we implement the first
constraint by minimizing the distribution distance between
Qϕ(G̃|G′) and PG . Under the Erdős–Rényi assumption,
the distribution loss is equivalent to the cross-entropy loss
between G̃ given G′ and G over the full adjacency ma-
trix (Chen et al., 2023b). Considering that G is usually
sparse rather than a fully connected graph, in practice, we
adopt a weighted version to emphasize more connected node
pairs (Wang et al., 2016). Formally, we have the following
distribution loss.

Ldist =
β

|E|
∑

(u,v)∈E

log(p̃uv) +
1

|Ē |
∑

(u,v)∈Ē

log(1− p̃uv),

(12)
where Ē is the set of node pairs that are unconnected in G,
p̃uv is the probability of node pair (u, v) in G̃, and β is a
hyper-parameter to for the trade-off between connected and
unconnected node pairs.

The second constraint requires the mutual information of
Y and G̃ is the same as that of Y and G′. Due to the OOD
problem, it is non-trivial to directly compute P (Y |G′) or
H(Y |G′). Instead, we implement this constraint with a
novel graph generator that G̃ is obtained by combining G′

and a non-explanatory subgraph (Zhang et al., 2023b). In
practice, we implement the non-explanatory part by perturb-
ing the residual subgraph G − G′. The intuition is that if
an explanation comprises label information, it is unlikely
to change the prediction by manipulating the remaining
non-explanatory part, which is widely adopted in the litera-
ture (Fang et al., 2023a; Zheng et al., 2024).

4. The ProxyExplainer
Based on our novel GIB with proxy graphs, in this section,
we introduce a straightforward yet theoretically robust in-
stantiation, named ProxyExplainer. As shown in Figure 2,
the architecture of our model comprises two key modules:
the explainer and the proxy graph generator. The explainer
takes the original graph G as its input and outputs a sub-
graph G′ as an explanation, which is optimized through the
outer objective in equation 9. The proxy graph generator

4

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Figure 2. ProxyExplainer consists of two components: an Ex-
plainer and a Proxy Graph Generator. The Explainer takes a graph
G as input and produces an explainable subgraph G′, The proxy
generator creates in-distribution proxy graphs that preserve the
label information in G′. The proxy generator consists of a graph
auto-encoder (GAE) and a variational graph auto-encoder (VGAE).

generates an in-distributed proxy graph, which is optimized
with the inner objective.

4.1. The Explainer

For the sake of optimization, we follow the existing works
to relax the element in A from binary values to contin-
uous values in the range [0, 1] (Luo et al., 2020; 2024).
We adopt a generative explainer due to its effectiveness
and efficiency (Chen et al., 2023a). Specifically, we de-
compose the to-be-explained model f(·) into two functions
that fenc(·) learns node representations and fcls(·) predicts
graph labels based on node embeddings. Formally, we
have Z = fenc(X,A) and Ŷ = fcls(Z), where Z is the
node representation matrix and Ŷ is prediction. Routinely,
fcls(·) consists of a pooling layer followed by a classifica-
tion layer and fenc(·) consists of the other layers. Following
the independence assumption in Section 3.1, we approxi-
mate Bernoulli distributions with binary concrete distribu-
tions (Maddison et al., 2017; Jang et al., 2017). Specifically,
the probability of sampling an edge (u, v) is computed by
an MLP parameterized by ψ, denoted by gψ(·). Formally,
we have

ωuv = gψ([zu; zv]),

ϵ ∼ Uniform(0, 1),

A′
uv = σ((log ϵ− log(1− ϵ) + ωuv)/τ),

(13)

where [zu; zv] is the concatenation of node representations
zu and zv, ϵ is a independent variable, σ(·) is the Sigmoid
function, and τ is a temperature hyper-parameter for approx-
imation. According to (Luo et al., 2020), the parameter π′

uv

of Bernoulli distribution in equation 11 can be obtained by
π′
uv =

exp(ωuv)
1+exp(ωuv)

.

4.2. The Proxy Graph Generator

As shown in our analysis in Section 3.2, we demonstrate
the synthesis of a proxy graph through the amalgamation of
the explanation subgraph G′ and the perturbation of its non-
explanatory subgraph, represented as G∆ = (V, E∆,X).
We define the edge set of G∆, E∆, as the differential set
E − E ′. Correspondingly, the adjacency matrix A∆ is de-
rived through A−A′. Building upon this foundation, and
as illustrated in Figure 2, our proposed framework intro-
duces a dual-structured mechanism comprising two distinct
graph auto-encoders(GAE) (Bank et al., 2023). To be more
specific, we first include an encoder to learn a latent matrix
Z ′ according to A′ and X ′, and a decoder network recovers
A′ based on Z ′. Formally, we have:

Z ′ = ENC1(A
′,X), Ã′ = DEC(Z ′), (14)

where ENC1 and DEC are the encoder network and decoder
network. Our framework is flexible to the choices of these
two networks. Ã′ ∈ Rn×n is the reconstructed adjacency
matrix.

