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ABSTRACT 
Battery lifetime and reliability depend on accurate state-of-

health (SOH) estimation, while complex degradation 
mechanisms and varying operating conditions strengthen this 
challenge. This study presents two physics-informed neural 
network (PINN) configurations, PINN-Parallel, and PINN-
Series, designed to improve SOH prediction by combining an 
equivalent circuit model (ECM) with a long short-term memory 
(LSTM) network. PINN-Parallel process input data through 
parallel ECM and LSTM modules and combine their outputs for 
SOH estimation. On the other hand, the PINN-Series uses a 
sequential approach that feeds ECM-derived parameters into the 
LSTM network to supplement temporal data analysis with 
physics information. Both models utilize easily accessible 
voltage, current, and temperature data that match realistic 
battery monitoring constraints. Experimental evaluations show 
that PINN-Series outperforms the PINN-Parallel and the 
baseline LSTM model in accuracy and robustness. It also adapts 
well to different input conditions. This demonstrates that the 
simulated battery dynamic states from ECM increase the LSTM's 
ability to capture degradation patterns and improve the model's 
ability to explain complex battery behavior. However, the trade-
off between the robustness and training efficiency of PINNs is 
also discussed. The research findings show the potential of PINN 

models (particularly the PINN-Series) in advancing battery 
management systems, but the required computational resources 
need to be considered. 

Keywords: Lithium-ion battery; Electric vehicle; State of 
health; Physics-Informed Neural Network 
 
1. INTRODUCTION 

Electric vehicles (EVs) and their lithium-ion batteries are 
among the primary focuses of sustainable transportation [1]. As 
EVs become more widespread, understanding and predicting 
battery performance and lifespan is critical to vehicle reliability 
and lifecycle management [2]. The inevitable aging during usage 
results in a deterioration of the battery state of health (SOH) and 
makes the modeling of degradation critical for a reliable battery 
management system. 
 
1.1 Related Work 

There are two broad approaches to building the battery 
degradation model for battery in-use status prediction and 
diagnosis: the physics-based and the data-driven approach. The 
physics-based method can be further divided into 
electrochemical models and equivalent circuit models (ECM). 
The electrochemical model describes the degradation 
mechanisms of a battery based on its specific material properties 
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and operating parameters [3]. For example, the most widely 
adopted pseudo-two-dimensional (P2D) model offers a thorough 
examination of the thermal energy balance, mass balances, 
charge balances, and kinetics of electrochemical reactions within 
the cell [4]. However, the P2D model usually includes solving a 
set of tightly coupled differential equations [5]. The process is 
too complex and slow to be used for real-time management of 
in-use batteries. In order to reduce the computational demand, 
simplified versions of the P2D model have been developed, such 
as the single particle model [6]. For fast simulation, this model 
did not consider the variations in the electrolyte concentration 
and the potential [7]. Hence, it is not applicable to the simulation 
of high discharge rate cases, which is one of the required 
characteristics of EV batteries. 

The ECM simulates the electrical behavior of a battery by 
using a combination of circuit elements [8,9]. A standard ECM 
typically employs an RC network, which consists of resistors and 
capacitors arranged in parallel, to replicate the dynamic 
behaviors of the battery [10]. Similar to the electrochemical 
model, it captures the dynamics of battery current and voltage in 
a physically explainable way. But ECM has a simpler structure 
and governing equations and therefore offers faster computation. 
Different orders of ECMs are shown to be effective in simulating 
batteries and can be used for SOH prediction [9]. The common 
ECMs include the Rint model, RC model, Thevenin model, 
Dual-Polarization model, and Partnership for a New Generation 
of Vehicles (PNGV) model [11]. However, the identification of 
ECM parameters based on underlying experimental data tends to 
limit its application [5]. For example, a parameterized ECM that 
assumes low C-rate charging and discharging of batteries at 
ambient temperature may not be applicable to another scenario. 

