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AIMALPRACTICE

Bryan H. Choi*

Should Al modelers be held to a professional standard of care? Recent
scholarship has argued that those who build Al systems owe special duties
to the public to promote values such as safety, fairness, transparency, and
accountability. Yet, there is little agreement as to what the content of those
duties should be. Nor is there a framework for how conflicting views
should be resolved as a matter of law.

This Article builds on prior work applying professional malprac-
tice law to conventional software development work, and extends it to
Al work. The malpractice doctrine establishes an alternate standard of
care—the customary care standard —that substitutes for the ordinary rea-
sonable care standard. That substitution is needed in areas like medicine
or law where the service is essential, the risk of harm is severe, and a uni-
form duty of care cannot be defined. The customary care standard offers
a more flexible approach that tolerates a range of professional practices
above a minimum expectation of competence. This approach is especially
apt for occupations like software development where the science of the
field is hotly contested or is rapidly evolving.

Although it is tempting to treat Al liability as a simple extension of soft-
ware liability, there are key differences. First, Al work has not yet become
essential to the social fabric the way software services have. The risk of
underproviding Al services is less troublesome than it is for conventional
professional services. Second, modern deep-learning Al techniques differ
significantly from conventional software development practices, in ways
that will likely facilitate greater convergence and uniformity in expert
knowledge.

Those distinguishing features suggest that the law of Al liability will
chart a different path than the law of software liability. For the immedi-
ate term, the interloper status of Al indicates a strict liability approach is
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most appropriate, given the other factors. In the longer term, as AI work
becomes integrated into ordinary society, courts should expect to transi-
tion away from strict liability. For aspects that elude expert consensus and
require exercise of discretionary judgment, courts should favor the pro-
fessional malpractice standard. However, if there are broad swaths of Al
work where experts can come to agreement on baseline standards, then
courts can revert to the default of ordinary reasonable care.
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INTRODUCTION

As the tide of Al discourse shifts from Al performance to Al safety,!
and from ethics to law, most legal efforts have focused on ex ante risk-
management approaches. These approaches have been criticized as
being underdeveloped, ill-suited to the problem, and lacking in ex post
measures offering civil recourse.” A greater role for judicial common

1. See Press Release, U.S. Dep’t of Com., At the Direction of President Biden, Department of
Commerce to Establish U.S. Artificial Intelligence Safety Institute to Lead Efforts on Al Safety
(Nov. 1, 2023), https://www.commerce.gov/news/press-releases/2023/11/direction-president-biden-
department-commerce-establish-us-artificial [https://perma.cc/43AE-329Y]; Noam Kolt, Algorith-
mic Black Swans, 101 WasH. U. L. Rev. (forthcoming 2024) (manuscript at 23) (describing the
“growing interest and investment in Al safety”).

2. See Margot E. Kaminski, Regulating the Risks of AI, 103 B.U. L. Rev. 1347, 1378-79 (2023)
(“This, then, is one of the core challenges for AT risk regulation: it deploys a largely ex ante
regulatory tool best suited for readily quantifiable harms to address big, often-unquantifiable,
often-contested, often-contextual, and often-individualized ‘risks.” . . . Nor do these frameworks
contemplate whether there exists an adequate backstop of tort liability through which individual-
ized harms might get addressed and remedied.”); Charlotte A. Tschider, Medical Device Artificial
Intelligence: The New Tort Frontier, 46 BYU L. Rev. 1551, 1591-93, 1603 (2021) (arguing that ex
post tort solutions are needed to regulate Al software-enabled medical devices); Bryan H. Choi,
NIST’s Software Un-Standards, LAWFARE, at 30 (2024) (“[M]uch about [NIST’s] AI Framework re-
mains underdetermined. The Al Framework is voluntary. It is neither ‘a checklist’ nor ‘an ordered
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law is needed,’ but there is considerable uncertainty about the path it
should take.

Thus far, public oversight is being routed through private governance
and self-regulation mechanisms. In the United States, Congress has pro-
posed a smattering of legislative proposals that have failed to advance.*
Instead, the leading effort has been the AI Risk Management Frame-
work, issued by the National Institute of Standards and Technologies
(NIST), which invites enterprises to engage in voluntary self-assess-
ments of risk.’ The European Union has enacted the EU Al Act, which
categorizes Al systems as “limited-risk,” “high-risk,” or “unacceptable
risk,” and then seeks to calibrate compliance obligations accordingly.®
Those obligations have been outsourced to private standard-setting
organizations and have yet to be written.’

In turn, the Al community continues to view self-regulation through
the lens of professional “ethics.”® Major software companies, nonprof-
its, and academic institutions are engaged in efforts to develop ethical
principles that address issues of fairness, accountability, transparency,
manipulation, and more.’ Universities are working on integrating ethics

set of steps.” Evaluations of its effectiveness are unknown and ‘will be part of future NIST activi-
ties.” Moreover, its scope is extraordinarily broad, even relative to other NIST frameworks.”).

3. See Mariano-Florentino Cuéllar, A Common Law for the Age of Artificial Intelligence:
Incremental Adjudication, Institutions, and Relational Non-Arbitrariness, 119 CorLum. L. REv. 1773,
1779-80 (2019) (defending the role of common law as a “regulatory backstop” or “first-draft regu-
latory framework,” and “the centrality of reasoned deliberation across people and institutions” in
the American tradition).

4. See Kolt, supra note 1 (manuscript at 36-38) (describing and critiquing recent Congressional
bills that would delegate responsibility to the Federal Trade Commission (FTC) or a newly created
National AT Commission).

5. See Choi, supra note 2, at 29.

6. See Clara Hainsdorf et al., Dawn of the EU’s Al Act: Political Agreement Reached on World’s
First Comprehensive Horizontal AI Regulation, WHITE & Cask (Dec. 14,2023), https://www.white-
case.com/insight-alert/dawn-eus-ai-act-political-agreement-reached-worlds-first-comprehensive-
horizontal-ai [https://perma.cc/ HRA6-6VZC].

7. See Kaminski, supra note 2, at 1402 (noting that the EU AI Act “places big, complex, and
contested policy decisions in the hands of private entities”); Kolt, supra note 1 (manuscript at 30).

8. See PARTNERsHIP ON Al 2019 ANNUAL REPORT 2 (2020), https://www.partnershiponai.org/wp-
content/uploads/2021/01/PAI-2019-Annual-Report.pdf [https://perma.cc/3PB2-PLZH] (reporting
that membership grew to over one hundred partner organizations spanning thirteen countries and
four continents).

9. Id. at 6 (listing key focus areas to include fairness, transparency, and accountability in al-
gorithmic decision-making, as well as Al-generated mis/disinformation in the media ecosystem);
Scope, FAT/ML 2014 Conference, https://www.fatml.org/schedule/2014/page/scope-2014 [https:/
perma.cc/HNK4-Q6RJ] (“This interdisciplinary workshop will consider issues of fairness, account-
ability, and transparency in machine learning. It will address growing anxieties about the role that
machine learning plays in consequential decision-making in such areas as commerce, employ-
ment, healthcare, education, and policing.”); Virginia Dignum et al., Ethics by Design: Necessity
or Curse?,2018 Proc. AAAI/ACM Contr. oN Al Etnics & Soc’y 60, 61-62 (summarizing confer-
ence proceedings describing accountability, responsibility, and transparency as the three principles
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more tightly within the computer science curriculum.”” While those
efforts have generated attention and momentum,! critics have pointed
out that “[e]thics as a construct is notoriously malleable and contested”
and that “ethics lacks a hard enforcement mechanism.”"?> More cynical
voices have warned that the focus on ethics is a deliberate ploy by inter-
ested parties to avoid true oversight."?

Law would provide a harder enforcement mechanism, if lawmak-
ers could formulate appropriate liability rules for AI harms. Yet, with
modern Al techniques such as deep neural networks, there is broad
consensus that failures are difficult to diagnose or explain in human-
understandable terms. Thus it can be difficult to discern when law should
exact remedies from AI modelers versus when law should let costs lie
where they fall. Moreover, many policymakers remain reluctant to err
on the side of overdeterrence, because the perceived potential of Al
technologies to improve public safety, health, and welfare is so seismic.'*

Conventional approaches to Al liability attempt to simplify the prob-
lem by treating Al systems as self-contained black boxes. For example,
one popular branch of commentary focuses on the “intelligence” part of

that are key to “guaranteeing ethical behavior ‘by design,” i.e., embedded in the [AI] system’s
implementation”).

10. See Christina Pazzanese, Trailblazing Initiative Marries Ethics, Tech, HARvV. GAZETTE,
(Oct. 16, 2020) (describing a recent curricular initiative at Harvard called Embedded EthiCS, “a
groundbreaking novel program that marries the disciplines of computer science and philosophy,”
motivated by the premise that “the surest way to get the industry to act more responsibly is to
prepare the next generation of tech leaders and workers to think more ethically about the work
they’ll be doing”).

11. See WHite House OFFICE oF Scl. & TEcH. PoLicy, BLUEPRINT FOR AN Al BILL oF RIGHTS
(Oct.2022); Press Release, U.S. Dep’t of Def., DOD Adopts Ethical Principles for Artificial Intelli-
gence (Feb. 24, 2020), https://www.defense.gov/Newsroom/Releases/Release/Article/2091996/dod-
adopts-ethical-principles-for-artificial-intelligence/ [https://perma.cc/BW72-6WZU].

12. Ryan Calo, Artificial Intelligence Policy: A Primer and Roadmap, 51 U.C. Davis L. REv. 399,
408 (2017); see also Brent Mittelstadt, Principles Alone Cannot Guarantee Ethical AI, 1 NATURE
MAcH. INTEL. 501 (2019); Sanna J. Ali et al., Walking the Walk of Al Ethics: Organizational Chal-
lenges and the Individualization of Risk among Ethics Entrepreneurs, 2023 ACM CoNF. oN FaIr-
NESS, ACCOUNTABILITY & TRANSPARENCY 217, 220 (finding that ethics workers face numerous
challenges including a lack of “buy-in” from leadership).

13. See Rebecca MacKinnon, “Ethics” and “Al”: Can We Use These Terms to Take Effective
Action?, BLo L.A. Rev. Books (Feb. 22, 2020), https://blog.lareviewofbooks.org/provoations/
ethics-ai-can-use-terms-take-effective-action  [https://perma.cc/U9A2-LFQ9]  (“[A]cademics
have cautioned against ‘ethics-shopping,’ ‘ethics-washing,” and the development of vague ethi-
cal principles as an effort by companies to escape regulation and accountability. Others have
accused industry of manipulating academia by funding ‘ethical AT’ research programs that focus
on self-regulatory standards in order to avoid ‘legally enforceable restrictions of controversial
technologies.”).

14. See OFF. oF Sci1. & TEcH. PoL’y, WHITE HOUSE, AMERICAN ARTIFICIAL INTELLIGENCE INITIATIVE:
Year ONE ANNUAL REePORT 13 (2020), https://www.whitehouse.gov/wp-content/uploads/2020/02/
American-Al-Initiative-One-Year-Annual-Report.pdf (“Not using AI technologies because of
perceived or potential harms, however, could be just as problematic, depriving individuals—or the
Nation—of the significant benefits that Al technologies could bring.”).
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“artificial intelligence” to argue that sufficiently strong Al systems could
be given status equivalent to human or other sentient actors."” As long
as Al behavior conforms to or exceeds that of the ordinary reasonable
person, perhaps no liability should attach.'® Another set of commen-
tary focuses instead on the “artificial” aspects of Al, and analyzes such
systems like ordinary manufactured products.” Under this approach,
liability would be assessed according to whether the Al system has a
“defect” that is unreasonably dangerous. Both approaches take the tack
of evaluating the Al system as a discrete entity or object, while minimiz-
ing the human processes behind the development of that Al system.
While that mental shortcut works best when the causal mechanisms are
intuitive and simple to understand, it is less helpful when they are coun-
terintuitive or complex.

As an alternative approach, David Lehr and Paul Ohm have called
for lawmakers to open the black box and investigate the actual work
involved in making Al systems."® Doing so would “advance contem-
porary debates about machine learning” by dispelling the assumption

15. See RyaN ABBOTT, THE REASONABLE ROBOT: ARTIFICIAL INTELLIGENCE AND THE Law 9 (2020)
(proposing that tort law should “treat Al like a person and focus on the AI’s act rather than its
design”); David Vladeck, Machines Without Principals: Liability Rules and Artificial Intelligence, 89
WasH. L. REv. 117,145,150 (2014) (“A machine that can define its own path, make its own decisions,
and set its own priorities may become something other than an agent. . . . Conferring ‘person-
hood’ on these machines would resolve the agency question . . . .”); see also Ryan Calo, Robots as
Legal Metaphors,30 HArv. J.L. & TecH. 209, 231 (2016); Patrick Hubbard, “Sophisticated Robots”:
Balancing Liability, Regulation, and Innovation, 66 FLA. L. REv. 1803, 1862-65 (2014) (exploring
doctrinal analogies of robots to employees, children, or animals). But see Harry Surden, Artificial
Intelligence and Law: An Overview, 35 Ga. St. U. L. REv. 1305, 1308-09 (2019) (pointing out that
“Artificial General Intelligence” or “Strong AI” is unlikely to appear anytime soon).

16. See Mark A. Geistfeld, A Roadmap for Autonomous Vehicles: State Tort Liability, Automo-
bile Insurance, and Federal Safety Regulation, 105 CALIE. L. REv. 1611, 1653, 1679, 1686 (2017) (sug-
gesting no liability if an autonomous vehicle meets a metric of being at least twice as safe as human
performance).

