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AI MALPRACTICE

Bryan H. Choi*

Should AI modelers be held to a professional standard of care? Recent 
scholarship has argued that those who build AI systems owe special duties 
to the public to promote values such as safety, fairness, transparency, and 
accountability. Yet, there is little agreement as to what the content of those 
duties should be. Nor is there a framework for how conflicting views 
should be resolved as a matter of law. 

This Article builds on prior work applying professional malprac-
tice law to conventional software development work, and extends it to 
AI work. The malpractice doctrine establishes an alternate standard of 
care—the customary care standard—that substitutes for the ordinary rea-
sonable care standard. That substitution is needed in areas like medicine 
or law where the service is essential, the risk of harm is severe, and a uni-
form duty of care cannot be defined. The customary care standard offers 
a more flexible approach that tolerates a range of professional practices 
above a minimum expectation of competence. This approach is especially 
apt for occupations like software development where the science of the 
field is hotly contested or is rapidly evolving. 

Although it is tempting to treat AI liability as a simple extension of soft-
ware liability, there are key differences. First, AI work has not yet become 
essential to the social fabric the way software services have. The risk of 
underproviding AI services is less troublesome than it is for conventional 
professional services. Second, modern deep-learning AI techniques differ 
significantly from conventional software development practices, in ways 
that will likely facilitate greater convergence and uniformity in expert 
knowledge.

Those distinguishing features suggest that the law of AI liability will 
chart a different path than the law of software liability. For the immedi-
ate term, the interloper status of AI indicates a strict liability approach is 
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most appropriate, given the other factors. In the longer term, as AI work 
becomes integrated into ordinary society, courts should expect to transi-
tion away from strict liability. For aspects that elude expert consensus and 
require exercise of discretionary judgment, courts should favor the pro-
fessional malpractice standard. However, if there are broad swaths of AI 
work where experts can come to agreement on baseline standards, then 
courts can revert to the default of ordinary reasonable care.
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Introduction

As the tide of AI discourse shifts from AI performance to AI safety,1 
and from ethics to law, most legal efforts have focused on ex ante risk-
management approaches. These approaches have been criticized as 
being underdeveloped, ill-suited to the problem, and lacking in ex post 
measures offering civil recourse.2 A greater role for judicial common 

1.	 See Press Release, U.S. Dep’t of Com., At the Direction of President Biden, Department of 
Commerce to Establish U.S. Artificial Intelligence Safety Institute to Lead Efforts on AI Safety 
(Nov. 1, 2023), https://www.commerce.gov/news/press-releases/2023/11/direction-president-biden-
department-commerce-establish-us-artificial [https://perma.cc/43AE-329Y]; Noam Kolt, Algorith-
mic Black Swans, 101 Wash. U. L. Rev. (forthcoming 2024) (manuscript at 23) (describing the 
“growing interest and investment in AI safety”).

2.	 See Margot E. Kaminski, Regulating the Risks of AI, 103 B.U. L. Rev. 1347, 1378–79 (2023) 
(“This, then, is one of the core challenges for AI risk regulation: it deploys a largely ex ante 
regulatory tool best suited for readily quantifiable harms to address big, often-unquantifiable, 
often-contested, often-contextual, and often-individualized ‘risks.’  .  .  . Nor do these frameworks 
contemplate whether there exists an adequate backstop of tort liability through which individual-
ized harms might get addressed and remedied.”); Charlotte A. Tschider, Medical Device Artificial 
Intelligence: The New Tort Frontier, 46 BYU L. Rev. 1551, 1591–93, 1603 (2021) (arguing that ex 
post tort solutions are needed to regulate AI software-enabled medical devices); Bryan H. Choi, 
NIST’s Software Un-Standards, Lawfare, at 30 (2024) (“[M]uch about [NIST’s] AI Framework re-
mains underdetermined. The AI Framework is voluntary. It is neither ‘a checklist’ nor ‘an ordered 



2024]	 AI MALPRACTICE	 303

law is needed,3 but there is considerable uncertainty about the path it 
should take.

Thus far, public oversight is being routed through private governance 
and self-regulation mechanisms. In the United States, Congress has pro-
posed a smattering of legislative proposals that have failed to advance.4 
Instead, the leading effort has been the AI Risk Management Frame-
work, issued by the National Institute of Standards and Technologies 
(NIST), which invites enterprises to engage in voluntary self-assess-
ments of risk.5 The European Union has enacted the EU AI Act, which 
categorizes AI systems as “limited-risk,” “high-risk,” or “unacceptable 
risk,” and then seeks to calibrate compliance obligations accordingly.6 
Those obligations have been outsourced to private standard-setting 
organizations and have yet to be written.7 

In turn, the AI community continues to view self-regulation through 
the lens of professional “ethics.”8 Major software companies, nonprof-
its, and academic institutions are engaged in efforts to develop ethical 
principles that address issues of fairness, accountability, transparency, 
manipulation, and more.9 Universities are working on integrating ethics 

set of steps.’ Evaluations of its effectiveness are unknown and ‘will be part of future NIST activi-
ties.’ Moreover, its scope is extraordinarily broad, even relative to other NIST frameworks.”).

3.	 See Mariano-Florentino Cuéllar, A Common Law for the Age of Artificial Intelligence: 
Incremental Adjudication, Institutions, and Relational Non-Arbitrariness, 119 Colum. L. Rev. 1773, 
1779–80 (2019) (defending the role of common law as a “regulatory backstop” or “first-draft regu-
latory framework,” and “the centrality of reasoned deliberation across people and institutions” in 
the American tradition).

4.	 See Kolt, supra note 1 (manuscript at 36–38) (describing and critiquing recent Congressional 
bills that would delegate responsibility to the Federal Trade Commission (FTC) or a newly created 
National AI Commission).

5.	 See Choi, supra note 2, at 29.
6.	 See Clara Hainsdorf et al., Dawn of the EU’s AI Act: Political Agreement Reached on World’s 

First Comprehensive Horizontal AI Regulation, White & Case (Dec. 14, 2023), https://www.white-
case.com/insight-alert/dawn-eus-ai-act-political-agreement-reached-worlds-first-comprehensive-
horizontal-ai [https://perma.cc/HRA6-6VZC].

7.	 See Kaminski, supra note 2, at 1402 (noting that the EU AI Act “places big, complex, and 
contested policy decisions in the hands of private entities”); Kolt, supra note 1 (manuscript at 30).

8.	 See Partnership on AI, 2019 Annual Report 2 (2020), https://www.partnershiponai.org/wp-
content/uploads/2021/01/PAI-2019-Annual-Report.pdf [https://perma.cc/3PB2-PLZH] (reporting 
that membership grew to over one hundred partner organizations spanning thirteen countries and 
four continents).

9.	 Id. at 6 (listing key focus areas to include fairness, transparency, and accountability in al-
gorithmic decision-making, as well as AI-generated mis/disinformation in the media ecosystem); 
Scope, FAT/ML 2014 Conference, https://www.fatml.org/schedule/2014/page/scope-2014 [https://
perma.cc/HNK4-Q6RJ] (“This interdisciplinary workshop will consider issues of fairness, account-
ability, and transparency in machine learning. It will address growing anxieties about the role that 
machine learning plays in consequential decision-making in such areas as commerce, employ-
ment, healthcare, education, and policing.”); Virginia Dignum et al., Ethics by Design: Necessity 
or Curse?, 2018 Proc. AAAI/ACM Conf. on AI Ethics & Soc’y 60, 61–62 (summarizing confer-
ence proceedings describing accountability, responsibility, and transparency as the three principles 
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more tightly within the computer science curriculum.10 While those 
efforts have generated attention and momentum,11 critics have pointed 
out that “[e]thics as a construct is notoriously malleable and contested” 
and that “ethics lacks a hard enforcement mechanism.”12 More cynical 
voices have warned that the focus on ethics is a deliberate ploy by inter-
ested parties to avoid true oversight.13

Law would provide a harder enforcement mechanism, if lawmak-
ers could formulate appropriate liability rules for AI harms. Yet, with 
modern AI techniques such as deep neural networks, there is broad 
consensus that failures are difficult to diagnose or explain in human-
understandable terms. Thus it can be difficult to discern when law should 
exact remedies from AI modelers versus when law should let costs lie 
where they fall. Moreover, many policymakers remain reluctant to err 
on the side of overdeterrence, because the perceived potential of AI 
technologies to improve public safety, health, and welfare is so seismic.14

Conventional approaches to AI liability attempt to simplify the prob-
lem by treating AI systems as self-contained black boxes. For example, 
one popular branch of commentary focuses on the “intelligence” part of 

that are key to “guaranteeing ethical behavior ‘by design,’ i.e., embedded in the [AI] system’s 
implementation”).

10.	 See Christina Pazzanese, Trailblazing Initiative Marries Ethics, Tech, Harv. Gazette, 
(Oct. 16, 2020) (describing a recent curricular initiative at Harvard called Embedded EthiCS, “a 
groundbreaking novel program that marries the disciplines of computer science and philosophy,” 
motivated by the premise that “the surest way to get the industry to act more responsibly is to 
prepare the next generation of tech leaders and workers to think more ethically about the work 
they’ll be doing”).

11.	 See White House Office of Sci. & Tech. Policy, Blueprint for an AI Bill of Rights 
(Oct. 2022); Press Release, U.S. Dep’t of Def., DOD Adopts Ethical Principles for Artificial Intelli-
gence (Feb. 24, 2020), https://www.defense.gov/Newsroom/Releases/Release/Article/2091996/dod-
adopts-ethical-principles-for-artificial-intelligence/ [https://perma.cc/BW72-6WZU].

12.	 Ryan Calo, Artificial Intelligence Policy: A Primer and Roadmap, 51 U.C. Davis L. Rev. 399, 
408 (2017); see also Brent Mittelstadt, Principles Alone Cannot Guarantee Ethical AI, 1 Nature 
Mach. Intel. 501 (2019); Sanna J. Ali et al., Walking the Walk of AI Ethics: Organizational Chal-
lenges and the Individualization of Risk among Ethics Entrepreneurs, 2023 ACM Conf. on Fair-
ness, Accountability & Transparency 217, 220 (finding that ethics workers face numerous 
challenges including a lack of “buy-in” from leadership).

13.	 See Rebecca MacKinnon, “Ethics” and “AI”: Can We Use These Terms to Take Effective 
Action?, Blog L.A. Rev. Books (Feb. 22, 2020), https://blog.lareviewofbooks.org/provoations/
ethics-ai-can-use-terms-take-effective-action [https://perma.cc/U9A2-LFQ9] (“[A]cademics 
have cautioned against ‘ethics-shopping,’ ‘ethics-washing,’ and the development of vague ethi-
cal principles as an effort by companies to escape regulation and accountability. Others have 
accused industry of manipulating academia by funding ‘ethical AI’ research programs that focus 
on self-regulatory standards in order to avoid ‘legally enforceable restrictions of controversial 
technologies.’”).

14.	 See Off. of Sci. & Tech. Pol’y, White House, American Artificial Intelligence Initiative: 
Year One Annual Report 13 (2020), https://www.whitehouse.gov/wp-content/uploads/2020/02/
American-AI-Initiative-One-Year-Annual-Report.pdf (“Not using AI technologies because of 
perceived or potential harms, however, could be just as problematic, depriving individuals—or the 
Nation—of the significant benefits that AI technologies could bring.”).
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“artificial intelligence” to argue that sufficiently strong AI systems could 
be given status equivalent to human or other sentient actors.15 As long 
as AI behavior conforms to or exceeds that of the ordinary reasonable 
person, perhaps no liability should attach.16 Another set of commen-
tary focuses instead on the “artificial” aspects of AI, and analyzes such 
systems like ordinary manufactured products.17 Under this approach, 
liability would be assessed according to whether the AI system has a 
“defect” that is unreasonably dangerous. Both approaches take the tack 
of evaluating the AI system as a discrete entity or object, while minimiz-
ing the human processes behind the development of that AI system. 
While that mental shortcut works best when the causal mechanisms are 
intuitive and simple to understand, it is less helpful when they are coun-
terintuitive or complex. 

As an alternative approach, David Lehr and Paul Ohm have called 
for lawmakers to open the black box and investigate the actual work 
involved in making AI systems.18 Doing so would “advance contem-
porary debates about machine learning” by dispelling the assumption 

15.	 See Ryan Abbott, The Reasonable Robot: Artificial Intelligence and the Law 9 (2020) 
(proposing that tort law should “treat AI like a person and focus on the AI’s act rather than its 
design”); David Vladeck, Machines Without Principals: Liability Rules and Artificial Intelligence, 89 
Wash. L. Rev. 117, 145, 150 (2014) (“A machine that can define its own path, make its own decisions, 
and set its own priorities may become something other than an agent.  .  .  . Conferring ‘person-
hood’ on these machines would resolve the agency question . . . .”); see also Ryan Calo, Robots as 
Legal Metaphors, 30 Harv. J.L. & Tech. 209, 231 (2016); Patrick Hubbard, “Sophisticated Robots”: 
Balancing Liability, Regulation, and Innovation, 66 Fla. L. Rev. 1803, 1862–65 (2014) (exploring 
doctrinal analogies of robots to employees, children, or animals). But see Harry Surden, Artificial 
Intelligence and Law: An Overview, 35 Ga. St. U. L. Rev. 1305, 1308–09 (2019) (pointing out that 
“Artificial General Intelligence” or “Strong AI” is unlikely to appear anytime soon).

16.	 See Mark A. Geistfeld, A Roadmap for Autonomous Vehicles: State Tort Liability, Automo-
bile Insurance, and Federal Safety Regulation, 105 Calif. L. Rev. 1611, 1653, 1679, 1686 (2017) (sug-
gesting no liability if an autonomous vehicle meets a metric of being at least twice as safe as human 
performance).