On the other hand, the data-driven model can utilize large 
datasets to train the model to capture various operating 
parameters and battery responses. Among others, deep learning 
models have been evidenced to accurately simulate complex 
nonlinear battery systems, such as the long short-term memory 
(LSTM) network. This indicates that the physical-based model 
in practice can be improved with a data-driven approach to 
compensate for its incompleteness or inflexibility [12]. In 
addition, the interpretability of the physical model can be 
protected and provides the opportunity to reduce the demand for 
large amounts of training data. The integrated model shows 
promise in addressing the uncertainty of aging conditions [13], 
thermal management [14], and state of charge estimation 
[15,16].  

Aykol et al. [17] categorized integration models for physical 
knowledge and deep learning into two broad categories: 
sequential combination of independent models and hybridized 
models. The first category does not require fundamental changes 
in the physics or the deep learning model. For instance, physical 
models can be used to generate synthetic data to train deep 
learning, while reducing the demand for experimental data 
collection [18]. The second category includes a hybrid 
architecture that embeds the physical or deep learning model in 
the other. The subsequent discussion mainly focuses on the 
hybridized model for predicting battery capacity or SOH. 

To name several recent examples, Xu et al. [19] applied 
physical equations from a first-order Thevenin model to 
constrain and refine the predictions of an autoencoder. Models 
trained on battery discharge data can be used to predict SOH 
trajectories for the entire lifecycle of a test battery under similar 
operating conditions. Singh et al. [20] utilized Fick's law of 
diffusion from a single particle model to train the neural network, 
with inputs being a spatial vector of electrode particle radius 
along with a temporal vector for time. The simulated lithium 
solid-phase concentration is then used to calculate the state of 
charge, capacity, and SOH of the battery. Ye et al. [21]  
incorporated the monotonous relationship between the peak of 
the incremental capacity curve and the SOH into a neural 
network. Their enhanced model shows improvement in 
prediction accuracy. Fu et al. [22] integrated a second-order 
ECM into the recurrent neural network to estimate battery 
discharge profiles. The ohmic resistances identified from this 
hybrid network can be used to approximate SOH based on the 
assumed linear relationship. Lin et al. [23] proposed a framework 
that combines ECM with deep learning to extract key parameters 
from electrochemical impedance spectroscopy, reflecting the 
internal states of the battery. The multi-task learning and physical 
regularization are integrated to achieve more accurate and 
interpretable estimation results. 
 
1.2 Problem Statement 

Previous research has shown the promise of combining 
physics with data-driven models to improve battery SOH 
estimation. However, there are more directions to be explored in 
this emerging area. It is important to note that many hybrid 
models require pre-defined or known parameters based on 
physical (especially electrochemical) models. This requirement 
limits the generalizability of plain data-driven models to 
different battery chemistries and operating conditions. In 
addition, the incorporation of certain physical laws improves the 
interpretability of the model. However, this might also require 
additional battery testing, such as electrochemical impedance 
spectroscopy and differential capacity analysis, which are not 
easily accessible during routine battery operations. Moreover, 
discussions on the comparison of training costs between hybrid 
models and purely data-driven approaches are uncommon. 

To address these gaps, this study develops Physics-Informed 
Neural Network (PINN) frameworks for SOH estimation that 
consider robustness and practicality. The PINNs are designed to 
process easily accessible voltage, current, and temperature 
measurements without presetting physical parameters, thus 
increasing the model’s application in practice. The hybrid 
architecture integrates physics information from the ECM and 
LSTM network. The ECM is chosen because its governing 
equations are simple and fewer parameters to be processed by 
PINNs. Also, the good performance of LSTM in battery 
condition diagnosis shows its potential to capture complex 
temporal relationships. This paper comparatively explores 
parallel and sequential configurations of ECM and LSTM 
components, referred to as PINN-Parallel and PINN-Series, 
respectively. The parameters of both components are trainable 
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and optimized by a custom loss function that contains physical 
constraints. During the evaluation phase, an independent LSTM 
model is used as a baseline to comparatively analyze the 
accuracy, robustness, and computational efficiency of each 
model.  

