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Abstract

Adversarial examples, inputs designed to induce worst-case
behavior in machine learning models, have been extensively
studied over the past decade. Yet, our understanding of this
phenomenon stems from a rather fragmented pool of knowl-
edge; at present, there are a handful of attacks, each with
disparate assumptions in threat models and incomparable def-
initions of optimality. In this paper, we propose a systematic
approach to characterize worst-case (i.e., optimal) adversaries.
We first introduce an extensible decomposition of attacks
in adversarial machine learning by atomizing attack compo-
nents into surfaces and travelers. With our decomposition,
we enumerate over components to create 576 attacks (568
of which were previously unexplored). Next, we propose the
Pareto Ensemble Attack (PERA): a theoretical attack that
upper-bounds attack performance. With our new attacks, we
measure performance relative to the PEA on: both robust and
non-robust models, seven datasets, and three extended £,-
based threat models incorporating compute costs, formalizing
the Space of Adversarial Strategies. From our evaluation we
find that attack performance to be highly contextual: the do-
main, model robustness, and threat model can have a profound
influence on attack efficacy. Our investigation suggests that
future studies measuring the security of machine learning
should: (1) be contextualized to the domain & threat models,
and (2) go beyond the handful of known attacks used today.

1 Introduction

It is well-known that machine learning models are vulnerable
to adversarial examples—inputs designed to induce worst-
case behavior. Seminal papers have introduced a suite of
varying techniques for producing adversarial examples, each
with their own unique threat models, strengths, and weak-
nesses [7,22,33,35,39]. Every generation of research yields
the next evolution of attacks, designed to overcome prior de-
fenses. It is unclear whether this evolution will ever converge,
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yet it is apparent that there are some attacks that have “sur-
vived” modern defenses. Specifically, the accepted baselines
for evaluating defenses are converging to a small set of largely
fixed attacks and threat models.

This observation on the fixed nature of commonly used
attacks speaks to a broader and more fundamental problem in
the way we evaluate the trustworthiness of machine learning
systems: our understanding of adversaries has been derived
from a union of works with disjoint assumptions and underly-
ing threat models. As a consequence, it is challenging to draw
any universal truths from a rather fragmented (and broadly in-
comparable) pool of knowledge. Subsequently, comparisons
between attacks and attempts at characterizing the worst-case
adversary have been through the lens of a specific threat model
and defined with respect to a small handful of attacks, making
it difficult to discern the true strength of claims on what is
good (or even best) and when.

In this paper, we introduce a systematic approach to de-
termine worst-case adversaries. We first introduce 568 new
attacks by anatomizing seminal attacks into interchangeable
components, therein enabling a meaningful evaluation of
model robustness against an expansive attack space. With this
decomposition, we formalize an extensible Space of Adver-
sarial Strategies: the set of attacks considered by an adversary
under a specific threat model and domain. We then empiri-
cally approximate the Pareto Ensemble Attack (PEA): a
theoretical attack which upper-bounds attack performance by
returning the optimal set of adversarial examples for a given
threat model and dataset. We then use the PEA to explore a
fundamental question: Does an optimal attack exist?

Our analysis begins by decomposing seminal attacks in ad-
versarial machine learning. We observe that all known attacks
are broadly built from two components: (1) a surface, and
(2) a traveler. Surfaces encode the traversable attack space
(often as the gradient of a cost function), while travelers are
“vehicles” that navigate a surface to meet adversarial goals.
Attack components live within surfaces and travelers, which
characterize attack behavior, such as building crude surfaces
that favor meeting adversarial goals without regard to budget,



or vice-versa. Our decomposition allows us to (a) generalize
attacks in an extensible manner, and (b) naturally construct
new (and known) attacks by permuting attack components.

From our decomposition, we permute attack components
to build a previously unexplored attack space, yielding 568
new attacks. We then measure attack performance through the
PEA, which is built by forming the lower envelope of measured
model accuracy across attacks over the budget consumed. In
other words, the PEA bounds the performance an individual at-
tack could achieve. We rank attacks with respect to the PEA by
measuring the difference in areas of their performance curves.
Our approach not only gives us a comparable definition of
optimality, but also a mechanism by which we can measure
the merit of individual attacks.

Our evaluation across seven datasets, three threat models,
and robust (through adversarial training) versus non-robust
models found relative attack performance to be highly contex-
tual. Specifically, (1) the domain and threat model can have
a profound effect (especially if the trained model is robust),
and (2) even the advantage of certain component choices is
sensitive to these factors, as well as other paired components.
‘We make the following contributions:

* We propose a decomposition of attacks in adversarial ma-
chine learning by atomizing attack components into two
main layers, surfaces and travelers. Our decomposition
readily enables extensions of new components.

* We characterize the attack space by permuting compo-
nents of known attacks, yielding 568 new attacks.

* We introduce a systematic approach to compare the ef-
ficacy of attacks. We first build the Pareto Ensemble
Attack from the performance curves of attacks and rank
their relative performance.

* We instantiate and enumerate over a hypothesis space
to identify which strategies perform better than others
under a given threat model.

2 Background
2.1 Threat Models

Adversaries have historically had one of two goals: mini-
mizing model accuracy [32,35,39, 53] or maximizing model
loss [3,22,33]. The risks associated with minimizing model ac-
curacy are often exemplified by vehicles misclassifying traffic
signs [19], intrusion detection systems permitting malicious
entities entry [59], medical misdiagnoses [20], among other
failures. Maximizing model loss serves two purposes: (1) it is
a surrogate for minimizing model accuracy (as, the inverse is
performed to maximize model accuracy during model train-
ing), and (2) it aids in transferability attacks [18,37,38,55].
In this work, we focus on minimizing model accuracy and
defer the explorations of transferability to future work.

In the context of minimizing model accuracy, translating
the risks above into an optimization objective to be solved by
an adversary is commonly written as:

agmin ],
€
subjectto  f(x+¢€) #9, M
x+€€ By(x).

where we are given a victim model f, a sample x, label J, a
self-imposed budget ¢ measured under some £,-norm. Con-
ceptually, the adversary searches within some self-imposed
norm-ball B of radius ¢, centered at x for a “small” change €
that, when applied to x, yields the desired goal.

With adversarial goals and capabilities defined, the final
component of threat models pertains to access. Specifically,
subsequent works have shown that adversaries need not have
direct access to the victim model f to produce adversarial ex-
amples; models trained on similar data have similar decision
manifolds, and thus, adversarial examples can “transfer” from
one model to another [37,38,55]. When access is restricted
(and thus, transferability is exploited), such threat models are
called “grey-" or “black-box”, while full access to the victim
model is called a “white-box” threat model. In this paper,
we focus on white-box threat models as they represent the
worst-case adversaries (in that they can produce adversarial
examples with the tightest £,-norm constraints). However,
our decomposition and performance measurements can be
directly applied to grey- and black-box threat models as well,
which we further discuss in section 6.

On /,-norms. As shown in Equation 1, the “cost” for craft-
ing adversarial examples has been predominantly measured
through £,-norms. Informally, adversarial examples induce a
misclassification between human and machine; £,-bounded
examples attempt to meet this definition. This concept arose
from attacks on images, in that attacks would produce adver-
sarial examples whose perturbations were invisible to humans,
yet influential on models. £,-norms are becoming an increas-
ingly controversial topic, in that it has been debated if they
have meaningful interpretations in non-visual domains [48],
or even visual domains [10], or if they are useful at all [47].
Regardless, attacks have broadly converged on optimizing
under ¢y, ¢», or 4., and thus we focus our study on those.

2.2 Attack Algorithms

Here we briefly discuss the attack algorithms used in our
decomposition (specifically, the unique components they in-
troduce). We study these algorithms specifically due to their
prevalence across works in adversarial machine learning [42].

Basic Iterative Method (BIM). BIM [29] is an itera-
tive extension of Fast Gradient Sign Method (FGSM) [22].
BIM is an /.-based attack that perturbs based on the gradi-
ent of a cost function, typically Cross-Entropy (CE). It often



uses Stochastic Gradient Descent (SGD) as its optimizer
for finding adversarial examples.

Projected Gradient Descent (PGD). PGD [33] is
widely regarded as the state-of-the-art in crafting algorithms.
PGD is identical to BIM, with the exception of a Random-
Restart preprocessing step, wherein inputs are initially ran-
domly perturbed within an /.. ball.

Jacobian-based Saliency Map Approach
(IsMa). The JsSMA [39] is an £y-based attack that is unique
in its definition of a saliency map; a heuristic applied to
the model Jacobian to determine the most salient feature to
perturb in a given iteration. Unlike most other attacks, it does
not rely on a cost function, but rather uses the model Jacobian
directly. In our decomposition, we denote the JSMA saliency
map as SM;y. The JSMA uses SGD as its optimizer.

DeepFool (DF). DF [35] is an ¢;-based attack which models
crafting adversarial examples as a projection onto the decision
boundary. We find that we can model this projection as a
saliency map, much like the JSMA, which we denote as SMp.
Similar to the JSMA, DF relies on the model Jacobian, does not
have a cost function, and uses SGD.

Carlini-Wagner Attack (CW). CW [7] is an ¢;-based
attack that is unique across several dimensions: (1) it uses a
custom loss, which we label Carlini-Wagner Loss (CWL),
(2) introduces the Change of Variables technique, which en-
sures that, during crafting, the intermediate adversarial exam-
ples always comply with a set of box constraints, and (3) uses
Adam as its optimizer for finding adversarial examples.

AutoAttack (AA). AA [15] is an ensemble attack con-
sisting of three different white-box attacks (as well as
one black-box attack). This ensemble is unique in that
all of its attacks are parameter free (except for the num-
ber of iterations to run attacks for). Its white-box attacks
are: (1) Auto Projected Gradient Descent - Cross
Entropy (APGD-CE), which is PGD with the Momentum Best
Start optimizer, (2) Auto Projected Gradient Descent
- Difference of Logits Ratio (APGD-DLR), which is
APGD-CE but with Difference of Logits Ratio Loss,
and (3) Fast Adaptive Boundary Attack [13] (FAB),
which is similar to DeepFool, but it’s optimizer Backward
Stochastic Gradient Descent applies a biased gradient
step and a backward step to stay close to the original point.

3 Decomposing AML

From analysis of popular attacks (discussed in subsection 2.2),
we find that attacks broadly perform two main functions to
produce adversarial examples, they: (1) manipulate x, such as
with Random-Restart, or (2) manipulate gradients, such as by
using a saliency map. We use this observation as a starting
point for our decomposition; components that do the former
are part of the traveler and ones that do the latter are within

Attack Algorithms
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Table 1: Attack Component Decomposition.
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Figure 1: Flow of composition between the surface and trav-
eler to construct an attack. Required components have bold
outlines while optional components have dotted outlines.

the surface. Through this generalization, an attack can be seen
as, simply, a choice of values for each of these components
rather than a unique, incomparable entity.

Importantly, these components are broadly mutually com-
patible with one another, in that one could omit, add, or swap
them when building an attack. We exploit this property when
permuting components, therein yielding a vast space of at-
tacks, some of which are known, but most of which are not.
This modular view of attacks not only allows us to build this
vast space, but also makes the framework highly extensible by
nature; new attacks can add on new choices for components
or even new components entirely. A summary of the evaluated
components in this paper and the compositions of well-known
attacks are shown in Table 1.

For the remainder of this section, we describe: (1) the com-
ponents that constitute a surface and their options, (2) the
layers that define a traveler and associated configurations, and
(3) a characterization of the attack space. An overview of the
composition of the surface and traveler, and their interaction
is shown in Figure 1. All symbols defined in this section (and
in the remainder of the paper) can be found in appendix D.




3.1 Surfaces

Surfaces, which encode the traversable attack space, are built
from: (1) the model Jacobian, (2) the gradient of a loss func-
tion, (3) the application of a saliency map, and (4) an £,,-norm.
context of crafting adversarial examples.

Model Jacobian. At the heart of every surface (and thus,
every attack) is the model Jacobian. The Jacobian J of a
model with respect to a sample x encodes the influence each
feature i in x has over each class. While most attack papers
encode perturbations as a function of the gradient of a loss
function, such computations necessarily involve computing
a portion (at least) of the model Jacobian (whether attacks
require the full model Jacobian is a matter of design choice).
This is evident via application of the chain rule:

OL(f(x),9) _ OL(f(x),5) Of(x) _ OL(f(x),9) J
ox of (x) ox af (x)

Importantly, computing a Jacobian is computationally expen-
sive, on the order of O(d - ¢), where d describes the dimen-
sionality of x (i.e., the number of features) and ¢ describes the
number of classes. Thus, attacks that require the full model Ja-
cobian (e.g., JSMA and DF) must pay a (sometimes substantial)
cost in compute resources to produce adversarial examples—
a fact largely overlooked. This component is perhaps the
one with the greatest potential for extensibility. For instance,
black-box attacks or those wanting to overcome obfuscated
gradients [2] could opt to use Backwards Pass Differentiable
Approximation (BPDA) [2] to obtain a jacobian rather than a
traditional backwards pass.

Loss Functions. Perhaps the most popular design choice in
attack algorithms is to perturb features based on the gradient
of a loss function. The intuition is straightforward: we rely
on surrogate measurements to learn parameters that have
maximal accuracy during training, and thus, we can exploit
these same measures to produce samples that induce minimal
accuracy. This is commonly Cross-Entropy (CE) loss:

C
Z —¥i-log(yi)
l

where c is the number of classes, y; is the label as a one-hot
encoded vector, and y; is the output of the softmax function.
Aside from CE loss, other attack philosophies instead opt
for custom loss functions that explicitly encode adversarial
objectives, such as Carlini-Wagner Loss (CWL):

|\6H§+c~max(fy(x) —max{f;(x) :i #$},0)

where p is the target £,-norm to optimize under and c is a hy-
perparameter that controls the trade-off between the distortion
introduced and misclassification.