17.	 See Bryant Walker Smith, Automated Driving and Product Liability, 2017 Mich. St. L. Rev. 1,  
46 (stating that the central question in product liability claims against automated driving systems 
will be whether “either (a) a human driver or (b) a comparable automated driving system could 
have done better under the same circumstances”); id. at 44 n.213 (collecting sources examining 
product liability implications of automated driving); cf. Chinmayi Sharma & Benjamin C. Zipursky, 
Who’s Afraid of Products Liability? Cybersecurity and the Defect Model, Lawfare (Oct. 19, 2023, 
10:24 AM), https://www.lawfaremedia.org/article/who-s-afraid-of-products-liability-cybersecurity-
and-the-defect-model [https://perma.cc/J4FJ-NWDB] (defending the law of products liability as 
having the flexibility and sophistication to address the challenges of software security lawsuits). 
But see Kenneth S. Abraham & Robert L. Rabin, Automated Vehicles and Manufacturer Responsi-
bility for Accidents: A New Legal Regime for a New Era, 105 Va. L. Rev. 127, 142 (2019) (question-
ing whether the “defect” concept is worth retaining for fully automated vehicles, and proposing 
instead a no-fault regime).

18.	 See David Lehr & Paul Ohm, Playing with the Data: What Legal Scholars Should Learn 
About Machine Learning, 51 U.C. Davis L. Rev. 653, 655 (2017) (“Our core claim is that almost all 
of the significant legal scholarship to date has focused on the implications of the running model . . . 
and has neglected most of the possibilities and pitfalls of playing with the data.”).
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that “black-box algorithms have black-box workflows.”19 In fact, they 
argue, the processes performed by AI modelers “are actually quite 
articulable.”20 

This Article takes up that invitation to dive into the details of how 
modern AI systems—and in particular deep neural networks21—are 
developed and deployed in the real world. By doing so, this Article 
seeks to shift the point of scrutiny from the AI system to the AI mod-
eler, and to merge the active discourse on AI ethics with the burgeoning 
one on AI liability. 

More specifically, this Article builds on prior work, Software as a Pro-
fession, which examined the interplay between tort liability and pro-
fessional ethics.22 There, the argument proceeded in three steps. First, 
I observed that professional ethics lack binding legal effect except for 
specially designated professions such as law or medicine. Second, I 
offered a new theoretical framework that explains why the law gives 
different treatment to such professionals, and how to decide which 
occupations are “professions” as a matter of law. In particular, I argue 
that the professional designation should be invested in occupations 
that: (1) necessarily employ subjective judgments because the field is 
not a precise science but an inexact art; (2) those subjective judgments 
carry high risk of bad outcomes; and (3) the occupation fulfills a vital 
societal function. Third, I showed why those factors apply to the work 
that software developers perform.

Here, I compare and contrast AI modeling to software develop-
ment, and suggest that the differences are substantial enough to call 
into doubt whether AI modelers should be treated equivalently to 
software developers. While the professional malpractice framework 
may still prove appropriate for certain aspects of AI work, there is 
greater occasion to consider alternate regimes such as strict liability 
or ordinary negligence.

Part I offers a summary review of the professional malpractice doctrine. 
The remainder of the Article analyzes in turn each of the three “profes-
sional” factors as applied to AI. Part II offers a descriptive account of 
modern AI modeling work and the most salient ways in which it does or 
does not require the use of subjective judgments. In particular, most of 
the discretionary control occurs at the preparatory stages, including the 
choice of learning algorithm and initialization hyperparameters, plus 
certain aspects of data curation. Even here, AI modelers may not make 

19.	 Id. at 657.
20.	 Id.
21.	 See Yann LeCun et al., Deep Learning, 521 Nature 436, 438 (2015).
22.	 See Bryan H. Choi, Software as a Profession, 33 Harv. J.L. & Tech. 557 (2020).
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all those choices themselves, but instead reuse or rely on choices made 
by others. Part III restates the unavoidability of AI-based harm. Finally, 
Part IV reserves judgment on whether or when AI-based services will 
become an essential pillar of social fabric. Looking ahead, this Article 
seeks to tie the AI ethics literature closer to the law of professional 
malpractice, and predicts that the gravitas of the AI ethics movement 
will turn on the threshold legal question of whether AI work is deemed 
a profession, or merely a skilled occupation.

I.  The Professional Malpractice Framework

The professional malpractice doctrine operates as an alternative 
to the ordinary negligence regime. Understanding why an alternative 
is needed at all requires a theory of what sets professions apart from 
ordinary occupations. In earlier work, I explained that this alternative 
is appropriate when there is simultaneously a need for legal oversight 
plus a need for deference to professional judgment over lay opinion.23 
In such circumstances, it is helpful to chart a middle path between ordi-
nary negligence, safe harbor immunity, and enterprise liability.

The key, blackletter difference is the substitution of the customary 
care standard in place of the reasonable care standard.24 The customary 
care standard requires juries to limit their inquiry to whether the pro-
fessional deviated from customary practices in the field. Unlike in ordi-
nary negligence cases, juries in professional malpractice cases cannot be 
asked to second-guess the reasonableness of the customs in question.25 
Several derivative rules expose additional differences. For example, evi-
dence of customary practices typically must be established by expert 
testimony, unless the matter is one of common knowledge.26 Custom-
ary practices can include minority “schools of thought” disfavored by 
a majority of practitioners, allowing for a more heterogeneous set of 
accepted practices.27 And, in many states, malpractice claims cannot 
be heard unless accompanied by a “certificate of merit” signed by a 

23.	 See id.
24.	 See generally Dan B. Dobbs et al., Hornbook on Torts § 21.6, at 506 (2d ed. 2016).
25.	 See Tim Cramm et al., Ascertaining Customary Care in Malpractice Cases: Asking Those 

Who Know, 37 Wake Forest L. Rev. 699, 702–03 (2002).
26.	 See Alex Stein, Toward a Theory of Medical Malpractice, 97 Iowa L. Rev. 1201, 1213–15 

(2012).
27.	 See Gary T. Schwartz, The Beginning and the Possible End of the Rise of Modern American 

Tort Law, 26 Ga. L. Rev. 601, 664–65 (1992).
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member of the profession.28 At the same time, malpractice claims can-
not be disclaimed by contractual waiver.29

I have argued that the switch to the customary care standard is justi-
fied when: (1) practitioners must exercise considerable judgment due 
to inherent uncertainties in the science of the field; (2) bad outcomes 
are endemic to the practice because of those uncertainties; and (3) the 
practice serves a socially vital service even when bad outcomes occur.30 
As it happens, the three factors align exactly with the First Restatement 
of Torts and its analysis of new technologies.31 Conversely, when those 
conditions fade, the need for the professional liability framework wanes 
concomitantly, and courts cease to give deference to that occupation as 
a “profession.”32

I also highlighted three basic misconceptions about the doctrine of 
professional malpractice. First, the professional care standard is not a 
higher (or lower) standard of care than the ordinary standard of care. 
Second, although notions of trust are central to the professional mal-
practice framework, high trust is not a prerequisite for invoking the 
doctrine. Third, sociologically derived indicia such as formal education, 
licensing, or codes of ethics are neither sufficient nor necessary to trig-
ger the professional liability regime.

The first fallacy is that professional malpractice is merely a height-
ened form of ordinary negligence. Because “professionals” are com-
monly associated with higher education, training, and social prestige, 
it is easy to assume that “professional negligence” imposes an elevated 
duty of care upon those who are more competent. After all, the stan-
dard of ordinary reasonable care already incorporates relative levels of 
knowledge and skill. Yet, if professional malpractice simply means that 

28.	 See Benjamin Grossberg, Comment, Uniformity, Federalism, and Tort Reform: The Erie 
Implications of Medical Malpractice Certification of Merit Statutes, 159 U. Pa. L. Rev. 217, 222–25 
(2010).

29.	 See Restatement (Third) of Torts: Liab. for Econ. Harm § 4 (Am. L. Inst. 2020) (noting 
that malpractice is a “prominent exception” to contract-based limitations on liability for finan-
cial losses); Catherine M. Sharkey, Can Data Breach Claims Survive the Economic Loss Rule?, 66 
DePaul L. Rev. 339, 365 (2017); see also Choi, supra note 22, at 601 n.209.

30.	 See Choi, supra note 22, at 614–15. 
31.	 The First Restatement deemed aviation to be an “ultrahazardous” activity because 

(1) “aeroplanes have not been so perfected as to make them subject to a certainty of control 
approximating that of which automobiles are capable,” (2) “the serious character of harm which 
an aeroplane out of control is likely to do,” and (3) “aviation has not as yet become either a com-
mon or an essential means of transportation.” See Restatement of Torts § 520 cmt. g (Am. L. Inst. 
1938). My contention is that if such an activity becomes common or essential to society, but the 
risks of harm remain serious and continue to elude certainty of control, then a transition to the 
malpractice framework becomes the most appropriate move.

32.	 See Choi, supra note 22, at 618 (describing how courts have “deprofessionalized” archi-
tects and engineers by secondguessing expert opinions and applying an ordinary reasonable care 
standard).
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a doctor is held up to the standard of the average doctor having relevant 
skill and training, then the malpractice doctrine collapses into ordinary 
negligence and serves no independent purpose.33

On the contrary, the customary care standard establishes a self-
governance regime checked by judicial oversight. In some aspects, the 
professional community might embrace expectations that are higher 
than those a jury might enforce, and in other aspects, those expecta-
tions might fall short of what a jury would demand. To be sure, there 
are valid criticisms of self-governance—a “conspiracy of silence” could 
allow bad actors to escape accountability.34 Yet, I have argued that the 
malpractice doctrine arises when there is no good way to objectively or 
scientifically evaluate the exercise of professional judgment. It enables 
courts to impose some accountability without resorting to all-or-noth-
ing measures.

The second fallacy is that a profession must enjoy high levels of soci-
etal trust to benefit from the malpractice self-governance regime. But 
the history of the malpractice doctrine shows that it was created at a 
time when professions such as medicine and law were relative backwa-
ters of prestige and weakened by infighting.35 The customary care stan-
dard is not a reward for good behavior. It is a product of shortfalls of the 
reasonable care standard. When doctors lose patients or lawyers lose 
cases, it is too easy for jurors to find fault, even though such bad out-
comes are statistical inevitabilities. In other words, the focus is on the 
nature of the work, not of the professional. The malpractice doctrine is 
needed when the work performed by professionals is especially likely 
to lead to unfair second-guessing of professional judgment.

Trust is an important component of the malpractice doctrine, which 
has evolved to require duties of loyalty in addition to duties of care.36 
But high trust is at best an output of the professional malpractice 
regime, not an input. Instead, the motivation for the doctrine is that 
public trust will be too low to sustain an otherwise essential service. 

33.	 Indeed, numerous commentators over the years have suggested doing away with the profes-
sional malpractice doctrine for precisely this reason. See, e.g., Dobbs et al., supra note 24, at 507; 
Philip G. Peters, Jr., The Quiet Demise of Deference to Custom: Malpractice Law at the Millennium, 
57 Wash. & Lee L. Rev. 163, 201 (2000) (arguing that the professional paradigm is weakening and 
that “the custom-based standard of care gradually is yielding to the fundamental tort standard of 
reasonable care under the circumstances”).

34.	 Cf. Wendy Wagner, When a Corporation’s Deliberate Ignorance Causes Harm: Charting a 
New Role for Tort Law, 72 DePaul L. Rev. 413 (2022) (criticizing corporations for manipulating 
the scientific record to downplay the hazardousness of their activities).

35.	 See generally William G. Rothstein, American Physicians in the 19th Century: From 
Sects to Science (1972); Paul Starr, The Social Transformation of Americana Medicine (1982).

36.	 See Choi, supra note 22, at 609; cf. Neil Richards & Woodrow Hartzog, A Duty of Loyalty for 
Privacy Law, 99 Wash. U. L. Rev. 961 (2021) (proposing a duty of loyalty for data collectors and 
tech companies).
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When bad outcomes are a statistical inevitability, and the practice of the 
profession is an inexact art rather than a precise science, then it is too 
easy to lose faith and to condemn such services.

The third common fallacy is that professions are defined by personal 
traits such as education, salary, licensure, or “gentlemanly” culture.37 Yet, 
for prototypical professions such as medicine and law, this theory is his-
torically implausible, given the protean state of professional education 
and professional ethics at the time when the malpractice doctrine was 
first applied and extended. Nor does it adequately explain, as a matter 
of positive law, the continued exclusion of many occupations that have 
strived to meet precisely those criteria. Finally, on a normative level, 
the malpractice rule should not function as a special rule for elites. The 
reasonable care standard is appropriate for most lines of work, even 
those that are highly compensated, highly specialized, and highly ethi-
cal. Conversely, the absence of characteristics such as formal education 
requirements, licensure schemes, disciplinary systems, or ethical codes 
should not be a valid reason to bar entry into the malpractice regime 
where it is otherwise appropriate.

II.  Matters of Professional Judgment

The first factor relevant to the legal designation of a profession is 
whether the core elements of the work involve substantial uncertain-
ties in knowledge, and therefore require latitude for discretionary judg-
ment. On the surface, both AI and software seem alike in that each 
involves code and data, in a field of rapid innovation where most prac-
tices are ad hoc and experimental rather than established through sci-
entific method. Nevertheless, the uncertainties that arise in software 
work appear to be more fundamental and pervasive to the enterprise, 
whereas those that arise in AI work are quite different in nature and 
arguably limited in scope.