The rest of this paper is organized as follows. Section 2 
includes the description of the dataset and structure of PINN 
frameworks. Section 3 provides details on the experiment 
implementation and a comparative analysis of these models in 
different scenarios. Finally, Section 4 summarizes the work and 
future research perspectives. 
 
2. METHODOLOGY 
2.1 Data Description and SOH Definition 

This study used data from the NASA Ames Diagnostic 
Center of Excellence database, that was measured on 
commercial lithium-ion rechargeable batteries under controlled 
experimental conditions [24]. Data from batteries 0005, 0006, 
0007, and 0018 were selected for the experiment, which have the 
same chemical composition. The process of data collection 
included repeated charging and discharging cycles of the 
batteries at room temperature. The initial temperature of each 
battery was around 24°C. The batteries were charged at a 
constant current of 1.5 A until each cell reached a voltage of 4.2 
V. The charging mode was then switched to constant voltage 
until the charging current was reduced to 20 mA. Discharging 
was performed at a constant current of 2 A, with cutoff voltages 
of 2.7 V, 2.5 V, 2.2 V, and 2.5 V for batteries 0005, 0006, 0007, 
and 0018, respectively. The dataset does not mention the rest 
periods between cycles when describing the experiment process. 
The voltage (V), current (I), and temperature (T) signals were 
recorded at a frequency of 10 Hz throughout the 
charge/discharge cycle. The batteries have shown significant 
aging, which is mainly due to repeated cycling. The experiments 
were completed once the battery capacity was reduced by 30%, 
which indicated that the battery had reached its end-of-life. The 
capacity changes observed in the four target batteries are 
presented in Figure 1. Although all batteries have the same 
nominal capacity of 2.0 Ah, variations in their initial states and 
minor manufacturing differences can lead to different initial 
capacities at the start of the experiments. The four batteries also 
have different degradation trajectories due to differences in 
depth of discharge and intrinsic variability. This uncertainty in 
reflecting actual use is addressed by the proposed model.  

After completing a full charge/discharge cycle, the cycle 
number count of the battery is incremented by one. The data 
utilized as input for the models in this study are time-series 
signals of voltage, current, and temperature during the charging 
phase of each battery cycle. These are considered measurable 
parameters, easily accessible during battery operation. 
Corresponding to these three charging profiles, the model's 
targeted output is the battery's SOH for the current cycle. The 
SOH is defined by the ratio of the nominal capacity to the 
releasable capacity, and it is displayed as: 
             𝑆𝑂𝐻(%) =

𝑄𝑚𝑎𝑥

𝑄𝑛𝑜𝑟𝑚
× 100%              (1) 

where 𝑄𝑚𝑎𝑥  is the maximal available capacity at the current 
cycle, and 𝑄𝑛𝑜𝑟𝑚  is the nominal capacity given by the 
manufacturer. 

Due to the varying charging time for different cycle, the 
𝑉, 𝐼, 𝑇  data also show different lengths. In the data 
preprocessing, each 𝑉, 𝐼, 𝑇 curve is interpolated to produce a 
uniform series of 100 equidistant points. This approach preserves 
the time-series nature of the data while normalizing the length of 
the input signal. It also reduces the number of raw data points 
and decreases the computational load. 

 

          
FIGURE 1: CAPACITY DEGRADATION OF BATTERIES 

 

2.2 Equivalent Circuit Model Embedded in PINN 
The proposed PINN models in this study embed the ECM 

into the LSTM framework. The ECM and electrochemical 
models are two classical physics-based models for providing 
information about the battery's internal processes. Compared to 
the electrochemical model, the ECM is easier to parameterize 
and verify but is also effective in predicting battery states [25]. 
There are multiple options for ECMs that can be embedded for 
simulating the battery's internal dynamics, such as the common 
ECMs mentioned in Section 1.1. However, in order to minimize 
the reliance on prior physical parameters and additional battery 
tests, the unknown parameters in the ECM are all represented by 
the MLP in the proposed framework. A complex ECM increases 
the difficulty of the neural network parameter optimization 
process and requires more computational cost [26]. For the 
consideration of the lightweight structure of the hybrid model, 
the basic Rint model is selected for the experiment. The 
schematic representations of the Rint model are shown in Figure 
2 and Equation (2). Although the structure is simple, the Rint 
model’s ability to increase the performance of a conventional 
data-driven model is demonstrated in the results section. 