Similar to the latter half of CWL, the Difference of
Logits Ratio Loss (DLR) takes the difference between the
true logit and the largest non-true-class logit. However, this

loss function also divides by the difference between the largest
logit (fz, (x)) and the third largest logit (fr,(x)), as follows:

f5(x) — max{fi(x) : i £ 9}
(%) = fy (%)

Finally, some attacks do not have an explicit loss function
(such as JSMA or DF) and instead rely on information at other
layers in the surface to produce adversarial examples (e.g.,
through saliency maps). To support this generalization, we
implement a pseudo-identity loss function, Identity Loss
(IL1), which simply returns the yth model logit component.

Saliency Maps. Saliency maps, in the context of adversar-
ial machine learning, were first introduced by the JSMA [39].
These maps encode heuristics to best achieve adversarial goals
by coalescing model Jacobian information into a gradient. We
slightly tweak the original definition of the saliency map used
in the JSMA to be: (1) independent of perturbation direction,
and (2) agnostic of a target class. Though functionally differ-
ent, we call this saliency map the Jacobian Saliency Map
(SMy), as the underlying heuristic is identical in spirit to the
one introduced by the JSMA:

0 if sgn(Jyi) = sgn( ) Jj.)
A J#9
SMy; (9,J) = .
LRy Js.il- Y Jji  otherwise
J#9

where y is the label for a sample x, J is the Jacobian of a
model with respect to x, and i is the ith feature of x. Moreover,
we observe that attack formulations with complex heuristics,
such as DeepFool, can be cast as-is into a saliency map as
well. We define the DeepFool Saliency Map (SMp) as:

150~ A
15— Jill
where x is a sample, y is the label for x, g is calculated from the
£, norm where g = %], f is the model, and k is the “closest”
class to the true label § calculated by:
k — argmin f3(x) = fi(x)]

iy ij'_Ji”q

SMp (x,9,9) (Js—J) " - sgn(Js — Ji)

Notably, unlike the SMj, this formulation is identical to that
presented in the original DeepFool attack.

Finally, attacks can also opt not to use any form of saliency
map, and thus, we define an identity saliency map, Identity
Saliency Map (SMr), which simply returns the passed-in
gradient-like information as-is.

£,-norms. To meet threat model constraints, nearly all attacks
manipulate gradient information via an £,-norm. We remark
that this can be conceptualized as a layer in a surface. Thus, we
provide abstractions for three popular £,,-based threat models,

defined as:
£ (V) = sgn(V) sen(Vi)
0 otherwise

or v
o)~ v (Vi) = if i = argmax (|V])
2TV




where V is some gradient-like information. While any £,-
norm could be used in this layer, we also see natural exten-
sions to other measurements of distance, such as LPIPS [61]
that could also fit into this component. This layer could also
extend to allow for adaptive threat models, such what is used
in the DDN attack [44].

3.2 Travelers

Travelers serve as the “vehicles” that navigate over a surface
to meet adversarial goals. Travelers are built from a series of
subroutines that modify x: (1) Random-Restart, (2) Change
of Variables, and (3) an optimization algorithm. Here, we
detail these components and describe how they aid in finding
effective adversarial examples.

Random-Restart. Many optimization problems, such as
k-means [24] and hill-climbing [45], have been shown to
benefit from the meta-heuristic, Random-Restart. Due to non-
linear activation functions, deep neural networks are non-
convex, and thus, subject optimization algorithms to non-ideal
phenomena. Specifically, Random-Restart attempts to prevent
optimization algorithms from becoming stranded in local min-
ima by applying a random perturbation to an input. At this
time, PGD is unique in its use of Random-Restart, defined as:

x=x+ U(—¢,¢€)
where U is a uniform distribution, bounded by a hyperparame-
ter € (which represents the total perturbation budget). Notably,

while Random-Restart could be applied at each perturbation
iteration, PGD uses it once on initialization.

Change of Variables. As a new way of enforcing box
constraints, [7] introduced Change of Variables for the
Carlini-Wagner Attack. As noted in [7], common prac-
tice for images is to first scale features to be within [0, 1].
When a perturbation is applied, these constraints must be en-
forced, as any feature beyond 1.0, for example, would map to
a pixel value greater than 255, which exceeds the valid pixel
range for 8 bit images. Most attacks enforce this constraint by
simply clipping perturbations. However, this can negatively
affect certain gradient descent approaches [7]. Thus, Change
of Variables was proposed to alleviate deficient behaviors.
In the context of CW, a variable w is defined and solved for
(instead of the perturbation directly). Its relationship to x is:

x+0= %(tanh(w)—i— 1)

where 0 is the resultant perturbation applied to an input x.
As [7] notes, this ensures that 0 < x+ & < 1, meaning that
examples will automatically fall within the valid input range.

Optimizers. Nearly all attacks are described as “taking steps
in the direction” (of a cost function). Practically speak-
ing, these attacks refer to Stochastic Gradient Descent
(SGD). As demonstrated by the BIM, as little as three itera-
tions (with o = 0.01) could be sufficient to drop state-of-
the-art ImageNet models to ~2 % accuracy [29]. However,

Carlini-Wagner Attack was perhaps the first attack to ex-
plicitly use Adam to craft adversarial examples. Adam, unlike
SGD, adapts learning rates for every parameter, and thus, often
finds adversarial examples quicker than SGD [7].

In addition to SGD and Adam, we explore two additional op-
timizers, both of which come from AA. The first is Momentum
Best Start (MBS), which accounts for momentum in its up-
date step as follows:

X1 =X+ 0§+ (1 —m) - (xi —xi—1)

where 1 controls the strength of the momentum (set to 0.75
in [15]). In addition to this momentum step, it also features
an adaptive learning rate that updates based on conditions
that capture progression of inputs toward adversarial goals,
described in [15].

Finally, our framework also supports Backward
Stochastic Gradient Descent  (BWSGD), which is
the optimizer used for FAB in [13]. This optimizer operates
similarly to SGD and MBS but aims to update with the distance
to the original sample in mind by updating as follows:

Xipt =X+ (1—=m) - 08 +1 - (Xprg + 0 - Sorg)

where 1 controls the influence of the original point on the
update step. In addition, if x; is misclassified, this optimizer
also performs a backward step by moving x; closer to x,, via:
Xit1 = P-xix1+ (1 —PB) - Xore- In our experiments, we set 1|
to be 0 since d,,, (a) does not translate to attacks that do not
use a decision hyperplane projection and (b) as can be seen
in [13], the use of backward step had a far greater influence
on the attack performance than setting a non-zero value of 1.

4 Extending Performance Measurements

With the attack space made enumerable by our decomposition,
we now focus on necessary extensions of budget interpre-
tations, the introduction of Pareto Ensemble Attack, and
our approach for measuring optimality.

4.1 Beyond the /,-norm

Since the inception of modern adversarial machine learning,
the cost of producing an adversarial example has predomi-
nantly been measured through ¢,-norms. Yet, it seems im-
practical to assume realistic adversaries will be unbounded
by compute (as attacks that require days to produce adversar-
ial examples offer little utility in any real-time environment).
This observation is further exacerbated when attacks use ex-
pensive line search strategies [53], embed hyperparameter op-
timization as part of the crafting process [7], or rely on model
Jacobian information [35,39]. While such constructions can
lead to incredibly effective attacks, adversaries who are lim-
ited by compute resources may find such attacks outright
cost-prohibitive. To this end, we are motivated to extend stan-
dard definitions of budget beyond exclusive measurements of



¢,-norms. Specifically, we incorporate and measure the time
it takes to produce adversarial examples, therein extending
our definition of budget as:

B(p,8,x) = £,(x) +6-T(x) 2)

where p is the desired norm, 6 parameterizes the importance
of computational cost versus the introduced distortion, x is the
adversarial example, and T returns the compute time neces-
sary to produce x. We note that the precise value of 6 depends
on the threat model; adversaries who are compute-constrained
may prioritize time twice as much as distortion (i.e., 6 = 2),
while adversaries with strong compute may not consider time
at all (i.e., 6 = 0, as is done in standard evaluations). In sec-
tion 5, we find that some attacks consume prohibitively large
amounts of budget when compute is measured, and thus, cur-
rent threat models (which only measure £, distance) fail to
generalize adversarial capabilities.

4.2 Pareto Ensemble Attack

With a realistic interpretation of budgets, we revisit a fun-
damental question: Does an optimal attack exist? Attacks
measure distortion through different £,,-norms, can require dif-
ferent amounts of compute, and have varying budgets (which
is notably true for robustness evaluations). Thus, answering
this question is non-trivial, especially in the absence of any
meaningfully large attack space.

A single definition that accurately characterizes optimality
across attacks, while incorporating these confounding factors,
is challenging. Yet, we can say some attack A is optimal if,
for a given threat model, A bounds all other attacks for an
adversarial goal (i.e., A must lower-bound all attacks when
minimizing model accuracy across budgets). Of the 576 at-
tacks that we evaluated, no single attack met this definition.
Thus, we conclude that the optimal attack are best character-
ized by an ensemble of attacks.

To this end, we introduce the Pareto Ensemble Attack
(PER), a theoretical attack which, for a given budget and ad-
versarial goal, returns the set of adversarial examples that
best meet the adversarial goal, within the specified budget
(in other words, the Pareto frontier). The PEA is attractive for
our analysis, in that it serves as a meaningful baseline from
which we can compare attack performance to (discussed in
the following section). Moreover, as an ensemble, the PEA
naturally evolves as the evaluated attack space expands. We
formally define the PEA as:

pEA = | J { argmin Ace(f(x4),9) | B(p,0,x4) < b
beRB XAe o

where b is a budget in a list of budgets %, x, is the set of
adversarial examples produced by attack A from a space of
attacks o7, f is a model, ¥ is the set of true labels for x4, B is a
function used to measure budget (i.e., Equation 2), Acc returns
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Figure 2: The Optimal Attack — The PEA lower-bounds all
attacks across the range of budgets. Attacks A| and A3 define
the PEA for different budget ranges, while A, is never part
of the PEA. The area between the PEA and attack curves are
shown with vertical bars.

model accuracy, p is an £,-norm, and 8 controls the sensitivity
to computational resources. Concisely, the PEA returns the set
of adversarial examples whose model accuracy is minimal
and within budget. Moreover, we provide a visualization of
the PEA in Figure 2, where the PEA forms the lower envelope
of model accuracy across budgets. We highlight that if there
was some attack A’ which achieved the lowest accuracy across
all budgets (for some domain), then the PEA = A’. It has been
suggested by some in the community that algorithms such as
PGD might be optimal for some application [5, 33, 62]. Our
formulation of the PEA and measure of optimality allows us
to test this hypothesis.

Measuring Optimality. The PEA yields a baseline from
which we can fairly assess the performance of attacks. As the
PEA meets the definition of optimal (that is, it bounds attack
performance), we can evaluate attack performance relative
to the PEA. Intuitively, attacks that closely track the PEA are
performant, while those that do not are suboptimal. Mathemat-
ically, this can be measured as the area between the curves
of the PEA and some attack A. We note that our definition
of optimality is: (1) relative to the attacks considered (and
not measured against a set of provably worst-case adversarial
examples or certified robustness [5, 43, 57]), and (2) as at-
tacks are ranked by area, prefers attacks that are consistently
performant (i.e., across the budget space). We acknowledge
this measurement favors attacks whose behaviors are stable
(which we argue most popular white-box attacks exhibit);
other modalities may benefit from other cost measures.

For example, in Figure 2, the area between the PEA and at-
tack A, is maximal, minimal for attack A3, and somewhere in
between for attack A;. Thus, we conclude that the worst-case
adversary would use A3 if bound by small budgets, otherwise
A1 (and never A,). This approach to measuring attack per-



formance is desirable in that, (1) attacks that track the PEA
across budgets have minimal area (and thus, constitute a per-
formant attack), and (2) attacks that are exclusively optimal
for specific budgets incur large area, which allows us to dif-
ferentiate attacks that are always performant from those that
are sometimes performant.

5 Evaluation

With our attack decomposition and approach to measure opti-
mality, we ask several questions: (1) Do known attacks per-
form best? (2) What attacks are optimal, if any? (3) Which
components tend to yield performant attacks?

5.1 Setup

We perform our experiments on a Tensor EX-TS2 with two
EPYC 7402 CPUs, 1 TiB of memory, and four Nvidia A100
GPUs. We use PyTorch [40] 1.9.1 for instantiating learning
models and our attack decomposition. Here, we describe the
attacks, threat models, robustness approach (i.e., adversarial
training), and datasets used in our evaluation. We defer attack
adaptations to appendix D.1, and hyperparameters & details
on adversarial training to appendix D.

Attacks. In section 3, we introduce a decomposition of ad-
versarial machine learning by atomizing attacks into modular
components. Our evaluation spans the enumerated 576 attacks.
Of these 576, JSMA, CW, DF, PGD, BIM, APGD-CE, APGD-DLR,
and FAB are labeled explicitly, while other attacks are num-
bered from 0 to 575. The specific component choices of at-
tacks mentioned by number can be found in appendix A. We
note that some known attacks (such as DF and CW) have spe-
cialized variants for £,,-norms, which we do not implement
(as to maintain homogeneous behaviors across attacks of the
same norm). Thus, we still reference these attacks numeri-
cally, since they are not the algorithmically identical.