17. See Bryant Walker Smith, Automated Driving and Product Liability,2017 MicH. St. L. REv. 1,
46 (stating that the central question in product liability claims against automated driving systems
will be whether “either (a) a human driver or (b) a comparable automated driving system could
have done better under the same circumstances”); id. at 44 n.213 (collecting sources examining
product liability implications of automated driving); ¢f. Chinmayi Sharma & Benjamin C. Zipursky,
Who's Afraid of Products Liability? Cybersecurity and the Defect Model, LAWFARE (Oct. 19, 2023,
10:24 AM), https://www.lawfaremedia.org/article/who-s-afraid-of-products-liability-cybersecurity-
and-the-defect-model [https://perma.cc/J4FJ-NWDB] (defending the law of products liability as
having the flexibility and sophistication to address the challenges of software security lawsuits).
But see Kenneth S. Abraham & Robert L. Rabin, Automated Vehicles and Manufacturer Responsi-
bility for Accidents: A New Legal Regime for a New Era, 105 VA. L. Rev. 127,142 (2019) (question-
ing whether the “defect” concept is worth retaining for fully automated vehicles, and proposing
instead a no-fault regime).

18. See David Lehr & Paul Ohm, Playing with the Data: What Legal Scholars Should Learn
About Machine Learning, 51 U.C. Davis L. Rev. 653, 655 (2017) (“Our core claim is that almost all
of the significant legal scholarship to date has focused on the implications of the running model . . .
and has neglected most of the possibilities and pitfalls of playing with the data.”).
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that “black-box algorithms have black-box workflows.”" In fact, they
argue, the processes performed by Al modelers “are actually quite
articulable.”®

This Article takes up that invitation to dive into the details of how
modern Al systems—and in particular deep neural networks* —are
developed and deployed in the real world. By doing so, this Article
seeks to shift the point of scrutiny from the Al system to the AI mod-
eler, and to merge the active discourse on Al ethics with the burgeoning
one on Al liability.

More specifically, this Article builds on prior work, Software as a Pro-
fession, which examined the interplay between tort liability and pro-
fessional ethics.”? There, the argument proceeded in three steps. First,
I observed that professional ethics lack binding legal effect except for
specially designated professions such as law or medicine. Second, I
offered a new theoretical framework that explains why the law gives
different treatment to such professionals, and how to decide which
occupations are “professions” as a matter of law. In particular, I argue
that the professional designation should be invested in occupations
that: (1) necessarily employ subjective judgments because the field is
not a precise science but an inexact art; (2) those subjective judgments
carry high risk of bad outcomes; and (3) the occupation fulfills a vital
societal function. Third, I showed why those factors apply to the work
that software developers perform.

Here, I compare and contrast AI modeling to software develop-
ment, and suggest that the differences are substantial enough to call
into doubt whether AI modelers should be treated equivalently to
software developers. While the professional malpractice framework
may still prove appropriate for certain aspects of AI work, there is
greater occasion to consider alternate regimes such as strict liability
or ordinary negligence.

Part I offersasummaryreview of the professional malpractice doctrine.
The remainder of the Article analyzes in turn each of the three “profes-
sional” factors as applied to Al Part II offers a descriptive account of
modern Al modeling work and the most salient ways in which it does or
does not require the use of subjective judgments. In particular, most of
the discretionary control occurs at the preparatory stages, including the
choice of learning algorithm and initialization hyperparameters, plus
certain aspects of data curation. Even here, Al modelers may not make

19. Id. at 657

20. Id.

21. See Yann LeCun et al., Deep Learning, 521 NATURE 436,438 (2015).

22. See Bryan H. Choi, Software as a Profession,33 Harv. J.L. & TecH. 557 (2020).
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all those choices themselves, but instead reuse or rely on choices made
by others. Part III restates the unavoidability of Al-based harm. Finally,
Part IV reserves judgment on whether or when Al-based services will
become an essential pillar of social fabric. Looking ahead, this Article
seeks to tie the Al ethics literature closer to the law of professional
malpractice, and predicts that the gravitas of the Al ethics movement
will turn on the threshold legal question of whether Al work is deemed
a profession, or merely a skilled occupation.

I. THE PROFESSIONAL MALPRACTICE FRAMEWORK

The professional malpractice doctrine operates as an alternative
to the ordinary negligence regime. Understanding why an alternative
is needed at all requires a theory of what sets professions apart from
ordinary occupations. In earlier work, I explained that this alternative
is appropriate when there is simultaneously a need for legal oversight
plus a need for deference to professional judgment over lay opinion.”
In such circumstances, it is helpful to chart a middle path between ordi-
nary negligence, safe harbor immunity, and enterprise liability.

The key, blackletter difference is the substitution of the customary
care standard in place of the reasonable care standard.? The customary
care standard requires juries to limit their inquiry to whether the pro-
fessional deviated from customary practices in the field. Unlike in ordi-
nary negligence cases, juries in professional malpractice cases cannot be
asked to second-guess the reasonableness of the customs in question.?
Several derivative rules expose additional differences. For example, evi-
dence of customary practices typically must be established by expert
testimony, unless the matter is one of common knowledge.? Custom-
ary practices can include minority “schools of thought” disfavored by
a majority of practitioners, allowing for a more heterogeneous set of
accepted practices.”’” And, in many states, malpractice claims cannot
be heard unless accompanied by a “certificate of merit” signed by a

23. See id.

24. See generally DaN B. DoBBs ET AL., HORNBOOK ON TorTs § 21.6, at 506 (2d ed. 2016).

25. See Tim Cramm et al., Ascertaining Customary Care in Malpractice Cases: Asking Those
Who Know, 37 WAKE ForesT L. REv. 699, 702-03 (2002).

26. See Alex Stein, Toward a Theory of Medical Malpractice, 97 lowa L. Rev. 1201, 1213-15
(2012).

27. See Gary T. Schwartz, The Beginning and the Possible End of the Rise of Modern American
Tort Law,26 Ga. L. REv. 601, 664-65 (1992).
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member of the profession.” At the same time, malpractice claims can-
not be disclaimed by contractual waiver.”

I have argued that the switch to the customary care standard is justi-
fied when: (1) practitioners must exercise considerable judgment due
to inherent uncertainties in the science of the field; (2) bad outcomes
are endemic to the practice because of those uncertainties; and (3) the
practice serves a socially vital service even when bad outcomes occur.*
As it happens, the three factors align exactly with the First Restatement
of Torts and its analysis of new technologies.’> Conversely, when those
conditions fade, the need for the professional liability framework wanes
concomitantly, and courts cease to give deference to that occupation as
a “profession.”*

I also highlighted three basic misconceptions about the doctrine of
professional malpractice. First, the professional care standard is not a
higher (or lower) standard of care than the ordinary standard of care.
Second, although notions of trust are central to the professional mal-
practice framework, high trust is not a prerequisite for invoking the
doctrine. Third, sociologically derived indicia such as formal education,
licensing, or codes of ethics are neither sufficient nor necessary to trig-
ger the professional liability regime.

The first fallacy is that professional malpractice is merely a height-
ened form of ordinary negligence. Because “professionals” are com-
monly associated with higher education, training, and social prestige,
it is easy to assume that “professional negligence” imposes an elevated
duty of care upon those who are more competent. After all, the stan-
dard of ordinary reasonable care already incorporates relative levels of
knowledge and skill. Yet, if professional malpractice simply means that

28. See Benjamin Grossberg, Comment, Uniformity, Federalism, and Tort Reform: The Erie
Implications of Medical Malpractice Certification of Merit Statutes, 159 U. Pa. L. Rev. 217, 222-25
(2010).

29. See RESTATEMENT (THIRD) OF TorTs: LiaB. FOR EcoN. HARM § 4 (AMm. L. INsT. 2020) (noting
that malpractice is a “prominent exception” to contract-based limitations on liability for finan-
cial losses); Catherine M. Sharkey, Can Data Breach Claims Survive the Economic Loss Rule?, 66
DePauL L. Rev. 339, 365 (2017); see also Choi, supra note 22, at 601 n.209.

30. See Choi, supra note 22, at 614-15.

31. The First Restatement deemed aviation to be an “ultrahazardous” activity because
(1) “aeroplanes have not been so perfected as to make them subject to a certainty of control
approximating that of which automobiles are capable,” (2) “the serious character of harm which
an aeroplane out of control is likely to do,” and (3) “aviation has not as yet become either a com-
mon or an essential means of transportation.” See RESTATEMENT oF TorTs § 520 cmt. g (AMm. L. INST.
1938). My contention is that if such an activity becomes common or essential to society, but the
risks of harm remain serious and continue to elude certainty of control, then a transition to the
malpractice framework becomes the most appropriate move.

32. See Choi, supra note 22, at 618 (describing how courts have “deprofessionalized” archi-
tects and engineers by secondguessing expert opinions and applying an ordinary reasonable care
standard).
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a doctor is held up to the standard of the average doctor having relevant
skill and training, then the malpractice doctrine collapses into ordinary
negligence and serves no independent purpose.*

On the contrary, the customary care standard establishes a self-
governance regime checked by judicial oversight. In some aspects, the
professional community might embrace expectations that are higher
than those a jury might enforce, and in other aspects, those expecta-
tions might fall short of what a jury would demand. To be sure, there
are valid criticisms of self-governance —a “conspiracy of silence” could
allow bad actors to escape accountability.* Yet, I have argued that the
malpractice doctrine arises when there is no good way to objectively or
scientifically evaluate the exercise of professional judgment. It enables
courts to impose some accountability without resorting to all-or-noth-
ing measures.

The second fallacy is that a profession must enjoy high levels of soci-
etal trust to benefit from the malpractice self-governance regime. But
the history of the malpractice doctrine shows that it was created at a
time when professions such as medicine and law were relative backwa-
ters of prestige and weakened by infighting.*® The customary care stan-
dard is not a reward for good behavior. It is a product of shortfalls of the
reasonable care standard. When doctors lose patients or lawyers lose
cases, it is too easy for jurors to find fault, even though such bad out-
comes are statistical inevitabilities. In other words, the focus is on the
nature of the work, not of the professional. The malpractice doctrine is
needed when the work performed by professionals is especially likely
to lead to unfair second-guessing of professional judgment.

Trust is an important component of the malpractice doctrine, which
has evolved to require duties of loyalty in addition to duties of care.*
But high trust is at best an output of the professional malpractice
regime, not an input. Instead, the motivation for the doctrine is that
public trust will be too low to sustain an otherwise essential service.

33. Indeed, numerous commentators over the years have suggested doing away with the profes-
sional malpractice doctrine for precisely this reason. See, e.g., DOBBS ET AL., supra note 24, at 507;
Philip G. Peters, Jr., The Quiet Demise of Deference to Custom: Malpractice Law at the Millennium,
57 WasH. & LEE L. REv. 163,201 (2000) (arguing that the professional paradigm is weakening and
that “the custom-based standard of care gradually is yielding to the fundamental tort standard of
reasonable care under the circumstances”).

34. Cf Wendy Wagner, When a Corporation’s Deliberate Ignorance Causes Harm: Charting a
New Role for Tort Law, 72 DEPAUL L. REv. 413 (2022) (criticizing corporations for manipulating
the scientific record to downplay the hazardousness of their activities).

35. See generally WiLLIAM G. ROTHSTEIN, AMERICAN PHYSICIANS IN THE 19TH CENTURY: FROM
SECTS TO SCIENCE (1972); PAUL STARR, THE SOCIAL TRANSFORMATION OF AMERICANA MEDICINE (1982).

36. See Choi, supra note 22, at 609; cf. Neil Richards & Woodrow Hartzog, A Duty of Loyalty for
Privacy Law, 99 WasH. U. L. Rev. 961 (2021) (proposing a duty of loyalty for data collectors and
tech companies).
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When bad outcomes are a statistical inevitability, and the practice of the
profession is an inexact art rather than a precise science, then it is too
easy to lose faith and to condemn such services.

The third common fallacy is that professions are defined by personal
traits such as education, salary, licensure, or “gentlemanly” culture.”’” Yet,
for prototypical professions such as medicine and law, this theory is his-
torically implausible, given the protean state of professional education
and professional ethics at the time when the malpractice doctrine was
first applied and extended. Nor does it adequately explain, as a matter
of positive law, the continued exclusion of many occupations that have
strived to meet precisely those criteria. Finally, on a normative level,
the malpractice rule should not function as a special rule for elites. The
reasonable care standard is appropriate for most lines of work, even
those that are highly compensated, highly specialized, and highly ethi-
cal. Conversely, the absence of characteristics such as formal education
requirements, licensure schemes, disciplinary systems, or ethical codes
should not be a valid reason to bar entry into the malpractice regime
where it is otherwise appropriate.

II. MATTERS OF PROFESSIONAL JUDGMENT

The first factor relevant to the legal designation of a profession is
whether the core elements of the work involve substantial uncertain-
ties in knowledge, and therefore require latitude for discretionary judg-
ment. On the surface, both Al and software seem alike in that each
involves code and data, in a field of rapid innovation where most prac-
tices are ad hoc and experimental rather than established through sci-
entific method. Nevertheless, the uncertainties that arise in software
work appear to be more fundamental and pervasive to the enterprise,
whereas those that arise in AI work are quite different in nature and
arguably limited in scope.