 
 
FIGURE 2: SCHEMATIC REPRESENTATION OF THE RINT 
MODEL 
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             𝑉 =  𝑉𝑂𝐶 −  𝐼 ∙ 𝑅𝑖𝑛𝑡                (2) 
 

where 𝑉  and 𝐼  denote the battery terminal voltage and load 
current, 𝑉𝑂𝐶  indicates the open circuit voltage, and 𝑅𝑖𝑛𝑡 
represents ohmic resistance. 

In the Rint model, terminal voltage and load current reflect 
the direct electrical response of the battery under load conditions. 
The equation essentially captures how the battery's 𝑉  varies 
with the 𝐼, 𝑅𝑖𝑛𝑡, and 𝑉𝑂𝐶 . During the battery operation, 𝑉 and 
𝐼  are accessible and measurable parameters. While 𝑉𝑂𝐶  and 
𝑅𝑖𝑛𝑡 are critical to understanding the battery's internal state, they 
cannot be directly measured. In particular, internal resistance is 
a key parameter that can characterize battery degradation. 
Therefore, 𝑉  and 𝐼  can be employed as input in the ECM 
component to infer these internal parameters. Although the effect 
of temperature is ignored in the Rint model, including easily 
accessible temperature data as input increases the reliability of 
the ECM component.  
 
2.3 Long Short-Term Memory Module in PINN 

The LSTM module is designed to capture temporal 
dependencies within the time-series data of battery charging 
cycles. The LSTM can remember long-term dependencies and 
mitigate the vanishing gradient problem commonly associated 
with traditional recurrent neural networks [27]. By processing 
the input time series data using a sliding window, LSTM can 
have the memory of historical information. For battery 
application, a sliding window would consist of a series of input 
signals across multiple battery cycles. The window "slides" 
forward in time, moving one or more timesteps after each 
operation, depending on the stride. The signal vector 𝑋  at 
battery cycle 𝑡 can be shown as: 

 

𝑋𝑡 = (

𝑠𝑖𝑔𝑛𝑎𝑙1,1(𝑡) 𝑠𝑖𝑔𝑛𝑎𝑙1,2(𝑡)

𝑠𝑖𝑔𝑛𝑎𝑙2,1(𝑡) 𝑠𝑖𝑔𝑛𝑎𝑙2,2(𝑡)

⋯ 𝑠𝑖𝑔𝑛𝑎𝑙1,𝑚(𝑡)

⋯ 𝑠𝑖𝑔𝑛𝑎𝑙2,𝑚(𝑡)
⋯ ⋯

𝑠𝑖𝑔𝑛𝑎𝑙𝑦,1(𝑡) 𝑠𝑖𝑔𝑛𝑎𝑙𝑦,1(𝑡)
⋯ ⋯
⋯ 𝑠𝑖𝑔𝑛𝑎𝑙𝑦,𝑚(𝑡)

)     (3) 

 
where 𝑠𝑖𝑔𝑛𝑎𝑙𝑖,𝑗(𝑡) is the value of 𝑖𝑡ℎ input signal for the 𝑗𝑡ℎ 
time point within battery cycle 𝑡, the signal could be voltage, 
current, and temperature profiles during charging. 