In our experiments, we focused on untargeted attacks: that
is, the adversarial goal is to minimize accuracy. While our
decomposition is readily amenable to targeted variants, we
defer analysis (and thus evaluation) of targeted attacks for two
reasons: (1) choosing a target class requires domain-specific
justification, and (2) certain classes are harder to attack than
others [39]. These two factors would require a rather nuanced
analysis, while our objectives aim to characterize broad attack
behaviors. Thus, we anticipate that while a targeted analysis
might affect attack performance in an absolute sense, relative
performance to other attacks will likely be indifferent.

Threat Models. As motivated in section 4, we explore the
interplay in attack performance when compute is measured,
as defined by Equation 2. Specifically, we explore 3 £,-based
threat models (i.e., £y, £, and £..) with 20 different values of 0
at 0.1 step sizes, from 0 to 2. These values can be interpreted
as an adversary who, for example, values computational speed

twice as much over minimizing distortion (i.e., 6 = 2). We
note that all attacks are instantiated within our framework, and
thus, any implementation-specific optimizations that acceler-
ate compute speed are leveraged uniformly across attacks.

Robust Models. Adversarial training [22, 33] is one of
the most effective defenses against adversarial examples to
date [5, 14,46]. Given its popularity and compelling results,
we are motivated to investigate the impact of robust mod-
els on relative attack performance. We adversarially train
our models with a PGD-based adversary. We follow the same
approach as shown in [33]: input batches are replaced by ad-
versarial examples (produced by PGD) during training. For
MNIST and CIFAR-10, hyperparameters were used from [33];
other datasets were trained with parameters which maximized
the accuracy over benign inputs and adversarial examples.
Additional hyperparameters can be found in appendix D.

5.1.1 Datasets

We use seven different datasets in our experiments, chosen
for their variation across dimensionality, sample size, and
phenomena. We provide details and basic statistics below.

Phishing. The Phishing [12] dataset is designed for de-
tecting phishing websites. Features were extracted from 5000
phishing websites and 5000 legitimate webpages. It contains
48 features and 10 000 samples. Beyond its phenomenon, we
use the Phishing dataset to investigate the effects of small
dimensionality and training size on attack performance.

NSL-KDD. The NSL-KDD [54] is based on the seminal KDD
Cup ' 99 network intrusion detection dataset. Features are
defined from varying network features from traffic flows emu-
lated in a realistic military network. At 41 features, it contains
125973 samples for training and 22 544 for testing. We use
the NSL-KDD for its small dimensionality, large training size,
and concept drift [21].

UNSW-NB15. The UNSW-NB15 [36] is a network intrusion
detection dataset designed to replace the NSL-KDD. Features
are derived from statistical and packet analysis of real in-
nocuous flows and synthetic attacks. It has 48 features, with
175341 samples for training and 83 332 samples for testing.
The UNSW-NB15 enables us to compare if attacks generalize
to similar phenomenon (such as the NSL-KDD).

MalMem. CIC-MalMem-2022 (MalMem) [8] is a modern mal-
ware detection dataset. 58 features are extracted from mem-
ory dumps of benign applications and three different malware
families (i.e., trojans, spyware, and ransomware). In total, it
contains 58.596 samples, with half belonging to benign appli-
cations and half to malware. MalMenm gives us the opportunity
to understand the effects of small dimensionality in an entirely
different phenomenon from the network datasets.

MNIST. MNIST [30] is a dataset for handwritten digit recogni-
tion. It is a well-established benchmark in adversarial machine
learning applications. With 784 features, 60 000 samples for



training and 10 000 for testing, MNIST has substantially larger
dimensionality than even the largest network datasets. We
use MNIST to corroborate prior results, explore a vastly dif-
ferent phenomenon, and investigate how (relatively) large
dimensionality influences attack performance.

FMNIST. Fashion-MNIST (FMNIST) [58] is a dataset for rec-
ognizing articles of clothing from Zalando articles. Adver-
tised as a drop-in replacement for MNIST, FMNIST was de-
signed to be a harder task and closer representative of modern
computer vision challenges. FMNIST has identical dimension-
ality, training samples, and test samples to MNIST. Thus, we
use FMNIST to understand if changes in phenomena alone are
sufficient to influence attack performance.

CIFAR-10. CIFAR-10 [28] is a dataset for object recogni-
tion. Like MNIST, CIFAR-10 is extensively used in adversarial
machine learning literature. At 3072 features, CIFAR-10 rep-
resents a substantial increase in dimensionality from MNIST.
It has 60000 samples for training and 10000 for testing.
CIFAR-10 allows us to compare against extant works and
explore how domains with extremely large dimensionality
affect attack efficacy.

5.2 Comparison to Known Attacks

As discussed in section 3, we contribute 568 new attacks.
Naturally following, we ask: are any of these attacks useful?
Asked alternatively, do known attacks perform best? We inves-
tigate this question through commonly accepted performance
measurements [6,29,35,39]: the amount of ¢, budget con-
sumed by attacks whose resultant adversarial examples cause
model accuracy to be <1 %. In this traditional performance
setting, we aim to understand if known attacks serve as the
Pareto frontier (which would indicate that our contributed
attacks yield little in terms of adversarial capabilities).

We organize our analysis as follows: (1) we first segment
attacks based on £,-norm and compare them to known attacks
of the same norm (that is, we compare JSMA to ¢, attacks,
CW, DF, & FAB to #», and PGD, BIM, APGD-CE, & APGD-DLR to
{-), and (2) report relative budget consumed (with respect
to known attacks) for attacks whose adversarial examples
caused model accuracy to be <1 %.

5.2.1 Performance on MNIST

For our analysis of attack performance, we craft adversarial
examples for 1000 iterations over ten trials (we note that 1000
iterations was selected for completeness; the vast majority
of attacks converged in less than 100 iterations). Figure 3
shows the median results for two threat models, segmented
by £,-norm. Known attacks (i.e., JSMA, CW, DF FAB, PGD, BIN,
APGD-CE, and APGD-DLR) are highlighted in red, while other
attack curves are dotted blue and slightly opaque to capture
density. We now discuss our results on a per-norm basis.

{y Attacks. Figure 3a shows {y-targeted attack performance
with the JSMA in red. We observe that the JSMA is worse than
most attacks. Attack performance is largely well-clustered
with a few poor performing attacks near the top right portions
of the graph. These attacks used Random-Restart, and thus,
immediately consume most of the available ¢y budget.

l, Attacks. Figure 3b shows ¢,-targeted attacks, with CW as
solid red, DF as dash-dotted red, and FAB as dashed red. Like
{y, attacks are well-concentrated (albeit with slightly more
spread). Notably, DF and FAB (which are ostensibly superim-
posed on one another), demonstrate impressive performance
(the red lines that are nearly vertical)—both drop model accu-
racy with a near-zero increase in budget. CW exhibits moderate
performance over the budget space.

l. Attacks. Figure 3c shows /.-targeted attacks, with PGD
as solid red, BIM as dash-dotted red, APGD-CE as dashed red,
and APGD-DLR as dotted red. Unlike other norms, /.. has clear
separation, broadly attributable to using Change of Variables
(specifically, attacks that used Change of Variables performed
worse than those that did not). Finally, all of the known attacks
exhibit near-identical performance, with APGD-DLR slightly
pulling ahead at budgets > 0.2.

From our norm-based analysis, we highlight that: (1)
Random-Restart is largely inappropriate for {y-targeted at-
tacks (in that benefits do not outweigh the cost), (2) ¢»-
targeted attacks cluster fairly well; no individual attack sub-
stantially outperformed any other, and (3) {.-targeted attacks
were broadly unable to exploit Change of Variables.

5.2.2 Relative Performance to Known Attacks

Recall our central question for this experiment: do known
attacks perform best? To answer this question, we analyze
the minimum budget necessary for attacks to cause model
accuracy to be <1 % (attacks that fail to do so are encoded as
consuming infinite budget). We run attacks for 1000 iterations
over ten trials and report the median results in Table 2. Here,
attacks are ranked by budget and segmented by norm (i.e., 192
attacks per norm). We report the percentage change of each
attack with respect to the known attack that performed best
in that norm (that is, for £y, results are relative to the JSMA,
while for ¢, results are relative to CW, which outperformed
DF, etc.). In the table, we show: (1) the attack that ranked first,
(2) ranks of known attacks, and (3) the lowest ranked attack
that still reduced model accuracy to <1 %. Next, we highlight
some strong trends for each £,-norm.

Of the 34 % of attacks that succeed in the £y space, the
JSMA (ranked 32"%) was at the bottom of the highly perfor-
mant bin (in that its ¢y budget was 0.17)—the JSMA was
held back by its saliency map, SMy; using either SMy (or no
saliency map at all, i.e., SM;) was almost always better. While
CW seemingly rank low (i.e., 69™), we note that ¢, budgets
were broadly similar, as the worst and best performing attacks
were within £50 % of the budget consumed by CW. APGD-DLR,
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Figure 3: MNIST model accuracy for (normalized) £y-, £2-, and /..-based budgets. Known attacks are highlighted in red. Results

show median accuracy across 1000 iterations over 10 trials.

{o Attacks 0> Attacks . Attacks

Rank Attack % Reduction /pBudget Rank Attack % Reduction ¢, Budget Rank Attack % Reduction /., Budget
1. ATKyq -41 % 0.10 1. ATKaeo -50 % 0.12 1. ATKas9 -8 % 0.22
30. JsmA — 0.17 69. CW — 0.24 17. APGD-DLR — 0.24
68. ATKpg6 +352 % 0.77 88. ATKy +45 % 0.35 40. BIM +16 % 0.28
136. DF +00% oo 48. APGD-CE +20 % 0.29
137. FAB +00% oo 49. PGD +20 % 0.29
135. ATK191 +304 % 0.97

Table 2: MNIST Relative Attack Comparisons. Budgets are normalized. Attacks that fail to reduce model accuracy to be <1 % are
labeled as consuming infinite budget. Budget reductions are relative to the best known attack for each £,-norm.

BIM, APGD-CE, and PGD, ranked 17, 40™, 48 and 49 re-
spectively, were marginally outperformed by attacks using
either the SM, saliency map or BWSGD optimizer. As a final
note, we were confounded by the performance of DF and
FAB—uvisually inspecting Figure 3b, both are clearly superior
attacks (the performance curves ostensibly resemble square
waves) and yet, they failed to reduce model accuracy to <1 %.
While these analyses of attack performance has been useful
historically for understanding adversarial examples, we argue
that this “race to 0 % accuracy” fails to capture meaningful
definitions of attack performance (as made evident by the
apparent “failure” of DF and FAB).

From our comparison with known attacks, we highlight
two key takeaways: (1) Measuring the required distortion
to reach some amount of model accuracy is a rather crude
approach to estimating attack performance. We argue using
measurements that factor the entire budget space (such as
the PEA, which we use subsequently) will yield more mean-
ingful interpretations of attack performance. (2) Even when
we define success as <1 % model accuracy, known attacks
do not perform best. In fact, many attacks produced by our
decomposition consistently outperformed known attacks (e.g.,
68 out of the 189 introduced by our approach outperformed
both CW and DF), which demonstrates the novel adversarial
capabilities introduced by our decomposition.
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Figure 4: Median Spearman Rank Correlation Coefficients for
MNIST—Results are segmented by £,-norm. Data points cor-
respond to a specific threat model (i.e., a value for 0). High at-
tack performance generalization is encoded as lighter shades,
while low generalization is encoded with darker shades. Top
row shows within-norm generalization & bottom row shows
cross-norm generalization.

5.3 Optimal Attacks

In Figure 4.2, we introduced an approach for measuring opti-
mality: the area between the performance curves of the PEA
and an attack. Attacks that have a small area closely track the
PEA and thus, are performant attacks, while those that have a



large area perform poorly. In this experiment, we ask: does
attack performance generalize? In other words, is relative
attack performance invariant to dataset or threat model?

We investigate this hypothesis of attack optimality by rank-
ing attacks by area across varying threat models, datasets, and
robust models. Then, we measure the generalization of these
rankings via the Spearman rank correlation coefficient [51],
which informs us how similar the rankings are between two
datasets, threat models, or a robust and non-robust model.

For example, a highly positive correlation across two
datasets would imply that relative attack performance was un-
changed (in other words, changing the dataset had little to no
effect on attack performance), a near-zero correlation would
suggest that relative attack performance changed substantially
(which would suggest attack performance is sensitive to the
dataset), and a negative correlation would indicate attack per-
formance was reversed (i.e., the worst attacks on one dataset
became the best on another). In our experiments, we craft
adversarial examples for 1000 iterations over ten trials' and
report the median Spearman rank correlation coefficients. We
note that 1000 iterations was selected for completeness; the
vast majority of attacks converged in less than 100 iterations.