The most material distinction between AI work and conventional
software work is the bottom-up versus top-down process by which such
systems are constructed. Whereas software work amplifies and cel-
ebrates complexity in ways that defy expert understanding, Al work
seeks to simplify a complex pattern and encapsulate it within a unified

37. See Choi, supra note 22, at 589 (citing Hosp. Comput. Sys., Inc. v. Staten Island Hosp., 788
F. Supp. 1351, 1361 (D.N.J. 1992)). More recently, the Third Restatement of Torts has embraced
this list of traits and defended them on policy grounds that the professional-client relationship
entails unique risks that cannot be effectively regulated by contract law. See RESTATEMENT (THIRD)
oF Torts: LiaB. FOrR Econ. HArM § 4 cmt. b (Am. L. INsT. 2020). Yet, this definition of professional
as risk-bearer is circular and also inconsistent with other aspects of the professional malpractice
doctrine. See Choi, supra note 22, at 611 (critiquing the careless merger of professional duties and
fiduciary duties).
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mathematical model. That fundamental difference offers greater hope
that much of AI work could be conducive to standardization, which has
eluded software work.

Conventional software is constructed in a top-down manner in the
sense that every line of code is written for a command flow purpose.
The developer team determines the system requirements, converts
those requirements into a preliminary design, implements a working
model in code, and tests the code to ensure it performs as specified. That
is not to say the software development process is centralized or mono-
lithic. Modern best practices encourage software developers to work
in fluid, decentralized phases through methods such as iterative cycles
and “agile” methods. Nevertheless, all conventional software systems
are ultimately composed of individual lines of code that are stacked
together with intentional, human-designed control paths in mind.

By contrast, the construction of modern Al systems can be character-
ized as bottom-up because their architectures are governed primarily
by data-led patterns, rather than by human-led blueprints.*® The core
component of any Al system is its knowledge representation model,
which enables it to incorporate prior experience and expertise into its
decisions. For example, a chess program is more likely to win if it knows
the best possible moves, and a self-driving car is less likely to crash if it
understands common road signals and obstacles. In modern, real-world
Al systems, these knowledge representation models are not configured
by hand, but automatically configured using “machine learning” tech-
niques that integrate large datasets of training examples.*”” If the data
were truly random, it would be impossible to process so much data;
instead, the Al modeler assumes that most meaningful data from the
real world will follow a naturally sparse pattern. The purpose of any
learning algorithm is to sculpt a model that approximates as well as pos-
sible that naturally existing pattern.

That difference between Al and conventional software was not always
so stark. “Classical” approaches to AI draw on rules of formal logic to

38. See Harry Surden, Machine Learning and Law, 89 WasH. L. Rev. 87 93-94 (2014); ¢f. Andrej
Karpathy, Software 2.0, Mepium (Nov. 11, 2017) (“It turns out that a large portion of real-world
problems have the property that it is significantly easier to collect the data (or more generally,
identify a desirable behavior) than to explicitly write the program.”).

39. See IAN GOODFELLOW, YOSHUA BENGIO & AARON COURVILLE, DEEP LEARNING 96 (MIT Press
2016) (“A machine learning algorithm is an algorithm that is able to learn from data.”);id. at 8 (“We
contend that machine learning is the only viable approach to building Al systems that can operate
in complicated real-world environments.”); Joel Klinger et al., A Narrowing of Al Research? (Jan.
11, 2022) (preprint), https://arxiv.org/pdf/2009.10385.pdf [https://perma.cc/V4CX-VZZP] (finding
that Al research in deep learning techniques has expanded rapidly while Al research in classical
methods—such as symbolic representation and statistical machine learning—has stagnated, par-
ticularly in the commercial sector).
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manually encode the knowledge base needed for a task—an approach
that is functionally indistinguishable from conventional software.* For
example, to tackle a problem like medical diagnosis of blood infections,
the AT modeler might seek to identify all possible symptoms and diag-
noses, and then manually map all possible relationships between those
symptoms and diagnoses.*’ When those rules are written out by hand,
they are, in fact, lines of code. In other words, classical Al systems were
designed and implemented in the same top-down manner as conven-
tional software systems. Although defenders of the classical rule-based
approaches maintain that true semantic knowledge cannot be codified
in any other way,” none has achieved meaningful success in real-world
applications.®

Instead, modern Al techniques have surpassed the limitations of clas-
sical Al approaches by improving methods that auto-generate knowl-
edge representation models. The key innovation has been the discovery
that one particular model structure—deep neural networks—can be
trained at sufficient size* and capacity® to perform well on real-world

40. See Marta Garnelo & Murray Shanahan, Reconciling Deep Learning with Symbolic Artifi-
cial Intelligence: Representing Objects and Relations, CURRENT OPINION IN BEHAVIORAL Scis., Oct.
2019, at 17,17 (describing symbolic Al as “handcrafted” rather than “learned from data”).

41. See STUART RUSSELL & PETER NORVIG, ARTIFICIAL INTELLIGENCE: A MODERN APPROACH 23
(3d ed. 2010) (describing early expert systems such as the Mycin system for diagnosing blood
infections, which incorporated knowledge “acquired from extensive interviewing of experts”).

42. See, e.g., Gary Marcus & Ernest Davis, GPT-3, Bloviator: OpenAl’s Language Generator
Has No Idea What It’s Talking About, MIT TecH. REv. (Aug. 22, 2020), https://www.technologyre-
view.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
[https://perma.cc/V623-CLGC].

43. See GOODFELLOW ET AL., supra note 39, at 2 (observing that several Al projects “have sought
to hard-code knowledge about the world in formal languages,” but that “[n]one of these projects
has led to a major success” because it is difficult “to devise formal rules with enough complexity
to accurately describe the world”); RUSSELL & NORVIG, supra note 41, at 439 (“[T]he enterprise of
general ontological engineering has so far had only limited success. None of the top Al applica-
tions . . . make use of a shared ontology —they all use special-purpose knowledge engineering.”);
see also Calo, supra note 12, at 404-05 (describing the failure of symbolic systems to “yield many
viable applications in practice,” which led to “the dwindling of research funding in the late 1980s
known as the ‘Al Winter.””).

44. See GOODFELLOW ET AL., supra note 39, at 431 (“One of the key factors responsible for the
improvement in neural network’s accuracy and the improvement of the complexity of tasks they
can solve between the 1980s and today is the dramatic increase in the size of the networks we
use.”).

45. The richness and expressive power of a model is called its representational “capacity.”
See Vladimir Vapnik, Esther Levin & Yann Le Cun, Measuring the VC-dimension of a Learn-
ing Machine, 6 NEURAL CoMPUTATION 851, 851-52 (1994) (defining the “capacity” of a learning
machine as the complete set of classification functions from which an optimal solution can be cho-
sen); Yaser S. Abu-Mostafa, The Vapnik-Chervonenkis Dimension: Information Versus Complexity
in Learning, 1 NEURAL COMPUTATION 312, 316 (1989) (explaining that a neural network’s capacity
is correlated with its size).
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tasks.*® As early researchers showed, an Al system performs best when
its model capacity matches the true complexity of the real-world task.*’
The ability to construct and optimize multiple intermediate layers has
been critical to the success of neural networks, because depth can aug-
ment the capacity of the model by exponential orders of magnitude.*

In a basic neural network, each neuron node unit represents a sin-
gle monad of information. Multiple node units are stitched together
to form a layer, with different “weights” assigned to each connection.
As the input data travels through each layer, the weights determine
which nodes are activated, which directs a path through the deep neural
network to produce the output result. Multiple layers are then stacked
sequentially so that each layer feeds forward into the next layer. That
multilayer structure enables the AI modeler to represent very complex
concepts in a more efficient manner. For example, an image of a person
could be composed of individual pixels at the input layer; edges and
contours at the next layers; higher-order elements such as eyes and lips
at successive layers; and so on until ultimately a facial identification is
presented at the output layer.

The structure of a deep neural network model is configured automati-
cally by the learning algorithm and by the data, through a process called
backpropagation (or “backprop”), a technique originally introduced in
1986.% All leading deep learning libraries, including PyTorch and Ten-
sorFlow, are built upon the backprop method.* As the backprop algo-
rithm iterates through the data, individual connections between neuron
node units are reinforced or decayed, so that the model gradually learns
to recognize patterns it has seen before and to disregard patterns that
are absent in the dataset. Like a toddler learning language, unused

46. See GOODFELLOW ET AL., supra note 39, at 20-21 (“As of 2016, a rough rule of thumb is that
a supervised deep learning algorithm . . . will match or exceed human performance when trained
with a dataset containing at least 10 million labeled examples.”).

47. Seeid. at 109 (“Machine learning algorithms will generally perform best when their capacity
is appropriate for the true complexity of the task they need to perform and the amount of train-
ing data they are provided with. Models with insufficient capacity are unable to solve complex
tasks. . . . [B]ut when their capacity is higher than needed to solve the present task, they may
overfit.”).

48. The reason for the advantage generated by deep networks remains undertheorized. How-
ever, scholars have suggested that it relates to the superior ability of deep networks to approxi-
mate “compositional functions,” i.e., functions that are composed of a hierarchy of constituent
functions. See Tomaso Poggio et al., Why and When Can Deep — but Not Shallow — Networks Avoid
the Curse of Dimensionality: A Review, 14 INT’L J. AuTomMATION & CoMPUTING 503, 503 (2017).

49. See Yavar Bathaee, The Artificial Intelligence Black Box and the Failure of Intent and Cau-
sation, 31 Harv. J.L. & TecH. 889, 901 n.50 (2018) (describing history of the backpropagation
algorithm).

50. See Nathan Sprague, ScalarFlow: Implementing Reverse Mode Automatic Differentiation,
Al MattERs, Dec. 2021, at 8, https://sigai.acm.org/static/aimatters/7-4/ AIMatters-7-4-04-Sprague.
pdf [https://perma.cc/9D83-478Y .
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neural connections may be pruned to create a sparser network that can
be traversed more quickly and efficiently.

At the outset, the AI modeler is responsible for selecting the model
structure, the learning algorithms, and certain “hyperparameters” that
govern the overall learning process. The AI modeler also needs to col-
lect and preprocess the training data. But once the learning process
begins, the AI model is auto-generated without further intervention by
the AI modeler. If the resulting model is unsatisfactory, the AI modeler
can generate a new model by adjusting the initial configuration settings
or by refining the dataset. The search for a satisfactory model is typi-
cally tedious and unpredictable. But the amount of conventional soft-
ware code that needs to be rewritten is minimal.

This bottom-up construction of Al systems differs from top-down
construction of conventional software systems in at least three salient
ways. First, the amount of software design involved is minimal. Instead,
Al modelers typically use off-the-shelf software and adjust only a hand-
ful of initialization settings and hyperparameters. Second, the training
data plays an outsized role in determining how the Al system behaves.
Yet, while the creation of new datasets is tedious and time-consuming,
that work is largely rote and perfunctory. Moreover, it is common prac-
tice to outsource such work or to reuse preexisting datasets compiled by
others. Third, error metrics are more easily quantifiable than the error
metrics available for conventional software systems. That said, those
error metrics have important limitations. The remainder of this Section
proceeds in greater detail through each of the three aspects.

A. Learning Algorithms and Hyperparameters

The AI modeler must make several initialization choices at the out-
set. In theory, the range of available configurations is quite large, but in
practice, those choices are generally confined to what is known to have
worked well before. When Al experts claim that the work of training
deep neural networks is more an “art” than a “science,” it is because
many of these initialization choices are determined by trial and error,
rather than by precise knowledge. Nevertheless, it can be argued that
the overall range of judgment being exercised by the average practitio-
ner is fairly narrow. Moreover, if the Al modeler is retraining a preexist-
ing Al model, then many choices are already locked in.*!

First, the network structure must be optimized for the type of learn-
ing task. For smaller datasets, “convolutional” models are favored for

51. See Edward J. Hu et al., LoRA: Low-Rank Adaptation of Large Language Models, 10 INT’L
CONF. ON LEARNING REPRESENTATIONS (2022).
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image-based classifications, while “recurrent” models are preferred for
natural language processing tasks. In the past few years, newly devel-
oped techniques in unsupervised learning have shifted momentum to
the “transformer” model, which enables processing of much more mas-
sive amounts of data, and which forms the basis of large language mod-
els such as ChatGPT.” These architectural choices are driven primarily
by evidence of prior experimental success.

Second, in determining the network structure, the AI modeler also
has the option of choosing the depth of the network, the number of
nodes (width) per layer, and other “hyperparameters” that govern the
overall learning process. The length of the longest path from input to
output defines the “depth” of the neural network.>* To be clear, a deeper
network is not always a superior one; the best depth is one that matches
the true complexity of the task. For smaller datasets, one or two hidden
layers is usually sufficient to yield best results. It is preferable to make
each layer sufficiently wide by adding more nodes per layer than it is
to add further depth.> When the available training datasets are more
massive, however, and the learning problem more complex, then deeper
networks offer the potential to generate better results.”

Next, the Al modeler must choose the learning algorithm, which con-
sists of mathematical “activation functions,” a “loss function,” and an
“optimization technique.” The goal is to learn the best node weights
across the entire neural network, which can include millions or billions
of nodes. In lay terms, (1) an activation function is what instructs each
neuron node to fire or not to fire, (2) the loss function represents the
penalty for giving wrong weights to those nodes, while (3) the opti-
mization technique is the iterative learning strategy that adjusts node
weights to minimize the penalty of being wrong. With proper choices,
the node weights will converge toward the optimal configuration.

The potential universe of activation functions and loss functions is
vast, but in practice, there is a narrow set of commonly used options,
which are further limited by the type of learning problem and the data

52. See Ashish Vaswani et al., Attention Is All You Need,30 ADVANCES NEURAL INFO. PROCESSING
Sys. (2017) https://arxiv.org/pdf/1706.03762.pdf [https://perma.cc/9FM9-SGBL].

53. See GOODFELLOW ET AL., supra note 39, at 7-8 (defining depth as “the length of the longest
path from input to output” but cautioning that “there is no single correct value for the depth of an
architecture,” and that there is no “consensus about how much depth a model requires to qualify
as ‘deep’”).