A window 𝑆𝑊𝑡  of size 𝑤  containing the signal vectors 
over the previous 𝑤 − 1 cycles and the current cycle t, where: 

 
𝑆𝑊𝑡 = [𝑋𝑡−𝑤+1, 𝑋𝑡−𝑤+2, … , 𝑋𝑡]           (4) 

 
Each of these subsequences is then fed into the LSTM 

network, and the network learns from the temporal structure 
within each window. The LSTM recurrence equations at each 
time step t are given in Equation (5) to Equation (10) [28,29]: 
 

𝑖𝑡 =  𝜎 (𝑊𝑖 ∙ [ℎ𝑡−1, 𝑆𝑊𝑡]  + 𝑏𝑖)           (5) 
 

𝑓𝑡 =  𝜎 (𝑊𝑓 ∙ [ℎ𝑡−1, 𝑆𝑊𝑡]  +  𝑏𝑓)           (6) 
 

𝑜𝑡 =  𝜎 (𝑊𝑜 ∙ [ℎ𝑡−1, 𝑆𝑊𝑡]  +  𝑏𝑜)           (7) 

 
𝑔𝑡 =  tanh (𝑊𝑔 ∙ [ℎ𝑡−1, 𝑆𝑊𝑡]  +  𝑏𝑔)         (8) 

 
𝑐𝑡 =  𝑓𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ 𝑔𝑡               (9) 

 
ℎ𝑡 =  𝑜𝑡 ∙ tanh(𝑐𝑡)                (10) 

 
where 𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡 , 𝑔𝑡 are input gate, forget gate, output gate, and 
candidate cell state, respectively; 𝜎  and 𝑡𝑎𝑛ℎ  are activation 
functions; 𝑊𝑖 , 𝑊𝑓 , 𝑊𝑜, 𝑊𝑔 are the weight matrices; 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 , 𝑏𝑔 
are the bias vectors; ℎ𝑡  and 𝑐𝑡   are hidden states and cell 
states that update over time. 

The LSTM processes the time-series battery cycle and 
updates its cell and hidden states at each timestep within the 
window. The final output of the LSTM module, ℎ𝑡, serves as a 
representation of the learned temporal information of window 
𝑆𝑊𝑡. 
 
2.4 Proposed PINN framework 

This study presents two PINN architectures, PINN-Parallel 
and PINN-Series, as shown in Figure 3. Both structures consist 
of an Equivalent Circuit Model (ECM) module, a Long Short-
Term Memory (LSTM) module, and a customized loss function 
embedded with physical constraints. The main difference 
between the two is the layout: the ECM and LSTM modules are 
operated in parallel in PINN-Parallel, whereas they are 
sequentially connected in PINN-Series. 

The ECM module is constructed based on the selected Rint 
model from Section 2.2. Its operational principle involves using 
a Multilayer Perceptron (MLP) network to estimate the battery's 
internal states from the dataset's voltage, current, and 
temperature signals. Due to the dynamic nature of the ECM, the 
module can process input time-series data of battery 𝑉, 𝐼, and 
𝑇  for each cycle. Therefore, the ECM component generates 
corresponding time-series estimates for the open-circuit voltage 
(𝑉𝑂𝐶) and internal resistance (𝑅𝑖𝑛𝑡). 

To validate the internal state estimation, two physical 
constraints are required on the ECM module. First, the predicted 
values of 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡 should not be negative. Second, due to 
the nonlinear relationship between the two internal parameters 
and the battery's state of charge, the ECM outputs are required to 
show temporal continuity. Large discrepancies between 
parameters at consecutive time points are penalized to maintain 
this continuity. 

The LSTM module is capable of understanding temporal 
information within the batter cycling data, as described in 
Section 2.3. The sliding window helps the LSTM consider the 
target cycle as well as a predefined length of historical data. This 
provides the network with a richer framework for making 
predictions. 

 In the PINN-Parallel model, both the ECM and LSTM 
modules receive input signals {𝑉, 𝐼, 𝑇}  from the battery 
charging process. The ECM block only processes signals on 
target battery cycle 𝑡  and outputs the corresponding 
[𝑉𝑂𝐶(𝑡), 𝑅𝑖𝑛𝑡(𝑡)] . The LSTM receives a sliding window of 
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[𝑉(𝑡), 𝐼(𝑡), 𝑇(𝑡)]  over multiple cycles, where each window 
includes data from the target cycle and a predefined number of 
past cycles (Equation 4). The LSTM processes this window to 
output a final hidden state containing learned temporal 
information. The final dense layer of PINN-Parallel combines 
outputs from both the ECM and LSTM to predict the SOH for 
the target cycle. 