To introduce perturbations into the non-explanatory seg-
ment, our approach employs a Variational Graph Auto-
Encoder (VGAE), a generative model adept at creating
varied yet structurally coherent graph data. This capabil-
ity is pivotal in generating nuanced variations of the non-
explanatory subgraph. The VGAE operates by first encoding
the non-explanatory subgraph G∆ into a latent probabilistic
space, characterized by Gaussian distributions. This process
is articulated as:

µ∆ = ENC1(A
∆,X), σ∆ = ENC2(A

∆,X), (15)

where ENC1 and ENC2 are encoder networks that learn
the mean µ∆ and variance σ∆ of the Gaussian distribu-
tions, respectively. Following this, the latent representa-
tions Z∆ are sampled from these distributions, ensuring
that each generated instance is a unique variation of the
original. The decoder network then reconstructs the per-
turbed non-explanatory subgraph from these sampled latent
representations:

Z∆ ∼ N (µ∆, diag(σ∆)2), Ã∆ = DEC(Z∆), (16)

where Ã∆ ∈ Rn×n represents the adjacency matrix of
the perturbed non-explanatory subgraph. This novel use of
VGAE facilitates the generation of diverse yet representative
perturbations, crucial for enhancing the interpretability of
explainers in our proxy graph framework. The adjacency
matrix of a proxy graph is then obtained by

Ã = Ã′ + Ã∆. (17)

Loss function. To train the proxy graph generator, we
introduce a standard Gaussian distribution as the prior for

5

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

the latent space representations in the VGAE, specifically
Z ∼ N (0, I), where I represents the identity matrix. Then,
the loss function is as follows.

Lproxy = Ldist + λLKL, (18)

where Ldist is equivalent to cross-entropy between G̃ and
G (Chen et al., 2023b). LKL represents the KL divergence
between the distribution of the latent representations Z∆

and the assumed Gaussian prior. This term is crucial for
regulating the variational aspect of the VGAE, ensuring that
the generated perturbations are meaningful and controlled.
λ is a hyper-parameter.

Alternate Training. To train the explainer and the proxy
graph generator networks, we follow existing works (Zheng
et al., 2024) to use an alternate training schedule that trains
the proxy graph generator network M times and then trains
the explainer network once. M is a hyper-parameter deter-
mined by grid search. The detailed algorithm description of
our model is shown in Appendix B.

5. Related Work
GNN Explanation. The goal of explainability in GNNs is
to ensure transparency in graph-based tasks. Recent works
have been directed towards elucidating the rationale be-
hind GNN predictions. These explanation methods can be
broadly classified into two categories: instance-level and
model-level approaches (Yuan et al., 2022). In this study, we
focus on instance-level explanations, which aim to clarify
the specific reasoning behind individual predictions made
by GNNs. These methods are critical for understanding the
decision-making process on a case-by-case basis to enhance
the explainability of GNNs. For example, GNNExplainer
(Ying et al., 2019) excludes certain edges and node fea-
tures to observe the changes in prediction. However, its
single-instance focus limits its applicability to provide a
global understanding of the to-be-explained model (Chen
et al., 2023a). PGExplainer (Luo et al., 2020; 2024) intro-
duces a parametric neural network to learn edge weights.
Thus, once training is complete, it can explain new graphs
without retraining. ReFine (Wang et al., 2021) integrates a
pre-training phase that focuses on class comparisons and is
fine-tuned to refine context-specific explanations. GStarX
(Zhang et al., 2022) assigns an importance score to each
node by caculating the Hamiache and Navarro values of the
structure to obtain explanatory subgraphs. GFlowExplainer
(Li et al., 2023) uses a generator to construct a TD-like
flow matching condition to learn a policy for generating
explanations by adding nodes sequentially.

Distribution Shifting in Explanations. The distribution
shifting problem in post-hoc explanations has been increas-
ingly recognized in explainable AI fields (Chang et al., 2019;

Qiu et al., 2022). For example, FIDO (Chang et al., 2019)
works on enhancing image classifier explanations, focusing
on relevant contextual details that agree with the training
data’s distribution. A recent study tackles the distribution
shifting problem in image explanations by introducing a
module that assesses the similarity between altered data and
the original dataset distribution (Qiu et al., 2022). In the
graph domain, an ad-hoc strategy to mitigate distribution
shifting is to initially reduce the size constraint coefficient
during the explanation process (Fang et al., 2023b). Mixup-
Explainer (Zhang et al., 2023b) and RegExplainer (Zhang
et al., 2023a) propose non-parametric solutions by mixing
up the explanation subgraph with a non-explainable part
from another graph. However, these methods operates un-
der the assumption that the explanatory and non-explanatory
subgraphs in mixed graphs are independent, which may not
hold in many real-life graphs.

6. Experiments
We present empirical results that illustrate the effectiveness
of our proposed method. These experiments are mainly
designed to explore the following research questions:

• RQ1: Can the proposed framework outperform other
baselines in identifying explanations for GNNs?

• RQ2: Is the distribution shifting severe in explanation
subgraphs? Can the proposed approach alleviate that?

• RQ3: How does each component of ProxyExplainer im-
pact the overall performance in generating explanations?