The most material distinction between AI work and conventional 
software work is the bottom-up versus top-down process by which such 
systems are constructed. Whereas software work amplifies and cel-
ebrates complexity in ways that defy expert understanding, AI work 
seeks to simplify a complex pattern and encapsulate it within a unified 

37.	 See Choi, supra note 22, at 589 (citing Hosp. Comput. Sys., Inc. v. Staten Island Hosp., 788 
F. Supp. 1351, 1361 (D.N.J. 1992)). More recently, the Third Restatement of Torts has embraced 
this list of traits and defended them on policy grounds that the professional-client relationship 
entails unique risks that cannot be effectively regulated by contract law. See Restatement (Third) 
of Torts: Liab. for Econ. Harm § 4 cmt. b (Am. L. Inst. 2020). Yet, this definition of professional 
as risk-bearer is circular and also inconsistent with other aspects of the professional malpractice 
doctrine. See Choi, supra note 22, at 611 (critiquing the careless merger of professional duties and 
fiduciary duties).
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mathematical model. That fundamental difference offers greater hope 
that much of AI work could be conducive to standardization, which has 
eluded software work.

Conventional software is constructed in a top-down manner in the 
sense that every line of code is written for a command flow purpose. 
The developer team determines the system requirements, converts 
those requirements into a preliminary design, implements a working 
model in code, and tests the code to ensure it performs as specified. That 
is not to say the software development process is centralized or mono-
lithic. Modern best practices encourage software developers to work 
in fluid, decentralized phases through methods such as iterative cycles 
and “agile” methods. Nevertheless, all conventional software systems 
are ultimately composed of individual lines of code that are stacked 
together with intentional, human-designed control paths in mind. 

By contrast, the construction of modern AI systems can be character-
ized as bottom-up because their architectures are governed primarily 
by data-led patterns, rather than by human-led blueprints.38 The core 
component of any AI system is its knowledge representation model, 
which enables it to incorporate prior experience and expertise into its 
decisions. For example, a chess program is more likely to win if it knows 
the best possible moves, and a self-driving car is less likely to crash if it 
understands common road signals and obstacles. In modern, real-world 
AI systems, these knowledge representation models are not configured 
by hand, but automatically configured using “machine learning” tech-
niques that integrate large datasets of training examples.39 If the data 
were truly random, it would be impossible to process so much data; 
instead, the AI modeler assumes that most meaningful data from the 
real world will follow a naturally sparse pattern. The purpose of any 
learning algorithm is to sculpt a model that approximates as well as pos-
sible that naturally existing pattern.

That difference between AI and conventional software was not always 
so stark. “Classical” approaches to AI draw on rules of formal logic to 

38.	 See Harry Surden, Machine Learning and Law, 89 Wash. L. Rev. 87, 93–94 (2014); cf. Andrej 
Karpathy, Software 2.0, Medium (Nov. 11, 2017) (“It turns out that a large portion of real-world 
problems have the property that it is significantly easier to collect the data (or more generally, 
identify a desirable behavior) than to explicitly write the program.”).

39.	 See Ian Goodfellow, Yoshua Bengio & Aaron Courville, Deep Learning 96 (MIT Press 
2016) (“A machine learning algorithm is an algorithm that is able to learn from data.”); id. at 8 (“We 
contend that machine learning is the only viable approach to building AI systems that can operate 
in complicated real-world environments.”); Joel Klinger et al., A Narrowing of AI Research? (Jan. 
11, 2022) (preprint), https://arxiv.org/pdf/2009.10385.pdf [https://perma.cc/V4CX-VZZP] (finding 
that AI research in deep learning techniques has expanded rapidly while AI research in classical 
methods—such as symbolic representation and statistical machine learning—has stagnated, par-
ticularly in the commercial sector).
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manually encode the knowledge base needed for a task—an approach 
that is functionally indistinguishable from conventional software.40 For 
example, to tackle a problem like medical diagnosis of blood infections, 
the AI modeler might seek to identify all possible symptoms and diag-
noses, and then manually map all possible relationships between those 
symptoms and diagnoses.41 When those rules are written out by hand, 
they are, in fact, lines of code. In other words, classical AI systems were 
designed and implemented in the same top-down manner as conven-
tional software systems. Although defenders of the classical rule-based 
approaches maintain that true semantic knowledge cannot be codified 
in any other way,42 none has achieved meaningful success in real-world 
applications.43

Instead, modern AI techniques have surpassed the limitations of clas-
sical AI approaches by improving methods that auto-generate knowl-
edge representation models. The key innovation has been the discovery 
that one particular model structure—deep neural networks—can be 
trained at sufficient size44 and capacity45 to perform well on real-world 

40.	 See Marta Garnelo & Murray Shanahan, Reconciling Deep Learning with Symbolic Artifi-
cial Intelligence: Representing Objects and Relations, Current Opinion in Behavioral Scis., Oct. 
2019, at 17, 17 (describing symbolic AI as “handcrafted” rather than “learned from data”).

41.	 See Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach 23 
(3d ed. 2010) (describing early expert systems such as the Mycin system for diagnosing blood 
infections, which incorporated knowledge “acquired from extensive interviewing of experts”).

42.	 See, e.g., Gary Marcus & Ernest Davis, GPT-3, Bloviator: OpenAI’s Language Generator 
Has No Idea What It’s Talking About, MIT Tech. Rev. (Aug. 22, 2020), https://www.technologyre-
view.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/ 
[https://perma.cc/V623-CLGC].

43.	 See Goodfellow et al., supra note 39, at 2 (observing that several AI projects “have sought 
to hard-code knowledge about the world in formal languages,” but that “[n]one of these projects 
has led to a major success” because it is difficult “to devise formal rules with enough complexity 
to accurately describe the world”); Russell & Norvig, supra note 41, at 439 (“[T]he enterprise of 
general ontological engineering has so far had only limited success. None of the top AI applica-
tions . . . make use of a shared ontology—they all use special-purpose knowledge engineering.”); 
see also Calo, supra note 12, at 404–05 (describing the failure of symbolic systems to “yield many 
viable applications in practice,” which led to “the dwindling of research funding in the late 1980s 
known as the ‘AI Winter.’”).

44.	 See Goodfellow et al., supra note 39, at 431 (“One of the key factors responsible for the 
improvement in neural network’s accuracy and the improvement of the complexity of tasks they 
can solve between the 1980s and today is the dramatic increase in the size of the networks we 
use.”).

45.	 The richness and expressive power of a model is called its representational “capacity.” 
See Vladimir Vapnik, Esther Levin & Yann Le Cun, Measuring the VC-dimension of a Learn-
ing Machine, 6 Neural Computation 851, 851–52 (1994) (defining the “capacity” of a learning 
machine as the complete set of classification functions from which an optimal solution can be cho-
sen); Yaser S. Abu-Mostafa, The Vapnik-Chervonenkis Dimension: Information Versus Complexity 
in Learning, 1 Neural Computation 312, 316 (1989) (explaining that a neural network’s capacity 
is correlated with its size).



2024]	 AI MALPRACTICE	 313

tasks.46 As early researchers showed, an AI system performs best when 
its model capacity matches the true complexity of the real-world task.47 
The ability to construct and optimize multiple intermediate layers has 
been critical to the success of neural networks, because depth can aug-
ment the capacity of the model by exponential orders of magnitude.48

In a basic neural network, each neuron node unit represents a sin-
gle monad of information. Multiple node units are stitched together 
to form a layer, with different “weights” assigned to each connection. 
As the input data travels through each layer, the weights determine 
which nodes are activated, which directs a path through the deep neural 
network to produce the output result. Multiple layers are then stacked 
sequentially so that each layer feeds forward into the next layer. That 
multilayer structure enables the AI modeler to represent very complex 
concepts in a more efficient manner. For example, an image of a person 
could be composed of individual pixels at the input layer; edges and 
contours at the next layers; higher-order elements such as eyes and lips 
at successive layers; and so on until ultimately a facial identification is 
presented at the output layer. 

The structure of a deep neural network model is configured automati-
cally by the learning algorithm and by the data, through a process called 
backpropagation (or “backprop”), a technique originally introduced in 
1986.49 All leading deep learning libraries, including PyTorch and Ten-
sorFlow, are built upon the backprop method.50 As the backprop algo-
rithm iterates through the data, individual connections between neuron 
node units are reinforced or decayed, so that the model gradually learns 
to recognize patterns it has seen before and to disregard patterns that 
are absent in the dataset. Like a toddler learning language, unused 

46.	 See Goodfellow et al., supra note 39, at 20–21 (“As of 2016, a rough rule of thumb is that 
a supervised deep learning algorithm . . . will match or exceed human performance when trained 
with a dataset containing at least 10 million labeled examples.”).

47.	 See id. at 109 (“Machine learning algorithms will generally perform best when their capacity 
is appropriate for the true complexity of the task they need to perform and the amount of train-
ing data they are provided with. Models with insufficient capacity are unable to solve complex 
tasks.  .  .  . [B]ut when their capacity is higher than needed to solve the present task, they may 
overfit.”). 

48.	 The reason for the advantage generated by deep networks remains undertheorized. How-
ever, scholars have suggested that it relates to the superior ability of deep networks to approxi-
mate “compositional functions,” i.e., functions that are composed of a hierarchy of constituent 
functions. See Tomaso Poggio et al., Why and When Can Deep—but Not Shallow—Networks Avoid 
the Curse of Dimensionality: A Review, 14 Int’l J. Automation & Computing 503, 503 (2017).

49.	 See Yavar Bathaee, The Artificial Intelligence Black Box and the Failure of Intent and Cau-
sation, 31 Harv. J.L. & Tech. 889, 901 n.50 (2018) (describing history of the backpropagation 
algorithm).

50.	 See Nathan Sprague, ScalarFlow: Implementing Reverse Mode Automatic Differentiation, 
AI Matters, Dec. 2021, at 8, https://sigai.acm.org/static/aimatters/7-4/AIMatters-7-4-04-Sprague.
pdf [https://perma.cc/9D83-478Y].
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neural connections may be pruned to create a sparser network that can 
be traversed more quickly and efficiently. 

At the outset, the AI modeler is responsible for selecting the model 
structure, the learning algorithms, and certain “hyperparameters” that 
govern the overall learning process. The AI modeler also needs to col-
lect and preprocess the training data. But once the learning process 
begins, the AI model is auto-generated without further intervention by 
the AI modeler. If the resulting model is unsatisfactory, the AI modeler 
can generate a new model by adjusting the initial configuration settings 
or by refining the dataset. The search for a satisfactory model is typi-
cally tedious and unpredictable. But the amount of conventional soft-
ware code that needs to be rewritten is minimal. 

This bottom-up construction of AI systems differs from top-down 
construction of conventional software systems in at least three salient 
ways. First, the amount of software design involved is minimal. Instead, 
AI modelers typically use off-the-shelf software and adjust only a hand-
ful of initialization settings and hyperparameters. Second, the training 
data plays an outsized role in determining how the AI system behaves. 
Yet, while the creation of new datasets is tedious and time-consuming, 
that work is largely rote and perfunctory. Moreover, it is common prac-
tice to outsource such work or to reuse preexisting datasets compiled by 
others. Third, error metrics are more easily quantifiable than the error 
metrics available for conventional software systems. That said, those 
error metrics have important limitations. The remainder of this Section 
proceeds in greater detail through each of the three aspects.

A.  Learning Algorithms and Hyperparameters

The AI modeler must make several initialization choices at the out-
set. In theory, the range of available configurations is quite large, but in 
practice, those choices are generally confined to what is known to have 
worked well before. When AI experts claim that the work of training 
deep neural networks is more an “art” than a “science,” it is because 
many of these initialization choices are determined by trial and error, 
rather than by precise knowledge. Nevertheless, it can be argued that 
the overall range of judgment being exercised by the average practitio-
ner is fairly narrow. Moreover, if the AI modeler is retraining a preexist-
ing AI model, then many choices are already locked in.51  

First, the network structure must be optimized for the type of learn-
ing task. For smaller datasets, “convolutional” models are favored for 

51.	 See Edward J. Hu et al., LoRA: Low-Rank Adaptation of Large Language Models, 10 Int’l 
Conf. on Learning Representations (2022).
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image-based classifications, while “recurrent” models are preferred for 
natural language processing tasks. In the past few years, newly devel-
oped techniques in unsupervised learning have shifted momentum to 
the “transformer” model, which enables processing of much more mas-
sive amounts of data, and which forms the basis of large language mod-
els such as ChatGPT.52 These architectural choices are driven primarily 
by evidence of prior experimental success.

Second, in determining the network structure, the AI modeler also 
has the option of choosing the depth of the network, the number of 
nodes (width) per layer, and other “hyperparameters” that govern the 
overall learning process. The length of the longest path from input to 
output defines the “depth” of the neural network.53 To be clear, a deeper 
network is not always a superior one; the best depth is one that matches 
the true complexity of the task. For smaller datasets, one or two hidden 
layers is usually sufficient to yield best results. It is preferable to make 
each layer sufficiently wide by adding more nodes per layer than it is 
to add further depth.54 When the available training datasets are more 
massive, however, and the learning problem more complex, then deeper 
networks offer the potential to generate better results.55 

Next, the AI modeler must choose the learning algorithm, which con-
sists of mathematical “activation functions,” a “loss function,” and an 
“optimization technique.” The goal is to learn the best node weights 
across the entire neural network, which can include millions or billions 
of nodes. In lay terms, (1) an activation function is what instructs each 
neuron node to fire or not to fire, (2) the loss function represents the 
penalty for giving wrong weights to those nodes, while (3) the opti-
mization technique is the iterative learning strategy that adjusts node 
weights to minimize the penalty of being wrong. With proper choices, 
the node weights will converge toward the optimal configuration. 

The potential universe of activation functions and loss functions is 
vast, but in practice, there is a narrow set of commonly used options, 
which are further limited by the type of learning problem and the data 

52.	 See Ashish Vaswani et al., Attention Is All You Need, 30 Advances Neural Info. Processing 
Sys. (2017) https://arxiv.org/pdf/1706.03762.pdf [https://perma.cc/9FM9-SGBL].