Optimal Attacks by Threat Model. Here, we analyze the
generalization of attack performance across threat models.
Specifically, we consider £y-, ¢»-, and {.-based threat models
with varying values of 8 (from O to 2). Note that 8 =0 (i.e.,
where compute time is ignored) is the commonly used threat
model. Figure 4 shows the median Spearman rank correla-
tion coefficients for MNIST (other datasets are listed in ap-
pendix C)with results segmented by £,-norm. Each entry cor-
responds to a unique threat model (i.e., a value for 0). High at-
tack performance generalization is encoded as lighter shades,
while low generalization is encoded with darker shades.
From the results, we can readily observe: (1) rankings do
not generalize across £,-norms, especially between £o- and £o.-
targeted attacks (but do generalize relatively well within an £,-
norm), and (2) the influence of compute on rankings appears
to be £,-norm dependent: {y-based threat models that weight
compute (i.e., 8 # 0) do not generalize well to those that do
not, /»-based threat models exhibit a smoother degradation
of generalization, while, surprisingly, ..-based threat models
generalize everywhere (that is, the same attacks that were
found to be performant with 8 = 2 were as performant when
0 = 0). Within a dataset, we observe that the threat model
significantly affects attack performance across £,-norms, and
to some extent, within an £,-norm, with /., as the exception.

Optimal Attacks by Dataset. In this experiment, we in-
stead now measure the generalization of attack performance
across datasets. Specifically, for a given threat model, we
measure the generalization of attack performance rankings

'In another experiment, we validated that rankings are highly correlated
across trials. Combined with our use of nonparametric statistics (i.e., median
Spearman correlation), this ensures our metrics converge in few trials.
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across seven datasets. The evaluated datasets span varying
forms of phenomena, from classifying network traffic to cate-
gorizing clothing items, and thus, we investigate if performant
attacks are task-agnostic. Correlations for threat models with
0 < 6 < 2 can be found in appendix C.

The results in Figure 5 disclose that: (1) CIFAR-10 does not
generalize at all, regardless of £,,-norm, (2) skewing budgets
towards favoring compute gradually degrades generalization—
attack rankings become increasingly dissimilar as we move
from ignoring compute time (8 = 0) to heavily favoring it
(0 = 2), and (3) ¢p-based threat models readily generalize
across datasets and is largely invariant to considering com-
pute, ¢, attacks, regardless of 6, moderately generalize, and /.,
attacks closely track ¢, attacks with a particular subtly: attacks
performant on MNIST generalized almost perfectly to FMNIST
(i.e., image-based generalization), while attacks performant
on NSL-KDD almost perfectly generalized to UNSW-NB15 (i.e.,
network-intrusion-detection-based generalization). Lastly, we
observe that attacks performant on Phishing and MalMem
moderately generalized better to non-image data (particularly
to the UNSW-NB15). Considering compute degrades these ob-
servations slightly. Within a threat model, we observe that,
based on £,-norm, the dataset can have drastic degrees of in-
fluence on attack performance, in that it can have little effect
at all (e.g., £p), have an effect everywhere (i.e., {2), or have
an effect specific to the phenomena (i.e., ). We attribute the
unique behavior of CIFAR-10 to its dimensionality; the next
largest dataset, FMNIST and MNIST, are ~74 % smaller.

Optimal Attacks Against Robust Models. In this final ex-
periment, we now measure the generalization of attack perfor-
mance between robust and non-robust models. Specifically,
for a given threat model and dataset, we compute pairwise
correlations between attack performance rankings on robust
and non-robust models. Adversarially trained models have
been shown to be an effective defense against adversarial
examples [33], and thus, we investigate if such procedures
have a visible effect on attack performance.

Median Spearman rank correlation coefficients for all
datasets and threat models are shown in Figure 6. We note
several trends across norm, threat models, and datasets: (1)
generally speaking, attack rankings in ¢,-based threat mod-
els were substantially affected by robust models, especially
for MalMem, MNIST, and FMNIST, (2) considering compute can
have a significant impact on generalization, mainly dependant
on the norm; increasing the importance of compute almost
universally aided generalization in /5, but hurt generaliza-
tion in ¢y (especially for image data, albeit CIFAR-10 is less
sensitive to varying 0 at the scales we investigated), and (3)
we observed that top-performing attacks can be especially af-
fected: on MNIST for an /; + 0 - time threat model, for instance,
the top 10 attacks on the non-robust model had a median rank
of 445™ (out of 576) on the robust model. These profound
differences in relative attack effectiveness demonstrate that
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Figure 5: Median Spearman Rank Correlation Coefficients
for 6 = 0 and 0 = 2 threat models—Results are segmented by
£,-norm. Entries correspond to a dataset pair. High attack per-
formance generalization is encoded as lighter shades, while
low generalization is encoded with darker shades.

the unique properties of robust models necessitate changes to
attack components (discussed further in subsection 5.4.3).

Takeaways on Attack Optimality. In this set of experiments,
we analyzed attack optimality through the lens of varying
threat models, unique data phenomena, and robust models.
From our analyses, we find that the optimality of any given
attack is highly dependant on the given context. We support
this conclusion through the following remarks on the gen-
eralization of relative attack performance: (1) across threat
models, performance generalizes well within an £,-norm, but
not across—considering compute exacerbates this observa-
tion, (2) across datasets, performance generalization is broadly
sensitive to £,-norm (with CIFAR-10 generalizing poorly ev-
erywhere), and (3) between robust and non-robust models,
attack rankings are largely a function of data phenomena
(e.g., image-based phenomena exhibit poor generalization,
regardless of the threat model).

5.4 When and Why Attacks Perform Well

With our metric for attack performance established and evalu-
ated, we proceed by asking, why do certain attacks perform
well? Here, we explore the general trends of attack compo-
nents and their influence on performance through a series of
hypothesis tests. We build a space of possible hypotheses of
relative attack performance (over all attack components), per-
form hypothesis testing against this space, and identify those
with the highest significance and effect size. We begin with
significant hypotheses of non-robust models and conclude
with hypotheses most affected by model robustness.
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Figure 6: Median Spearman Rank Correlation Coefficients
for robust and non-robust models—Results are segmented by
£,-norm. Data points correspond to a specific threat model
(i.e., a value for 0). Lighter shades show high generalization
of attack performance ranking across that dataset and threat
model, while darker shades are low generalization.

5.4.1 The Space of Hypotheses

We define a hypothesis as a comparison between two com-
ponent values (which we label as H; and H>), such as “us-
ing Cross—Entropy is better than Carlini-Wagner
Loss.” Now, we want to understand the conditions that
make a hypothesis true. These conditions can be using a
specific dataset, under a certain threat model, or based on
other component values. Building off our previous exam-
ple, this hypothesis paired with a condition could be “us-
ing Cross—Entropy is better than Carlini-Wagner
Loss, when the dataset is Phishing.” When we test a
hypothesis, we look at the statistical significance of the hy-
pothesis under all conditions to determine when a hypothesis
is true. Enumerating across all possible hypothesis and con-
dition pairs yielded 1690 candidate hypotheses. It should be
noted that the component values in hypotheses are always in
the same component, as comparing usefulness across compo-
nents would be nonsensical (e.g., “Using Cross-Entropy is
better than using Random-Restart” is not meaningful).

5.4.2 Testing

We test the 1690 hypotheses with the Wilcoxon Signed-Rank
Test, a non-parametric pairwise test, equivalent to a pairwise
Mann-Whitney U Test, to determine its significance. We also
report the effect size of the test, defined as the percentage of
pairwise median areas (over ten trials, with trial counts fac-
tored into computed p-values) from component H; that were
smaller than component H; (recall, a smaller area corresponds



Component H; Component H, Condition p-value Effect Size

1. SGD is better than BWSGD when Dataset = MNIST <2.2x 107308 99 %

2. Adam is better than BWSGD when Dataset = MNIST <2.2x 107308 99 %
84. Identity Loss is better than Difference of Logits Ratio Loss when Dataset = NSL-KDD <2.2x 107308 93 %
85. SGD is better than BWSGD when SaliencyMap = Jacobian Saliency Map <2.2x 10739 92 %

393. DeepFool Saliency Map is better than Jacobian Saliency Map when Dataset = FMNIST <5%x 107 66 %
394. Cross-Entropy is better than Carlini-Wagner Loss when  Change of Variables = Disabled <5x107° 61 %
1689. Ly is better than 123 when Threat Model =/¢,+ 1.0 9.8x 107! 50 %
1690. Identity Saliency Map is better than DeepFool Saliency Map when Threat Model = /o, +0.4 1.0 49 %

Table 3: The evaluated hypotheses for non-robust models. The top 344 hypotheses have a p-value that exhibits 64 bit underflow.
When sorted by effect size, the top 50 % of hypotheses have an effect size greater than 80 %.

to a better attack, as it more closely tracks the PEA). Note that
the p-values for many hypotheses underflowed 64 bit floating
point precision, implying that the results of the test are highly
significant across all datasets and threat models. A subset of
of hypotheses are represented in Table 3.

We find many highly-significant correlations in the re-
sults across the space of hypotheses. Specifically, we set
a significance threshold proportional to the number of hy-
pothesis tests we evaluated to minimize false positives’:
p< % = 5x 107, We found that 1536 (90 %) of hypothe-
ses were below this threshold. We highlight the most promi-
nent conclusions among these 1536 hypothesis: (1) Change of
Variables was found to be disadvantageous—86 hypotheses
involving Change of Variables met our threshold; all 86 were
against its use, (2) Adam was superior to all other optimizers—
503 hypotheses comparing Adam to other optimizers met our
threshold, of which 50 % of them ruled in favor of Adam (with
SGD at 33 %, and MBS at 16 %), (3) Random-Restart was found
to be preferable across 61 % of hypotheses (51 of 83), (4) {e-
targeted attacks, at 79 % (163 of 205) were superior to both
{o- and ¢,-targeted (which were only favorable 16 % (34 of
205) and 4 % (8 of 205) of the time, respectively), (5) using
no saliency map (i.e., SM;) was better 70 % (131 of 187) of
the time, (6) perhaps surprisingly, using no loss function was
more advantageous 47 % (224 of 472) of the time, over CE
and CWL, which were useful 34 % (161 of 472) and 18 % (87
of 472) of the time, respectively, and (7) contrary to common
practice, using /..-based attacks were sometimes superior to
£>-based attacks for ¢y-based threat models (21 of 42); this re-
sult would suggest that perturbing based on the magnitude of
gradients, while effective, can be excessive (when measuring
cost under ¢,) and unnecessary to meet adversarial goals.

We highlight some key takeaways from this experiment: (1)
These hypothesis tests provide statistical evidence of some
common practices within the community (using Random-
Restart and the superiority of Adam), while also demonstrating
some perhaps surprising conclusions, such as the detriment
of using Cross-Entropy over no loss function at all. (2) We

20ne would expect evaluating 1000 hypotheses at p < 0.01 significance
would result in 10 false positives, for example.
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emphasize the utility of hypothesis testing for threat modeling
as well: the tests provide a schema for performing worst-case
benchmarks in their respective domain. For example, when
benchmarking MNIST against /p-based adversaries, attacks
that use the Jacobian Saliency Map are likely to outper-
form attacks that use DeepFool Saliency Map.

5.4.3 The Effect of Model Robustness

As shown in Figure 6, robust models can have a significant im-
pact on attack rankings. Here, we investigate why such broad
phenomena occur. Specifically, we investigate how attack pa-
rameter choices change performance on a robust versus a
non-robust model. We repeat our hypothesis testing on robust
models only and compare the hypotheses most affected (that
is, the largest changes in effect size) by robust models.

Table 4 provides a listing of the top pairs of hypotheses,
sorted by the change in effect size from a non-robust to robust
model (labeled as delta). Many of the top hypotheses when
migrating from non-robust to robust models largely concern
CIFAR-10 and MalMem, which were broadly the most unique
phenomena across our experiments. Specifically, we see large
changes in losses and saliency maps for the attacks that were
effective at attacking robust models. The emphasis on CE
could be in part attributed to the fact that both the model is
trained on this loss as well as used by PGD, the attack used to
generate adversarial examples within minibatches. This obser-
vation suggests that alignment between between attack losses
and losses used for adversarial training is highly effective at
attacking robust models.

Beyond the influence of loss on CIFAR-10 and MalMem,
most of our tested hypotheses remained relatively unaffected
by model robustness: of the 1690 hypotheses tested, only
334 had an effect size change of 10 % or greater between
robust and non-robust models. This implies that, while many
of the factors that make attacks effective do not vary between
normally- and adversarially-trained models, the subset that
does vary accounts for a vast difference in attack effectiveness.



Component H; Component Hy Condition p-value Effect Size Delta

1. Cross-Entropy is better than Difference of Logits Ratio Loss when Dataset = CIFAR-10 <22x1073% 96 % 45 %

2. Identity Saliency Map is better than DeepFool Saliency Map when Dataset = CIFAR-10 <2.2x 107308 74 % 44 %

3. Difference of Logits Ratio Loss is better than Carlini-Wagner Loss when Dataset = NSL-KDD <Ix107° 57 % 44 %

4. Cross-Entropy is better than Identity Loss when Dataset = MalMem <22x107308 69 % 43 %

5. Random-Restart: Disabled is better than Random-Restart: Enabled when Optimizer = BWSGD <22x1073% 92 % 41 %

6. Adam is better than SGD when Dataset = MalMem <1x107° 46 % 39 %

7. Random-Restart: Disabled is better than Random-Restart: Enabled when Dataset = MalMem <22x1073% 90 % 35%

8. Identity Loss is better than Difference of Logits Ratio Loss when Dataset = NSL-KDD <Ix107° 57 % 35%

9. Random-Restart: Disabled is better than Random-Restart: Enabled when Dataset = UNSW-NB15 <1x107° 65 % 33%

10. Carlini-Wagner Loss is better than Difference of Logits Ratio Loss when Dataset = CIFAR-10 <2.2x 107308 81% 32%
11. Cross-Entropy is better than Carlini-Wagner Loss when SaliencyMap = Identity Saliency Map <2.2Xx 107308 83 % 31%
12. Cross-Entropy is better than Difference of Logits Ratio Loss when Dataset = NSL-KDD 6.4x107 55 % 31%
13. Cross-Entropy is better than Identity Loss when SaliencyMap = Identity Saliency Map <Ix107° 57 % 30 %
14. Identity Saliency Map is better than DeepFool Saliency Map when Loss = Cross-Entropy <22x1073% 79 % 30%
15. Identity Saliency Map is better than Jacobian Saliency Map when Dataset = CIFAR-10 <2.2x 107308 79 % 29 %

Table 4: The top 15 hypotheses for robust models. Delta represents the difference in effect size when changing to a robust model.