6.1. Experimental Settings

To evaluate the performance of ProxyExplainer, we use six
benchmark datasets with ground-truth explanations. These
include four real-world datasets: MUTAG (Kazius et al.,
2005), Benzene (Sanchez-Lengeling et al., 2020),Alkane-
Carbonyl (Sanchez-Lengeling et al., 2020), and Fluoride-
Carbonyl (Sanchez-Lengeling et al., 2020), along with two
synthetic datasets: BA-2motifs (Luo et al., 2020) and BA-
3motifs (Chen et al., 2023b). We take GradCAM (Pope et al.,
2019), GNNExplainer(Ying et al., 2019), PGExplainer(Luo
et al., 2020), ReFine (Wang et al., 2021), and MixupEx-
plainer (Zhang et al., 2023b) for comparison. We follow
the experimental setting in previous works (Ying et al.,
2019; Luo et al., 2020; Sanchez-Lengeling et al., 2020)
to train a Graph Convolutional Network (GCN) model (Kipf
& Welling, 2017) with three layers. Experiments on an-
other representative GNN, Graph Isomorphism Network
(GIN) (Xu et al., 2019), can be found in Appendix D.3. We
use the Adam optimizer (Kingma & Ba, 2014) with the
inclusion of a weight decay 5e − 4. Detailed information

6

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Table 1. Explanation accuracy in terms of AUC-ROC on edges.

MUTAG Benzene Alkane-
Carbonyl

Fluoride-
Carbonyl

BA-2motifs BA-3motifs

GradCAM 0.727±0.000 0.740±0.000 0.448±0.000 0.694±0.000 0.714±0.000 0.709±0.000

GNNExplainer 0.682±0.009 0.485±0.001 0.551±0.003 0.574±0.002 0.644±0.007 0.511±0.002

PGExplainer 0.832±0.032 0.793±0.054 0.660±0.036 0.702±0.018 0.734±0.117 0.796±0.010

ReFine 0.612±0.004 0.606±0.002 0.768±0.001 0.571±0.000 0.698±0.001 0.629±0.005

MixupExplainer 0.863±0.103 0.611±0.032 0.811±0.006 0.706±0.013 0.906±0.059 0.859±0.019

ProxyExplainer 0.977±0.009 0.845±0.036 0.934±0.005 0.758±0.068 0.935±0.008 0.960±0.008

Table 2. Explanation accuracy in terms of AP on MUTAG and
BA-2motifs.

MUTAG BA-2motifs

GradCAM 0.247±0.000 0.664±0.000

GNNExplainer 0.232±0.001 0.608±0.004

PGExplainer 0.611±0.024 0.682±0.117

ReFine 0.227±0.001 0.619±0.002

MixupExplainer 0.647±0.083 0.787±0.073

ProxyExplainer 0.756±0.107 0.839±0.036

Table 3. Fidelity evaluation on MUTAG and BA-2motifs.
MUTAG BA-2motifs

Fidα1,+ ↑ Fidα2,− ↓ Fidα1,+ ↑ Fidα2,− ↓

GradCAM 0.004±0.000 0.162±0.000 0.072±0.000 0.107±0.000

GNNExp. 0.031±0.001 0.148±0.001 0.057±0.002 0.132±0.001

PGExp. 0.034±0.011 0.148±0.005 0.065±0.017 0.126±0.009

ReFine 0.003±0.000 0.160±0.001 0.060±0.005 0.125±0.001

MixupExp. 0.037±0.006 0.146±0.003 0.074±0.005 0.112±0.003

ProxyExp. 0.040±0.002 0.145±0.001 0.086±0.003 0.106±0.002

regarding datasets and baselines is delineated in Appendix
C.

To evaluate the quality of explanations, we approach the
explanation task as a binary classification of edges. Edges
that are part of ground truth subgraphs are labeled as posi-
tive, while all others are deemed negative. The importance
weights given by the explanation methods are interpreted as
prediction scores. An effective explanation technique is one
that assigns higher weights to edges within the ground truth
subgraphs compared to those outside of them. We utilize the
AUC-ROC for quantitative assessment (Ying et al., 2019;
Luo et al., 2020).

6.2. Quantitative Evaluation (RQ1)

To answer RQ1, we compare the proposed method, ProxyEx-
plainer, to other baselines. Each experiment was conducted
10 times using random seeds, and the average AUC scores
as well as standard deviations are presented in Table 1.

The results demonstrate that ProxyExplainer provides the

most accurate explanations across all datasets. Specifically,
it improves the AUC scores by an average of 10.6% on
real-world datasets and 7.5% on synthetic datasets over
the leading baselines. Comparisons with baseline meth-
ods highlight the advantages of our proposed explanation
framework. Besides, ProxyExplainer captures underlying
explanatory factors consistently across diverse datasets. For
instance, MixupExplainer exhibits proficiency on the syn-
thetic BA-2motifs dataset but performs poorly on the real-
world Benzene dataset. The reason is that MixupExplainer
relies on the independence assumption of explanation and
non-explanation subgraphs, which may not hold in real-
world datasets. In contrast, ProxyExplainer consistently
demonstrates high performance across different datasets,
showcasing its robustness and adaptability.

Considering the importance of precision for the positive
class in our context, we further adopt AP to evaluate the
performance. As shown in Table 2, with AP scores, Prox-
yExplainer consistently outperforms the other baselines in
two benchmark datasets MUTAG and BA-2motifs.

Additionally, some existing works, such as Sub-
graphX (Yuan et al., 2021), adopt faithfulness-based metrics
for evaluation. However, these metrics are problematic due
to the OOD problem (Zheng et al., 2024; Amara et al., 2023).
So we use the robust fidelity metrics (Fidα1,+, Fidα2,−)
as described in (Zheng et al., 2024) with default settings
(α1 = 0.1, α2 = 0.9) to evaluate model faithfulness. Table
3 demonstrates that ProxyExplainer is consistently outper-
forms all baselines in both Fidα1,+ and Fidα2,−.