53.	 See Goodfellow et al., supra note 39, at 7–8 (defining depth as “the length of the longest 
path from input to output” but cautioning that “there is no single correct value for the depth of an 
architecture,” and that there is no “consensus about how much depth a model requires to qualify 
as ‘deep’”).

54.	 See Zeyuan Allen-Zhu et al., Learning and Generalization in Overparameterized Neural 
Networks, Going Beyond Two Layers, 32 Advances Neural Info. Processing Sys. 6158 (2019). 

55.	 See Rupesh Kumar Srivastava et al., Training Very Deep Networks, 28 Advances Neural 
Info. Processing Sys. 2377, 2377 (2015); Kaiming He et al., Deep Residual Learning for Image Rec-
ognition, 2016 IEEE Conf. on Comput. Vision & Pattern Recognition 770, 770 (describing novel 
“residual learning” technique to achieve 152 layers of depth). 
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distribution.56 The choice is even more stark for optimization tech-
niques, where the most popular choice is stochastic gradient descent, or 
improved versions thereof. Within this gradient descent paradigm, the 
AI modeler must choose another set of hyperparameters to determine 
how crudely or finely the stochastic gradient descent algorithm explores 
the universe of possible node weight configurations. For example, vari-
ables like learning rate, batch size, momentum, and weight decay are 
used to determine how much to change the node weights after each 
iteration of the training process. 

These hyperparameters regulate how much and how quickly the 
algorithm learns from the data. If the algorithm learns too slowly, it 
suffers from underfitting, which means it fails to learn the task at hand. 
Conversely, if the algorithm learns too quickly, it can suffer from overfit-
ting, which is a problem because the resulting model performs decep-
tively well on the training examples but fails to generalize well to new 
examples.57 In order to avoid the twin hazards of overfitting and under-
fitting, one must choose appropriate hyperparameters that lead to a 
well-balanced model. 

If there is a dark art to training deep neural networks, it is in the 
selection of these mathematical functions and hyperparameters.58 To be 
sure, there is no current theory that allows AI modelers to predict with 
precision which values will work best prior to training. And, because AI 
training is a computationally intensive process, it is prohibitively expen-
sive to brute force through all possible choices.

56.	 For example, PyTorch offers 30 built-in activation functions and 21 built-in loss functions. 
See Torch.nn, PyTorch, https://pytorch.org/docs/stable/nn.html [https://perma.cc/PL6S-AM6W]. 
TensorFlow offers 17 built-in activation functions and 19 classes of built-in loss functions. See 
Module: tf.keras.activations, TensorFlow, https://www.tensorflow.org/api_docs/python/tf/keras/
activations [https://perma.cc/NJ28-XL3V]; Module: tf.keras.losses, TensorFlow, https://www.ten-
sorflow.org/api_docs/python/tf/keras/losses [https://perma.cc/E2P6-YBFL]. The AI modeler can 
also implement customized activation functions or loss functions using both libraries. For loss 
functions, one can choose a classification loss function or a regression loss function. Classification 
functions work best when identifying a set of discrete values (e.g., the numerical digits 0 to 9). 
Regression functions are necessary when seeking to learn values that are on a smooth, continuous 
spectrum. Within each of these two categories, there is a short list of mathematical functions that 
are known to work well for deep learning applications.

57.	 See Goodfellow et al., supra note 39, at 108 (“Underfitting occurs when the model is not 
able to obtain a sufficiently low error value on the training set. Overfitting occurs when the gap 
between the training error and test error is too large.”).

58.	 See James Bergstra et al., Making a Science of Model Search: Hyperparameter Optimization 
in Hundreds of Dimensions for Vision Architectures, 30 Int’l Conf. on Machine Learning 115, 115 
(2013) (observing that the tuning process “often depends on personal experience and intuition in 
ways that are hard to quantify or describe”); Goodfellow et al., supra note 39, at 420 (“Manual 
hyperparameter tuning can work very well when the user has a good starting point, such as one 
determined by others having worked on the same type of application and architecture, or when the 
user has months or years of experience in exploring hyperparameter values for neural networks 
applied to similar tasks.”).
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On the other hand, research suggests that the range of relevant 
choices is relatively small.59 And more advanced techniques are allow-
ing AI modelers to automatically tune hyperparameters with increas-
ing ease, rather than relying on manually selected defaults.60 To be sure, 
there is no hard and fast rule stopping anyone from making wildly dif-
ferent choices, but there are general expectations among experts in the 
field as to the ranges of values that tend to work well.

B.  Training Data

It is axiomatic that the simplest way to improve the performance of 
a deep neural network is to increase the size of the training dataset.61 
Thus, much of the human labor that goes into building deep learning AI 
models is collecting and curating data.62 David Lehr and Paul Ohm have 
argued that legal scholars need to “giv[e] more attention to machine 
learning’s playing-with-the-data stages.”63 Likewise, Andrew Selbst 
and Solon Barocas have also stated that it is necessary to investigate 
the process behind a model’s development, not just the running model 
itself.64 Frank Pasquale has advocated the need to impose duties of care 
on firms that rely on faulty data to develop AI models.65 Having said 
that, much of the work at the data supervision stage is mechanical and 
tedious, and therefore delegated to low-skilled workers. Alternatively, 
many AI modelers reuse existing datasets rather than generate entirely 
new datasets. Where AI modelers may bear the brunt of responsibility 

59.	 See James Bergstra & Yoshua Bengio, Random Search for Hyper-Parameter Optimization, 
13 J. Machine Learning Rsch. 281 (2012) (finding that most hyperparameters do not matter much 
for most data sets). But see Goodfellow et al., supra note 39, at 420 (“Neural networks can 
sometimes perform well with only a small number of tuned hyperparameters, but often benefit 
significantly from tuning of forty or more.”).

60.	 See, e.g., Greg Yang et al., Tensor Programs V: Tuning Large Neural Networks via Zero-Shot 
Hyperparameter Transfer, 34 Advances Neural Info. Processing Sys. (2021) (describing efficient 
methodology to tune hyperparameters on a scaled-down model and then transfer those values to 
the full-scale model). But see Goodfellow et al., supra note 39, at 424 (asserting, at the time of the 
writing, that hyperparameter optimization is much less efficient than manual search by a human 
practitioner).

61.	 See Goodfellow et al., supra note 39, at 414 (“Many machine learning novices are tempted 
to make improvements by trying out many different algorithms. Yet, it is often much better to 
gather more data than to improve the learning algorithm.”).

62.	 See Lehr & Ohm, supra note 18, at 677 (“For many projects, [data collection] can be the 
most time-consuming stage, and it also holds enormous consequences; as commenters have noted 
previously, an algorithm is, at the end of the day, only as good as its data.”).

63.	 Id. at 656 (“The potential harms and benefits that can creep in while playing with the data 
differ from those of the running model.”).

64.	 See Andrew D. Selbst & Solon Barocas, The Intuitive Appeal of Explainable Machines, 87 
Fordham L. Rev. 1085 (2018).

65.	 See Frank Pasquale, Data-Informed Duties in AI Development, 119 Colum. L. Rev. 1917 
(2019).
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for data-related errors is in their use of algorithmic techniques to 
enhance, augment, or manipulate the data in order to extract better 
learning outcomes from a limited dataset.

To date, most deep learning research has been on “supervised learn-
ing” techniques, meaning that the AI modeler must carefully “super-
vise” the data to ensure that each example is correctly labeled with the 
“ground truth” before it is presented to the learning algorithm.66 The 
emerging sea change toward semisupervised learning is diminishing the 
need for manual labeling. Nevertheless, there will always be a need to 
reduce raw data into more digestible forms, and to augment that data to 
generate more learning examples. This data preprocessing work has two 
main functions: first, to simplify the learning task by making the data 
clean and orderly, and second, to improve the generalizability of the 
AI model so that it can perform as well as possible in new, unforeseen 
situations. 

With regard to this data supervision work, at least two types of errors 
could be attributed to the AI modeler: incorrect data and insufficient 
data. The first is that the supervisory steps may be performed in a faulty 
manner that causes the training data to be inaccurate or misleading. 
The second is that the need for data supervision restricts the available 
supply of training data, which increases the risk of blind spots in the 
data distribution. Additionally, legal scholarship has emphasized a third 
type of error: illegitimate data.67 For example, the data could be prob-
lematic for reasons such as breach of privacy, discriminatory bias, or 
violation of copyright. 

1.  Incorrect Data

Concerns about inaccurate data are age-old.68 Data records can con-
tain explicit and implicit errors, and thus advocates and lawmakers have 

66.	 See Steven A. Israel et al., Applied Machine Learning Strategies, IEEE Potentials, May–
June 2020, at 38, 38 (“The most prominent ML methods in use today are supervised, meaning they 
require ground-truth labeling of the data on which they are trained.”). While unsupervised and 
semi-supervised learning techniques are areas of active research, they are not yet mainstream tools 
the way that supervised learning techniques have become. Moreover, due to computational limits, 
even unsupervised and semi-supervised learning techniques need to reduce raw data into more 
digestible forms.

67.	 See Pasquale, supra note 65, at 1923–28 (contrasting “inappropriate data” with “inaccurate 
data”).

68.	 See, e.g., Daniel J. Solove, The Digital Person 15 (2004) (quoting a 1973 report by the U.S. 
Department of Health, Education, and Welfare: “Sometimes the individual does not even know 
that an organization maintains a record about him. Often he may not see it, much less contest its 
accuracy, control its dissemination, or challenge its use by others.”); id. at 46, 49 (“Not only are 
our digital biographies reductive, but they are often inaccurate.  .  .  . [T]he information in data-
bases often fails to capture the texture of our lives. Rather than provide a nuanced portrait of our 
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long demanded procedural protections such as rights of public access 
to data records, and remedial mechanisms to dispute the information 
found therein.69 

In order to prepare a training dataset for a supervised learning algo-
rithm, the AI modeler must perform several idiosyncratic steps that are 
not practiced in conventional software development, including labeling 
and cleaning the training data. Each of these intermediate steps has a 
significant impact on the performance of the ensuing AI model, and 
each entails varying degrees of uncertainty.

Data labeling is a basic way in which errors can corrupt the machine 
learning process. For example, if the goal were to distinguish cat images 
from dog images, then labeling each image in the dataset as “cat,” “dog,” 
or some other value teaches the AI model how to correctly classify each 
image.70 Likewise, in the autonomous driving context, bounding boxes 
can be used to label objects of interest such as vehicles, pedestrians, and 
other road users, which the learning algorithm then knows to avoid. 
Without that supervisory help, the learning algorithm would need to 
learn those labels on its own.71

But data labeling is not an exact science.72 Some judgment is needed 
in designating a useful schema. A naive approach could ask labelers to 
invent their own labels.73 Given enough labelers, however, this approach 
leads to inconsistent use of labels. Additionally, the quality of labels 
suffers because humans tend to label objects at a basic semantic level 
rather than in more descriptively rich ways.74 The labeling process can 

personalities, compilations of data capture the brute facts of what we do without the reasons.”); 
Simson Garfinkel, Database Nation (2000).

69.	 See, e.g., Fair Credit Reporting Act, Pub. L. No. 91-508, 84 Stat. 1114, 1127 (1970) (codified 
at 15 U.S.C. § 1681); Freedom of Information Act, Pub. L. No. 90-23, 81 Stat. 54 (1967) (codified at 
5 U.S.C. § 552); California Consumer Privacy Act of 2018, Cal. Civ. Code §§ 1798.100–.199 (West 
2022).

70.	 Labels also correspond to the “outcome variables” that the AI model is expected to predict 
or estimate. See Lehr & Ohm, supra note 18, at 673.

71.	 See Goodfellow et al., supra note 39, at 102 (“The term supervised learning originates 
from the view of the target y being provided by an instructor or teacher who shows the machine 
learning system what to do. In unsupervised learning, there is no instructor or teacher, and the 
algorithm must learn to make sense of the data without this guide.”).

72.	 See Lehr & Ohm, supra note 18, at 673–75 (describing the discretionary process by which 
AI modelers choose labels (or outcome variables), and listing the “different factors [that] play into 
how data scientists make these tough choices,” including subject matter knowledge, algorithmic 
needs, and resource constraints).

73.	 In practice, annotations are performed by hand. See, e.g., Jia Deng et al., ImageNet: A Large-
Scale Hierarchical Image Database, 2009 IEEE Conf. on Comput. Vision & Pattern Recognition 
248, 251 (“To collect a highly accurate dataset, we rely on humans to verify each candidate image 
collected . . . .”); Luis von Ahn & Laura Dabbish, Labeling Images with a Computer Game, 2004 
SIGCHI Conf. on Human Factors Computing Sys. 319, 319. 

74.	 See Deng et al., supra note 73, at 250 (explaining findings that “humans tend to label visual 
objects at an easily accessible semantic level termed as ‘basic level’ (e.g. bird), as opposed to more 
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also be sabotaged on purpose.75 Even small changes to data labels can 
cause surprisingly nuanced problems that are difficult to detect.

One workaround is to adopt an existing schema developed by lin-
guistic experts or subject matter experts. Perhaps the best known exam-
ple is ImageNet, an image dataset of over 14 million images organized 
according to a hierarchy of more than 100,000 labels.76 The key to its 
success is that it starts with a third-party schema and then asks the pub-
lic to provide examples that fit the labels, rather than vice versa.77 Other 
research efforts include methods to automate data labeling,78 which 
have yielded limited success so far.79

Data cleaning allows the AI modeler to massage the data to yield 
better results.80 If the data is too noisy, then the learning algorithm will 
struggle to distinguish features that are meaningful from those that are 
not.81 The dataset may contain faulty or inappropriate entries,82 or the 

specific level (‘sub-ordinate level’, e.g. sparrow), or more general level (‘super-ordinate level’, e.g. 
vertebrate).”).