54. See Zeyuan Allen-Zhu et al., Learning and Generalization in Overparameterized Neural
Networks, Going Beyond Two Layers, 32 ADVANCES NEURAL INFO. PROCESSING Sys. 6158 (2019).

55. See Rupesh Kumar Srivastava et al., Training Very Deep Networks, 28 ADVANCES NEURAL
INFo. PROCESSING Sys. 2377, 2377 (2015); Kaiming He et al., Deep Residual Learning for Image Rec-
ognition, 2016 IEEE ConNF. oN CompUT. VisION & PATTERN REcoGnITION 770, 770 (describing novel
“residual learning” technique to achieve 152 layers of depth).
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distribution.® The choice is even more stark for optimization tech-
niques, where the most popular choice is stochastic gradient descent, or
improved versions thereof. Within this gradient descent paradigm, the
Al modeler must choose another set of hyperparameters to determine
how crudely or finely the stochastic gradient descent algorithm explores
the universe of possible node weight configurations. For example, vari-
ables like learning rate, batch size, momentum, and weight decay are
used to determine how much to change the node weights after each
iteration of the training process.

These hyperparameters regulate how much and how quickly the
algorithm learns from the data. If the algorithm learns too slowly, it
suffers from underfitting, which means it fails to learn the task at hand.
Conversely, if the algorithm learns too quickly, it can suffer from overfit-
ting, which is a problem because the resulting model performs decep-
tively well on the training examples but fails to generalize well to new
examples.”” In order to avoid the twin hazards of overfitting and under-
fitting, one must choose appropriate hyperparameters that lead to a
well-balanced model.

If there is a dark art to training deep neural networks, it is in the
selection of these mathematical functions and hyperparameters.*® To be
sure, there is no current theory that allows Al modelers to predict with
precision which values will work best prior to training. And, because Al
training is a computationally intensive process, it is prohibitively expen-
sive to brute force through all possible choices.

56. For example, PyTorch offers 30 built-in activation functions and 21 built-in loss functions.
See Torch.nn, PYTORCH, https:/pytorch.org/docs/stable/nn.html [https://perma.cc/PL6S-AM6W].
TensorFlow offers 17 built-in activation functions and 19 classes of built-in loss functions. See
Module: tf.keras.activations, TENsorRFLow, https://www.tensorflow.org/api_docs/python/tf/keras/
activations [https:/perma.cc/NJ28-XL3V]; Module: tf.keras.losses, TENSORFLOW, https://www.ten-
sorflow.org/api_docs/python/tf/keras/losses [https://perma.cc/E2P6-YBFL]. The AI modeler can
also implement customized activation functions or loss functions using both libraries. For loss
functions, one can choose a classification loss function or a regression loss function. Classification
functions work best when identifying a set of discrete values (e.g., the numerical digits 0 to 9).
Regression functions are necessary when seeking to learn values that are on a smooth, continuous
spectrum. Within each of these two categories, there is a short list of mathematical functions that
are known to work well for deep learning applications.

57. See GOODFELLOW ET AL., supra note 39, at 108 (“Underfitting occurs when the model is not
able to obtain a sufficiently low error value on the training set. Overfitting occurs when the gap
between the training error and test error is too large.”).

58. See James Bergstra et al., Making a Science of Model Search: Hyperparameter Optimization
in Hundreds of Dimensions for Vision Architectures, 30 INT'L CONF. ON MACHINE LEARNING 115,115
(2013) (observing that the tuning process “often depends on personal experience and intuition in
ways that are hard to quantify or describe”); GOODFELLOW ET AL., supra note 39, at 420 (“Manual
hyperparameter tuning can work very well when the user has a good starting point, such as one
determined by others having worked on the same type of application and architecture, or when the
user has months or years of experience in exploring hyperparameter values for neural networks
applied to similar tasks.”).
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On the other hand, research suggests that the range of relevant
choices is relatively small.”” And more advanced techniques are allow-
ing Al modelers to automatically tune hyperparameters with increas-
ing ease, rather than relying on manually selected defaults.®” To be sure,
there is no hard and fast rule stopping anyone from making wildly dif-
ferent choices, but there are general expectations among experts in the
field as to the ranges of values that tend to work well.

B. Training Data

It is axiomatic that the simplest way to improve the performance of
a deep neural network is to increase the size of the training dataset.*!
Thus, much of the human labor that goes into building deep learning Al
models is collecting and curating data.®* David Lehr and Paul Ohm have
argued that legal scholars need to “giv[e] more attention to machine
learning’s playing-with-the-data stages.”® Likewise, Andrew Selbst
and Solon Barocas have also stated that it is necessary to investigate
the process behind a model’s development, not just the running model
itself.** Frank Pasquale has advocated the need to impose duties of care
on firms that rely on faulty data to develop Al models.® Having said
that, much of the work at the data supervision stage is mechanical and
tedious, and therefore delegated to low-skilled workers. Alternatively,
many Al modelers reuse existing datasets rather than generate entirely
new datasets. Where Al modelers may bear the brunt of responsibility

59. See James Bergstra & Yoshua Bengio, Random Search for Hyper-Parameter Optimization,
13 J. MACHINE LEARNING RscH. 281 (2012) (finding that most hyperparameters do not matter much
for most data sets). But see GOODFELLOW ET AL., supra note 39, at 420 (“Neural networks can
sometimes perform well with only a small number of tuned hyperparameters, but often benefit
significantly from tuning of forty or more.”).

60. See, e.g., Greg Yang et al., Tensor Programs V: Tuning Large Neural Networks via Zero-Shot
Hyperparameter Transfer, 34 ADVANCES NEURAL INFO. PROCESSING Sys. (2021) (describing efficient
methodology to tune hyperparameters on a scaled-down model and then transfer those values to
the full-scale model). But see GOODFELLOW ET AL., supra note 39, at 424 (asserting, at the time of the
writing, that hyperparameter optimization is much less efficient than manual search by a human
practitioner).

61. See GOODFELLOW ET AL., supra note 39, at 414 (“Many machine learning novices are tempted
to make improvements by trying out many different algorithms. Yet, it is often much better to
gather more data than to improve the learning algorithm.”).

62. See Lehr & Ohm, supra note 18, at 677 (“For many projects, [data collection] can be the
most time-consuming stage, and it also holds enormous consequences; as commenters have noted
previously, an algorithm is, at the end of the day, only as good as its data.”).

63. Id. at 656 (“The potential harms and benefits that can creep in while playing with the data
differ from those of the running model.”).

64. See Andrew D. Selbst & Solon Barocas, The Intuitive Appeal of Explainable Machines, 87
Forpuam L. REv. 1085 (2018).

65. See Frank Pasquale, Data-Informed Duties in AI Development, 119 Corum. L. REv. 1917
(2019).
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for data-related errors is in their use of algorithmic techniques to
enhance, augment, or manipulate the data in order to extract better
learning outcomes from a limited dataset.

To date, most deep learning research has been on “supervised learn-
ing” techniques, meaning that the AI modeler must carefully “super-
vise” the data to ensure that each example is correctly labeled with the
“ground truth” before it is presented to the learning algorithm.® The
emerging sea change toward semisupervised learning is diminishing the
need for manual labeling. Nevertheless, there will always be a need to
reduce raw data into more digestible forms, and to augment that data to
generate more learning examples. This data preprocessing work has two
main functions: first, to simplify the learning task by making the data
clean and orderly, and second, to improve the generalizability of the
Al model so that it can perform as well as possible in new, unforeseen
situations.

With regard to this data supervision work, at least two types of errors
could be attributed to the Al modeler: incorrect data and insufficient
data. The first is that the supervisory steps may be performed in a faulty
manner that causes the training data to be inaccurate or misleading.
The second is that the need for data supervision restricts the available
supply of training data, which increases the risk of blind spots in the
data distribution. Additionally, legal scholarship has emphasized a third
type of error: illegitimate data.’” For example, the data could be prob-
lematic for reasons such as breach of privacy, discriminatory bias, or
violation of copyright.

1. Incorrect Data

Concerns about inaccurate data are age-old.® Data records can con-
tain explicit and implicit errors, and thus advocates and lawmakers have

66. See Steven A. Israel et al., Applied Machine Learning Strategies, IEEE POTENTIALS, May—
June 2020, at 38, 38 (“The most prominent ML methods in use today are supervised, meaning they
require ground-truth labeling of the data on which they are trained.”). While unsupervised and
semi-supervised learning techniques are areas of active research, they are not yet mainstream tools
the way that supervised learning techniques have become. Moreover, due to computational limits,
even unsupervised and semi-supervised learning techniques need to reduce raw data into more
digestible forms.

67. See Pasquale, supra note 65, at 1923-28 (contrasting “inappropriate data” with “inaccurate
data”).

68. See, e.g., DANIEL J. SOLOVE, THE DIGITAL PERSON 15 (2004) (quoting a 1973 report by the U.S.
Department of Health, Education, and Welfare: “Sometimes the individual does not even know
that an organization maintains a record about him. Often he may not see it, much less contest its
accuracy, control its dissemination, or challenge its use by others.”); id. at 46,49 (“Not only are
our digital biographies reductive, but they are often inaccurate. . . . [T]he information in data-
bases often fails to capture the texture of our lives. Rather than provide a nuanced portrait of our
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long demanded procedural protections such as rights of public access
to data records, and remedial mechanisms to dispute the information
found therein.®

In order to prepare a training dataset for a supervised learning algo-
rithm, the AT modeler must perform several idiosyncratic steps that are
not practiced in conventional software development, including labeling
and cleaning the training data. Each of these intermediate steps has a
significant impact on the performance of the ensuing AI model, and
each entails varying degrees of uncertainty.

Data labeling is a basic way in which errors can corrupt the machine
learning process. For example, if the goal were to distinguish cat images
from dog images, then labeling each image in the dataset as “cat,” “dog,”
or some other value teaches the AI model how to correctly classify each
image.” Likewise, in the autonomous driving context, bounding boxes
can be used to label objects of interest such as vehicles, pedestrians, and
other road users, which the learning algorithm then knows to avoid.
Without that supervisory help, the learning algorithm would need to
learn those labels on its own.”

But data labeling is not an exact science.”” Some judgment is needed
in designating a useful schema. A naive approach could ask labelers to
invent their own labels.” Given enough labelers, however, this approach
leads to inconsistent use of labels. Additionally, the quality of labels
suffers because humans tend to label objects at a basic semantic level
rather than in more descriptively rich ways.” The labeling process can

personalities, compilations of data capture the brute facts of what we do without the reasons.”);
SiMSON GARFINKEL, DATABASE NaTioN (2000).

69. See, e.g., Fair Credit Reporting Act, Pub. L. No. 91-508, 84 Stat. 1114, 1127 (1970) (codified
at 15 U.S.C. § 1681); Freedom of Information Act, Pub. L. No. 90-23, 81 Stat. 54 (1967) (codified at
5 US.C. § 552); California Consumer Privacy Act of 2018, CaL. Civ. CopE §§ 1798.100-.199 (West
2022).

70. Labels also correspond to the “outcome variables” that the AI model is expected to predict
or estimate. See Lehr & Ohm, supra note 18, at 673.

71. See GOODFELLOW ET AL., supra note 39, at 102 (“The term supervised learning originates
from the view of the target y being provided by an instructor or teacher who shows the machine
learning system what to do. In unsupervised learning, there is no instructor or teacher, and the
algorithm must learn to make sense of the data without this guide.”).

72. See Lehr & Ohm, supra note 18, at 673-75 (describing the discretionary process by which
Al modelers choose labels (or outcome variables), and listing the “different factors [that] play into
how data scientists make these tough choices,” including subject matter knowledge, algorithmic
needs, and resource constraints).

73. In practice, annotations are performed by hand. See, e.g., Jia Deng et al., ImageNet: A Large-
Scale Hierarchical Image Database,2009 IEEE CoNE. oN CoMPUT. VISION & PATTERN RECOGNITION
248,251 (“To collect a highly accurate dataset, we rely on humans to verify each candidate image
collected . . . .”); Luis von Ahn & Laura Dabbish, Labeling Images with a Computer Game, 2004
SIGCHI CoNEk. oN HumAN Factors CoMPUTING Sys. 319, 319.

74. See Deng et al., supra note 73, at 250 (explaining findings that “humans tend to label visual
objects at an easily accessible semantic level termed as ‘basic level’ (e.g. bird), as opposed to more
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also be sabotaged on purpose.” Even small changes to data labels can
cause surprisingly nuanced problems that are difficult to detect.

One workaround is to adopt an existing schema developed by lin-
guistic experts or subject matter experts. Perhaps the best known exam-
ple is ImageNet, an image dataset of over 14 million images organized
according to a hierarchy of more than 100,000 labels.” The key to its
success is that it starts with a third-party schema and then asks the pub-
lic to provide examples that fit the labels, rather than vice versa.”” Other
research efforts include methods to automate data labeling,”® which
have yielded limited success so far.”

Data cleaning allows the Al modeler to massage the data to yield
better results.® If the data is too noisy, then the learning algorithm will
struggle to distinguish features that are meaningful from those that are
not.®! The dataset may contain faulty or inappropriate entries,*” or the

specific level (‘sub-ordinate level e.g. sparrow), or more general level (‘super-ordinate level’ e.g.
vertebrate).”).

75. See Antonio Torralba et al., Open Letter, MIT (June 29, 2020), https://groups.csail.mit.edu/
vision/TinyImages/ [https:/perma.cc/ELL3-6DZN] (announcing formal withdrawal of the Tiny
Images dataset due to the discovery of “derogatory” labels and “offensive images”).