6.3. Alleviating Distribution Shifts (RQ2)

In this section, we assess ProxyExplainer’s ability to gener-
ate in-distribution proxy graphs. Due to the intractable of di-
rect computation, we follow the previous work (Chen et al.,
2023b) to utilize Maximum Mean Discrepancy (MMD) be-
tween distributions of multiple graph statistics, including
degree distributions, clustering coefficients, and spectrum
distributions, between the generated proxy graphs and origi-
nal graphs. Specifically, we utilize Gaussian Earth Mover’s
Distance kernel when computing MMDs. Smaller MMD

7

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Table 4. MMD results between the ground truth explanations and
original graphs (GT); PGExplainer explanations and original
graphs (PGE); proxy graphs in our methods and original graphs
(Proxy).

MUTAG Benzene Alkane-Carbonyl

Metric GT PGE Proxy GT PGE Proxy GT PGE Proxy

Deg. 0.614 0.468 0.123 0.843 0.393 0.236 0.872 0.665 0.177
Clus. 0.003 0.003 0.009 0.009 0.002 0.004 0.011 0.011 0.011
Spec. 0.414 0.341 0.186 0.295 0.163 0.101 0.596 0.447 0.049
Sum. 1.032 0.813 0.317 1.147 0.558 0.341 1.479 1.123 0.237

Fluoride-Carbonyl BA-2motifs BA-3motifs

Metric GT PGE Proxy GT PGE Proxy GT PGE Proxy

Deg. 0.638 0.488 0.196 0.759 0.496 0.060 0.541 0.149 0.092
Clus. 0.012 0.012 0.012 0.447 0.463 0.584 0.262 0.382 0.245
Spec. 0.351 0.315 0.100 0.245 0.256 0.091 0.217 0.063 0.062
Sum. 1.000 0.815 0.308 1.451 1.215 0.735 1.020 0.594 0.399

values indicate similar graph distributions. For comparison,
we also include the Ground truth explanations and the ones
generated by PGExplainer.

The results are shown in Table 4. “GT” denotes the MMDs
between the ground truth explanations and original graphs.
“PGE” represents the MMDs between explanations gener-
ated by PGExplainer and original graphs. “Proxy” denotes
the MMDs between proxy graphs in our method and origi-
nal graphs. We have the following observations. First, the
MMDs between ground truth and original graphs are usually
large, verifying our motivation that a model trained on orig-
inal graphs may not have correct predictions on the OOD
explanation subgraphs. Second, the explanations generated
by a representative work, PGExplainer, are often OOD from
original graphs, indicating that the original GIB-based ob-
jective function may be sub-optimal. Third, in most cases,
proxy graphs generated by our method are with smaller
MMDs, demonstrating their in-distribution property.

6.4. Ablation Studies (RQ3)

In this section, we conduct ablation studies to investigate the
roles of different components. Specifically, we consider the
following variants of ProxyExplainer: (1) w/o G∆: in this
variant, we remove the non-explanatory subgraph generator
(VGAE), which is the bottom half as shown in Figure 2;
(2) w/o LKL: in this variant, we remove the KL divergence
from the training loss in ProxyExplainer; (3) w/o Ldist: in
this variant, we remove the distribution loss from ProxyEx-
plainer. The results of the ablation study on MUTAG and
BA-2motifs are reported in Figure 3.

Figure 3 illustrates a notable performance drop for all vari-
ants, indicating that each component contributes positively
to the effectiveness of ProxyExplainer. Especially, in the
real-life dataset MUTAG, without the in-distribution con-
straint, w/o Ldist is much worse than ProxyExplainer, indi-
cating the vital role of in-distributed proxy graphs in our

Figure 3. Ablation Studies on MUTAG and BA-2motifs.

framework. Extensive ablation studies on other datasets can
be found in the Appendix D.2.

6.5. Case Studies

In this part, we conduct case studies to qualitatively com-
pare the performances of ProxyExplainer against others. We
adopt examples from Benzene and BA-2motifs in this part.
We show visualization results in Figure 4 and Figure 5. Ex-
planations are highlighted with bold black and bold orange
edges, respectively. From the results, our ProxyExplainer
stands out by generating more compelling explanations com-
pared to baselines. Specifically, ProxyExplainer maintains
clarity without introducing irrelevant edges and exhibits
more concise results compared to alternative methods. The
visualized performance underscores ProxyExplainer’s abil-
ity to provide meaningful and focused subgraph explana-
tions. More visualizations on these two datasets can be
found in the Appendix D.5.

7. Conclusion
In this paper, we systematically investigate the OOD prob-
lem in the de facto framework, GIB, for learning explana-
tions in GNNs, which is highly overlooked in the literature.
To address this issue, we extend the GIB by innovatively
including in-distributed proxy graphs. On top of that, we de-
rive a tractable objective function for practical implementa-
tions. We further present a new explanation framework that
utilizes two graph auto-encoders to generate proxy graphs.
We conduct comprehensive empirical studies on both bench-
mark synthetic datasets and real-life datasets to demonstrate
the effectiveness of our method in alleviating the OOD prob-
lem and achieving high-quality explanations. There are
several topics we will investigate in the future. First, the
OOD problem also exists in obtaining model-level explana-
tions and counterfactual explanations. We will extend our

8

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

(a) Ground Truth (b) ProxyExplainer (c) MixupExplainer (d) PGExplainer (e) GNNExplainer

Figure 4. Visualization of explanation results from different explanation models on Benzene. The generated explanations are highlighted
with bold orange edges.