75.	 See Antonio Torralba et al., Open Letter, MIT (June 29, 2020), https://groups.csail.mit.edu/
vision/TinyImages/ [https://perma.cc/ELL3-6DZN] (announcing formal withdrawal of the Tiny 
Images dataset due to the discovery of “derogatory” labels and “offensive images”).

76.	 About ImageNet, ImageNet, http://image-net.org/about.php [https://perma.cc/7FAF-
BKVT]; Deng et al., supra note 73, at 248; see also Abeba Birhane & Vinay Uday Prabhu, Large 
Image Datasets: A Pyrrhic Win for Computer Vision?, 2021 IEEE Winter Conf. on Applications 
Comput. Vision 1536, 1539 (“ImageNet, with its vast amount of data, has not only erected a canoni-
cal landmark in the history of AI, it has also paved the way for even bigger, more powerful, and 
suspiciously opaque datasets.”). But see Kate Crawford & Trevor Paglen, Excavating AI: The 
Politics of Images in Machine Learning Training Sets, AI Now Inst. (2019), https://excavating.ai 
[https://perma.cc/6FGS-T3DK] (detailing at length the shortfalls of the ImageNet taxonomy).

77.	 See Deng et al., supra note 73, at 248, 251–52.
78.	 See Burr Settles, Active Learning Literature Survey, 1648 U. Wis. Comput. Scis. Tech. Rep. 

(2009), at 9, https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf [https://perma.
cc/752Q-YBTX]. 

79.	 See Goodfellow et al., supra note 39, at 526 (“Today, unsupervised pretraining has been 
largely abandoned, except in the field of natural language processing . . . .”). But see Alec Radford 
et al., Improving Language Understanding by Generative Pre-Training (June 11, 2018) (preprint), 
http://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.
pdf [https://perma.cc/DB7S-WRSJ] (explaining use of unsupervised pretraining techniques to 
train GPT-2 and GPT-3 on large unlabeled text corpora scraped from the internet).

80.	 See Ihab F. Ilyas & Xu Chu, Data Cleaning 1 (2019) (“[D]ata cleaning activities usually 
consist of two phases: (1) error detection, where various errors and violations are identified and 
possibly validated by experts; and (2) error repair, where updates to the database are applied (or 
suggested by human experts) to bring the data to a cleaner state suitable for downstream applica-
tions and analytics.”).

81.	 See Goodfellow et al., supra note 39, at 414 (“If large models and carefully tuned optimi-
zation algorithms do not work well, then the problem might be the quality of the training data. The 
data may be too noisy or may not include the right inputs needed to predict the desired outputs. 
This suggests starting over, collecting cleaner data, or collecting a richer set of features.”).

82.	 Such errors can include, for example, missing values, unhelpful outliers, typos, and duplicate 
entries. 
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data may need to be normalized to share the same units and measures.83 
With enough data, small levels of error can become invisible, but sys-
tematic errors will continue to be problematic. For certain AI applica-
tions, these data cleaning tasks may require domain-specific knowledge, 
but for “common sense” applications, they may require little to no spe-
cialized skill.

Another way to enhance the data is through “feature engineering,” 
which allows the AI modeler to highlight or diminish certain features 
of the training dataset. As an example, one popular technique is pool-
ing, which combines several existing features into a new aggregate fea-
ture.84 For example, if the dataset contains hourly wage information, the 
AI modeler could pool that information to create a new weekly wage 
feature. Likewise for image processing, a pooling function can produce 
one aggregate value for multiple neighboring pixels. In this way, the AI 
modeler simplifies the learning task while still preserving the general 
contours of the original dataset. 

In sum, any exercise of data curation has the potential to introduce 
bias or error, and choosing the best techniques involves some guess-
work. Nevertheless, the ongoing development of standard schemas and 
certified datasets could reduce much of that uncertainty going forward.

2.  Insufficient Data

The problem of insufficient data is a fundamental challenge for all 
machine learning methods, because it increases the likelihood that the 
trained AI model will fail to generalize well to new, previously unseen 
cases. When a new case reveals a gap in the data, the AI model must rely 
on inferential reasoning, which creates uncertainty and risk of error. 
Conversely, as the amount of available data increases to infinity, the 
more likely it becomes that the AI model will have seen the full range of 
cases, thus eliminating the need for guesswork. The sufficiency concern 
is not merely quantitative but qualitative. Facial recognition systems 
have been criticized for performing worse on darker faces.85 Medical 

83.	 See Goodfellow et al., supra note 39, at 517 (“Many information processing tasks can be 
very easy or very difficult depending on how the information is represented . . . . For example, it is 
straightforward for a person to divide 210 by 6 using long division. . . . Most modern people asked 
to divide CCX by VI would begin by converting the [Roman] numbers to the Arabic numeral rep-
resentation . . . .”); id. at 441 (“Many computer vision architectures require images of a standard 
size, so images must be cropped or scaled to fit that size.”).

84.	 See Naila Murray & Florent Perronnin, Generalized Max Pooling, 2014 IEEE Conf. on 
Comput. Vision & Pattern Recognition 2473. 

85.	 See Joy Buolamwini & Timnit Gebru, Gender Shades: Intersectional Accuracy Disparities in 
Commercial Gender Classification, 81 Proc. Mach. Learning Rsch. 1, 8 (2018).



322	 DEPAUL LAW REVIEW	 [Vol. 73:301

datasets often display gender gaps that overlook women.86 Language 
models have come under attack for “hallucinating” false facts.87 These 
faults occur because the training data is not adequately representative 
of the full range of information that exists in the real world. 

The amount of data needed to achieve passable performance depends 
on the complexity of the problem. If there are only a few causal factors 
that affect the outcome—such as a lamp controlled by a simple on-off 
switch—then even a small number of past examples will be strongly 
predictive of future cases. However, most real-world applications of 
AI involve problems that are not well-understood. If the problem is 
more like weather forecasting, where outcomes can vary dramatically 
depending on a vast set of unknown variables, then much more data 
is needed to record the myriad possible patterns. One benchmark sug-
gested in the literature is that 10 million labeled examples is the bare 
minimum number needed to achieve human-like performance.88 But 
the critical threshold can be much higher. For example, the autonomous 
car company Waymo states that it has turned its “20 million miles of 
on-road experience into a searchable catalog of billions of objects.”89 
OpenAI’s GPT-3 (the predecessor of ChatGPT) was trained on 499 bil-
lion tokens.90 

Actual practice among AI modelers varies considerably. As the fore-
going discussion emphasizes, the need to label data drastically limits the 
availability of training data. Other compounding factors—such as data 
privacy laws—can also inhibit the ready accessibility of usable data. To 
offset this shortage of training data, AI modelers often rely on “found” 
data.91 

86.	 See Caroline Criado Perez, Invisible Women: Data Bias in a World Designed for Men 
89–90 (2019).

87.	 See Ziwei Ji et al., Survey of Hallucination in Natural Language Generation, 55 ACM Com-
puting Surveys art. 248, at 248:5–248:6 (2023) (observing that the main causes of hallucination 
include problems with data collection, as well as data distortions that can arise through training 
and modeling choices).

88.	 See Goodfellow et al., supra note 39, at 20.
89.	 See James Guo et al., Seeing is Knowing: Advances in Search and Image Recognition Train 

Waymo’s Self-Driving Technology for Any Encounter, Waypoint (Feb. 6, 2020), https://blog.waymo.
com/2020/02/content-search.html [https://perma.cc/Z8C5-8QDQ]; see also Pei Sun et al., Scalabil-
ity in Perception for Autonomous Driving: Waymo Open Dataset, 2020 IEEE Conf. on Comput. 
Vision & Pattern Recognition 2443, 2443–44.

90.	 See Tom B. Brown et al., Language Models Are Few-Shot Learners, 33 Advances Neural 
Info. Processing Sys. 1877 (2020) (describing implementation of GPT-3).

91.	 See Katherine J. Strandburg, Rulemaking and Inscrutable Automated Decision Tools, 119 
Colum. L. Rev. 1851, 1861 (2019) (“[M]achine learning processes often rely on ‘found data,’ col-
lected for some other purpose, to train the models. Unfortunately, reliance on found data leaves 
rulemakers at the mercy of whatever feature sets and outcome variables happen to have been 
collected.”).
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When the available dataset is too small, the AI modeler must get 
creative in order to extract more learning from less data. Some tech-
niques allow for careful reuse of the existing data.92 More popular tech-
niques, however, use data augmentation to generate new examples. 
The AI modeler can greatly magnify the size of a dataset by adding 
slight perturbations of existing examples in the dataset. For example, an 
image can be rotated, flipped, or altered in minor ways that preserve the 
essence of the image while making the image appear new and differ-
ent to the learning algorithm.93 In language corpuses, synonyms can be 
substituted to create new text examples with equivalent meaning. More 
advanced techniques for generating new data samples include diffusion 
and generative adversarial networks.94 By massaging the available data 
in these ways, AI modelers boost the amount of learning that can be 
extracted from limited quantities of training data. But doing so greatly 
enhances the risk of error if the augmentation techniques are not care-
fully implemented.95

3.  Illegitimate Data

A third source of potential fault focuses on whether certain data in 
the training dataset is illegitimate.96 Here, there are two genres of cri-
tique. The strong form is that the data is malum in se and cannot be 
purged of its problematic aspects. The weaker version raises procedural 
objections regarding the manner in which the data was obtained or 
processed.

One set of objections stems from the intimate or offensive nature of 
the data itself.97 For example, facial recognition systems have generated 

92.	 For example, one clever way to extract more learning from a single dataset is to divide the 
dataset into k nonoverlapping subsets, and then repeat the training and testing procedures k times. 
This technique is known as “k-fold cross-validation.” See Goodfellow et al., supra note 39, at 119.

93.	 See Alex Ratner et al., Learning to Compose Domain-Specific Transformations for Data 
Augmentation, Stan. Dawn (Aug. 30, 2017), https://dawn.cs.stanford.edu/2017/08/30/tanda [https://
perma.cc/8T8H-XZYE].

94.	 See Prafulla Dhariwal & Alex Nichol, Diffusion Models Beat GANs on Image Synthesis 
(June 1, 2021) (preprint), https://arxiv.org/pdf/2105.05233.pdf [https://perma.cc/42KW-HKCJ]. 
Other methods such as fine tuning and transfer learning offer additional ways to extract utility 
from smaller datasets. See Rohan Taori et al., Alpaca: A Strong, Replicable Instruction-Following 
Model, Stan. Univ. Ctr. Rsch. on Found. Models (2023), https://crfm.stanford.edu/2023/03/13/
alpaca.html [https://perma.cc/6JCQ-F9ZW].

95.	 See Sina Alemohammad et al., Self-Consuming Generative Models Go MAD (July 4, 2023) 
(preprint), https://arxiv.org/pdf/2307.01850v1.pdf [https://perma.cc/DZN8-U9VL] (finding that 
overuse of synthetic, AI-generated training data degrades the quality of future AI models).

96.	 See Pasquale, supra note 65, at 1925–27.
97.	 See Karen E.C. Levy, Intimate Surveillance, 51 Idaho L. Rev. 679 (2015); Margaret Hu, Bio-

metric ID Cybersurveillance, 88 Ind. L.J. 1475 (2013).
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public outcry and have led to bans by multiple municipalities.98 The use 
of deep learning for biometric recognition is not limited to faces, but 
extends to fingerprints, palmprints, eyes, voices, gaits, handwriting, and 
ears.99 Similarly, the use of nude content to generate “deep fake” por-
nography raises objections rooted in bodily autonomy and shock to the 
conscience.100 This indignation could be extended to other categories of 
information—health data, children’s data, financial data, geolocational 
data, and so on. 

Other concerns have been framed in procedural terms, in which the 
data is not illegitimate per se, but becomes tarnished by the manner in 
which it is acquired or used.101 Complaints rooted in consent,102 intellec-
tual property,103 contextual integrity,104 or anonymization,105 speak pri-
marily to failures of data handling that could be remediated by better 
procedural safeguards or economic compensation.

A more radical set of concerns is that reliance on biased, histori-
cal data will sustain an unjust status quo.106 The canonical case study 

98.	 See Lindsey Barrett, Ban Facial Recognition Technologies for Children—and for Everyone 
Else, 26 B.U. J. Sci. & Tech. L. 223, 277 (2020). But see Bruce Schneier, We’re Banning Facial Rec-
ognition. We’re Missing the Point., N.Y. Times (Jan. 20, 2020), https://www.nytimes.com/2020/01/20/
opinion/facial-recognition-ban-privacy.html (pointing out that facial recognition is only “one iden-
tification technology among many”).

99.	 See Shervin Minaee et al., Biometric Recognition Using Deep Learning: A Survey (Feb. 8, 
2021) (preprint), https://arxiv.org/pdf/1912.00271.pdf [https://perma.cc/3RL2-X3FE].

100.	 See Bobby Chesney & Danielle Citron, Deep Fakes: A Looming Challenge for Privacy, 
Democracy, and National Security, 107 Calif. L. Rev. 1753, 1772–73 (2019) (“Thanks to deep-fake 
technology, an individual’s face, voice, and body can be swapped into real pornography. . . . When 
victims discover that they have been used in deep-fake sex videos, the psychological damage can 
be profound—whether or not this was the video creator’s aim.”); Mary Anne Franks & Ari Ezra 
Waldman, Sex, Lies, and Videotape: Deep Fakes and Free Speech Delusions, 78 Md. L. Rev. 892, 
893 (2019) (“Like other forms of nonconsensual pornography, digitally manipulated pornography 
turns individuals into objects of sexual entertainment against their will, causing intense distress, 
humiliation, and reputational injury.”); see also Ashcroft v. Free Speech Coalition, 535 U.S. 234, 
241–42 (2002) (distinguishing computer-generated images, which do not involve or harm any un-
derlying person, from computer-morphed images, which do implicate the interests of real persons).