76. About ImageNet, IMAGENET, http://image-net.org/about.php [https://perma.cc/7FAF-
BKVT]; Deng et al., supra note 73, at 248; see also Abeba Birhane & Vinay Uday Prabhu, Large
Image Datasets: A Pyrrhic Win for Computer Vision?,2021 IEEE WINTER CONF. ON APPLICATIONS
CompuT. VisioN 1536, 1539 (“ImageNet, with its vast amount of data, has not only erected a canoni-
cal landmark in the history of Al it has also paved the way for even bigger, more powerful, and
suspiciously opaque datasets.”). But see Kate Crawford & Trevor Paglen, Excavating AI: The
Politics of Images in Machine Learning Training Sets, Al Now INsT. (2019), https://excavating.ai
[https://perma.cc/6FGS-T3DK] (detailing at length the shortfalls of the ImageNet taxonomy).

77. See Deng et al., supra note 73, at 248,251-52.

78. See Burr Settles, Active Learning Literature Survey, 1648 U. Wis. Comput. Scis. TECH. REP.
(2009), at 9, https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf [https://perma.
cc/752Q-YBTX].

79. See GOODFELLOW ET AL., supra note 39, at 526 (“Today, unsupervised pretraining has been
largely abandoned, except in the field of natural language processing . . ..”). But see Alec Radford
et al., Improving Language Understanding by Generative Pre-Training (June 11,2018) (preprint),
http://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.
pdf [https://perma.cc/DB7S-WRSJ] (explaining use of unsupervised pretraining techniques to
train GPT-2 and GPT-3 on large unlabeled text corpora scraped from the internet).

80. See Inas F. Iryas & Xu Chu, Data CLEANING 1 (2019) (“[D]ata cleaning activities usually
consist of two phases: (1) error detection, where various errors and violations are identified and
possibly validated by experts; and (2) error repair, where updates to the database are applied (or
suggested by human experts) to bring the data to a cleaner state suitable for downstream applica-
tions and analytics.”).

81. See GOODFELLOW ET AL., supra note 39, at 414 (“If large models and carefully tuned optimi-
zation algorithms do not work well, then the problem might be the quality of the training data. The
data may be too noisy or may not include the right inputs needed to predict the desired outputs.
This suggests starting over, collecting cleaner data, or collecting a richer set of features.”).

82. Such errors can include, for example, missing values, unhelpful outliers, typos, and duplicate
entries.
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data may need to be normalized to share the same units and measures.*
With enough data, small levels of error can become invisible, but sys-
tematic errors will continue to be problematic. For certain Al applica-
tions, these data cleaning tasks may require domain-specific knowledge,
but for “common sense” applications, they may require little to no spe-
cialized skill.

Another way to enhance the data is through “feature engineering,”
which allows the AI modeler to highlight or diminish certain features
of the training dataset. As an example, one popular technique is pool-
ing, which combines several existing features into a new aggregate fea-
ture.® For example, if the dataset contains hourly wage information, the
Al modeler could pool that information to create a new weekly wage
feature. Likewise for image processing, a pooling function can produce
one aggregate value for multiple neighboring pixels. In this way, the Al
modeler simplifies the learning task while still preserving the general
contours of the original dataset.

In sum, any exercise of data curation has the potential to introduce
bias or error, and choosing the best techniques involves some guess-
work. Nevertheless, the ongoing development of standard schemas and
certified datasets could reduce much of that uncertainty going forward.

2. Insufficient Data

The problem of insufficient data is a fundamental challenge for all
machine learning methods, because it increases the likelihood that the
trained Al model will fail to generalize well to new, previously unseen
cases. When a new case reveals a gap in the data, the Al model must rely
on inferential reasoning, which creates uncertainty and risk of error.
Conversely, as the amount of available data increases to infinity, the
more likely it becomes that the Al model will have seen the full range of
cases, thus eliminating the need for guesswork. The sufficiency concern
is not merely quantitative but qualitative. Facial recognition systems
have been criticized for performing worse on darker faces.®> Medical

83. See GOODFELLOW ET AL., supra note 39, at 517 (“Many information processing tasks can be
very easy or very difficult depending on how the information is represented . . . . For example, it is
straightforward for a person to divide 210 by 6 using long division. . . . Most modern people asked
to divide CCX by VI would begin by converting the [Roman] numbers to the Arabic numeral rep-
resentation . . . .”); id. at 441 (“Many computer vision architectures require images of a standard
size, so images must be cropped or scaled to fit that size.”).

84. See Naila Murray & Florent Perronnin, Generalized Max Pooling, 2014 IEEE CoNF. oN
CoMPUT. VISION & PATTERN RECOGNITION 2473.

85. See Joy Buolamwini & Timnit Gebru, Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification, 81 Proc. MacH. LEARNING Rsch. 1, 8 (2018).
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datasets often display gender gaps that overlook women.*® Language
models have come under attack for “hallucinating” false facts.®” These
faults occur because the training data is not adequately representative
of the full range of information that exists in the real world.

The amount of data needed to achieve passable performance depends
on the complexity of the problem. If there are only a few causal factors
that affect the outcome —such as a lamp controlled by a simple on-off
switch—then even a small number of past examples will be strongly
predictive of future cases. However, most real-world applications of
Al involve problems that are not well-understood. If the problem is
more like weather forecasting, where outcomes can vary dramatically
depending on a vast set of unknown variables, then much more data
is needed to record the myriad possible patterns. One benchmark sug-
gested in the literature is that 10 million labeled examples is the bare
minimum number needed to achieve human-like performance.® But
the critical threshold can be much higher. For example, the autonomous
car company Waymo states that it has turned its “20 million miles of
on-road experience into a searchable catalog of billions of objects.”®
OpenATI’s GPT-3 (the predecessor of ChatGPT) was trained on 499 bil-
lion tokens.”

Actual practice among Al modelers varies considerably. As the fore-
going discussion emphasizes, the need to label data drastically limits the
availability of training data. Other compounding factors—such as data
privacy laws—can also inhibit the ready accessibility of usable data. To
offset this shortage of training data, Al modelers often rely on “found”
data.”!

86. See CAROLINE CRIADO PEREZ, INVISIBLE WOMEN: DATA Bias IN A WORLD DESIGNED FOR MEN
89-90 (2019).

87. See Ziwei Ji et al., Survey of Hallucination in Natural Language Generation, 55 ACM CowMm-
PUTING SURVEYS art. 248, at 248:5-248:6 (2023) (observing that the main causes of hallucination
include problems with data collection, as well as data distortions that can arise through training
and modeling choices).

88. See GOODFELLOW ET AL., supra note 39, at 20.

89. See James Guo et al., Seeing is Knowing: Advances in Search and Image Recognition Train
Waymo’s Self-Driving Technology for Any Encounter, WaYPOINT (Feb. 6,2020), https://blog.waymo.
com/2020/02/content-search.html [https:/perma.cc/Z8C5-8QDQ]; see also Pei Sun et al., Scalabil-
ity in Perception for Autonomous Driving: Waymo Open Dataset, 2020 IEEE CoNE. oN COMPUT.
VIsioN & PATTERN RECOGNITION 2443, 244344,

90. See Tom B. Brown et al., Language Models Are Few-Shot Learners, 33 ADVANCES NEURAL
INFo. PROCESSING Sys. 1877 (2020) (describing implementation of GPT-3).

91. See Katherine J. Strandburg, Rulemaking and Inscrutable Automated Decision Tools, 119
Corum. L. Rev. 1851, 1861 (2019) (“[M]achine learning processes often rely on ‘found data,” col-
lected for some other purpose, to train the models. Unfortunately, reliance on found data leaves
rulemakers at the mercy of whatever feature sets and outcome variables happen to have been
collected.”).
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When the available dataset is too small, the Al modeler must get
creative in order to extract more learning from less data. Some tech-
niques allow for careful reuse of the existing data.”” More popular tech-
niques, however, use data augmentation to generate new examples.
The AI modeler can greatly magnify the size of a dataset by adding
slight perturbations of existing examples in the dataset. For example, an
image can be rotated, flipped, or altered in minor ways that preserve the
essence of the image while making the image appear new and differ-
ent to the learning algorithm.” In language corpuses, synonyms can be
substituted to create new text examples with equivalent meaning. More
advanced techniques for generating new data samples include diffusion
and generative adversarial networks.” By massaging the available data
in these ways, Al modelers boost the amount of learning that can be
extracted from limited quantities of training data. But doing so greatly
enhances the risk of error if the augmentation techniques are not care-
fully implemented.”

3. lllegitimate Data

A third source of potential fault focuses on whether certain data in
the training dataset is illegitimate.” Here, there are two genres of cri-
tique. The strong form is that the data is malum in se and cannot be
purged of its problematic aspects. The weaker version raises procedural
objections regarding the manner in which the data was obtained or
processed.

One set of objections stems from the intimate or offensive nature of
the data itself.”” For example, facial recognition systems have generated

92. For example, one clever way to extract more learning from a single dataset is to divide the
dataset into k nonoverlapping subsets, and then repeat the training and testing procedures k times.
This technique is known as “k-fold cross-validation.” See GOODFELLOW ET AL., supra note 39, at 119.

93. See Alex Ratner et al., Learning to Compose Domain-Specific Transformations for Data
Augmentation, STAN. DawN (Aug. 30,2017), https://dawn.cs.stanford.edu/2017/08/30/tanda [https://
perma.cc/8T8H-XZYE].

94. See Prafulla Dhariwal & Alex Nichol, Diffusion Models Beat GANs on Image Synthesis
(June 1, 2021) (preprint), https:/arxiv.org/pdf/2105.05233.pdf [https://perma.cc/42KW-HKCJ].
Other methods such as fine tuning and transfer learning offer additional ways to extract utility
from smaller datasets. See Rohan Taori et al., Alpaca: A Strong, Replicable Instruction-Following
Model, StaN. UnN1v. Ctr. RscH. oN Founp. MobpEeLs (2023), https://crfm.stanford.edu/2023/03/13/
alpaca.html [https://perma.cc/6JCQ-F9ZW].

95. See Sina Alemohammad et al., Self-Consuming Generative Models Go MAD (July 4,2023)
(preprint), https://arxiv.org/pdf/2307.01850v1.pdf [https:/perma.cc/DZNS-U9VL] (finding that
overuse of synthetic, Al-generated training data degrades the quality of future AI models).

96. See Pasquale, supra note 65, at 1925-27.

97. See Karen E.C. Levy, Intimate Surveillance, 51 Ipano L. Rev. 679 (2015); Margaret Hu, Bio-
metric ID Cybersurveillance, 88 Inp. L.J. 1475 (2013).
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public outcry and have led to bans by multiple municipalities.”® The use
of deep learning for biometric recognition is not limited to faces, but
extends to fingerprints, palmprints, eyes, voices, gaits, handwriting, and
ears.” Similarly, the use of nude content to generate “deep fake” por-
nography raises objections rooted in bodily autonomy and shock to the
conscience.'”” This indignation could be extended to other categories of
information—health data, children’s data, financial data, geolocational
data, and so on.

Other concerns have been framed in procedural terms, in which the
data is not illegitimate per se, but becomes tarnished by the manner in
which it is acquired or used.'” Complaints rooted in consent,'”* intellec-
tual property,'® contextual integrity,!* or anonymization,'® speak pri-
marily to failures of data handling that could be remediated by better
procedural safeguards or economic compensation.

A more radical set of concerns is that reliance on biased, histori-
cal data will sustain an unjust status quo.!” The canonical case study

98. See Lindsey Barrett, Ban Facial Recognition Technologies for Children—and for Everyone
Else,26 B.U. J. Sc1. & TecH. L. 223,277 (2020). But see Bruce Schneier, We’re Banning Facial Rec-
ognition. We're Missing the Point., N.Y. TiMgs (Jan. 20, 2020), https://www.nytimes.com/2020/01/20/
opinion/facial-recognition-ban-privacy.html (pointing out that facial recognition is only “one iden-
tification technology among many”).

99. See Shervin Minaee et al., Biometric Recognition Using Deep Learning: A Survey (Feb. 8,
2021) (preprint), https:/arxiv.org/pdf/1912.00271.pdf [https:/perma.cc/3RL2-X3FE].

100. See Bobby Chesney & Danielle Citron, Deep Fakes: A Looming Challenge for Privacy,
Democracy, and National Security, 107 CALIF. L. Rev. 1753, 1772-73 (2019) (“Thanks to deep-fake
technology, an individual’s face, voice, and body can be swapped into real pornography. . . . When
victims discover that they have been used in deep-fake sex videos, the psychological damage can
be profound—whether or not this was the video creator’s aim.”); Mary Anne Franks & Ari Ezra
Waldman, Sex, Lies, and Videotape: Deep Fakes and Free Speech Delusions, 78 Mb. L. REv. 892,
893 (2019) (“Like other forms of nonconsensual pornography, digitally manipulated pornography
turns individuals into objects of sexual entertainment against their will, causing intense distress,
humiliation, and reputational injury.”); see also Ashcroft v. Free Speech Coalition, 535 U.S. 234,
241-42 (2002) (distinguishing computer-generated images, which do not involve or harm any un-
derlying person, from computer-morphed images, which do implicate the interests of real persons).

101. See Pasquale, supra note 65, at 1926; Kate Crawford & Jason Schultz, Big Data and Due
Process: Toward a Framework to Redress Predictive Privacy Harms, 55 B.C. L. REv. 93 (2014).

102. See Moore v. Regents of Univ. of Calif., 793 P.2d 479 (Cal. 1990).

103. See Matthew Sag, Copyright Safety for Generative AI,61 Hous. L. Rev. (forthcoming 2024);
Benjamin L. W. Sobel, Artificial Intelligence’s Fair Use Crisis,41 CoLum. J.L. & Arts 45 (2017). But
see Mark A. Lemley & Bryan Casey, Fair Learning, 99 Tex. L. REv. 743 (2021).