(a) Ground Truth (b) ProxyExplainer (c) MixupExplainer (d) PGExplainer (e) GNNExplainer

Figure 5. Visualization of explanation results from different explanation models on BA-2motifs. The generated explanations are highlighted
with bold black edges.

method to these research problems. Second, we will also
analyze explainable learning methods with proxies in other
data structures, such as image, language, and time series.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgments
This project was partially supported by NSF grant IIS-
2331908. The views and conclusions contained in this paper
are those of the authors and should not be interpreted as rep-
resenting any funding agencies.

References
Amara, K., El-Assady, M., and Ying, R. Ginx-eval: To-

wards in-distribution evaluation of graph neural network
explanations. arXiv preprint arXiv:2309.16223, 2023.

Bank, D., Koenigstein, N., and Giryes, R. Autoencoders.
Machine learning for data science handbook: data min-
ing and knowledge discovery handbook, pp. 353–374,
2023.

Chang, C.-H., Creager, E., Goldenberg, A., and Duvenaud,

D. Explaining image classifiers by counterfactual genera-
tion. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/
forum?id=B1MXz20cYQ.

Chen, J., Amara, K., Yu, J., and Ying, R. Generative explana-
tions for graph neural network: Methods and evaluations.
arXiv preprint arXiv:2311.05764, 2023a.

Chen, J., Wu, S., Gupta, A., and Ying, Z. D4explainer:
In-distribution explanations of graph neural network
via discrete denoising diffusion. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023b. URL https://openreview.net/forum?
id=GJtP1ZEzua.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G.,
Shusterman, A. J., and Hansch, C. Structure-activity rela-
tionship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies
and hydrophobicity. Journal of medicinal chemistry, 34
(2):786–797, 1991.

Erdős, P., Rényi, A., et al. On the evolution of random
graphs. Publ. math. inst. hung. acad. sci, 5(1):17–60,
1960.

Fang, J., Liu, W., Gao, Y., Liu, Z., Zhang, A., Wang, X.,
and He, X. Evaluating post-hoc explanations for graph
neural networks via robustness analysis. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023a.

9

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Fang, J., Liu, W., Zhang, A., Wang, X., He, X., Wang, K.,
and Chua, T.-S. On regularization for explaining graph
neural networks: An information theory perspective,
2023b. URL https://openreview.net/forum?
id=5rX7M4wa2R_.

Fang, J., Wang, X., Zhang, A., Liu, Z., He, X., and Chua,
T.-S. Cooperative explanations of graph neural networks.
In Proceedings of the Sixteenth ACM International Con-
ference on Web Search and Data Mining, pp. 616–624,
2023c.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, volume 30, 2017.

Huang, R., Shirani, F., and Luo, D. Factorized explainer
for graph neural networks. In Proceedings of the AAAI
conference on artificial intelligence, 2024.

Jang, E., Gu, S., and Poole, B. Categorical reparameter-
ization with gumbel-softmax. In International Confer-
ence on Learning Representations, 2017. URL https:
//openreview.net/forum?id=rkE3y85ee.

Kazius, J., McGuire, R., and Bursi, R. Derivation and
validation of toxicophores for mutagenicity prediction.
Journal of medicinal chemistry, 48(1):312–320, 2005.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=SJU4ayYgl.

Li, W., Li, Y., Li, Z., HAO, J., and Pang, Y. DAG matters!
GFlownets enhanced explainer for graph neural networks.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=jgmuRzM-sb6.

Li, Y., Zhou, J., Verma, S., and Chen, F. A survey of explain-
able graph neural networks: Taxonomy and evaluation
metrics. arXiv preprint arXiv:2207.12599, 2022.

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H.,
and Zhang, X. Parameterized explainer for graph neural
network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Luo, D., Zhao, T., Cheng, W., Xu, D., Han, F., Yu, W.,
Liu, X., Chen, H., and Zhang, X. Towards inductive and
efficient explanations for graph neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2024.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete ran-
dom variables. In International Conference on Learning
Representations, 2017. URL https://openreview.
net/forum?id=S1jE5L5gl.

Miao, S., Liu, M., and Li, P. Interpretable and generaliz-
able graph learning via stochastic attention mechanism.
In International Conference on Machine Learning, pp.
15524–15543. PMLR, 2022.

Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., and
Hoffmann, H. Explainability methods for graph convolu-
tional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 10772–10781, 2019.

Qiu, L., Yang, Y., Cao, C. C., Zheng, Y., Ngai, H., Hsiao, J.,
and Chen, L. Generating perturbation-based explanations
with robustness to out-of-distribution data. In Proceed-
ings of the ACM Web Conference 2022, pp. 3594–3605,
2022.

Sanchez-Lengeling, B., Wei, J., Lee, B., Reif, E., Wang, P.,
Qian, W., McCloskey, K., Colwell, L., and Wiltschko, A.
Evaluating attribution for graph neural networks. Ad-
vances in neural information processing systems, 33:
5898–5910, 2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Sterling, T. and Irwin, J. J. ZINC 15 - ligand discovery for
everyone. J. Chem. Inf. Model., 55(11):2324–2337, 2015.