In the PINN-Series model, the ECM first processes a sliding 
window of input signals [𝑉(𝑡), 𝐼(𝑡), 𝑇(𝑡)], with its outputs fed 
into the LSTM along with the original signals. Therefore, the 
LSTM processes a [𝑉(𝑡), 𝐼(𝑡), 𝑇(𝑡), 𝑉𝑂𝐶(𝑡), 𝑅𝑖𝑛𝑡(𝑡)]  sliding 
window over multiple cycles. The final dense layer takes the 
hidden state vector that captures both the temporal patterns in the 
original signals and the dynamics reflected in the ECM outputs 
to predict the SOH. 

The loss function designed as the optimization objective for 
both frameworks is a composite of three parts, integrating the 
final SOH prediction accuracy in Equation (11), errors from the 
ECM predictions in Equation (12) (13), and the continuity of 
ECM parameters in Equation (14). To mathematically describe 
the three parts of loss: 

 
𝐿𝑜𝑠𝑠𝑆𝑂𝐻 =  

1

𝑁
∑ (𝑆𝑂𝐻𝑡𝑟𝑢𝑒(𝑡) −  𝑆𝑂𝐻𝑝𝑟𝑒𝑑(𝑡))2𝑁

𝑡=1     (11) 
 
where 𝑁  is the number of battery cycles; 𝑆𝑂𝐻𝑡𝑟𝑢𝑒(𝑡) , 
𝑆𝑂𝐻𝑝𝑟𝑒𝑑(𝑡)  are true and predicted SOH for the 𝑡𝑡ℎ  battery 
cycle. 
 

𝐿𝑜𝑠𝑠𝐸𝐶𝑀 =  
1

𝑁
∑

1

𝑀
∑ (𝑉𝑡𝑟𝑢𝑒,𝑖(𝑡) −  𝑉𝑝𝑟𝑒𝑑,𝑖(𝑡))2𝑀

𝑖=1
𝑁
𝑡=1    (12) 

 
𝑉𝑝𝑟𝑒𝑑,𝑖(𝑡) =  𝑉𝑂𝐶,𝑖(𝑡) −  𝐼𝑖(𝑡) ∙ 𝑅𝑖𝑛𝑡,𝑖(t)          (13) 

 
where 𝑀 is the number of voltage predictions within the 𝑡𝑡ℎ 
battery cycle; 𝑖 indexes the time points within the 𝑡𝑡ℎ battery 
cycle; 𝑉𝑡𝑟𝑢𝑒,𝑖(𝑡), 𝑉𝑝𝑟𝑒𝑑,𝑖(𝑡) are 𝑖𝑡ℎ true and predicted voltage; 
where 𝑉𝑝𝑟𝑒𝑑,𝑖(𝑡) is calculated based on 𝑖𝑡ℎ estimated 𝑉𝑂𝐶 (𝑡), 
𝑅𝑖𝑛𝑡(t), and known current 𝐼(𝑡) within the 𝑡𝑡ℎ battery cycle. 
 

𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡 =
1

𝑁
∑

1

𝑀−1
∑ (|𝑉𝑂𝐶,𝑖+1(𝑡) − 𝑉𝑂𝐶,𝑖(𝑡)| +𝑀−1

𝑖=1
𝑁
𝑡=1

|𝑅𝑖𝑛𝑡,𝑖+1(𝑡) − 𝑅𝑖𝑛𝑡,𝑖(𝑡)|)                     (14) 
 
where this component ensures smooth transitions for ECM 
parameters 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡  between consecutive time points 𝑖 
within 𝑡𝑡ℎ  cycle, reflecting physical consistency. 