6 Discussion

Domain Constraints. While adversarial machine learning
research has been cast predominantly through images, the
threats imposed to machine-learning-based detection systems
via malware or network attacks are increasingly concerning.
However, producing legitimate adversarial examples in the
form of binaries or packet captures is a nuanced process;
there are constraints, dictated by the domain, that adversarial
examples must comply with [1,9,17,26,34,34,48,56,59].

In addition, adversarial goals in such domains are not pre-
cisely captured by Equation 1; attacks are commonly targeted
towards a specific class (such as, classifying a variety of mali-
cious network flows as benign traffic [31,48,49,59] or mal-
ware families as legitimate software [1, 16,17,23,27]). More-
over, recent work has shown the unique challenges of produc-
ing adversarial examples in the problem space [16,17,41].
Such works identified a set of properties input perturbations
must adhere to in order to be considered demonstrative of
malicious inputs in the respective problem space (e.g., packet
captures or binaries), such as semantic preservation, problem-
space transformations, robustness to preprocessing, among
other important attributes.

These necessary factors provide a more realistic perspective
on the robustness of machine learning systems in security-
critical domains. While we did not explore these factors for
scope, we acknowledge their importance, and encourage sub-
sequent investigations to incorporate these factors (such as
ensuring perturbations are constraint-compliant at the £, layer
of surfaces or adapting loss functions to ensure adversarial
examples are misclassified as a specific target class).

The Threat Landscape. White-box adversaries are impor-
tant because they represent worst-case failure modes of ma-
chine learning systems. However, black-box adversaries have
demonstrated remarkable efficacy within their limited amount
of available knowledge (i.e., practical threats) [4,25,38,52].
While this initial application of our framework focused on
white-box adversaries for their prevalence in research, we
note that there natural extensions to support black-box ad-
versaries, such as using Backward Pass Differentiable
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Approximation [2] in place of the model Jacobian, or
the Jacobian-based dataset augmentation [37] as a saliency
map for training substitute models, among other techniques.
As there are a variety of techniques for efficiently mount-
ing black-box attacks (historically through query minimiza-
tion) [11,38,50,52], we see value in instantiating our frame-
work with black-box components to understand the trade-offs
between such techniques.

Related Work. A natural limitation of AutoAttack that the
ensemble is fixed; while it was designed to be as diverse
as possible to common failures of defenses, it may fail on
defenses where an expert-designed adaptive attack would suc-
ceed. Thus, the Adaptive AutoAttack (a%) extension was
introduced to combine the efficacy of AutoAttack, while dy-
namically adapting to new defenses [60]. A3 frames building
adaptive attacks as a search problem, wherein a surrogate
model is built and a “backbone” attack (e.g., FGSM, PGD, CW,
among others) is greedily selected, paired with a loss function
and subroutines (such as Random-Restart). 13 builds upon
AutoAttack in that it enables searching through the attack
design space to find the most effective adaptive attack. Our
work is complementary in that we provide a broad, modu-
lar attack space, while A* provides an approach for building
adaptive attacks dynamically.

7 Conclusion

In this paper, we introduced the space of adversarial strate-
gies. We first presented an extensible decomposition of cur-
rent attacks into their core components. We subsequently
constructed 568 previously unexplored attacks by permut-
ing these components. Through this vast attack space, we
measured attack optimality via the PEA: a theoretical attack
that upper-bounds attack performance. With the PEA, we stud-
ied how attack rankings change across datasets, threat mod-
els, and robust vs non-robust models. From these rankings,
we described the space of hypotheses, wherein we evaluated
how component choices conditionally impact attack efficacy.
Our investigation revealed that attack performance is highly
contextual—certain components can help (or hurt) attack per-
formance when a specific £,-norm, compute budget, domain,



and even phenomena is considered. The space of adversarial
strategies is rich with highly competitive attacks; meaningful
evaluations need to consider the myriad of contextual factors
that yield performant adversaries.
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A Attack Encoding

Here we provide Table 5 for translating attack numbers to component values.