Tishby, N., Pereira, F. C., and Bialek, W. The informa-
tion bottleneck method. arXiv preprint physics/0004057,
2000.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Wang, D., Cui, P., and Zhu, W. Structural deep network
embedding. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 1225–1234, 2016.

Wang, X., Wu, Y., Zhang, A., He, X., and Chua, T.-S. To-
wards multi-grained explainability for graph neural net-
works. In Advances in Neural Information Processing
Systems, volume 34, pp. 18446–18458, 2021.

Wu, B., Li, J., Yu, J., Bian, Y., Zhang, H., Chen, C., Hou, C.,
Fu, G., Chen, L., Xu, T., et al. A survey of trustworthy

10

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

graph learning: Reliability, explainability, and privacy
protection. arXiv preprint arXiv:2205.10014, 2022.

Wu, T., Ren, H., Li, P., and Leskovec, J. Graph information
bottleneck. Advances in Neural Information Processing
Systems, 33:20437–20448, 2020.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J.
Gnnexplainer: Generating explanations for graph neural
networks. Advances in neural information processing
systems, 32, 2019.

Yuan, H., Yu, H., Wang, J., Li, K., and Ji, S. On explainabil-
ity of graph neural networks via subgraph explorations.
In International Conference on Machine Learning, pp.
12241–12252. PMLR, 2021.

Yuan, H., Yu, H., Gui, S., and Ji, S. Explainability in graph
neural networks: A taxonomic survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., and Pei, J.
Trustworthy graph neural networks: Aspects, methods,
and trends. Proceedings of the IEEE, 112(2):97–139,
2024. doi: 10.1109/JPROC.2024.3369017.

Zhang, J., Chen, Z., Luo, D., Wei, H., et al. Regexplainer:
Generating explanations for graph neural networks in
regression tasks. In The Second Learning on Graphs
Conference, 2023a.

Zhang, J., Luo, D., and Wei, H. Mixupexplainer: General-
izing explanations for graph neural networks with data
augmentation. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 3286–3296, 2023b.

Zhang, S., Liu, Y., Shah, N., and Sun, Y. Gstarx: Explaining
graph neural networks with structure-aware cooperative
games. In Advances in Neural Information Processing
Systems, volume 35, pp. 19810–19823, 2022.

Zheng, X., Shirani, F., Wang, T., Cheng, W., Chen, Z.,
Chen, H., Wei, H., and Luo, D. Towards robust fidelity
for evaluating explainability of graph neural networks.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=up6hr4hIQH.

11

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

A. Notations
In Table 5, we summarized the main notations we used and their descriptions in this paper.

Table 5. Symbols and their descriptions.
Symbols Descriptions
G A set of graphs

G,V, E Graph instance, node set, edge set
vi The i-th node
X Node feature matrix
A Adjacency matrix
Z Node representation matrix
Y Label of graph G
Y A set of labels
G∗ Optimal explanatory subgraph
G∗ A set of G∗

G′ Candidate explanatory subgraph
G∆ Non-explanatory graph
G̃ Proxy graph of G′ with a fixed distribution

h, h′, h̃ Graph embeddings
d Dimension of node feature
f(·) To-be-explained GNN model
Ψψ(·) Explanation function
ψ Parameter of the explanation function
PG Distribution of original training graphs
PG′ Distribution of explanation subgraphs
Qϕ Parameterized function of P (G̃|G′)
ϕ Model parameters of Qϕ

ϕ∗ Optimal ϕ
α Balance parameter between I(G,G′) and I(Y,G′)
Ē The set of node pairs that are unconnected in G
p̃uv Probability of node pair (u, v) in G̃
β A hyper-parameter to get a trade-off between connected and unconnected node pairs

fenc(·) The front part of GNNs that learns node representations
fcls(·) The back part of GNNs that predicts graph labels based on node embeddings
σ(·) Sigmoid function
τ Temperature hyper-parameter for approximation
λ A hyper-parameter in Proxy loss function
Ldist Distribution loss between G̃ and G
LKL KL divergence between distribution of Z∆ and its prior
Lproxy Proxy loss
Lexp Explainer loss

B. Algorithm
We take as input a set of graphs G = {Gi}Ni=0. For each graph Gi, we use an explainer model to identify a subgraph G′

i as
the explanation and then compute the non-explanatory graph G∆

i , which is obtained by removing edges in Gi that exist
in G′

i. We use GAE to reconstruct a subgraph, denoted by G̃′
i from the subgraph G′

i and another VGAE to generate a
new subgraph, denoted by G̃∆

i , from the non-explainable subgraph G∆
i . The proxy graph, G̃i, is obtained by combining

them, whose adjacency matrix can be denoted by Ãi = Ã′
i + Ã∆

i . Here Ã′
i and Ã∆

i are adjacency matrices of G̃′
i and G̃∆

i ,
respectively. We alternatively train the explainer model and proxy graph generator as shown in Algorithm 1.