The total loss is a weighted sum of these components: 
 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝛼 𝐿𝑜𝑠𝑠𝑆𝑂𝐻 + 𝛽 𝐿𝑜𝑠𝑠𝐸𝐶𝑀 + 𝛾 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡   (15) 
 

where 𝛼, 𝛽, 𝛾  are weighting factors that balance the 
contributions of each loss component to the total loss.  

The proposed PINN architectures offer a hybrid framework 
for predicting battery behavior. The loss function confirms that 
the PINN models accurately predict the battery's internal states 

and SOH while respecting the physical constraints and 
continuity inherent in the battery's behavior. Moreover, 𝐿𝑜𝑠𝑠𝑆𝑂𝐻  
should be given higher weight relative to the other losses to 
emphasize its importance in the framework. 
 

 
 
FIGURE 3: STRUCTURE OF PINN-PARALLEL AND PINN-
SERIES 

 
3. RESULTS AND DISCUSSION 
3.1 Experimental details 

In this work, the two PINN models and baseline LSTM 
model employed for SOH estimation are implemented in Python 
utilizing the Tensorflow framework. All training and testing 
procedures are executed and run on a single CPU. The 
configurations and hyperparameters are empirically determined 
with the trial-and-error procedure as summarized in Table 1. 
Consistent hyperparameters are maintained for the single LSTM 
network and the LSTM components within the two PINNs to 
ensure a common baseline. This allows performance differences 
to be attributed directly to architectural variations rather than 
fine-tuning effectiveness. Future work could explore to identify 
the optimal configurations for each network.  

The LSTM is a simple baseline model without an ECM 
component, which emphasizes temporal data processing. 
Alternatively, PINN-Parallel introduces an ECM block that 
operates in parallel with the LSTM network. This component 
uses a shared dense layer and different branches for 𝑉𝑂𝐶  and 
𝑅𝑖𝑛𝑡 outputs, thus increasing the model's input with physics-
informed features. On the other hand, PINN-Series uses a 
sequential approach to feed the ECM component outputs directly 
into the LSTM network. This structure provides a deeper 
integration of physics data into the temporal learning process. 
Each model employs the Adaptive Moment Estimation (Adam) 
algorithm to stabilize the training process and minimize the loss 
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function. Early stopping is implemented throughout the training 
to mitigate the overfitting and speed up model convergence. 

Data from batteries 0006, 0007, and 0018 are used as the 
training set, while battery 0005 is the test set. All models employ 
a sliding window of length 10, which means that data from the 
previous 9 cycles are used to assist in predicting the current state 
of the battery. In addition to the above standard scenario, the 
impacts of using less training data and varying lengths of 
historical information are also explored in Sections 3.4 and 3.5. 

The performance of the SOH estimation models is evaluated 
using two principal statistical measures: Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE). RMSE reflects the 
stability of the model and quantifies its prediction error. MAE 
serves as a direct indicator to quantify the accuracy of the model. 
While the PINNs are trained using custom loss functions that 
incorporate physical constraints and estimations of ECM 
parameters, the final evaluation of performance is from the SOH 
prediction. To provide a comparative analysis, all reported 
model results represent averages from five separate runs. 

 
TABLE 1: MODEL CONFIGURATIONS AND 
HYPERPARAMETERS 

Parameter/ 
Component LSTM PINN-Parallel PINN-Series 

Loss Function 
Mean 

Squared 
Error 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑜𝑠𝑠𝑆𝑂𝐻 +
0.5 𝐿𝑜𝑠𝑠𝐸𝐶𝑀 + 0.5 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡 

(Equation 11 - 15) 

ECM 
Component N/A 

Shared layers: 32, 16 (ReLU); 
𝑉𝑂𝐶 branch: 100 (Softplus); 
𝑅𝑖𝑛𝑡 branch: 100 (Softplus) 

Sliding window 
size 10 

LSTM 
Component 128, 64 

Dense Layers to 
output SOH 32 (ReLU), 1 (Linear) 

Optimizer Adam (learning rate = 0.001) 