ATKy Opt.  CoV RR [ SM Loss ATKy Opt. CoV RR [ SM  Loss ATKy Opt. CoV RR l SM Loss
0 SGD False False £ SM1 IL 96 SGD False True £y SMp CWL 192 Adam True False £ SMy CE
1 SGD False False 123 SMr IL 97 SGD False True 123 SMp CWL 193 Adam True False 123 SMy CE
2 SGD False False loo SM1 IL 98 SGD False True loo SMp CWL 194 Adam True False loo SMy CE
JSMA SGD False  False — fg SMy L 99 SGD False  True Lo SMp DLR 195 Adam  True False  {y SMp CE
4 56D False ~ False 0 sMy  IL 100 SGD False  True 2 SMr DLR 196 Adam  True False  (, SMp  CE
5 5GD False False loo sM;y i 101 SGD False True loo sMp DLR 197 Adam True False loo SMp cE
6 SGD False False £ SMp IL 102 SGD False True £y SMy DLR 198 Adam True False £y SM1 CWL
DF SGD False False 123 SMp L 103 SGD False True 123 SMy DLR cw Adam True False 123 SMr CWL
8 SGD False False loo SMp IL 104 SGD False True loo SMy DLR 200 Adam True False loo SM1 CWL
9 SGD False  False — {g SMy CE 105 SGD False  True lo SMp DLR 201 Adam  True False  {y SMy CHL
10 SGD False False SMp CE 106 SGD False True 0 SMp DLR 202 Adam True False 23 SMy CWL
BIM 5GD False False loo Sy cE 107 SGD False True loo SMp DLR 203 Adam True False loo SMy CHL
12 SGD False False £ SMy CE 108 SGD True True £y SMp IL 204 Adam True False £y SMp CWL
13 SGD False False 123 SMy CE 109 SGD True True 123 SMr IL 205 Adam True False 123 SMp CWL
14 SGD False False loo SMy CE 110 SGD True True loo SMp IL 206 Adam True False loo SMp CWL
15 SGD False  False — fg SMp CE 111 SGD True True lo SMy L 207 Adam  True False  {p SMy DLR
16 SGD False False SMp CE 112 SGD True True 1) SMy L 208 Adam True False 0 SMrp DLR
17 5GD False False loo SMp cE 113 SGD True True loo SMy L 209 Adam True False loo Sy DLR
18 SGD Fulse False £ SMp CWL 114 SGD True True £y SMp IL 210 Adam True False £ SMy DLR
19 SGD False False 123 SMr CWL 115 SGD True True 123 SMp IL 211 Adam True False 123 SMy DLR
20 SGD False False loo SM1 CWL 116 SGD True True loo SMp IL 212 Adam True False loo SMy DLR
21 SGD False False to SMy CWL 117 SGD True True ly SMp CE 213 Adam True False to SMp DLR
22 56D False  False 0 SMy  CWL 118 SGD True True 0 SMy CE 214 Adam  True False  (, SMp  DIR
23 5GD False False loo SMy CHL 119 SGD True True loo SMr CE 215 Adam True False loo SMp DLR
24 SGD Fulse Fulse £ SMp CWL 120 SGD True True £y SMy CE 216 Adam Fulse True £y SM1 IL
25 SGD False False 123 SMp CWL 121 SGD True True 123 SMy CE 217 Adam False True 123 SMr IL
26 SGD False False loo SMp CWL 122 SGD True True loo SMy CE 218 Adam False True loo SM1 IL
27 SGD False False o SMr DLR 123 SGD True True ly SMp CE 219 Adam False True to SMy IL
28 SGD False False SMp DLR 124 SGD True True 0 SMp CE 220 Adam False True 123 SMy IL
29 5GD False  False (o SMp DLR 125 SGD True True loo SMp CE 221 Adam  False True loo SMy L
30 SGD False False £ SMy DLR 126 SGD True True £y SMp CWL 222 Adam Fulse True £y SMp IL
31 SGD False False 123 SMy DLR 127 SGD True True 123 SMp CWL 223 Adam False True 123 SMp IL
32 SGD False False loo SMy DLR 128 SGD True True loo SMp CWL 224 Adam False True loo SMp IL
33 SGD False False o SMp DLR 129 SGD True True ly SMy CWL 225 Adam False True o SM1 CE
34 56D False ~ False 0 SMp  DIR 130 SGD True True 0 SMy  CWL 226 Adam  False  True 0 SM;  CE
35 5GD False  False (o Sip DLR 131 SGD True True leo SMy CWL 227 Adam  False True loo SMp CE
36 SGD True False (g SMp L 132 SGD True True Ly SMp CWL 228 Adam  False  True Ly sMy  CE
37 SGD True False 123 SMr IL 133 SGD True True 123 SMp CWL 229 Adam False True 123 SMy CE
38 SGD True False loo SMr IL 134 SGD True True loo SMp CWL 230 Adam False True loo SMy CE
39 SGD True False o SMy IL 135 SGD True True ly SMp DLR 231 Adam False True o SMp CE
40 SGD True False SMy L 136 SGD True True 0 SMp DLR 232 Adam  False  True 0 SMp CE
41 5GD True False  lo SMy L 137 SGD True True leo SMp DLR 233 Adam  False True loo Sip CE
42 SGD True False (g SMp L 138 SGD True True Ly SMy  DIR 234 Adam  False  True ly SMp CWL
43 SGD True False 123 SMp IL 139 SGD True True 123 SMy DLR 235 Adam False True 123 SM1 CWL
44 SGD True False loo SMp IL 140 SGD True True loo SMy DLR 236 Adam False True loo SM1 CWL
45 SGD True False o SMp CE 141 SGD True True ly SMp DLR 237 Adam False True N SMy CWL
46 SGD True False SMp CE 142 SGD True True 0 SMp DLR 238 Adam  False  True 0 SMy CHL
47 5GD True False  lo SMp CE 143 SGD True True leo SMp DLR 239 Adam  False True loo SMy CWL
48 SGD True False (g sMy  CE 144 Adam  False  False  { SMp L 240 Adam  False  True Ly SMp CWL
49 SGD True False 123 SMy CE 145 Adam False False 123 SMr IL 241 Adam False True 123 SMp CWL
50 SGD True False loo SMy CE 146 Adam False False loo SMp IL 242 Adam False True Lo SMp CWL
51 SGD True False o SMp CE 147 Adam False False ly SMy IL 243 Adam False True £y SM1 DLR
52 SGD True False  {, SMp CE 148 Adam False False  {y SMy 1L 244 Adam False True 123 SMp DLR
53 SGD True False loo SMp CE 149 Adam False False oo SMy L 245 Adam  False True los SMp DLR
54 SGD True False (g SMp CHL 150 Adam  False  False  {g SMp L 246 Adam  False  True Ly SMy  DLR
55 SGD True False 123 SMr CWL 151 Adam False False 123 SMp IL 247 Adam False True 123 SMy DLR
56 SGD True False loo SM1 CWL 152 Adam False False loo SMp IL 248 Adam False True loo SMy DLR
57 SGD True False o SMy CWL 153 Adam False False o SMp CE 249 Adam False True ly SMp DLR
58 SGD True False  {, SMy CWL 154 Adam False False  {y SMp CE 250 Adam False True 123 SMp DLR
59 5GD True False loo SMy CHL 155 Adam False False oo SMr CE 251 Adam  False True los SMp DLR
60 56D True False (g SMp CWL 156 Adam  False  False  { sMy  CE 252 Adam  True True l SM; L
61 SGD True False 123 SMp CWL 157 Adam False False 123 SMy CE 253 Adam True True 123 SM1 IL
62 SGD True False loo SMp CWL 158 Adam False False loo SMy CE 254 Adam True True loo SM1 IL
63 SGD True False o SMr DLR 159 Adam False False o SMp CE 255 Adam True True to SMy IL
64 SGD True False 123 SM1 DLR 160 Adam False False 123 SMp CE 256 Adam True True 123 SMy IL
65 56D True False (e  SM;  DIR 161 Adam  False  False  fw  SMp  CE 257 Adam  True True lo  SMy IL
66 56D True False (o sMy  DIR 162 Adam  False  False  { SMr CWL 258 Adam  True True l SMp L
67 SGD True False 123 SMy DLR 163 Adam False False 123 SMp CWL 259 Adam True True 123 SMp IL
68 SGD True False loo SMy DLR 164 Adam False False loo SMp CWL 260 Adam True True loo SMp L
69 SGD True False o SMp DLR 165 Adam False False lo SMy CWL 261 Adam True True o SM1 CE
70 SGD True False 123 SMp DLR 166 Adam False False 123 SMy CWL 262 Adam True True 123 SMr CE
71 56D True False (o SMp DLR 167 Adam  False  False  fo SMy CHL 263 Adam  True True loo SMp CE
72 56D False  True {H SMz L 168 Adam  False  False  { SMp CWL 264 Adam  True True l SMy  CE
73 SGD False True 123 SM1 IL 169 Adam False False 123 SMp CWL 265 Adam True True 123 SMy CE
74 SGD False True loo SMr IL 170 Adam False False loo SMp CWL 266 Adam True True [ SMy CE
75 SGD False True o SMy IL 171 Adam False False o SMp DLR 267 Adam True True o SMp CE
76 SGD False True 123 SMy IL 172 Adam False False 123 SMp DLR 268 Adam True True 123 SMp CE
77 SGD False True loo SMy L 173 Adam False False oo SMp DLR 269 Adam True True loo SMp CE
78 56D False  True lH SMp L 174 Adam  False  False  { sMy  DIR 270 Adam  True True lH SMz CWL
79 SGD False True 123 SMp IL 175 Adam False False 123 SMy DLR 271 Adam True True 123 SM1 CWL
80 SGD False True [ SMp IL 176 Adam False False loo SMy DLR 272 Adam True True loo SMr CWL
81 SGD False True to SM1 CE 177 Adam False False ty SMp DLR 273 Adam True True o SMy CWL
82 SGD False True 123 SMr CE 178 Adam False False 123 SMp DLR 274 Adam True True 123 SMy CWL
PGD SGD False — True loo SMp CE 179 Adam  False  False  fo SMp DLR 275 Adam  True True loo SMy CWL
84 56D False  True lH sMy  CE 180 Adam  True False (g SMr L 276 Adam  True True l SMp CWL
85 SGD Fulse True 123 SMy CE 181 Adam True Fulse 123 SMp IL 271 Adam True True 123 SMp CWL
86 SGD False True Lo SMy CE 182 Adam True False loo SMr IL 278 Adam True True Lo SMp CWL
87 SGD False True o SMp CE 183 Adam True False o SMy IL 279 Adam True True o SM1 DLR
88 SGD False True 123 SMp CE 184 Adam True False 123 SMy IL 280 Adam True True 123 SMr DLR
89 SGD False True loo SMp CE 185 Adam True False loo SMg IL 281 Adam True True loo SMyp DLR
90 SGD False  True l SMr CWL 186 Adam  True False (g SMp L 282 Adam  True True l sMy  DIR
91 SGD Fulse True 123 SMp CWL 187 Adam True Fulse 123 SMp IL 283 Adam True True 123 SMy DLR
92 SGD False True [ SMr CWL 188 Adam True False loo SMp IL 284 Adam True True loo SMy DLR
93 SGD False True to SMy CWL 189 Adam True False o SMp CE 285 Adam True True to SMp DLR
94 SGD False True 123 SMy CWL 190 Adam True False 123 SMp CE 286 Adam True True 123 SMp DLR
95 SGD False True loo SMy CHL 191 Adam True False  fw SMp CE 287 Adam True True loo SMp DLR
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ATKy Opt. CoV RR lp SM Loss ATKy Opt. CoV RR lp SM Loss ATKy Opt. CoV RR lp SM Loss
288 BWSGD False False Ly SMp IL 384 BWSGD False True £y SMp CWL 480 MBS True False £y SMy CE
289 BWSGD False False l SMp IL 385 BWSGD False True 123 SMp CWL 481 MBS True False l SMy CE
290 BWSGD False False loo SMy IL 386 BWSGD False True loo SMp CWL 482 MBS True False loo SMg CE
291 BWSGD  False  False (g SMy L 387 BWSGD  False  True lo SMp DLR 483 MBS True False (g SMp CE
292 BWSGD False  False (o SMy L 388 BWSGD False True 0 SM; DLR 484 MBS True False  { SMp CE
293 BWSGD False False loo SMy L 389 BWSGD False True loo SMp DLR 485 MBS True False loo SMp CE
294 BWSGD False False £y SMp IL 390 BWSGD False True £y SMy DLR 486 MBS True False £y SMp CWL
FAB BWSGD False False l SMp IL 391 BWSGD False True 123 SMy DLR 487 MBS True False l SMp CWL
296 BWSGD False False loo SMp IL 392 BWSGD False True loo SMy DLR 488 MBS True False loo SMp CWL
297 BWSGD  False  False — f{y SMp CE 393 BWSGD  False  True lo SMp DLR 489 MBS True False (g SMy CHL
298 BWSGD False  False (o SMp CE 394 BWSGD False True 2 SMp DLR 490 MBS True False 1 SMy CHL
299 BWSGD False False loo SMp CE 395 BWSGD False True loo SMp DLR 491 MBS True False loo SMy CHL
300 BWSGD False False Ly SMy CE 396 BWSGD True True £y SMp IL 492 MBS True False £y SMp CWL
301 BWSGD False False l SMy CE 397 BWSGD True True 123 SMp IL 493 MBS True False 123 SMp CWL
302 BWSGD False False loo SMy CE 398 BWSGD True True loo SMp IL 494 MBS True False loo SMp CWL
303 BWSGD  False  False (g SMp CE 399 BWSGD  True True lo SMy L 495 MBS True False (g SMp DLR
304 BWSGD False False &) SMp CE 400 BWSGD True True o) SMy L 496 MBS True False 15 SMy DLR
305 BWSGD False False loo Ship CE 401 BWSGD True True loo SMy L 497 MBS True False loo Sy DLR
306 BWSGD False False Ly SM CWL 402 BWSGD True True £y SMp IL 498 MBS True False £y SMy DLR
307 BWSGD False False l SMp CWL 403 BWSGD True True 123 SMp IL 499 MBS True False ly SMy DLR
308 BWSGD False False loo SMp CWL 404 BWSGD True True loo SMp IL 500 MBS True False loo SMy DLR
309 BWSGD  False  False (g SMy CHL 405 BWSGD  True True lo SMp CE 501 MBS True False (g SMp DLR
310 BWSGD False False U SMy CWL 406 BWSGD True True l sMp CE 502 MBS True False U SMp DLR
311 BWSGD False False loo SMy CHL 407 BWSGD True True loo SMp CE 503 MBS True False loo SMp DLR
312 BWSGD False False Ly SMp CWL 408 BWSGD True True £y SMy CE 504 MBS False True £y SMp IL
313 BWSGD False False l SMp CWL 409 BWSGD True True 123 SMy CE 505 MBS False True 123 SMp IL
314 BWSGD False False loo SMp CWL 410 BWSGD True True loo SMy CE 506 MBS False True loo SMp IL
315 BWSGD  False  False (g SMp DLR 411 BWSGD  True True lo SMp CE 507 MBS False  True Ly SMy L
316 BWSGD  False  False SM;  DLR 412 BWSGD  True True l SMp  CE 508 MBS False  True l sMy  IL
317 BWSGD False False loo SMp DLR 413 BWSGD True True loo SMp CE 509 MBS False True loo SMy L
318 BWSGD False False £y SMy DLR 414 BWSGD True True £y SMp CWL 510 MBS False True £y SMp IL
319 BWSGD False False l SMy DLR 415 BWSGD True True 123 SMp CWL 511 MBS False True 123 SMp IL
320 BWSGD False False loo SMy DLR 416 BWSGD True True loo SMp CWL 512 MBS False True loo SMp IL
321 BWSGD  False  False (g SMp DLR 417 BWSGD  True True lo SMy CWL 513 MBS False  True lo SMp CE
322 BWSGD False False U SMp DLR 418 BWSGD True True 123 SMy CWL 514 MBS False True U sMp CE
323 BWSGD False False loo SMp DLR 419 BWSGD True True loo SMy CWL APGD-CE MBS False True loo SMp CE
324 BWSGD True False £y SMp IL 420 BWSGD True True £y SMp CWL 516 MBS False True £y SMy CE
325 BWSGD True False l SMp IL 421 BWSGD True True 123 SMp CWL 517 MBS False True 123 SMy CE
326 BWSGD True False loo SMp IL 422 BWSGD True True loo SMp CWL 518 MBS False True loo SMy CE
327 BWSGD True False Ly SMg IL 423 BWSGD True True Ly SMy DLR 519 MBS False True Ly SMp CE
328 BWSGD True False  ( SMy IL 424 BWSGD True True 0 SMp DLR 520 MBS False True 0 SMp CE
329 BWSGD True False loo SMy L 425 BWSGD True True loo SMp DLR 521 MBS False True loo SMp CE
330 BWSGD True False £y SMp IL 426 BWSGD True True £y SMy DLR 522 MBS False True £y SMp CWL
331 BWSGD True False l SMp IL 427 BWSGD True True 123 SMy DLR 523 MBS False True 123 SMp CWL
332 BWSGD True False loo SMp IL 428 BWSGD True True loo SMy DLR 524 MBS False True loo SMp CWL
333 BWSGD True False Ly SMy CE 429 BWSGD True True Ly SMp DLR 525 MBS False True Ly SMg CWL
334 BWSGD  True False  (, sM;p  CE 430 BWSGD  True True l SMp  DIR 526 MBS False  True l SMy  CWL
335 BWSGD True False  lo SMp CE 431 BWSGD True True loo SMp DLR 527 MBS False True loo SMy CWL
336 BWSGD True False £y SMy CE 432 MBS False False £y SMp IL 528 MBS False True £y SMp CWL
337 BWSGD True False l SMy CE 433 MBS False False 123 SMp IL 529 MBS False True 123 SMp CWL
338 BWSGD True False loo SMy CE 434 MBS False False loo SMp IL 530 MBS False True loo SMp CWL
339 BWSGD True False Ly SMp CE 435 MBS False False Ly SMg IL 531 MBS False True Ly SMy DLR
340 BWSGD  True False  (, SMp  CE 436 MBS False  False  ( sMy  IL 532 MBS False  True l SM;  DLR
341 BWSGD True False  lo SMp CE 437 MBS False  False — lw SMy L APGD-DLR MBS False True loo SMp DLR
342 BWSGD True False £y SMp CWL 438 MBS False Fulse £y SMp IL 534 MBS False True £y SMy DLR
343 BWSGD True False l SM CWL 439 MBS False False 123 SMp IL 535 MBS False True 123 SMy DLR
344 BWSGD True False loo SMp CWL 440 MBS False False loo SMp IL 536 MBS False True loo SMy DLR
345 BWSGD True False Ly SMg CWL 441 MBS False False Ly SMy CE 537 MBS False True Ly SMp DLR
346 BWSGD  True False  ( SMy CHL 442 MBS False  False — ( SMp CE 538 MBS False  True 0 SMp DLR
347 BWSGD True False  lo SMy CWL 443 MBS False  False — lw SMy CE 539 MBS False True loo SMp DLR
348 BWSGD  True False (g SMp  CWL 444 MBS False  False (g SMy  CE 540 MBS True True Lo SMp L
349 BWSGD True False l SMp CWL 445 MBS False False 123 SMy CE 541 MBS True True 123 SMp IL
350 BWSGD True False loo SMp CWL 446 MBS False False loo SMy CE 542 MBS True True Lo SMp IL
351 BWSGD True False Ly SMy DLR 447 MBS False False Ly SMp CE 543 MBS True True Ly SMg IL
352 BWSGD  True False  ( SMp DLR 448 MBS False  False — ( SMp CE 544 MBS True True 0 SMy L
353 BWSGD True False  fo SMy DLR 449 MBS False  False — lw SMp CE 545 MBS True True loo SMy L
354 BWSGD  True False (g SMy  DLR 450 MBS False  False  fg SM; CWL 546 MBS True True Lo SMp L
355 BWSGD True False l SMy DLR 451 MBS False False 123 SMp CWL 547 MBS True True 123 SMp IL
356 BWSGD True False loo SMy DLR 452 MBS False False loo SMp CWL 548 MBS True True Lo SMp IL
357 BWSGD True False Ly SMp DLR 453 MBS False False Ly SMg CWL 549 MBS True True Ly SMy CE
358 BWSGD  True False  ( SMp DLR 454 MBS False  False — ( SMy CWL 550 MBS True True 0 SMp CE
359 BWSGD True False  lo SMp DLR 455 MBS False  False — lw SMy CWL 551 MBS True True loo SMy CE
360 BWSGD  False  True lo SMp L 456 MBS False  False — {g SMp CWL 552 MBS True True Lo SMy  CE
361 BWSGD False True l SM IL 457 MBS False False 123 SMp CWL 553 MBS True True 123 SMy CE
362 BWSGD False True loo SMp IL 458 MBS False False loo SMp CWL 554 MBS True True Lo SMy CE
363 BWSGD False True Ly SMg 1L 459 MBS False False Ly SMy DLR 555 MBS True True Ly SMp CE
364 BWSGD  False  True 0 SMy L 460 MBS False  False — ( SMp DLR 556 MBS True True l SMp CE
365 BWSGD False  True Lloo SMy L 461 MBS False  False  lo SM; DLR 557 MBS True True loo SMp CE
366 BWSGD  False  True l SMp IL 462 MBS False  False (g sMy  DIR 558 MBS True True ly My CWL
367 BWSGD False True l SMp IL 463 MBS False False 123 SMy DLR 559 MBS True True 123 SMp CWL
368 BWSGD False True loo SMp IL 464 MBS False False loo SMy DLR 560 MBS True True Lo SMp CWL
369 BWSGD False True Ly SMy CE 465 MBS False False Ly SMp DLR 561 MBS True True Ly SMg CWL
370 BWSGD  False  True 0 SMp CE 466 MBS False  False — ( SMp DLR 562 MBS True True 0 SMy CHL
371 BWSGD False True loo SMy CE 467 MBS False False loo SMp DLR 563 MBS True True loo SMy CWL
372 BWSGD  False  True l sMy  CE 468 MBS True False (g SMr IL 564 MBS True True ly SMy  CWL
373 BWSGD False True l SMy CE 469 MBS True False 123 SMp IL 565 MBS True True 123 SMp CWL
374 BWSGD False True loo SMy CE 470 MBS True False Lo SMp IL 566 MBS True True Lo SMp CWL
375 BWSGD False True Ly SMp CE 471 MBS True False ly SMy IL 567 MBS True True Ly SMp DLR
376 BWSGD  False  True 0 SMp CE 472 MBS True False — ( SMy L 568 MBS True True l SMp DLR
377 BWSGD False True Lloo SMp CE 473 MBS True False [ SMy L 569 MBS True True [ SMy DLR
378 BWSGD  False  True l SMy CWL 474 MBS True False (g SMp IL 570 MBS True True ly sMy  DIR
379 BWSGD False True l SMp CWL 475 MBS True False 123 SMp IL 571 MBS True True 123 SMy DLR
380 BWSGD False True loo SMp CWL 476 MBS True False Lo SMp IL 572 MBS True True Lo SMy DLR
381 BWSGD False True Ly SMy CWL 477 MBS True False ly SMp CE 573 MBS True True Ly SMp DLR
382 BWSGD  False  True l SMy CHL 478 MBS True False — ( SMp CE 574 MBS True True l SMp DLR
383 BWSGD False True loo SMg CWL 479 MBS True False loo SMp CE 575 MBS True True loo SMp DLR

Table 5: Attack

Name Encodings.
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B Comparison to Known Attacks

Here we provide the full version of Table 2.