12

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Algorithm 1 Algorithm of ProxyExplainer

Input: A set of graphs G = {Gi}Ni=0, with each Gi = (Vi, Ei,Xi),a pretrain to-be-explained model f(·), hyper
parameters α, λ,M , epochs E.
Initialize an explainer function Ψψ(·)
epoch← 0
while epoch < E do

for Gi ∈ G do
G′
i ← Ψψ(Gi)

G∆
i ← Gi −G′

i

Compute Ã′
i with equation 14

Compute Z∆ and Ã∆
i with equation 16

Compute proxy loss Lproxy with equation 18
Update parameters in proxy graph generator with backpropagation
if epoch%M == 0 then

Compute explainer loss Lexp
Update parameters in the explainer with backpropagation

end if
end for
epoch← epoch + 1

end while

C. Full Experimental Setups
We conduct all experiments on a Linux machine with 8 Nvidia A100-PCIE GPUs, each with 40GB of memory. The CUDA
version is 12.4 and the driver version is 550.54.15. We use Python 3.9 and Torch 2.0.1 in our project. The code is available
at https://github.com/realMoana/ProxyExplainer.

C.1. Datasets

MUTAG (Kazius et al., 2005). MUTAG dataset includes 4,337 molecular graphs, each of them is classified into two groups
based on its mutagenic effect on the Gram-negative bacterium S. Typhimurium. This classification comes from several
specific virulence gland groups with mutagenicity in molecular mapping by Kazius et al.(Kazius et al., 2005).
Benzene (Sanchez-Lengeling et al., 2020). Benzene consists 12,000 molecular graphs from the ZINC15(Sterling & Irwin,
2015) database, which can be classified into two classes. The main goal is to determine if a Benzene ring is exited in each
molecule. In cases where multiple Benzene rings are present, each Benzene ring is treated as a distinct explanation.
Alkane-Carbonyl (Sanchez-Lengeling et al., 2020). The Alkane-Carbonyl dataset consists of a total of 4,326 molecule
graphs that are categorized into two different classes. Positive samples refer to molecules that have both alkane and carbonyl
functional groups. The ground-truth explanation includes alkane and carbonyl functional groups in a given molecule.
Fluoride-Carbonyl (Sanchez-Lengeling et al., 2020). The Fluoride-Carbonyl dataset has 8,671 molecular graphs. The
ground-truth explanation is based on the particular combination of fluoride atoms and carbonyl functional groups present in
each molecule.
BA-2motifs (Luo et al., 2020). The BA-2motifs dataset consists 1,000 synthetic graphs, each derived from a basic
Barabasi-Albert (BA) model. The dataset is divided into two categories: one part of the graphs add patterns that mimic the
structure of a house, and the remaining integrate five-node cyclic patterns. The classification of these graphs depends on the
specific patterns.
BA-3motifs (Chen et al., 2023b). BA-3motifs is an extended dataset inspired by the BA-2motifs and contains 3,000
synthetic graphs. Each base graph is accompanied by one of three different patterns: house, cycle, or grid.

C.2. Baselines

To evaluate our model, we well-train the GCN model in to ensure that it takes good performance in graph classification
tasks. The results are displayed in Table 7. For a comprehensive comparison, we incorporate various post-hoc explanation
methods, including GradCAM, GNNExplainer, PGExplainer, ReFine, and MixupExplainer.

13

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Table 6. Statistics of molecule datasets for graph classification with ground-truth explanations.

MUTAG Benzene Alkane-
Carbonyl

Fluoride-
Carbonyl

BA-2motifs BA-3motifs

Graphs 4,337 12,000 4,326 8,671 1,000 3,000
Average nodes 29.15 20.58 21.13 21.36 25.00 21.92
Average edges 60.83 43.65 44.95 45.37 25.48 29.51
Node features 14 14 14 14 10 4

Original graph

Ground truth
explanation

NH2, NO2 Benzene Ring Alkane,C=O F−,C=O House, cycle House,cycle,
grid

Table 7. The graph-classification task performances of the GCN model

MUTAG Benzene Alkane-
Carbonyl

Fluoride-
Carbonyl

BA-2motifs BA-3motifs

Train Acc 0.850 0.930 0.979 0.951 0.999 0.997
Val Acc 0.834 0.927 0.986 0.956 1.0 0.997
Test Acc 0.804 0.915 0.975 0.951 1.0 0.977

• GradCAM (Pope et al., 2019). This method utilizes gradients as a weighting mechanism to merge various feature maps.
It operates on heuristic assumptions and cannot elucidate node classification models.

• GNNExplainer (Ying et al., 2019). It learns soft masks for edges and node features, and aims to elucidate predictions
through mask optimization. GNNExplainer integrates these masks with the original graph through element-wise multipli-
cations. The masks are optimized by enhancing the mutual information between the original graph and the modified graph
prediction results.

• PGExplainer (Luo et al., 2020). This method extends the idea of GNNExplainer by assuming that the graph is a random
Gilbert graph. PGExplainer generates each edge embedding by combining the embeddings of its constituent nodes, then
uses these edge embeddings to determine a Bernoulli distribution to indicate whether to mask an edge or not, and utilizes
a Gumbel-Softmax approach to model the Bernoulli distribution for end-to-end training.

• ReFine (Wang et al., 2021). ReFine identifies the edge probabilities for the entire category by maximizing the mutual
information and contrastive loss between categories. In fine-tuning, it uses the edge probabilities from the previous stage
to sample edges, and find explanations that maximize mutual information for specific instances.

• MixupExplainer (Zhang et al., 2023b). This method combines original explanatory subgraphs with randomly sampled,
label-independent base graphs in a non-parametric way to mitigate the common OOD issue which found in previous
methods.