104. See HELEN NISSENBAUM, PRIVACY IN CONTEXT (2009).

105. See Martin Abadi et al., Deep Learning with Differential Privacy,2016 ACM CoNF. oN Com-
PUT. & CommC’Ns SEc. 308.

106. See Sandra G. Mayson, Bias in, Bias Out, 128 YaLE L.J. 2218, 2238 (2019) (“[I]f the base
rate of the predicted outcome differs across racial groups, it is impossible to achieve (1) predictive
parity; (2) parity in false-positive rates; and (3) parity in false-negative rates at the same time . . . .
Race neutrality is not attainable.”); Anupam Chander, The Racist Algorithm?, 115 MicH. L. Rev.
1023, 1036-37 (2017); Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 Ca-
LIF. L. REv. 671, 680 (2016) (“As computer science scholars explain, biased training data leads to



2024] Al MALPRACTICE 325

is predictive policing, where Al techniques are being used to formu-
late criminal risk assessments both at the community level and at the
individual level.'”” Many commentators have observed that policing
practices and criminal law enforcement have been—and continue to
be—pervaded by disparate treatment of protected classes, including
race and gender.!® Accordingly, they argue, any data drawn from past
policing practices will necessarily reflect those same biases, and should
be disqualified from informing future policing practices.'” Other com-
mentators have extended that critique to myriad contexts, including
employment,'!® healthcare,''! and consumer credit,'> where past prac-
tices have been problematic. In these socially fraught areas, the criticism

discriminatory models.”); Aziz Z. Huq, Racial Equity in Algorithmic Criminal Justice, 68 DUKE L.J.
1043, 1104 (2019) (“[A] racial equity analysis of algorithmic criminal justice should not be a com-
parative one. ... The mere fact that the status quo ante is characterized by racial injustice does not
legitimatize proposals that preserve or extend some substantial part of that injustice.”); Emily M.
Bender et al., On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?,2021 Proc.
ACM CoNF. ON FAIRNESS, ACCOUNTABILITY & TRANSPARENCY 610, 614 (“In accepting large amounts
of web text as ‘representative’ of ‘all’ of humanity we risk perpetuating dominant viewpoints, in-
creasing power imbalances, and further reifying inequality.”).

107. See Andrew Guthrie Ferguson, Policing Predictive Policing, 94 WasH. U. L. Rev. 1109
(2017); Elizabeth E. Joh, Policing By Numbers: Big Data and the Fourth Amendment 89 WasH. L.
REv. 35 (2014); Ric Simmons, Quantifying Criminal Procedure: How to Unlock the Potential of Big
Data in Our Criminal Justice System,2016 MicH. ST. L. REv. 947; Megan Stevenson, Assessing Risk
Assessment in Action, 103 MINN. L. Rev. 303 (2018); Ric Simmons, Big Data, Machine Judges, and
the Legitimacy of the Criminal Justice System, 52 U.C. Davis L. Rev. 1067 (2018).

108. See Hugq, supra note 106, at 1105-11; Andrew Guthrie Ferguson, /lluminating Black Data
Policing, 15 Onio St.J. Crim. L. 503 (2018); Shima Baradaran, Race, Prediction, and Discretion, 81
GEeo. WasH. L. Rev. 157 (2013); Jessica M. Eaglin, Constructing Recidivism Risk, 67 EMoRry L.J. 59
(2017); Sonja B. Starr, Evidence-Based Sentencing and the Scientific Rationalization of Discrimina-
tion, 66 STAN. L. REV. 803 (2014) (gender).

109. See BERNARD E. HARCOURT, AGAINST PREDICTION: PROFILING, POLICING, AND PUNISHING IN
AN AcTUARIAL AGE (2007); Ferguson, Policing Predictive Policing, supra note 107, at 1149 (address-
ing the argument that, “[i]f the underlying data is biased, then how can a data-driven system based
on that data not also be biased?”); Sean Allan Hill IT, Bail Reform and the (False) Racial Promise
of Algorithmic Risk Assessment, 68 UCLA L. REv. 910, 944-45 (2021) (arguing that criticisms of
pretrial risk assessment instruments do not go far enough in “interrogat[ing] how criminal laws
and practices sustain prevailing beliefs of Black criminality,” and that this technology “lends le-
gitimacy to dangerousness predictions and thus encourages continued investments in the criminal
legal system”); see also Huq, supra note 106, at 1131 (adopting a cost-benefit approach but arguing
that “the operation of criminal justice coercion generates asymmetrical harms to black families
and black communities”).

110. See Pauline T. Kim, Data-Driven Discrimination at Work, 58 WM. & MARy L. REv. 857
(2017); Charles A. Sullivan, Employing AI, 63 ViLL. L. Rev. 395 (2018); Jon Kleinberg et al., Dis-
crimination in the Age of Algorithms, 10 J. LEGAL ANALysIs 1 (2018).

111. See Robin C. Feldman et al., Artificial Intelligence in the Health Care Space: How We Can
Trust What We Cannot Know, 30 Stan. L. & Por’y REv. 399 (2019); W. Nicholson Price II, Black-
Box Medicine, 28 HARv. J.L. & TecH. 419 (2015); Pasquale, supra note 65, at 1926.

112. See Kristin Johnson et al., Artificial Intelligence, Machine Learning, and Bias in Finance: To-
ward Responsible Innovation, 88 ForpHAM L. REV. 499 (2019); PAM D1xoN & ROBERT GELLMAN, THE
ScoRING OF AMERICA: HOw SECRET CONSUMER SCORES THREATEN YOUR PRrIvacy AND YOUR FUTURE
(2014).
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is that the data at issue is fundamentally illegitimate for use in Al appli-
cations. Rehabilitation through procedural mechanisms is not a suitable
option.'"?

C. Testing

In an important way, testing of AI models is far more orderly than
testing of conventional software systems. Because the AI model is—
or should be —a mathematical approximation of a naturally occurring
pattern, the primary inquiry is whether the approximation is a close
enough fit to the real phenomenon. A range of testing metrics allows Al
modelers to estimate and compare an Al model’s relative performance.

For classification problems, the simplest and most popular metric
involves use of available data to determine the AI model’s “accuracy.”
The full dataset is partitioned into a training and test set.""* This parti-
tion allows the Al modeler to evaluate how well the AI model is likely
to perform on new, previously unseen inputs.'> A general rule of thumb
is to allocate fifty to eighty percent of the original dataset to the train-
ing set, and leave the remainder for the test set. As long as the test set is
independently drawn and adequately representative of the real world,!'®
running the test set through the AI model offers simple heuristics that

113. Cf Robin West, The Limits of Process, in GETTING TO THE RULE oF Law 40-41 (2011) (“[W]e
should acknowledge, before championing too loudly the cause of proceduralism, that excessively
precious procedures in the face of grotesque substantive law from which there is truly no exit,
even with all the procedure in the world, can be a massive insult to dignity. . . . In Hell, as Grant
Gilmore observed, there will be perfect procedural justice.”). But see Strandburg, supra note 91, at
1881 (“[P]reemptively depriving society of all such tools for all purposes in all significant decision
contexts seems questionable as a policy matter, given the advantages of machine-learning-based
decision tools in some contexts.”).

114. See Lehr & Ohm, supra note 18, at 685 (“One key method is to randomly split, or partition,
an entire dataset into two: a ‘training’ dataset and a ‘test’ dataset. A machine-learning algorithm is
trained and learns the optimal predictive rules on the former. Then, the algorithm’s accuracy and
other performance metrics are assessed by asking it to predict the outcomes of the subjects in the
latter. In this way, an algorithm is forced to predict data it has not ‘seen’ before . . . .”). The data
partition can also include a validation set, which is used to tune the hyperparameters of the learn-
ing algorithm.

115. See GOODFELLOW ET AL., supra note 39, at 107 (“The central challenge in machine learn-
ing is that our algorithm must perform well on new, previously unseen inputs—not just those on
which our model was trained. The ability to perform well on previously unobserved inputs is called
generalization.”).

116. Additionally, the training set and test set must have identical distributions, and they must
be kept independent. See GOODFELLOW ET AL., supra note 39, at 108 (“We typically make a set
of assumptions known collectively as the i.i.d. assumptions. These assumptions are that the ex-
amples in each dataset are independent from each other, and that the training set and test set are
identically distributed, drawn from the same probability distribution as each other. . . . [These]
assumptions enable[] us to mathematically study the relationship between training error and test
error.”). But see Sayash Kapoor & Arvind Narayanan, Leakage and the Reproducibility Crisis
in Machine-Learning-Based Science, 4 PATTERNS, no. 9, Sept. 2023, at 1, 2, https://www.cell.com/
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simulate how well the Al model is likely to perform on future data.!'’
To be sure, an important limitation of this heuristic is that it is based
only on known data, so maximizing the accuracy metric can yield worse
performance due to overfitting of insufficient data. A common work-
around is to “early stop” the training process before the accuracy metric
reaches one-hundred percent.

Other available testing metrics offer alternative computations of best
fit. Classification metrics such as “precision” and “recall” are optimized
for detection of false positives or true positives, which may be more
meaningful than overall accuracy in certain contexts.!’® For regression
tasks involving continuous variables —rather than true-false classifica-
tions—a distance metric such as “mean squared error” offers a more
appropriate computation of how close the AI model’s estimated map-
ping is to the true natural pattern. Many more statistical methods offer
a well-established canon of techniques to quantitatively compare the
relative performance of AI models on a given task.'”

These testing metrics are effective because the Al model has inher-
ent smoothness properties. The data-driven, bottom-up training process
relies on an implicit assumption that the data has a well-ordered, discov-
erable pattern. By definition, deep neural networks are mathematical
representations of smooth, continuous functions capable of represent-
ing any arbitrary pattern.” That continuous property means selective
sampling can offer useful evaluation insights.

By contrast, software is discontinuous; testing of conventional
software systems tends to be haphazard, and generally lacks formal
metrics.'?! Software is based on artificial, human-made constructs, rather

patterns/pdf/S2666-3899(23)00159-9.pdf (documenting data leakage as “a leading cause of errors
in ML applications™).

117. See Jie M. Zhang et al., Machine Learning Testing: Survey, Landscapes and Horizons, 48
IEEE TRANSACTIONS ON SOFTWARE ENG’G 1, 6 (2022).

118. See Brendan Juba & Hai S. Le, Precision-Recall versus Accuracy and the Role of Large Data
Sets, 33 AAAI CoNF. ON ARTIFICIAL INTELLIGENCE 4039 (2019).

119. See Ben Hutchinson et al., Evaluation Gaps in Machine Learning Practice,2022 ACM FaIr-
NESS ACCOUNTABILITY TRANSPARENCY 1859, 1863, 1873 app. A (listing twenty-six commonly cited
metrics across nine categories, including accuracy, precision, recall, F-score, overlap, distance, and
AUC (area under the curve)).

120. See GOODFELLOW ET AL., supra note 39, at 192-93 (describing the universal approximation
theorem, which states that a deep neural network can represent any kind of regular pattern as a
continuous Borel measurable function).

121. See, e.g., Steven B. Lipner, The Birth and Death of the Orange Book, IEEE ANNALS OF THE
Hist. o CoMPUTING, Apr.—June 2015, at 19, 29 (noting the discovery that software projects evalu-
ated for computer security per the Orange Book standard “fared no better under attack than any
others”); Choi, supra note 22, at 583; Antonia Bertolino, Software Testing Research: Achievements,
Challenges, Dreams, 2007 FUTURE OF SOFTWARE ENG’G 85, 92 (citing a survey study that found
“over half of the existing (testing technique) knowledge is based on impressions and perceptions
and, therefore, devoid of any formal foundation” (citing Natalia Juristo et al., Reviewing 25 Years



328 DEPAUL LAW REVIEW [Vol. 73:301

than natural patterns like deep AIl. Moreover, because of software’s
abstraction away from physical materials, software is unlike structural
engineering or industrial manufacturing in that it lacks smoothly inter-
polated attributes such as compressive strength that can be adequately
tested by selective sampling.!?? Instead, software failures can occur in
completely arbitrary fashion, at any point along the control path. That
lack of interpolability means the only way to ensure a program has no
critical errors is to test every single control path that the code allows, as
well as every functionality that the design requires. Yet, the exponential
nature of software program complexity makes that task computation-
ally impossible.'?

Software testers have looked for heuristics that can reduce the amount
of testing needed, with little success. For example, “code coverage” tech-
niques seek to generate enough test cases to cover one-hundred per-
cent of the source code —which sounds impressive but lacks any rigor as
to how mere coverage equates with correctness.!” Other methods seek
to reduce the number of test cases by focusing attention on the most
commonly known types of faults, through techniques such as equiva-
lence partitioning, boundary value analysis, or all-pairs testing.'* These
latter techniques can be effective at detecting “known knowns,” but are
not aimed at locating unknown errors. Some scholars have championed
model-based testing, which seeks to streamline testing by requiring the
software code to conform to a formal model of the system’s function-
ality.'?® Although this approach offers some theoretical potential, it has
had minimal uptake in real-world practice due to limitations in formal

of Testing Technique Experiments,9 EMPIRICAL SOFTWARE ENG’G 7 (2004))); Ina Schieferdecker &
Andreas Hoffmann, Model-Based Testing, in ENCYCLOPEDIA OF SOFTWARE ENGINEERING 556, 561
(Phillip A. Laplante ed., 2011) (observing that the “lack of quality metrics leads most companies
to simply count the number of defects that emerge when testing occurs,” and that “[f]ew organiza-
tions engage in other advanced testing techniques”).