101.	 See Pasquale, supra note 65, at 1926; Kate Crawford & Jason Schultz, Big Data and Due 
Process: Toward a Framework to Redress Predictive Privacy Harms, 55 B.C. L. Rev. 93 (2014).

102.	 See Moore v. Regents of Univ. of Calif., 793 P.2d 479 (Cal. 1990).
103.	 See Matthew Sag, Copyright Safety for Generative AI, 61 Hous. L. Rev. (forthcoming 2024); 

Benjamin L. W. Sobel, Artificial Intelligence’s Fair Use Crisis, 41 Colum. J.L. & Arts 45 (2017). But 
see Mark A. Lemley & Bryan Casey, Fair Learning, 99 Tex. L. Rev. 743 (2021).

104.	 See Helen Nissenbaum, Privacy in Context (2009).
105.	 See Martin Abadi et al., Deep Learning with Differential Privacy, 2016 ACM Conf. on Com-

put. & Commc’ns Sec. 308.
106.	 See Sandra G. Mayson, Bias in, Bias Out, 128 Yale L.J. 2218, 2238 (2019) (“[I]f the base 

rate of the predicted outcome differs across racial groups, it is impossible to achieve (1) predictive 
parity; (2) parity in false-positive rates; and (3) parity in false-negative rates at the same time . . . . 
Race neutrality is not attainable.”); Anupam Chander, The Racist Algorithm?, 115 Mich. L. Rev. 
1023, 1036–37 (2017); Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 Ca-
lif. L. Rev. 671, 680 (2016) (“As computer science scholars explain, biased training data leads to 



2024]	 AI MALPRACTICE	 325

is predictive policing, where AI techniques are being used to formu-
late criminal risk assessments both at the community level and at the 
individual level.107 Many commentators have observed that policing 
practices and criminal law enforcement have been—and continue to 
be—pervaded by disparate treatment of protected classes, including 
race and gender.108 Accordingly, they argue, any data drawn from past 
policing practices will necessarily reflect those same biases, and should 
be disqualified from informing future policing practices.109 Other com-
mentators have extended that critique to myriad contexts, including 
employment,110 healthcare,111 and consumer credit,112 where past prac-
tices have been problematic. In these socially fraught areas, the criticism 

discriminatory models.”); Aziz Z. Huq, Racial Equity in Algorithmic Criminal Justice, 68 Duke L.J. 
1043, 1104 (2019) (“[A] racial equity analysis of algorithmic criminal justice should not be a com-
parative one. . . . The mere fact that the status quo ante is characterized by racial injustice does not 
legitimatize proposals that preserve or extend some substantial part of that injustice.”); Emily M. 
Bender et al., On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?, 2021 Proc. 
ACM Conf. on Fairness, Accountability & Transparency 610, 614 (“In accepting large amounts 
of web text as ‘representative’ of ‘all’ of humanity we risk perpetuating dominant viewpoints, in-
creasing power imbalances, and further reifying inequality.”).

107.	 See Andrew Guthrie Ferguson, Policing Predictive Policing, 94 Wash. U. L. Rev. 1109 
(2017); Elizabeth E. Joh, Policing By Numbers: Big Data and the Fourth Amendment 89 Wash. L. 
Rev. 35 (2014); Ric Simmons, Quantifying Criminal Procedure: How to Unlock the Potential of Big 
Data in Our Criminal Justice System, 2016 Mich. St. L. Rev. 947; Megan Stevenson, Assessing Risk 
Assessment in Action, 103 Minn. L. Rev. 303 (2018); Ric Simmons, Big Data, Machine Judges, and 
the Legitimacy of the Criminal Justice System, 52 U.C. Davis L. Rev. 1067 (2018).

108.	 See Huq, supra note 106, at 1105–11; Andrew Guthrie Ferguson, Illuminating Black Data 
Policing, 15 Ohio St. J. Crim. L. 503 (2018); Shima Baradaran, Race, Prediction, and Discretion, 81 
Geo. Wash. L. Rev. 157 (2013); Jessica M. Eaglin, Constructing Recidivism Risk, 67 Emory L.J. 59 
(2017); Sonja B. Starr, Evidence-Based Sentencing and the Scientific Rationalization of Discrimina-
tion, 66 Stan. L. Rev. 803 (2014) (gender).

109.	 See Bernard E. Harcourt, Against Prediction: Profiling, Policing, and Punishing in 
an Actuarial Age (2007); Ferguson, Policing Predictive Policing, supra note 107, at 1149 (address-
ing the argument that, “[i]f the underlying data is biased, then how can a data-driven system based 
on that data not also be biased?”); Sean Allan Hill II, Bail Reform and the (False) Racial Promise 
of Algorithmic Risk Assessment, 68 UCLA L. Rev. 910, 944–45 (2021) (arguing that criticisms of 
pretrial risk assessment instruments do not go far enough in “interrogat[ing] how criminal laws 
and practices sustain prevailing beliefs of Black criminality,” and that this technology “lends le-
gitimacy to dangerousness predictions and thus encourages continued investments in the criminal 
legal system”); see also Huq, supra note 106, at 1131 (adopting a cost-benefit approach but arguing 
that “the operation of criminal justice coercion generates asymmetrical harms to black families 
and black communities”).

110.	 See Pauline T. Kim, Data-Driven Discrimination at Work, 58 Wm. & Mary L. Rev. 857 
(2017); Charles A. Sullivan, Employing AI, 63 Vill. L. Rev. 395 (2018); Jon Kleinberg et al., Dis-
crimination in the Age of Algorithms, 10 J. Legal Analysis 1 (2018).

111.	 See Robin C. Feldman et al., Artificial Intelligence in the Health Care Space: How We Can 
Trust What We Cannot Know, 30 Stan. L. & Pol’y Rev. 399 (2019); W. Nicholson Price II, Black-
Box Medicine, 28 Harv. J.L. & Tech. 419 (2015); Pasquale, supra note 65, at 1926.

112.	 See Kristin Johnson et al., Artificial Intelligence, Machine Learning, and Bias in Finance: To-
ward Responsible Innovation, 88 Fordham L. Rev. 499 (2019); Pam Dixon & Robert Gellman, The 
Scoring of America: How Secret Consumer Scores Threaten Your Privacy and Your Future 
(2014).
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is that the data at issue is fundamentally illegitimate for use in AI appli-
cations. Rehabilitation through procedural mechanisms is not a suitable 
option.113 

C.  Testing

In an important way, testing of AI models is far more orderly than 
testing of conventional software systems. Because the AI model is—
or should be—a mathematical approximation of a naturally occurring 
pattern, the primary inquiry is whether the approximation is a close 
enough fit to the real phenomenon. A range of testing metrics allows AI 
modelers to estimate and compare an AI model’s relative performance.

For classification problems, the simplest and most popular metric 
involves use of available data to determine the AI model’s “accuracy.” 
The full dataset is partitioned into a training and test set.114 This parti-
tion allows the AI modeler to evaluate how well the AI model is likely 
to perform on new, previously unseen inputs.115 A general rule of thumb 
is to allocate fifty to eighty percent of the original dataset to the train-
ing set, and leave the remainder for the test set. As long as the test set is 
independently drawn and adequately representative of the real world,116 
running the test set through the AI model offers simple heuristics that 

113.	 Cf. Robin West, The Limits of Process, in Getting to the Rule of Law 40–41 (2011) (“[W]e 
should acknowledge, before championing too loudly the cause of proceduralism, that excessively 
precious procedures in the face of grotesque substantive law from which there is truly no exit, 
even with all the procedure in the world, can be a massive insult to dignity. . . . In Hell, as Grant 
Gilmore observed, there will be perfect procedural justice.”). But see Strandburg, supra note 91, at 
1881 (“[P]reemptively depriving society of all such tools for all purposes in all significant decision 
contexts seems questionable as a policy matter, given the advantages of machine-learning-based 
decision tools in some contexts.”).

114.	 See Lehr & Ohm, supra note 18, at 685 (“One key method is to randomly split, or partition, 
an entire dataset into two: a ‘training’ dataset and a ‘test’ dataset. A machine-learning algorithm is 
trained and learns the optimal predictive rules on the former. Then, the algorithm’s accuracy and 
other performance metrics are assessed by asking it to predict the outcomes of the subjects in the 
latter. In this way, an algorithm is forced to predict data it has not ‘seen’ before . . . .”). The data 
partition can also include a validation set, which is used to tune the hyperparameters of the learn-
ing algorithm.

115.	 See Goodfellow et al., supra note 39, at 107 (“The central challenge in machine learn-
ing is that our algorithm must perform well on new, previously unseen inputs—not just those on 
which our model was trained. The ability to perform well on previously unobserved inputs is called 
generalization.”).

116.	 Additionally, the training set and test set must have identical distributions, and they must 
be kept independent. See Goodfellow et al., supra note 39, at 108 (“We typically make a set 
of assumptions known collectively as the i.i.d. assumptions. These assumptions are that the ex-
amples in each dataset are independent from each other, and that the training set and test set are 
identically distributed, drawn from the same probability distribution as each other.  .  .  . [These] 
assumptions enable[] us to mathematically study the relationship between training error and test 
error.”). But see Sayash Kapoor & Arvind Narayanan, Leakage and the Reproducibility Crisis 
in Machine-Learning-Based Science, 4 Patterns, no.  9, Sept. 2023, at 1, 2, https://www.cell.com/
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simulate how well the AI model is likely to perform on future data.117 
To be sure, an important limitation of this heuristic is that it is based 
only on known data, so maximizing the accuracy metric can yield worse 
performance due to overfitting of insufficient data. A common work-
around is to “early stop” the training process before the accuracy metric 
reaches one-hundred percent. 

Other available testing metrics offer alternative computations of best 
fit. Classification metrics such as “precision” and “recall” are optimized 
for detection of false positives or true positives, which may be more 
meaningful than overall accuracy in certain contexts.118 For regression 
tasks involving continuous variables—rather than true-false classifica-
tions—a distance metric such as “mean squared error” offers a more 
appropriate computation of how close the AI model’s estimated map-
ping is to the true natural pattern. Many more statistical methods offer 
a well-established canon of techniques to quantitatively compare the 
relative performance of AI models on a given task.119

These testing metrics are effective because the AI model has inher-
ent smoothness properties. The data-driven, bottom-up training process 
relies on an implicit assumption that the data has a well-ordered, discov-
erable pattern. By definition, deep neural networks are mathematical 
representations of smooth, continuous functions capable of represent-
ing any arbitrary pattern.120 That continuous property means selective 
sampling can offer useful evaluation insights.

By contrast, software is discontinuous; testing of conventional 
software systems tends to be haphazard, and generally lacks formal 
metrics.121 Software is based on artificial, human-made constructs, rather 

patterns/pdf/S2666-3899(23)00159-9.pdf (documenting data leakage as “a leading cause of errors 
in ML applications”).

117.	 See Jie M. Zhang et al., Machine Learning Testing: Survey, Landscapes and Horizons, 48 
IEEE Transactions on Software Eng’g 1, 6 (2022). 

118.	 See Brendan Juba & Hai S. Le, Precision-Recall versus Accuracy and the Role of Large Data 
Sets, 33 AAAI Conf. on Artificial Intelligence 4039 (2019).

119.	 See Ben Hutchinson et al., Evaluation Gaps in Machine Learning Practice, 2022 ACM Fair-
ness Accountability Transparency 1859, 1863, 1873 app. A (listing twenty-six commonly cited 
metrics across nine categories, including accuracy, precision, recall, F-score, overlap, distance, and 
AUC (area under the curve)).

120.	 See Goodfellow et al., supra note 39, at 192–93 (describing the universal approximation 
theorem, which states that a deep neural network can represent any kind of regular pattern as a 
continuous Borel measurable function).

121.	 See, e.g., Steven B. Lipner, The Birth and Death of the Orange Book, IEEE Annals of the 
Hist. of Computing, Apr.–June 2015, at 19, 29 (noting the discovery that software projects evalu-
ated for computer security per the Orange Book standard “fared no better under attack than any 
others”); Choi, supra note 22, at 583; Antonia Bertolino, Software Testing Research: Achievements, 
Challenges, Dreams, 2007 Future of Software Eng’g 85, 92 (citing a survey study that found 
“over half of the existing (testing technique) knowledge is based on impressions and perceptions 
and, therefore, devoid of any formal foundation” (citing Natalia Juristo et al., Reviewing 25 Years 
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than natural patterns like deep AI. Moreover, because of software’s 
abstraction away from physical materials, software is unlike structural 
engineering or industrial manufacturing in that it lacks smoothly inter-
polated attributes such as compressive strength that can be adequately 
tested by selective sampling.122 Instead, software failures can occur in 
completely arbitrary fashion, at any point along the control path. That 
lack of interpolability means the only way to ensure a program has no 
critical errors is to test every single control path that the code allows, as 
well as every functionality that the design requires. Yet, the exponential 
nature of software program complexity makes that task computation-
ally impossible.123

Software testers have looked for heuristics that can reduce the amount 
of testing needed, with little success. For example, “code coverage” tech-
niques seek to generate enough test cases to cover one-hundred per-
cent of the source code—which sounds impressive but lacks any rigor as 
to how mere coverage equates with correctness.124 Other methods seek 
to reduce the number of test cases by focusing attention on the most 
commonly known types of faults, through techniques such as equiva-
lence partitioning, boundary value analysis, or all-pairs testing.125 These 
latter techniques can be effective at detecting “known knowns,” but are 
not aimed at locating unknown errors. Some scholars have championed 
model-based testing, which seeks to streamline testing by requiring the 
software code to conform to a formal model of the system’s function-
ality.126 Although this approach offers some theoretical potential, it has 
had minimal uptake in real-world practice due to limitations in formal 

of Testing Technique Experiments, 9 Empirical Software Eng’g 7 (2004))); Ina Schieferdecker & 
Andreas Hoffmann, Model-Based Testing, in Encyclopedia of Software Engineering 556, 561 
(Phillip A. Laplante ed., 2011) (observing that the “lack of quality metrics leads most companies 
to simply count the number of defects that emerge when testing occurs,” and that “[f]ew organiza-
tions engage in other advanced testing techniques”). 