14

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

D. Extensive Experiments
D.1. Extensive Distribution Analysis

As shown in previous work (Zhang et al., 2023b), another way to approximate the distribution differences of graphs is to
compare their vector embeddings. Here, we adopt the same setting and use Cosine similarity and Euclidean distance to
intuitively approximate the similarities between graph distributions. Table 8 presents the computed Cosine similarity and
Euclidean distance between the distribution embeddings of the original graph h, the ground truth explanation subgraph h′,
and the generated proxy graph h̃. Notably, our proxy graph embedding h̃ exhibits higher Cosine similarity scores and lower
Euclidean distance with the original graph embedding h compared to the ground truth explanation embedding h′. We observe
an average improvement of 19.5% in Cosine similarity and 35.6% in Euclidean distance. Particularly in the BA-2motifs
dataset, there is a significant improvement of 60.4% in Cosine similarity and 51.8% in Euclidean distance. These findings
underscore the effectiveness of our ProxyExplainer method in mitigating distribution shifts caused by induction bias in the
to-be-explained GNN model f(·), thereby enhancing explanation performance.

Table 8. The Cosine similarity score and Euclidean distance between the distribution embeddings of the original graph h, explanation
subgraph h′, and our proxy graph h̃ on different datasets.

MUTAG Benzene Alkane-
Carbonyl

Fluoride-
Carbonyl

BA-
2motifs

BA-
3motifs

Avg. Cosine(h, h′) ↑ 0.883 0.835 0.889 0.904 0.571 0.686
Avg. Cosine(h, h̃) ↑ 0.985 0.905 0.938 0.908 0.916 0.918
Avg. Euclidean(h, h′) ↓ 0.975 1.010 0.940 0.806 1.210 1.199
Avg. Euclidean(h, h̃) ↓ 0.368 0.767 0.719 0.779 0.583 0.613

D.2. Extensive Ablation Study

In Figure 6, we conduct a comprehensive ablation study across all datasets to examine the impact of different components.
The findings illustrate the effectiveness of these components and their positive contribution to our ProxyExplainer.

(a) MUTAG (b) Benzene (c) Alkane-Carbonyl

(d) Fluoride-Carbonyl (e) BA-2motifs (f) BA-3motifs

Figure 6. Ablation study on all datasets.

15

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

D.3. Extensive Experiment with GIN

In order to show the robustness of our ProxyExplainer in explaining different GNN models, we first pre-train GIN on two
real-world datasets and two synthetic datasets to ensure that GIN has the ability to classify graphs accurately. The results
are displayed in Figure 7. Then we use both baseline methods in the previous experiment and our method ProxyExplainer
to provide explanations for the pre-trained GIN model. As seen in Figure 8, it is noticeable that ProxyExplainer achieves
the best performance on these datasets. Specifically, it improves the AUC scores of 2.9% on Alkane-Carbonyl, 7.9% on
Fluoride-Carbonyl, 45.9% on BA-2motifs, and 6.1% on BA-3motifs. From the analysis, we can see that our ProxyExplainer
can identify accurate explanations across different datasets.

Figure 7. The graph-classification task performances of the GIN model.

(a) Alkane-Carbonyl (b) Fluoride-Carbonyl

(c) BA-2motifs (d) BA-3motifs

Figure 8. Explanation accuracy in terms of AUC-ROC on edges based on GIN.

D.4. Parameter Sensitive Analysis

In this section, we analyze the influence of parameters including λ, which controls the KL divergence during the proxy graph
generation process, and the dimension D of node latent embedding. We vary λ from 0.01 to 1.0. For D, we vary it among

16

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

{32, 64, 128, 256, 512, 1024}. We only change the value of a specific parameter while fixing the remaining parameters to
their respective optimal values.

Figure 9 shows the performance of our ProxyExplainer with respect to λ on two real-world datasets (MUTAG and Alkane-
Carbonyl) and two synthetic datasets (BA-2motifs and BA-3motifs). From Figure 9, we can see that ProxyExplainer
consistently outperforms the best baseline, MixupExplainer, for λ ∈ [0.25, 1.0]. This indicates that ProxyExplainer is stable.
Figure 10 presents how the dimension of node latent embedding affects performance in ProxyExplainer, the results show
that ProxyExplainer can reach the best performance at D = 512.

(a) MUTAG (b) Alkane-Carbonyl

(c) BA-2motifs (d) BA-3motifs

Figure 9. Parameter analysis of λ on four datasets. The left side of each graph shows the explanation performance. The right side shows
the Distance Analysis between h and h̃.

(a) MUTAG (b) Alkane-Carbonyl

(c) BA-2motifs (d) BA-3motifs

Figure 10. Parameter analysis of the dimension of node latent embedding. The left side of each graph shows the explanation performance
and the right side displays the Cosine score and Euclidean distance between h and h̃.

17

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

D.5. Extensive Case Study

We show more visualization examples of explanation graphs on BA-2motifs, BA-3motifs, and Benzene in Figure 11, Figure
12, and Figure 13, respectively.

(a) Ground Truth (b) ProxyExplainer (c) MixupExplainer (d) PGExplainer (e) GNNExplainer

Figure 11. Visualization of explanation on BA-2motifs.

(a) Ground Truth (b) ProxyExplainer (c) MixupExplainer (d) PGExplainer (e) GNNExplainer

Figure 12. Visualization of explanation on BA-3motifs.

18

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

(a) Ground Truth (b) ProxyExplainer (c) MixupExplainer (d) PGExplainer (e) GNNExplainer

Figure 13. Visualization of explanation on Benzene.

19