122. See Charles C. Mann, Why Software Is So Bad, MIT TecH. REv., July/Aug., 2002, at 33, 36.

123. See Bertolino, supra note 121, at 91 (noting that seminal work in software testing theory
provides “logical arguments to corroborate the quite obvious fact that testing can never be exact”
and, furthermore, that there is “little guidance about what it is then that we can conclude about the
tested software after having applied a selected technique” (citing EDSGER W. DIIKSTRA, NOTES ON
STRUCTURED PROGRAMMING (2d ed. 1970))).

124. See Laura Inozemtseva & Reid Holmes, Coverage Is Not Strongly Correlated with Test Suite
Effectiveness, 36 INT'L CoNF. oN SOFTWARE ENG’G 435 (2014) (finding that code coverage is not a
good proxy of test suite effectiveness); Hadi Hemmati, How Effective Are Code Coverage Crite-
ria?,2015 IEEE INT’L CONF. ON SOFTWARE QUALITY, RELIABILITY & SEC. 151.

125. See, e.g., Schieferdecker & Hoffmann, supra note 121, at 559; D. Richard Kuhn et al., Soft-
ware Fault Interactions and Implications for Software Testing, 30 IEEE TRANSACTIONS ON SOFTWARE
ENG’G 418 (2004).

126. See Schieferdecker & Hoffmann, supra note 121, at 556.
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modeling methods.'” Ultimately, the lack of interpolability and the lack
of metrics means that software testers typically rely on ad hoc practices,
based on intuition and trial-and-error, to determine how to search for
software bugs in the proverbial haystack.!?®

For now, testing methods for AI models remain imperfect and con-
tinue to face important limitations. The existing metrics have known
shortcomings that often go unexamined.'” In particular, most standard
metrics are based on historical data that may not be adequately rep-
resentative of the real world. It is far more challenging and costly to
develop metrics that validate the novel, generative outputs of an Al
system.*® Robustness remains a substantial problem, as real-world
performance is often worse than the testing metrics would predict.'!
Adversarial attacks add an extra factor: AI models can exhibit strange
behaviors when probed in malicious ways.'*> To compensate, entities
often resort to “online training,” whereby the Al model is updated
in real time with new data, but this adaptive approach raises difficult
questions of how to validate ongoing changes to the model.'** More

127. See Bertolino, supra note 121, at 93 (noting that “industrial adoption of model-based test-
ing remains low and signals of the research-anticipated breakthrough are weak”); Schieferdecker
& Hoffmann, supra note 121, at 556, 568 (stating that model-based testing is “rarely used in indus-
trial-grade processes” and that adoption is “slow”).

128. See Dudekula Mohammed Rafi et al., Benefits and Limitations of Automated Software
Testing: Systematic Literature Review and Practitioner Survey, 7 INT’L WORKSHOP ON AUTOMATION
oF SOoFTWARE TEsT 36 (2012) (finding that automated software tools are unlikely to fully replace
manual testing).

129. See Nathalie Japkowicz, Why Question Machine Learning Evaluation Methods?, AAAI
WORKSHOP ON LEARNING FROM IMBALANCED DATASETS (2006).

130. This issue is called the test oracle problem. See Zhang et al., supra note 117 at 8 (“Currently,
the identification of test oracles remains challenging, because many desired properties are difficult
to formally specify. Even for a concrete domain specific problem, the oracle identification is still
time-consuming and labour-intensive, because domain-specific knowledge is often required.”).

131. See Shibani Santurkar, Machine Learning Beyond Accuracy: A Features Perspective On
Model Generalization (Sept. 2021) (Ph.D. dissertation, MIT), https://dspace.mit.edu/bitstream/
handle/1721.1/139920/Santurkar-shibani-PhD-EECS-2021-thesis.pdf (explaining that benchmark
performance turns out to be remarkably brittle in real-world performance, a problem illuminated
by adversarial examples); EvaN ELWELL, NAT’L AcADS. OF Scis., ENG’G & MED., TESTING, EVALUAT-
ING, AND ASSESSING ARTIFICIAL INTELLIGENCE-ENABLED SYSTEMS UNDER OPERATIONAL CONDITIONS
FOR THE DEPARTMENT OF THE AIR FORCE: PROCEEDINGS OF A WORKSHOP—IN BRIEF 1,7 (2023) (noting
that often “performance of the deployed system in the operational domain was much worse than
predicted during the test phase”).

132. See ApoSTAL VASSILEV ET AL., NIST, ADVERSARIAL MACHINE LEARNING: A TAXONOMY AND
TERMINOLOGY OF ATTACKS AND MITIGATIONS 54 (2024) (“Unfortunately, it is not possible to simulta-
neously maximize the performance of the Al system with respect to these attributes. For instance,
Al systems optimized for accuracy alone tend to underperform in terms of adversarial robustness
and fairness. Conversely, an Al system optimized for adversarial robustness may exhibit lower
accuracy and deteriorated fairness outcomes.”); Andrew D. Selbst, Negligence and Al's Human
Users, 100 B.U. L. Rev. 1315, 1351 (2020) (discussing examples).

133. See, e.g., FDA, PROPOSED REGULATORY FRAMEWORK FOR MODIFICATIONS TO ARTIFICIAL INTEL-
LIGENCE/MACHINE LEARNING (AI/ML)-BASED SOFTWARE As A MEDICAL DEVICE (SAMD) (2021).
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broadly, these quantitative metrics may fail to detect problems of apo-
phenia, where the AI modeler attempts to represent an illusory pat-
tern.’** Additionally, many commentators have articulated overarching
concerns that Al testing may not capture qualitative values that cannot
be easily quantified.'®

In short, Al testing is not yet a mature science and much more work is
needed to develop improved metrics. Nonetheless, if the point of com-
parison is software testing, then the differential factor is that Al testing
offers more potential for objective evidence regarding the degree of
care exercised by the Al modeler.!*

III. Bap AI OUTCOMES

The second factor that is relevant to the application of professional
malpractice is whether there are serious harms that are statistically
unavoidable because of the lack of scientific precision or control. While
some Al modeler errors may be obvious or common knowledge, plenty
of others are likely to be unintuitive and surprising.’*’ The key takeaway
here is that harmful outcomes are an expected feature even of compe-
tent Al modeling work.

Harmful outcomes can be mapped along two major axes. One axis dis-
tinguishes malintent versus accidental harm. Many Al systems exhibit
unintended behaviors that could result in injury. By contrast, some Al
systems may be released with knowledge or intent to cause some legal
harm. An extension of such cases involves foreseeable misuse by end
users, which could be attributed back to the Al vendor in the form of

134. See Ifeoma Ajunwa, Automated Video Interviewing as the New Phrenology, 36 BERKELEY
TecH. L.J. 1173, 1187 (2021) (analogizing the use of Al to predict emotions or character based on
facial features to the fake science of phrenology); Lehr & Ohm, supra note 18, at 674-75 (explain-
ing that “the decisionmaker must translate the predictive goal to a specified outcome variable,”
and that it is too easy to “lose sight of the intrinsic limit of targeting policy only on what we can
measure”).

135. See Selbst, supra note 132, at 1338 (“[W]here the entire purpose of an Al system is to
predict the unobservable, there may be no way to know how far off the approximation is.”); danah
boyd & Kate Crawford, Critical Questions for Big Data, 15 INFo. ComM. & Soc’y 662, 667 (2012);
Kaminski, supra note 2, at 1397-98; see also Cary Coglianese, The Limits of Performance-Based
Regulation, 50 U. MicH. J.L. REForm 525, 562 (2017) (“If the performance required is unrelated to
the desired outcomes, or if it is too broadly defined so that firms can comply in ways that will have
no impact on the desired outcome, then these standards will fail. In addition, problems that per-
formance standards seek to address may still persist if other factors, unaffected by the regulation,
contribute to the problem or if the regulation fails to address the root causes of the problem.”).

136. See Notice of Artificial Intelligence Safety Institute Consortium, 88 Fed. Reg. 75276 (Nov. 2,
2023) (noting that the consortium will be responsible for, inter alia, developing new benchmarks,
testing environments, and red-teaming methods).

137. See Selbst, supra note 132, at 1342-46; Mark A. Lemley & Bryan Casey, Remedies for
Robots, 86 U. CHr. L. Rev. 1311, 1313 (2019); Ryan Calo, Is the Law Ready for Driverless Cars?,
Commc’N ACM, May 2018, at 34, 35.
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either duty of care or constructive knowledge. The second axis distin-
guishes between harms caused by incorrectness or falsity and harms
caused by perpetuation of bona fide patterns. At one end, harm arises
because the Al system’s “objective function” is misaligned with the Al
user’s true goals. At the opposite end, harm is alleged not because of
incorrect modeling or use, but because the Al system accurately reflects
or accelerates existing patterns of societal harm. Some quick caveats:
this taxonomy is not intended to delineate rigid categories of harm, but
instead to facilitate more precise diagnoses of different etiologies of
AT harm. In fact, any given Al system might trigger multiple notions of
harm at once. Moreover, this taxonomy focuses only on outputs of Al
systems, rather than on harms arising purely at the input stages.

TaBLE 1
Incorrectness Perpetuation
Accident Self-driving collisions Recommendation algorithms
Intent Deepfake porn Discriminatory profiling
Foreseeable Adversarial attacks Plagiarism
Misuse

The computer science literature has focused most heavily on the
upper-left quadrant, where the Al modeler intends no harm, and harms
that do occur are attributable to failures of accuracy or alignment.'*® For
example, when an autonomous vehicle crashes, it is typically because
there is a failure in object detection, path planning, or avoidance of other
road users’ errors.’* In most conventional cases, the automaker has not
programmed its vehicle with deliberate intent to cause collision.!*’ Like-
wise, if a facial recognition algorithm identifies the wrong individual, or
fails to identify individuals of certain ethnicities, the harm is likely due
to inadvertent inaccuracy rather than purposeful misdirection.

Incorrectness is endemic to AI methodologies. Because the AI model
is, at best, an approximation of the real world, it is inevitable that

138. See Dario Amodei et al., Concrete Problems in Al Safety (July 25,2016) (preprint), https://
arxiv.org/pdf/1606.06565.pdf [https://perma.cc/9GNL-BDL7].

139. See Matthew Wansley, The End of Accidents,55 U.C. Davis L. REv. 269,281 (2021) (explain-
ing that autonomous vehicle software includes mapping, behavior prediction, and motion planning
functions).

140. But see Samuel Judson et al., ‘Put the Car on the Stand’: SMT-based Oracles for Investi-
gating Decisions, 2024 ACM Sympostum oN CompuT. Sci. & L. (forthcoming 2024), https:/arxiv.
org/pdf/2305.05731.pdf [https://perma.cc/C5SP-K6NR] (offering a formal method of evaluating
an automated decision maker’s “intent,” based on its functional behavior, to distinguish between
“normal,” “impatient,” and “pathological” vehicles).
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mismatches will arise.'¥ Many of those failures are attributable to
avoidable implementation errors, but at least some are due to initializa-
tion choices that—as explained in the prior section—have no robust
justification other than past practice and guesswork. Moreover, an Al
model is a snapshot, so it can become outdated if there is change over
time, such as a natural language model that is unaware of recent news
events or semantic drifts,'** or change in context, such as a medical Al
system trained in a high-resource hospital setting and transferred to a
low-resource setting.!*?

The latent risk of Al incorrectness can convert to intentional harm
when there is intent to design or use an Al system in a false manner.
Such misuse might result in charges of fraud or misrepresentation, as
when the AI modeler knowingly overstates the capabilities of the Al
model."** So-called “hallucinations” of large language models might
belong in this category as well.'* More insidious are cases such as apps
for deepfake porn where the design of the Al system is intended to
create content that is deceptive. Used maliciously, “deepfake” text,
images, and videos can cause reputational harm to individual persons.!4
At scale, Al-generated fake content can promote distrust in journalism,
social institutions, and truth itself.'” These threats are not new, but Al
tools are likely to make the impact much greater.'*s

141. Inioluwa Deborah Raji et al., The Fallacy of Al Functionality, 2022 ACM CoNF. oN FaIr-
NESS ACCOUNTABILITY & TRANSPARENCY 959, 962 (describing four ways that AT systems can fail to
function: impossible tasks, engineering failures, post-deployment failures, and communication fail-
ures); Strandburg, supra note 91, at 1861 (explaining the “trade-off between using an outcome vari-
able for which ‘bigger’ data is available and using a better proxy for the true criteria of interest”).

142. See, e.g., What is ChatGPT?, OpENAL https://help.openai.com/en/articles/6783457-what-is-
chatgpt [https://perma.cc/SKB8-2SCF] (noting that ChatGPT “has limited knowledge of world
and events after 2021).

143. See W. Nicholson Price II, Medical AI and Contextual Bias, 33 HArv. J.L. & TEcH. 65, 68
(2019).

144. See Dave Michaels & Rebecca Elliott, SEC, DOJ Probe Tesla Over Statements About
Autopilot Functionality, WaLL St1. J. (Oct. 27, 2022, 3:23 PM), https://www.wsj.com/articles/
sec-doj-probe-tesla-over-statements-about-autopilot-functionality-11666898610.

145. See Eugene Volokh, Large Libel Models? Liability for AI Output,3 J. FREE SPEECH L. 489,
499 (2023).

146. See Bobby Chesney & Danielle Citron, Deep Fakes: A Looming Challenge for Privacy,
Democracy, and National Security, 107 CALIE. L. Rev. 1753, 1774 (2019) (“[D]eep-fake technology
can be used to harm victims along other dimensions due to their utility for reputational sabotage.
Across every field of competition —workplace, romance, sports, marketplace, and politics—people
will have the capacity to deal significant blows to the prospects of their rivals.”).