122.	 See Charles C. Mann, Why Software Is So Bad, MIT Tech. Rev., July/Aug., 2002, at 33, 36.
123.	 See Bertolino, supra note 121, at 91 (noting that seminal work in software testing theory 

provides “logical arguments to corroborate the quite obvious fact that testing can never be exact” 
and, furthermore, that there is “little guidance about what it is then that we can conclude about the 
tested software after having applied a selected technique” (citing Edsger W. Dijkstra, Notes on 
Structured Programming (2d ed. 1970))).

124.	 See Laura Inozemtseva & Reid Holmes, Coverage Is Not Strongly Correlated with Test Suite 
Effectiveness, 36 Int’l Conf. on Software Eng’g 435 (2014) (finding that code coverage is not a 
good proxy of test suite effectiveness); Hadi Hemmati, How Effective Are Code Coverage Crite-
ria?, 2015 IEEE Int’l Conf. on Software Quality, Reliability & Sec. 151.

125.	 See, e.g., Schieferdecker & Hoffmann, supra note 121, at 559; D. Richard Kuhn et al., Soft-
ware Fault Interactions and Implications for Software Testing, 30 IEEE Transactions on Software 
Eng’g 418 (2004).

126.	 See Schieferdecker & Hoffmann, supra note 121, at 556.
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modeling methods.127 Ultimately, the lack of interpolability and the lack 
of metrics means that software testers typically rely on ad hoc practices, 
based on intuition and trial-and-error, to determine how to search for 
software bugs in the proverbial haystack.128

For now, testing methods for AI models remain imperfect and con-
tinue to face important limitations. The existing metrics have known 
shortcomings that often go unexamined.129 In particular, most standard 
metrics are based on historical data that may not be adequately rep-
resentative of the real world. It is far more challenging and costly to 
develop metrics that validate the novel, generative outputs of an AI 
system.130 Robustness remains a substantial problem, as real-world 
performance is often worse than the testing metrics would predict.131 
Adversarial attacks add an extra factor: AI models can exhibit strange 
behaviors when probed in malicious ways.132 To compensate, entities 
often resort to “online training,” whereby the AI model is updated 
in real time with new data, but this adaptive approach raises difficult 
questions of how to validate ongoing changes to the model.133 More 

127.	 See Bertolino, supra note 121, at 93 (noting that “industrial adoption of model-based test-
ing remains low and signals of the research-anticipated breakthrough are weak”); Schieferdecker 
& Hoffmann, supra note 121, at 556, 568 (stating that model-based testing is “rarely used in indus-
trial-grade processes” and that adoption is “slow”).

128.	 See Dudekula Mohammed Rafi et al., Benefits and Limitations of Automated Software 
Testing: Systematic Literature Review and Practitioner Survey, 7 Int’l Workshop on Automation 
of Software Test 36 (2012) (finding that automated software tools are unlikely to fully replace 
manual testing).

129.	 See Nathalie Japkowicz, Why Question Machine Learning Evaluation Methods?, AAAI 
Workshop on Learning from Imbalanced Datasets (2006).

130.	 This issue is called the test oracle problem. See Zhang et al., supra note 117, at 8 (“Currently, 
the identification of test oracles remains challenging, because many desired properties are difficult 
to formally specify. Even for a concrete domain specific problem, the oracle identification is still 
time-consuming and labour-intensive, because domain-specific knowledge is often required.”).

131.	 See Shibani Santurkar, Machine Learning Beyond Accuracy: A Features Perspective On 
Model Generalization (Sept. 2021) (Ph.D. dissertation, MIT), https://dspace.mit.edu/bitstream/
handle/1721.1/139920/Santurkar-shibani-PhD-EECS-2021-thesis.pdf (explaining that benchmark 
performance turns out to be remarkably brittle in real-world performance, a problem illuminated 
by adversarial examples); Evan Elwell, Nat’l Acads. of Scis., Eng’g & Med., Testing, Evaluat-
ing, and Assessing Artificial Intelligence-Enabled Systems Under Operational Conditions 
for the Department of the Air Force: Proceedings of a Workshop—in Brief 1, 7 (2023) (noting 
that often “performance of the deployed system in the operational domain was much worse than 
predicted during the test phase”).

132.	 See Apostal Vassilev et al., NIST, Adversarial Machine Learning: A Taxonomy and 
Terminology of Attacks and Mitigations 54 (2024) (“Unfortunately, it is not possible to simulta-
neously maximize the performance of the AI system with respect to these attributes. For instance, 
AI systems optimized for accuracy alone tend to underperform in terms of adversarial robustness 
and fairness. Conversely, an AI system optimized for adversarial robustness may exhibit lower 
accuracy and deteriorated fairness outcomes.”); Andrew D. Selbst, Negligence and AI’s Human 
Users, 100 B.U. L. Rev. 1315, 1351 (2020) (discussing examples).

133.	 See, e.g., FDA, Proposed Regulatory Framework for Modifications to Artificial Intel-
ligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) (2021).



330	 DEPAUL LAW REVIEW	 [Vol. 73:301

broadly, these quantitative metrics may fail to detect problems of apo-
phenia, where the AI modeler attempts to represent an illusory pat-
tern.134 Additionally, many commentators have articulated overarching 
concerns that AI testing may not capture qualitative values that cannot 
be easily quantified.135

In short, AI testing is not yet a mature science and much more work is 
needed to develop improved metrics. Nonetheless, if the point of com-
parison is software testing, then the differential factor is that AI testing 
offers more potential for objective evidence regarding the degree of 
care exercised by the AI modeler.136

III.  Bad AI Outcomes

The second factor that is relevant to the application of professional 
malpractice is whether there are serious harms that are statistically 
unavoidable because of the lack of scientific precision or control. While 
some AI modeler errors may be obvious or common knowledge, plenty 
of others are likely to be unintuitive and surprising.137 The key takeaway 
here is that harmful outcomes are an expected feature even of compe-
tent AI modeling work.

Harmful outcomes can be mapped along two major axes. One axis dis-
tinguishes malintent versus accidental harm. Many AI systems exhibit 
unintended behaviors that could result in injury. By contrast, some AI 
systems may be released with knowledge or intent to cause some legal 
harm. An extension of such cases involves foreseeable misuse by end 
users, which could be attributed back to the AI vendor in the form of 

134.	 See Ifeoma Ajunwa, Automated Video Interviewing as the New Phrenology, 36 Berkeley 
Tech. L.J. 1173, 1187 (2021) (analogizing the use of AI to predict emotions or character based on 
facial features to the fake science of phrenology); Lehr & Ohm, supra note 18, at 674–75 (explain-
ing that “the decisionmaker must translate the predictive goal to a specified outcome variable,” 
and that it is too easy to “lose sight of the intrinsic limit of targeting policy only on what we can 
measure”).

135.	 See Selbst, supra note 132, at 1338 (“[W]here the entire purpose of an AI system is to 
predict the unobservable, there may be no way to know how far off the approximation is.”); danah 
boyd & Kate Crawford, Critical Questions for Big Data, 15 Info. Comm. & Soc’y 662, 667 (2012); 
Kaminski, supra note 2, at 1397–98; see also Cary Coglianese, The Limits of Performance-Based 
Regulation, 50 U. Mich. J.L. Reform 525, 562 (2017) (“If the performance required is unrelated to 
the desired outcomes, or if it is too broadly defined so that firms can comply in ways that will have 
no impact on the desired outcome, then these standards will fail. In addition, problems that per-
formance standards seek to address may still persist if other factors, unaffected by the regulation, 
contribute to the problem or if the regulation fails to address the root causes of the problem.”).

136.	 See Notice of Artificial Intelligence Safety Institute Consortium, 88 Fed. Reg. 75276 (Nov. 2, 
2023) (noting that the consortium will be responsible for, inter alia, developing new benchmarks, 
testing environments, and red-teaming methods).

137.	 See Selbst, supra note 132, at 1342–46; Mark A. Lemley & Bryan Casey, Remedies for 
Robots, 86 U. Chi. L. Rev. 1311, 1313 (2019); Ryan Calo, Is the Law Ready for Driverless Cars?, 
Commc’n ACM, May 2018, at 34, 35.
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either duty of care or constructive knowledge. The second axis distin-
guishes between harms caused by incorrectness or falsity and harms 
caused by perpetuation of bona fide patterns. At one end, harm arises 
because the AI system’s “objective function” is misaligned with the AI 
user’s true goals. At the opposite end, harm is alleged not because of 
incorrect modeling or use, but because the AI system accurately reflects 
or accelerates existing patterns of societal harm. Some quick caveats: 
this taxonomy is not intended to delineate rigid categories of harm, but 
instead to facilitate more precise diagnoses of different etiologies of 
AI harm. In fact, any given AI system might trigger multiple notions of 
harm at once. Moreover, this taxonomy focuses only on outputs of AI 
systems, rather than on harms arising purely at the input stages. 

Table  1

Incorrectness Perpetuation

Accident Self-driving collisions Recommendation algorithms

Intent Deepfake porn Discriminatory profiling

Foreseeable 
Misuse

Adversarial attacks Plagiarism

The computer science literature has focused most heavily on the 
upper-left quadrant, where the AI modeler intends no harm, and harms 
that do occur are attributable to failures of accuracy or alignment.138 For 
example, when an autonomous vehicle crashes, it is typically because 
there is a failure in object detection, path planning, or avoidance of other 
road users’ errors.139 In most conventional cases, the automaker has not 
programmed its vehicle with deliberate intent to cause collision.140 Like-
wise, if a facial recognition algorithm identifies the wrong individual, or 
fails to identify individuals of certain ethnicities, the harm is likely due 
to inadvertent inaccuracy rather than purposeful misdirection. 

Incorrectness is endemic to AI methodologies. Because the AI model 
is, at best, an approximation of the real world, it is inevitable that 

138.	 See Dario Amodei et al., Concrete Problems in AI Safety (July 25, 2016) (preprint), https://
arxiv.org/pdf/1606.06565.pdf [https://perma.cc/9GNL-BDL7].

139.	 See Matthew Wansley, The End of Accidents, 55 U.C. Davis L. Rev. 269, 281 (2021) (explain-
ing that autonomous vehicle software includes mapping, behavior prediction, and motion planning 
functions).

140.	 But see Samuel Judson et al., ‘Put the Car on the Stand’: SMT-based Oracles for Investi-
gating Decisions, 2024 ACM Symposium on Comput. Sci. & L. (forthcoming 2024), https://arxiv.
org/pdf/2305.05731.pdf [https://perma.cc/C5SP-K6NR] (offering a formal method of evaluating 
an automated decision maker’s “intent,” based on its functional behavior, to distinguish between 
“normal,” “impatient,” and “pathological” vehicles).
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mismatches will arise.141 Many of those failures are attributable to 
avoidable implementation errors, but at least some are due to initializa-
tion choices that—as explained in the prior section—have no robust 
justification other than past practice and guesswork. Moreover, an AI 
model is a snapshot, so it can become outdated if there is change over 
time, such as a natural language model that is unaware of recent news 
events or semantic drifts,142 or change in context, such as a medical AI 
system trained in a high-resource hospital setting and transferred to a 
low-resource setting.143 

The latent risk of AI incorrectness can convert to intentional harm 
when there is intent to design or use an AI system in a false manner. 
Such misuse might result in charges of fraud or misrepresentation, as 
when the AI modeler knowingly overstates the capabilities of the AI 
model.144 So-called “hallucinations” of large language models might 
belong in this category as well.145 More insidious are cases such as apps 
for deepfake porn where the design of the AI system is intended to 
create content that is deceptive. Used maliciously, “deepfake” text, 
images, and videos can cause reputational harm to individual persons.146 
At scale, AI-generated fake content can promote distrust in journalism, 
social institutions, and truth itself.147 These threats are not new, but AI 
tools are likely to make the impact much greater.148

141.	 Inioluwa Deborah Raji et al., The Fallacy of AI Functionality, 2022 ACM Conf. on Fair-
ness Accountability & Transparency 959, 962 (describing four ways that AI systems can fail to 
function: impossible tasks, engineering failures, post-deployment failures, and communication fail-
ures); Strandburg, supra note 91, at 1861 (explaining the “trade-off between using an outcome vari-
able for which ‘bigger’ data is available and using a better proxy for the true criteria of interest”).

142.	 See, e.g., What is ChatGPT?, OpenAI, https://help.openai.com/en/articles/6783457-what-is-
chatgpt [https://perma.cc/SKB8-2SCF] (noting that ChatGPT “has limited knowledge of world 
and events after 2021”).

143.	 See W. Nicholson Price II, Medical AI and Contextual Bias, 33 Harv. J.L. & Tech. 65, 68 
(2019).

144.	 See Dave Michaels & Rebecca Elliott, SEC, DOJ Probe Tesla Over Statements About 
Autopilot Functionality, Wall St. J. (Oct. 27, 2022, 3:23 PM), https://www.wsj.com/articles/
sec-doj-probe-tesla-over-statements-about-autopilot-functionality-11666898610.

145.	 See Eugene Volokh, Large Libel Models? Liability for AI Output, 3 J. Free Speech L. 489, 
499 (2023).

146.	 See Bobby Chesney & Danielle Citron, Deep Fakes: A Looming Challenge for Privacy, 
Democracy, and National Security, 107 Calif. L. Rev. 1753, 1774 (2019) (“[D]eep-fake technology 
can be used to harm victims along other dimensions due to their utility for reputational sabotage. 
Across every field of competition—workplace, romance, sports, marketplace, and politics—people 
will have the capacity to deal significant blows to the prospects of their rivals.”).