(o Attacks £ Attacks loo Attacks £y Attacks £y Attacks foo Attacks

Rank Attack % Reduction f() Budget Rank Attack % Reduction ¢, Budget Rank  Attack % Reduction feo Budget ~Rank Attack % Reduction £ Budget Rank Attack % Reduction /, Budget Rank Attack % Reduction foo Budget

L aTKyy;  41% 0.10 1 ATKgqp  -50% 0.12 1. ATKyg9 8% 022 97. ATKyp5  +eo% o 97. ATKyp7  +oo% o 97. ATKgys  +237% 0.1
2. ATKy7 -41 % 0.10 2. ATKs3p -50% 0.12 2. ATKgqp -8% 0.22 98. ATK40g +eo% oo 98. ATKgp3 +eo% oo 98. ATK 13 +237% 0.81
3. ATKgsg  -41% 0.10 3. ATKgsy  A45% 0.13 3. ATEpg 8% 022 99. ATKypg  +oo% o 99. ATK3g7  +oo% o 99. ATKppq  +237% 0381
4.2TKyy,  41% 0.10 4. ATKsps  A45% 0.13 4. aTKg 8% 022 100. ATKyp3  +oo% o 100. ATKgop  +oo% o 100. ATKgg)  +241% 082
5. ATK 5 -41% 0.10 5. ATKzs  -41% 0.14 5. ATKgsg 4% 0.23 101 RTRypg  +oo% o 101. ATK3gs  +eo% o 101, ATKy7,  +241% 0.82
6. ATKy59 -41 % 0.10 6. ATK5)3 -41 % 0.14 6. ATKs)p -4% 0.23 102. ATK40) +eo% oo 102. ATK379 +eo% oo 102. ATK1pg  +241% 0.82
7. ATKigg  41% 0.10 7. ATKsgs 3% 0.15 7. ATKsyp 4% 023 103. ATK395  +oo% o 103. ATK3g,  +eo% oo 103. ATKsg)  +258% 0.86
8. ATKjg,  -35% 0.1 8. ATKj33  37% 0.15 8. ATEgg 4% 023 104. ATK399  +oo% o 104. ATK37g  +oo% o 104. BTKpg3  +258% 0.86
9. ATK 53 -29% 0.12 9. ATKy;  -33% 0.16 9. ATKgg 4% 0.23 105. ATK3gy  +oo% o 105. RTK37g  +eo% o 105. ATk 1 +258% 0.86
10. ATKis5¢ -29% 0.12 10. ATKgy -33% 0.16 10.  ATKyg -4% 0.23 106. ATK37g +eo% oo 106. ATK373 +eo% oo 106. ATKgq97  +275% 0.90
11, aTXg 29% 0.12 1L ATk gy -33% 0.16 1. ATKgq 4% 023 107 ATK3g;  +oo% o 107. ATK39;  +oo% o 107 ATKsg  +275% 090
12. ATKy3;  -23% 0.13 12 2TKy5;  33% 0.16 12, ATKs3, +0% 024 108. ATK375  +oo% o 108. ATK3gg  +oo% o 108. ATKyg)  +279% 091
13. ATKy,  -23% 0.13 13. ATK)p3  -33% 0.16 13, ATKog +0% 0.24 109. RTK359  +oo% o 109. ATK3g]  +eo% o 109. ATKs,  +279% 091
14, ATKg -23% 0.13 14. ATKp3p -33% 0.16 14, ATKp +0% 0.24 110. ATK37; +eo% oo 110. ATK347 +eo% oo 110. ATKpp3  +279% 091
15. AR5 -23% 0.13 15. ATKy35  -33% 0.16 15, ATKyg +0% 024 11 ATK3g3  +oo% o 11 ATK3g) oo o 1. ATK gy +279% 091
16. ATK 47 -23% 0.13 16. ATKsgg  -33% 0.16 16, ATKy3, +0% 024 12, ATKgg7 4% o 112, ATK3gy  +oo% o 112. ARy 4y +287% 093
17. ATKg55  -23% 0.13 17. ATKj g9 -33% 0.16 17. APGD-DLR — 024 113. RTK3g)  +eo% o 113. RTK359  +eo% o 113. ATk gy  +291% 0.94
18. ATKq g5 -23% 0.13 18. ATKp77 -29% 0.17 18.  ATKigp +4% 025 114. ATK366 +eo% o 114. ATK3.3 +eo% o 114, 2TKy73  +291% 0.94
19. ATKy3g  23% 0.13 19. ATk, 29% 0.17 19 ATXq +4% 0.25 115. ATK35)  +oo% o 115, ATK3q  +o0% o 115. ATk g5 +291% 094
20. ATKgyy  23% 013 20. ATKyeg  29% 017 20 ATKspg +4% 025 116. ATK3g3  +oo% o 116. ATK35  +oo% o 116. ATk g +291% 094
21. ATKy7y  -17% 0.14 21. ATKy5q  -29% 0.17 21, ATKyyy +8% 0.26 117. RTR3gg  +oo% o 117. RTK33q  +eo% o 117. ATk g5 +291% 0.94
22. ATKg -11% 0.15 22. ATK;g7 -29% 0.17 22, ATKp33 +8% 0.26 118. ATK34 +eo% o 118. ATK337 +eo% o 118. aTKyy  +291% 0.94
23. ATKgq1 -11% 0.15 23. ATK)g6 -29% 0.17 23. ATKy79 +8% 0.26 119. ATK35 +oo% oo 119. ATK35g oo oo 119. ATKgy  +295% 0.95
2. 2Ky -11% 015 24 ATKjg3  29% 017 24 ATKjg; +8% 026 120 ATK339  +oo% o 120, ATK35,  +oo% o 120. ATKs3  +295% 095
25. ATKgsg  -11% 0.15 25. ATKigs  -29% 0.17 25. ATKjs) +8% 0.26 121. ATK333  +eo% o 121. RTK355  +eo% o 121, ATKy, — +295% 0.95
26. ATKip -11% 0.15 26. ATKpg -29% 0.17 26. ATKp( +8% 0.26 122. ATK336 +eo% oo 122. ATK33; +eo% oo 122. ATKypg  +295% 0.95
27. ATK33 -5% 0.16 27. ATKjg -29% 0.17 27. ATKyss +8% 0.26 123. ATK357 +oo% oo 123. ATK3p5 oo oo 123. ATK197  +295% 0.95
28. ATKyyq  +0% 017 28 ATKjp  29% 017 28 ATKs, +8% 026 124, ATK35;  +oo% o 124, ATK3,5  +oo% o 124. RTK1gg  +295% 095
29. ATKygs  +0% 0.17 29. ATK, 29% 0.17 29.  ATKgg +12% 0.27 125. RTK35q  +oo% o 125. RTK313  +eo% o 125. ATKyg,  +300% 0.96
30. Jsma — 0.17 30. ATKj3s5 -29% 0.17 30.  ATKgy +12% 0.27 126. ATK33g +eo% oo 126. ATK307 +eo% oo 126. ATKg79  +300% 0.96
31 ATKy, 0% 017 31 ATKy;g  29% 017 31 ATy, +12% 027 127. ATz  +oo% o 127. ATK31g oo o 127. ATKygg  +300% 0.96
32. ATKy3s +0% 0.17 32. ATKygs -29% 0.17 32, ATKspg +12% 0.27 128. ATK3;7 +oo% ] 128. ATK304 0% ] 128. ATKsg  +300% 0.96
33 ATKys3  +0% 0.17 33. ATKy3  29% 0.17 33 ATKsyg +12% 0.27 129. RTK3];  +eo% o 129. RTKyg  +oo% o 129. ATK3g  +300% 0.96
34. ATKgg  +252% 0.60 34. ATKgy -29% 0.17 34, ATKp3 +16% 0.28 130. ATK3p6 +eo% oo 130. ATK301 +eo% oo 130. ATKypp  +300% 0.96
35. ATKyy3  +252% 0.60 35. ATKqqs -25% 0.18 35. ATKig7 +16% 0.28 131. ATK3p9 +oo% o 131. ATK355 oo oo 131. ATKy79  +300% 0.96
36. ATKs3;  +252% 060 36 ATK],q  25% 0.18 36, ATK;37 +16% 028 132, ATK303  +eo% o 132, ATK3 g +oo% o 132. ATK1g,)  +304% 097
37. ATkyyy  4252% 0.60 37. ATKj33  25% 0.18 37.  ATKs +16% 0.28 133. RTKyg7  +eo% o 133, ATK31g  +eo% o 133, ATKy;,)  +304% 0.97
38. ATKy3;  +252% 060 38 ATKys;  25% 018 38 ATKigg +16% 028 134, ATK30)  +oo% o 134, ATKpgg  +oo% o 134 ATKy;  +304% 0.97
39. ATKyps5  +252% 0.60 39. ATKpp9 -25% 0.18 39, ATKyg¢ +16% 0.28 135. ATK3p1 +oo% oo 135. ATKpgy oo oo 135. ATK1g7  +304% 0.97
40. ARy,  +252% 060 40. ATKy7y  20% 019  40. BIM +16% 028 136. ATK3 5 +oo% o 136.  DF Foo% o 136. RTRpg7  +oo% S
41. ATKyg)  4252% 0.60 41, ATk, 20% 0.19 41, ATRyg3 +16% 0.28 137. RTK31g  +eo% o 137. FaB oo o 137. RTKy 15 +eo% o
42 ATKyyg  +252% 060 42 ATK7g  20% 0.19 42 ATKyp +20% 0.29 138. ATKpgq  +oo% o 138. ATKsgs  +oo% o 138, ATKypy  +eo% o
43. ATRg,  4252% 060 43 ATKpgs  20% 019 43 ATKy3g +20% 0.29 139, ATKygg  +oo% o 139. ATKssg  +oo% o 139. ATK g +oo% o
44. BTRy;  4252% 060 44 ATK45  20% 019 44 ATKgjg +20% 029 140. ATKpg;  +oo% o 140. ATKsg,  +oo% o 140. ATRy g +oo% o
45. ATKgy  4252% 0.60 45. 21Ky, -16% 0.20 45, RTKgqg +20% 0.29 141 RTKggy  +oo% o 141, RTKg5  +oo% o 141 ATRy 3 +eo% o
46. ATKgg  +252% 060 46, ATK;3  -16% 020 46, ATKyy +20% 029 142, RTKgsg  +o% w142 ATKgsy  es% w142 ATKygq  e% o
47. ATKs 3 4252% 060  47. ATKs;  -16% 020 47 ATyy; +20% 0.29 143. ATRgg)  +oo% o 143 ATKss3  +oo% o 143. ATKy1g 4% o
48. RTKgy  +252% 060 48 ATKg;  -16% 020 48 APGD-CE  +20% 029 144, ATKgs5  +oo% o 144, ATRS7;  +oo% o 144, ATRy3;  +oo% o
49. ATKypg  +252% 060 49 ATK;zq  -16% 020  49.  PGD +20% 029 145. ATKsz9  +oo% o 145. ATKsgg  +oo% o 145. ATKyps  +oo% o
50. ATKgjg  +252% 060  S0. ATKypy  -16% 020 50 ATKyg  +20% 029 146, ATKs5)  +oo% w 146 ATKgy  te% w 146 ATKyp  te% o
S ATK7g  4252% 060 51 ATK;35  -16% 020 5. ATX), +20% 029 147. ATRg73  +oo% o 147 MTKsg7  +oo% o 147. ATKyq 4% o
52. ATKpy3;  +252% 060 52 ATKgy  -12% 021 52, ATKjgq +20% 0.29 148. ATR567  +oo% o 148. ATKsy;  +oo% o 148. ATK395  +oo% o
53. ATKs)p +252% 060 53 ATK;sq  -12% 021 53.  ATXgg +25% 030 149, ATKg7  +oo% o 149, ATKsgq  +oo% o 149, ATKyo;  +oo% o
54. ATKsyy  4252% 060 54 ATKyye  -12% 021 54 ATKy3p +25% 030 150. ATKsgg  +e% w150, ATKsyg et w150, ATK3gg  e% o
55. ATKsgy  +252% 060 55 ATKyg  -12% 021 55. ATKy3g +25% 0.30 I51. ATRgq)  +oo% o 151 ATKspy oo o 151 ATKygy  +oo% o
56. ATKspg  +252% 060 56, ATKy7;  -12% 021 56. ATK]sg +25% 030 152, ATKsy3  +oo% o 152. ATKs g +oo% o 152. ATK3g3  +oo% o
57. ATKyzq  +252% 0.60 S7. ATKy; 8% 022 S7. ATKss +45% 0.35 153. RTKg3y  +eo% o 153. RTKg17  +eo% o 153. ATK377  +eo% o
58. ATKy1q  +258% 0.61 58. ATK 7, 8% 0.22 58, ATKypg +50% 0.36 154. ATKggy  +eo% o 154. ATKs3g  +oo% eo 154. ATK371  +o% o
59. ATKgy  +258% 0.61 59. ATKyyy 8% 022 59 ATKyys +66 % 040 155. ATRyg5  +oo% o 155. ATKs35  +oo% o 155. ATK374  +oo% o
60. RTKg3  +258% 0.61 60. ATy 8% 022 60. ATKjq3 +70% 041 156. ATKggq  +oo% o 156. ATKs;]  +oo% o 156. ATK3g5  +oo% o
61. ATk g5 +258% 0.61 6l. ATK;g3 8% 022 61. ATKg3g +120% 0.53 157. RTRyg3  +oo% o 157. RTKyg3  +eo% o I57. ATK3g9  +oo% o
62. ATKs3;  +258% 061 62 ATKys5 4% 023 62 ATKge  +120% 0.53 158. ATKy77  +oo% o 158. ATKgg7  +oo% o 158. ATK3gy  +eo% o
63. ATKs g +258% 0.61 63. ATKy53 A% 023 63. ATkig,  +120% 0.53 159. ATRgg)  +oo% o 159. ATKyqq  +eo% o 159. ATK3gg  +oo% o
64. ATKsy5  +258% 0.61 64. 21K 7 4% 023 64 RTKg, +125% 054 160. ATKsg;  +oo% o 160. ATRggq  +oo% o 160. ATK3g,  +oo% o
65. ATK75  +258% 0.61 65. ATKy5) 4% 023 65. ATKy4 +133% 0.56 161. ATKyg5  +oo% o 161. RTRy7g  +oo% o 161. ATK3g5  +oo% o
66. ATKsg7  +258% 061 66 ATK|g3 4% 023 66. ATKg3g  +133% 056 162. ATKyog  +o% w162 ATKgg  e% w162 ATK3s et =
67. ATk g5 +352% 077 67 aTKyg, 0% 024 67 ATKgs +137% 0.57 163. ATRy7q  +oo% o 163. ATKsp,  +eo% o 163. ATK3gy  +oo% o
68. ATKy75  +oo% o 68. ATK3; 0% 024 68 ATK)p;  +137% 057 164. ATRygg  +oo% o 164. ATKyog  +oo% o 164. RTR347  +oo% o
69. ATKy7g  +eo% = 6. cW — 024 69. ATK;7q  +150% 0.60 165. RTKy7]  +oo% o 165. ATKgoq  +oo% o 165. ATK341  +oo% o
70. ATKy73 oot o 70. ATK175  +0% 024 70, ATKyyy  +150% 0.60 166. ATKyg;  +oo% o 166. ATKy75  +oo% o 166. ATK335  +oo% o
71 ATKygy  +eo% o T ATKy; 0% 024 71 ATKggy  +200% 072 167 ATKy3;  +oo% o 167. ATRjgg  +oo% o 167. ATK335  +oo% o
72 ATKyg oot o 72 BTK)gy % 025 72 ATKy37  +200% 072 168. ATK 5 +oo% o 168. ATRy7,  +oo% o 168. ATK3sg  +oo% o
73. RTKygy  +oo% o 73. ATK1py  +4% 0.25 73, ATKjqg 212% 0.75 169. AT 5q  +oo% o 169. ATKy57  +oo% o 169. ATK353  +eo% o
74. BTKyg5  +eo% o 74 ATK1gq 8% 0.26 74, ATKysy +212% 0.75 170. ATK 23 +o% o 170. ATKgqg  +o% o 170. 2TK35¢  +eo% o
75. ATKy79  +oo% o 75. ATKigg  +8% 026 75, ATKsgy  +220% 077 171 ATRy17  +oo% o 171 ATKygp 4% o 171 ATK33, 4% o
76. ATKygy oot o 76. BTKyg3 8% 026 76, ATK;q7  +220% 077 172. RTR ) +oo% o 172. ATRygs  +oo% o 172. ATK36  +oo% o
77. ATKysg  +oo% o 77 MKy +12% 0.27 7. RTXyqs +220% 0.77 173, ATK g1 4% o 173. RTRyg  +oo% o 173. RTK3p9  +eo% o
78. BTKy5y  +eo% o 78. ATKy3p  +12% 0.27 78, ATKj3p +220% 0.77 174. ATK135  +o% o 174. ATKgg3  +o% eo 174. ATK314  +o% o
79. ATKyss  +oo% o 79. ATk g +12% 027 79 ATXgs +220% 077 175. ATK 3 +oo% o 175. ATK 39 +oo% o 175. ATK30s  +oo% o
80. ATKpqy  +oo% o 80. ATK7q  +12% 027 80. ATKyg  +220% 077 176. RTKy 14 +oo% o 176. ATK 13 +oo% o 176. ATK3;]  +oo% o
81. ATKygg  +oo% o 81 ATKjg;  +12% 0.27 8l. ATKsgq +220% 0.77 177. ATK g5 4% o 177. RTK ] +eo% o 177. RTK3p5  +eo% o
82. ATKyqp  +eo% o 82. ATKygg  +12% 027 82 ATKygg  +220% 0.77 178, ATK ] +eo% o 178. ATK 39 +eo% o 178. ATKggg  +oo% o
83. ATKjgs  +oo% o 83. ATk,  +20% 029 83. ATKsg7  +220% 077 179. ATRygy;  +oo% o 179. ATKg;  +oo% o 179. ATK3,  +oo% o
84. ATKjgg  +oo% o 84. TRy, +29% 031 84. ATKsyy  +220% 077 180. ATKgy  +oo% o 180. ATKgg  +oo% o 180. ATK3p3  +eo% o
85. ATKygy  +oo% o 85. ATKss  +33% 032 85. ATK) ¢ +225% 0.78 181 ATKgy — +eo% o 181 ATKgy  +eo% o 181. ATK317  +eo% o
86. ATKy 3 +eo% o 86. ATKgs ~ +45% 035 86, ATKyp  +225% 078 182, ATKg7  +oo% o 182, ATKygg  +oo% o 182, ATK3p  +eo% o
87. ATKy07  +oo% o 87. ATK;3 5% 035 87. ATKyp;  +229% 0.79 183. ATKs; 4% o 183. ATE;q  +oo% o 183. ATKz9g  +oo% o
88. ATKp ) +eo% o 88. ATK3; 5% 035 88. ATK 3,  +229% 079 184. ATKy5 ~ +oo% o 184, ATKsg  +oo% o 184. ATKpgp  +oo% o
80. ATK gg  +oo% o 80. ATKyy;  +eo% o 89. ATKp7g +229% 0.79 185. ATKgg 4% o 185. ATKyg  +oo% o 185. ATKyg3  +eo% o
90. ATk gy +eo% o 90. ATKy15  +eo% o 90. ATKygq  +229% 0.79 186. ATKgy  +oo% o 186. ATKgg  +oo% o 186. ATKs75  +oo% o
9l ATK g3 +eo%h o 9l ATKyjg  +eo% o 9l ATKyey  +229% 0.79 187. ATKg3 4% o 187. ATKg7 oo o 187. ATKg; Foo o
92. ATK 7y +eo% o 92. ATKyy; oot o 92. ATKgs,  +233% 0.80 188. ATKgg  +oo% o 188. ATKgp  +oo% o 188. ATKsp3  +oo% o
93. ATKypg  +oo% o 93. ATKyg5  +oo% o 93. ATKys7 +233% 0.80 189. ATKy) 4% o 189. ATKy5  +eo% o 189. ATKgp)  +eo% o
94 ATKy1y oot o 94. ATKy9  +oo% o 94, ATKgy,  +233% 0.80 190, ATK3s  +oo% o 190. ATKyg  +eo% o 190. ATK 43 +eo% o
95. ATK;17  +eo% o 95. ATKy3p  +eo% o 95. ATKy;,  4233% 0.80 191 ATK3g 4% o 191, ATK;p oo o 191 ATK;] 4% o
96. ATK;y; oot o 96. ATK;py oot o 9. ATKps,  +233% 0.80 192 ATK3p 4% o 192, ATK3y  +oo% o 192. ATKgg  +oo% o