147. See Paul Ohm, Ayelet Gordon-Tapiero & Ashwin Ramaswami, Fact and Friction: Mandat-
ing Friction to Fight False News, 57 U.C. Davis L. Rev. 171 (2023).

148. Cf. Mary Anne Franks, Unwilling Avatars: Idealism and Discrimination in Cyberspace, 20
Corum. J. GENDER & L. 224, 255-56 (2011) (setting forth four distinctive features of cyberspace
that exacerbate its harms: anonymity, amplification, permanence, and virtual captivity).
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It is also useful to consider cases where harm is caused primarily by
third-party uses, but the risk of harm is foreseeable enough that a duty
of care can be attributed to the AI modeler.'* The canonical case to fit
this pattern would be an adversarial attack that exploits a hidden weak-
ness in the AI model in order to generate incorrect behavior.' As with
conventional cyber attacks, however, there will likely be substantial dif-
ficulties in proving that a particular exploit was both foreseeable and
remediable prior to the attack.

An entirely different set of concerns involves those where incorrect-
ness is not the root cause of injury. Instead, the identified harm is one
already extant in society, and is reflected and amplified by the Al sys-
tem. For example, recommendation systems are used to provide person-
alized nudges that steer individuals toward their prior preferences. As
numerous scholars have brooded, too much of a good thing can lead to
undesirable outcomes.”' Credit scoring offers another helpful illustra-
tion: even assuming arguendo that there are no errors in the predictions
of creditworthiness, a more fundamental set of objections is that such
scores reinforce existing social inequities in undesirable ways. Replicat-
ing and streamlining existing patterns of social behavior can accelerate
unintended negative effects at scale.'

When the historical data is known to be problematic, the use of
Al methods to replicate that existing practice could constitute intent
to discriminate. For example, an employer might use a hiring system
that improperly favors men over women.'>* Arguably, bad intent could
extend to the AI modeler who makes training choices that cause the
Al model to align with one gender rather than with the actual job cre-
dentials.’ In a similar vein, developers of automated policing systems
have been criticized for bringing products to market that are biased
against underserved communities. Here, too, the critique sounds not
just in inaccuracy,' but also with a heavy suggestion that the bias is—if
not intentional —willfully blind.!*

149. See In re Sept. 11 Litig., 280 F. Supp. 2d. 279,296, 313 (S.D.N.Y. 2003).

150. See generally VASSILEV ET AL., supra note 132.

151. See Cass SUNSTEIN, REpuBLIC.coM 3 (2001); JosepH Turow, THE DAILy You (2011).

152. See Lemley & Casey, supra note 137, at 1339 (observing “widespread concerns” that Al
systems could “create negative feedback loops that are hard to break”); Kolt, supra note 1 (manu-
script at 46-49) (worrying about systemic risks that cause the “gradual erosion of social and politi-
cal institutions and values”™).

153. See Pauline T. Kim & Matthew T. Bodie, Artificial Intelligence and the Challenges of Work-
place Discrimination and Privacy,35 ABA J. LaBorR & EMPLOYMENT L. 289,294 (2021).

154. See Pauline T. Kim, Manipulating Opportunity, 106 Va. L. REv. 867 (2020).

155. See Ferguson, supra note 108, at 514 (“If the crime data collected from particular areas
becomes the only data in the system, then police data systems will mirror police patrols, not neces-
sarily actual crime rates.”).

156. Id. at 516 (“This is not to say that predictive policing is intentionally racially discriminatory,
but only that, like traditional policing, it suffers from implicit and explicit racial biases, and tracks
the structural problems inherent in policing.”).
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The final box extends notions of Al harm to scenarios where third-
party misuse of the AI model causes harm by hewing too closely to the
modeled pattern. A leading example is the use of generative Al systems
to create plagiarized content. Several lawsuits have alleged that large
language models reproduce texts or images that are strikingly similar to
copyrighted content used as training data on an unlicensed basis. More-
over, even when the system is not overtly copying other authors’ con-
tent, the use of such systems may breach obligations to produce original
work in a broad range of contexts such as classroom assignments, jour-
nalism, and book publishing. A different set of examples involves third-
party uses that are individually correct but that generate bad systemic
interactions. For example, algorithmic financial trading has been known
to generate market distortions such as flash crashes.'’

In sum, AI experts expect that their work will produce a broad
range of harmful effects. Some of these outcomes may be avoidable —
especially those that fall within intentional harms—but many others
may not be. An important area of further inquiry will be to distinguish
the types of Al harms that are unforeseeable from those that are rea-
sonably foreseeable —or perhaps even obvious or commonly known. '

IV. ESSENTIAL SERVICES

Thus far, I have argued that the case for treating AI modelers as a
profession is a closer one than it is for software developers, albeit one
that still leans in favor for now. Much of the work involved in training
neural networks is either menial or guided by well-established math-
ematical principles. Nevertheless, an important component of the work
involves subjective judgments that are guided by customary practices
derived from trial-and-error, rather than an objective understanding of
why those choices work well. Moreover, the risks of harm from AT sys-
tems are quite significant.

The third factor further complicates that assessment: do AI modelers
perform an essential societal service even when their customary prac-
tices cause harm? Leading voices within the Al community —including
top luminaries of the field—have cautioned that Al deployment should
be slowed down, because the dangers posed by modern Al methods
could pose an existential threat to human society.” Other prominent

157. See Gina-Gail S. Fletcher, Deterring Algorithmic Manipulation, 74 VAND. L. REv. 259,
262-63 (2021).

158. See Selbst, supra note 132, at 1342 (“Much of the existing research points to foreseeability
as the greatest challenge that AI poses for tort law.”).

159. See Statement on Al Risk, CTrR. FOR Al SAFETY, https://www.safe.ai/statement-on-ai-
risk#open-letter [https:/perma.cc/N856-E3J6] (The one-sentence statement reads: “Mitigating the



2024] Al MALPRACTICE 335

voices have criticized the cost-benefit tradeoff, citing environmental
costs, labor disruptions, and data privacy harms.'® Polls suggest public
support for Al is weakening.!®! To be sure, this view is not unanimous,
but it raises the question whether an occupation should be trusted with
self-governance, when many of its most prominent leaders believe that
self-governance cannot work.!s?

Another salient feature of the Al modeler community is that its
membership remains small and exclusive, and it has not yet exploded
in size the way the software developer community has.'®® In part, the
deep learning revolution is still young, and barriers to entry have been
high—only a handful of entities in the world have had the compute
power to build state-of-the-art neural networks.!®* Some commentary
has argued that new techniques are rapidly reducing barriers to entry,'®
but it remains to be seen how those predictions will bear out. For now,
the community remains exclusive. Smallness cuts both ways. On the one
hand, it is easier to draw boundaries around the occupation and deter-
mine who is in or out. Consensus on best practices may be easier to
build. On the other hand, it casts doubt on the urgency and criticality
of the work, because it suggests there is not yet a broad societal depen-
dency on Al services.

Unlike medical or legal services—or even software services—whose
absence causes acute hardships, deep learning Al models are only

risk of extinction from AI should be a global priority alongside other societal-scale risks such as
pandemics and nuclear war.”); see also Pause Giant Al Experiments: An Open Letter, FUTURE OF
Lire INstT. (Mar. 22, 2023), https:/futureoflife.org/open-letter/pause-giant-ai-experiments/ [https:/
perma.cc/W69V-RLJJ] (citing risks of disinformation, worker displacement, and “loss of control of
our civilization” as reasons to pause research on state-of-the-art Al systems).

160. See Bender et al., supra note 106; Timnit Gebru & Margaret Mitchell, We Warned Google
that People Might Believe AI Was Sentient. Now It’s Happening., WAsH. Post (June 17,2022), https://
www.washingtonpost.com/opinions/2022/06/17/google-ai-ethics-sentient-lemoine-warning/.

161. See Alec Tyson & Emma Kikuchi, Growing Public Concern About the Role of Artificial
Intelligence in Daily Life, PEw RscH. CTR. (Aug. 28, 2023), https://www.pewresearch.org/short-
reads/2023/08/28/growing-public-concern-about-the-role-of-artificial-intelligence-in-daily-life/
[https://perma.cc/YN29-QVCB] (finding fifty-two percent of Americans are more concerned than
excited about the increased use of Al and only ten percent are more excited than concerned).

162. This scenario resembles the liar’s paradox. See DoucLas R. HOFSTADTER, GODEL, ESCHER,
BacH 17 (1979) (“Epimenides was a Cretan who made one immortal statement: ‘All Cretans are
liars.””).

163. See Davip KELNAR, MMC VENTURES, THE STATE oF Al 2019: D1vERGENCE 87 (2019), https://
mmc.ve/resources/fund-brochures/The-MMC-State-of-AI-2019-Report.pdf  [https://perma.cc/
237P-S9LP] (estimating,in 2019, the global pool of Al talent to be “as few as 22,000 highly-trained
Al specialists” or “up to 300,000 Al researchers and practitioners within broader technical teams”).

164. See Gerrit De Vynck, How Big Tech Is Co-opting the Rising Stars of Artificial Intelligence,
WasH. Post, (Sept. 30, 2023, 8:00AM), https://www.washingtonpost.com/technology/2023/09/30/
anthropic-amazon-artificial-intelligence/.

165. See Dylan Patel & Afzal Ahmad, Google “We Have No Moat, And Neither Does OpenAl”,
SEMIANALYSIS (May 4, 2023), https://www.semianalysis.com/p/google-we-have-no-moat-and-nei-
ther [https:/perma.cc/YEY8-YEVA].
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beginning to be ushered into common use. Many Al-based services are
deployed as an enhancement of existing services, and their presence
is otherwise unremarkable to ordinary citizens. When Al systems do
attract attention, communal bans have become a familiar response.

For the time being, perhaps the most apt analogy is to air travel
services during the early twentieth century, when aviation was not
yet considered “common” or “essential.”!®® Even though the potential
advantages of air travel were obvious, the immaturity of avionics sci-
ence led lawmakers to label air travel an ultrahazardous activity and to
impose strict liability."” Likewise, until Al-based services prove to be
indispensable, it is not obvious that Al experts should be given special
deference as a matter of law.

New technologies have a habit of becoming old hat, however, and Al
is no exception. Whenever Al becomes an ordinary fixture of everyday
society, the basic inquiry will reemerge as to whether ordinary reason-
able care 1s a viable standard or whether some alternative framework is
needed. Central to that inquiry will be the two other factors discussed
above: the degree of scientific uncertainty in the field, and the extent of
bad outcomes ascribed to practitioners in good standing.

CONCLUSION

In prior work, I explained that courts have used the “professional”
label to impose an alternate liability framework when courts have hesi-
tated to trust jury sentiments, yet needed some form of judicial over-
sight for unfit practitioners. The professional malpractice doctrine gives
deference to legitimate exercises of professional judgment, on the basis
that the professional’s work cannot be reduced to an exact science. |
argued further that software developers should be treated as profes-
sionals—like medical care or legal practice, much of software develop-
ment remains an inexact art.

Here, I have extended those earlier writings by explaining how mod-
ern Al work differs in key aspects from software development work,
even though both ply code and data. In particular, Al modelers are
engaged in automating the mathematical representation of a naturally
occurring data pattern. The aim is to avoid injecting undue extrinsic
interference into that learning process. That bottom-up synthesis stands

166. See RESTATEMENT OF TorTs § 520 cmt. g (AM. L. INsST. 1938).

167. See Henry Grady Gatlin, Jr., Note, Tort Liability in Aircraft Accidents, 4 VAND. L. REv. 857,
861, 874 (1951) (“Aviation in its infancy became branded a highly questionable and dangerous
enterprise. . . . With the increased technological development of aviation and an establishment
of aviation as a safe mode of travel, the early doctrine of strict liability against the air carrier is
disappearing.”).
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in sharp contrast with the top-down engineering that occurs in main-
stream software development, where the end goal is to specify, design,
and execute an arbitrarily devised human construct.

Thus, the case for Al professionals is a closer question. It is evident that
Al work involves less code complexity and that there are fewer human
decision points that need to be examined to assess fault. Yet, those deci-
sions that do need to be made remain undertheorized, and are guided more
by folk wisdom than by scientific understanding. As the knowledge of the
field advances, it may become easier to apply an ordinary reasonable care
framework to the work that Al modelers perform. But there is still a strong
case today that deep learning theory has not matured enough to support an
objectively reasonable standard of care.

Meanwhile, a more immediate policy question for courts is whether
they believe deep learning Al practitioners offer services to society that
are vital—or that are merely profitable. Ordinarily, the entity that cre-
ates a risk of harm is expected to bear responsibility for the injuries
caused by its operations. If Al-based services are not essential to soci-
etal health (or are even detrimental to it), then it makes little sense to
carve an exception to the default rule. After all, early courts understood
well the transformative promise of air travel, yet still chose to require
aircraft manufacturers and operators to bear full liability for all injuries
caused by crashes.

Whether Al modelers are professionals or nonprofessionals will affect
in turn the scope of ethical duties they must assume. On the one hand,
if AI modelers are nonprofessionals, then Al ethics principles lack an
effective enforcement mechanism unless they are converted into legal
duties. In such a scenario, Al ethics principles would need to be trans-
lated into legal rules in order to have real purchase. On the other hand,
if Al modelers are treated as professionals, then the law will enforce the
customary practices among the Al community. It would increase greatly
the impact of articulating consensus standards of professional ethics as
an instrument to guide Al practitioners in their conduct and to guide
courts in their liability decisions.
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