147.	 See Paul Ohm, Ayelet Gordon-Tapiero & Ashwin Ramaswami, Fact and Friction: Mandat-
ing Friction to Fight False News, 57 U.C. Davis L. Rev. 171 (2023).

148.	 Cf. Mary Anne Franks, Unwilling Avatars: Idealism and Discrimination in Cyberspace, 20 
Colum. J. Gender & L. 224, 255–56 (2011) (setting forth four distinctive features of cyberspace 
that exacerbate its harms: anonymity, amplification, permanence, and virtual captivity).
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It is also useful to consider cases where harm is caused primarily by 
third-party uses, but the risk of harm is foreseeable enough that a duty 
of care can be attributed to the AI modeler.149 The canonical case to fit 
this pattern would be an adversarial attack that exploits a hidden weak-
ness in the AI model in order to generate incorrect behavior.150 As with 
conventional cyber attacks, however, there will likely be substantial dif-
ficulties in proving that a particular exploit was both foreseeable and 
remediable prior to the attack. 

An entirely different set of concerns involves those where incorrect-
ness is not the root cause of injury. Instead, the identified harm is one 
already extant in society, and is reflected and amplified by the AI sys-
tem. For example, recommendation systems are used to provide person-
alized nudges that steer individuals toward their prior preferences. As 
numerous scholars have brooded, too much of a good thing can lead to 
undesirable outcomes.151 Credit scoring offers another helpful illustra-
tion: even assuming arguendo that there are no errors in the predictions 
of creditworthiness, a more fundamental set of objections is that such 
scores reinforce existing social inequities in undesirable ways. Replicat-
ing and streamlining existing patterns of social behavior can accelerate 
unintended negative effects at scale.152

When the historical data is known to be problematic, the use of 
AI methods to replicate that existing practice could constitute intent 
to discriminate. For example, an employer might use a hiring system 
that improperly favors men over women.153 Arguably, bad intent could 
extend to the AI modeler who makes training choices that cause the 
AI model to align with one gender rather than with the actual job cre-
dentials.154 In a similar vein, developers of automated policing systems 
have been criticized for bringing products to market that are biased 
against underserved communities. Here, too, the critique sounds not 
just in inaccuracy,155 but also with a heavy suggestion that the bias is—if 
not intentional—willfully blind.156 

149.	 See In re Sept. 11 Litig., 280 F. Supp. 2d. 279, 296, 313 (S.D.N.Y. 2003).
150.	 See generally Vassilev et al., supra note 132.
151.	 See Cass Sunstein, Republic.com 3 (2001); Joseph Turow, The Daily You (2011).
152.	 See Lemley & Casey, supra note 137, at 1339 (observing “widespread concerns” that AI 

systems could “create negative feedback loops that are hard to break”); Kolt, supra note 1 (manu-
script at 46–49) (worrying about systemic risks that cause the “gradual erosion of social and politi-
cal institutions and values”).

153.	 See Pauline T. Kim & Matthew T. Bodie, Artificial Intelligence and the Challenges of Work-
place Discrimination and Privacy, 35 ABA J. Labor & Employment L. 289, 294 (2021).

154.	 See Pauline T. Kim, Manipulating Opportunity, 106 Va. L. Rev. 867 (2020).
155.	 See Ferguson, supra note 108, at 514 (“If the crime data collected from particular areas 

becomes the only data in the system, then police data systems will mirror police patrols, not neces-
sarily actual crime rates.”).

156.	 Id. at 516 (“This is not to say that predictive policing is intentionally racially discriminatory, 
but only that, like traditional policing, it suffers from implicit and explicit racial biases, and tracks 
the structural problems inherent in policing.”).
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The final box extends notions of AI harm to scenarios where third-
party misuse of the AI model causes harm by hewing too closely to the 
modeled pattern. A leading example is the use of generative AI systems 
to create plagiarized content. Several lawsuits have alleged that large 
language models reproduce texts or images that are strikingly similar to 
copyrighted content used as training data on an unlicensed basis. More-
over, even when the system is not overtly copying other authors’ con-
tent, the use of such systems may breach obligations to produce original 
work in a broad range of contexts such as classroom assignments, jour-
nalism, and book publishing. A different set of examples involves third-
party uses that are individually correct but that generate bad systemic 
interactions. For example, algorithmic financial trading has been known 
to generate market distortions such as flash crashes.157

In sum, AI experts expect that their work will produce a broad 
range of harmful effects. Some of these outcomes may be avoidable—
especially those that fall within intentional harms—but many others 
may not be. An important area of further inquiry will be to distinguish 
the types of AI harms that are unforeseeable from those that are rea-
sonably foreseeable—or perhaps even obvious or commonly known.158

IV.  Essential Services

Thus far, I have argued that the case for treating AI modelers as a 
profession is a closer one than it is for software developers, albeit one 
that still leans in favor for now. Much of the work involved in training 
neural networks is either menial or guided by well-established math-
ematical principles. Nevertheless, an important component of the work 
involves subjective judgments that are guided by customary practices 
derived from trial-and-error, rather than an objective understanding of 
why those choices work well. Moreover, the risks of harm from AI sys-
tems are quite significant.

The third factor further complicates that assessment: do AI modelers 
perform an essential societal service even when their customary prac-
tices cause harm? Leading voices within the AI community—including 
top luminaries of the field—have cautioned that AI deployment should 
be slowed down, because the dangers posed by modern AI methods 
could pose an existential threat to human society.159 Other prominent 

157.	 See Gina-Gail S. Fletcher, Deterring Algorithmic Manipulation, 74 Vand. L. Rev. 259, 
262–63 (2021).

158.	 See Selbst, supra note 132, at 1342 (“Much of the existing research points to foreseeability 
as the greatest challenge that AI poses for tort law.”).

159.	 See Statement on AI Risk, Ctr. for AI Safety, https://www.safe.ai/statement-on-ai-
risk#open-letter [https://perma.cc/N856-E3J6] (The one-sentence statement reads: “Mitigating the 
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voices have criticized the cost-benefit tradeoff, citing environmental 
costs, labor disruptions, and data privacy harms.160 Polls suggest public 
support for AI is weakening.161 To be sure, this view is not unanimous, 
but it raises the question whether an occupation should be trusted with 
self-governance, when many of its most prominent leaders believe that 
self-governance cannot work.162 

Another salient feature of the AI modeler community is that its 
membership remains small and exclusive, and it has not yet exploded 
in size the way the software developer community has.163 In part, the 
deep learning revolution is still young, and barriers to entry have been 
high—only a handful of entities in the world have had the compute 
power to build state-of-the-art neural networks.164 Some commentary 
has argued that new techniques are rapidly reducing barriers to entry,165 
but it remains to be seen how those predictions will bear out. For now, 
the community remains exclusive. Smallness cuts both ways. On the one 
hand, it is easier to draw boundaries around the occupation and deter-
mine who is in or out. Consensus on best practices may be easier to 
build. On the other hand, it casts doubt on the urgency and criticality 
of the work, because it suggests there is not yet a broad societal depen-
dency on AI services.

Unlike medical or legal services—or even software services—whose 
absence causes acute hardships, deep learning AI models are only 

risk of extinction from AI should be a global priority alongside other societal-scale risks such as 
pandemics and nuclear war.”); see also Pause Giant AI Experiments: An Open Letter, Future of 
Life Inst. (Mar. 22, 2023), https://futureoflife.org/open-letter/pause-giant-ai-experiments/ [https://
perma.cc/W69V-RLJJ] (citing risks of disinformation, worker displacement, and “loss of control of 
our civilization” as reasons to pause research on state-of-the-art AI systems).

160.	 See Bender et al., supra note 106; Timnit Gebru & Margaret Mitchell, We Warned Google 
that People Might Believe AI Was Sentient. Now It’s Happening., Wash. Post (June 17, 2022), https://
www.washingtonpost.com/opinions/2022/06/17/google-ai-ethics-sentient-lemoine-warning/.

161.	 See Alec Tyson & Emma Kikuchi, Growing Public Concern About the Role of Artificial 
Intelligence in Daily Life, Pew Rsch. Ctr. (Aug. 28, 2023), https://www.pewresearch.org/short-
reads/2023/08/28/growing-public-concern-about-the-role-of-artificial-intelligence-in-daily-life/ 
[https://perma.cc/YN29-QVCB] (finding fifty-two percent of Americans are more concerned than 
excited about the increased use of AI, and only ten percent are more excited than concerned).

162.	 This scenario resembles the liar’s paradox. See Douglas R. Hofstadter, Gödel, Escher, 
Bach 17 (1979) (“Epimenides was a Cretan who made one immortal statement: ‘All Cretans are 
liars.’”).

163.	 See David Kelnar, MMC Ventures, The State of AI 2019: Divergence 87 (2019), https://
mmc.vc/resources/fund-brochures/The-MMC-State-of-AI-2019-Report.pdf [https://perma.cc/ 
237P-S9LP] (estimating, in 2019, the global pool of AI talent to be “as few as 22,000 highly-trained 
AI specialists” or “up to 300,000 AI researchers and practitioners within broader technical teams”).

164.	 See Gerrit De Vynck, How Big Tech Is Co-opting the Rising Stars of Artificial Intelligence, 
Wash. Post, (Sept. 30, 2023, 8:00AM), https://www.washingtonpost.com/technology/2023/09/30/
anthropic-amazon-artificial-intelligence/.

165.	 See Dylan Patel & Afzal Ahmad, Google “We Have No Moat, And Neither Does OpenAI”, 
SemiAnalysis (May 4, 2023), https://www.semianalysis.com/p/google-we-have-no-moat-and-nei-
ther [https://perma.cc/YEY8-YEVA].
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beginning to be ushered into common use. Many AI-based services are 
deployed as an enhancement of existing services, and their presence 
is otherwise unremarkable to ordinary citizens. When AI systems do 
attract attention, communal bans have become a familiar response. 

For the time being, perhaps the most apt analogy is to air travel 
services during the early twentieth century, when aviation was not 
yet considered “common” or “essential.”166 Even though the potential 
advantages of air travel were obvious, the immaturity of avionics sci-
ence led lawmakers to label air travel an ultrahazardous activity and to 
impose strict liability.167 Likewise, until AI-based services prove to be 
indispensable, it is not obvious that AI experts should be given special 
deference as a matter of law. 

New technologies have a habit of becoming old hat, however, and AI 
is no exception. Whenever AI becomes an ordinary fixture of everyday 
society, the basic inquiry will reemerge as to whether ordinary reason-
able care is a viable standard or whether some alternative framework is 
needed. Central to that inquiry will be the two other factors discussed 
above: the degree of scientific uncertainty in the field, and the extent of 
bad outcomes ascribed to practitioners in good standing.

Conclusion

In prior work, I explained that courts have used the “professional” 
label to impose an alternate liability framework when courts have hesi-
tated to trust jury sentiments, yet needed some form of judicial over-
sight for unfit practitioners. The professional malpractice doctrine gives 
deference to legitimate exercises of professional judgment, on the basis 
that the professional’s work cannot be reduced to an exact science. I 
argued further that software developers should be treated as profes-
sionals—like medical care or legal practice, much of software develop-
ment remains an inexact art.

Here, I have extended those earlier writings by explaining how mod-
ern AI work differs in key aspects from software development work, 
even though both ply code and data. In particular, AI modelers are 
engaged in automating the mathematical representation of a naturally 
occurring data pattern. The aim is to avoid injecting undue extrinsic 
interference into that learning process. That bottom-up synthesis stands 

166.	 See Restatement of Torts § 520 cmt. g (Am. L. Inst. 1938).
167.	 See Henry Grady Gatlin, Jr., Note, Tort Liability in Aircraft Accidents, 4 Vand. L. Rev. 857, 

861, 874 (1951) (“Aviation in its infancy became branded a highly questionable and dangerous 
enterprise.  .  .  . With the increased technological development of aviation and an establishment 
of aviation as a safe mode of travel, the early doctrine of strict liability against the air carrier is 
disappearing.”).
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in sharp contrast with the top-down engineering that occurs in main-
stream software development, where the end goal is to specify, design, 
and execute an arbitrarily devised human construct. 

Thus, the case for AI professionals is a closer question. It is evident that 
AI work involves less code complexity and that there are fewer human 
decision points that need to be examined to assess fault. Yet, those deci-
sions that do need to be made remain undertheorized, and are guided more 
by folk wisdom than by scientific understanding. As the knowledge of the 
field advances, it may become easier to apply an ordinary reasonable care 
framework to the work that AI modelers perform. But there is still a strong 
case today that deep learning theory has not matured enough to support an 
objectively reasonable standard of care.

Meanwhile, a more immediate policy question for courts is whether 
they believe deep learning AI practitioners offer services to society that 
are vital—or that are merely profitable. Ordinarily, the entity that cre-
ates a risk of harm is expected to bear responsibility for the injuries 
caused by its operations. If AI-based services are not essential to soci-
etal health (or are even detrimental to it), then it makes little sense to 
carve an exception to the default rule. After all, early courts understood 
well the transformative promise of air travel, yet still chose to require 
aircraft manufacturers and operators to bear full liability for all injuries 
caused by crashes.

Whether AI modelers are professionals or nonprofessionals will affect 
in turn the scope of ethical duties they must assume. On the one hand, 
if AI modelers are nonprofessionals, then AI ethics principles lack an 
effective enforcement mechanism unless they are converted into legal 
duties. In such a scenario, AI ethics principles would need to be trans-
lated into legal rules in order to have real purchase. On the other hand, 
if AI modelers are treated as professionals, then the law will enforce the 
customary practices among the AI community. It would increase greatly 
the impact of articulating consensus standards of professional ethics as 
an instrument to guide AI practitioners in their conduct and to guide 
courts in their liability decisions.
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