Table 6: MNIST Relative Attack Comparisons. Budgets are normalized. Attacks that fail to reduce model accuracy to be <1 % are
labeled as consuming infinite budget. Improvements are relative to the best known attack for each £,-norm.
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C The Optimal Attack

Here, we show the median Spearman rank correlation coef-
ficients for each of our datasets and threat models. For the
dataset plots, results are segmented by £,-norm. Data points
correspond to a specific threat model (i.e., a value for 0).
6 ={0.0,0.5,1.0,1.5,2.0} are labeled for reference. High at-
tack performance generalization is encoded as lighter shades,
while low generalization is encoded with darker shades, as
shown in the colobar below:
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D Miscellany

Table 7 provides a listing of model hyperparameters for each
of our datasets. Our selection was inspired by publications
that report state-of-the-art accuracy for the models we used.
Table 9 provides a listing of all symbols used in this paper and
their associated meanings. Table 8 provides the parameters
used for adversarial training.

D.1 Attack Modifications

Carlini-Wagner Attack. As described in section 3,
the CW attack loss function includes a hyperparameter ¢ which
controls the trade-off between the distortion introduced and
misclassification. In the original attack definition, c is opti-
mized dynamically through binary-search [7]. This is cost-
prohibitive and prevents us from performing any meaningful
evaluation when computational cost is considered (as this
attack would exist on a separate scale, when compared to PGD
or even the JSMA, which requires the model Jacobian). To rem-
edy this, we select a constant value of ¢ in our experiments.
From the investigation on values of ¢ in [7] with respect to
attack success probability versus mean ¢, distance, we choose
a value of 1.0 for ¢ in all experiments.

Jacobian-based Saliency Map Approach. The
original definition of the JSMA included a search space, which
defined the set of candidate features to be selected for pertur-
bation. In the original publication, the JSMA initially set o to
either 1 or 0 (that is, pixels were fully turned “off” or “on”).
We find that this underestimates the performance of the JSMA
on many datasets. Instead, we derive a more effective strategy
of instead setting the saliency map score for some feature i (in
an input x) to 0 if: (1) the saliency score for i is positive and
x; = 1, or (2) the saliency score for i is negative and x; = 0.
This prevents our version of the JSMA from selecting features
that are already at limits of valid feature values (i.e., 1 and 0).
Moreover, we do not select pixel pairs, as described in [39],
as we found our implementation to be at least as effective
(often more) as the original JSMA.

Difference of Logits Ratio Loss. The original
formulation of DLR requires takes the ratio of the differences

22

between: (1) the true logit and largest non-true-class logit,
and (2) the largest logit and the third largest logit. In our
evaluation, we used datasets that had less than three classes.
For those scenarios, we take the second largest logit.

Phishing NSL-KDD UNSW-NB15 MNIST FMNIST CIFAR-10 MalMem

(16,32)  (16,32)  (3,64,64,128,128,256,256,

Conv. Neurons 256,512,512,512,512,512,)

Kernel Size - - - 3 3 3
Stride - - - 1 1 1
Dropout Prob. - - - 04 04 0.5
MaxPool Kernel - - - 2 2 2
MaxPool Stride - - - 2 2 2 -
Linear Neurons (15,) (60,32) (15,) (128,) (512, (512,) (32,)
Activation ReLU ReLU ReLU ReLU  ReLU ReLU ReLU
Loss CCE CCE CCE CCE CCE CCE CCE
Optimizer Adam Adam Adam Adam Adam SGD Adam
Learning Rate le-2 le-2 le-2 le-3 le-3 5e-2 le-2
Epochs 40 4 40 20 20 300 180
Batch size 32 128 128 64 64 128 64

Table 7: Hyperparameters

Phishing NSL-KDD UNSW-NB15 MNIST FMNIST CIFAR-10 CIC-MalMem-2022

Attack PGD PGD PGD PGD PGD PGD PGD

Epochs 10 10 5 30 30 3 10

o 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Random Restart 0.05 0.01 0.01 0.1 0.1 0.03 0.01

Table 8: Adversarial Training Hyperparameters

<
3
S
S
B3

Meaning

original input

adversarial example

perturbation added to x

x in tanh space

victim model

model logits

number of classes

true label

softmax output

closest class

loss function

single-step perturbation magnitude
total perturbation

Jacobian of a model

Saliency Map

parameter for some £,-norm
time importance parameter
budget equation

budget value for a given equation
space of attacks

=

=
=
Na

DM QN DO T O

=

gwm@'&

Table 9: Symbol usage and meaning
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