Regularization Early stopping 

Batch Size 32 

Max. Epochs 1000 

 
3.2 SOH Prediction Performance 

Within the experimental setting outlined in Section 3.1, the 
SOH predictions from three models are visualized in Figure 4. 
The RMSE, MAE and training cost are summarized in Figure 5. 
The PINN-Series and single LSTM demonstrated comparable 
levels of prediction accuracy, with PINN-Series showing slightly 
superior performance in terms of lower errors. This modest 
difference in performance can be attributed to LSTM's tendency 
for less accurate predictions in the early stages of battery life. As 
illustrated in Figure 4, the single LSTM model fails to capture 
the fluctuations in the data during the initial 20 battery cycle 
predictions. Batteries often behave differently in early cycling 

than following in their aging patterns due to different dominant 
degradation mechanisms [30]. A single LSTM model requires a 
certain amount of data to learn patterns, and early-stage 
behaviors may not provide sufficiently consistent patterns for the 
model to capture. The observed better performance of the LSTM 
model during the middle stage is likely due to its ability to 
quickly adapt to stable and consistent patterns in this phase. On 
the other hand, the PINN-Series incorporates knowledge of the 
underlying physical processes in their architecture. This helps to 
take into account the different degradation behaviors present in 
the early cycles. As a result, PINN-Series can provide more 
accurate representations at this critical stage.  

In addition, the PINN-Series has the advantage of a lower 
standard deviation in different runs, which shows better 
performance consistency. This suggests that incorporating 
temporal characteristics of parameters provided by the ECM 
block can improve the robustness of the model. The PINN-Series 
could be more consistent in various operational conditions and 
potentially less sensitive to fluctuations in the data or initial 
starting conditions of the model. However, the PINN-Parallel 
shows a reduced accuracy in comparison to the other two. This 
suggests that the way it uses the output directly from the ECM 
module instead introduces noise into the model. The evaluation 
of the validity of ECM output is discussed in Section 3.3. 

Despite these advantages, it's important to acknowledge that 
the additional MLP structure in the PINNs introduces a higher 
training cost. As shown by the yellow curves in Figure 5, the 
computational burden for the two PINN models primarily comes 
from the extra MLP component. The operational cost of an MLP 
can be influenced by various factors, including the volume of 
input data. Therefore, the impact of a reduced training dataset 
and different lengths of history information on model 
performance should be investigated further. 

 

 
FIGURE 4: SOH PREDICTION PERFORMANCE OF THREE 
MODELS  
 

 
FIGURE 5: RMSE, MAE AND TRAINING COST OF THREE 
MODELS 
 



 

 7 © 2024 by ASME 

3.3 Evaluation of the ECM parameter estimation 
The 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡  parameters in both the PINN-Parallel 

and PINN-Series models are estimated using the same MLP 
network configuration. In addition, these models are trained 
using the identical customized loss function that combines the 
SOH prediction error, the ECM parameter estimation error, and 
the time-continuity constraints on 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡 . Since the 
framework primarily focuses on SOH prediction, this part of the 
loss is given a higher weight during training to prioritize 
accuracy. 

Figure 6 illustrates the changes in 𝐿𝑜𝑠𝑠𝑆𝑂𝐻  and 𝐿𝑜𝑠𝑠𝐸𝐶𝑀  
during the training of PINN-Parallel and PINN-Series. To 
observe their trends more clearly, 1000 epochs are finished 
without early stopping. It is shown that the ECM-related losses 
in both PINN models converge with sufficient training. 
However, the computation of 𝐿𝑜𝑠𝑠𝐸𝐶𝑀 is based on prediction 
error of voltage in Equation (12), since real 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡 
values are difficult to obtain. This indirect optimization implies 
that even highly precise voltage predictions from the ECM block 
may not transfer to accurate estimates of 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡.  

Figures 7 and 8 present the predictive performance of PINNs 
for the 𝑉 , 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡  of the same battery cycle in two 
separate runs. Both models can fit the voltage data well, 
compatible with the convergence of 𝐿𝑜𝑠𝑠𝐸𝐶𝑀  shown in Figure 
6. However, it does not guarantee the fidelity of the 𝑉𝑂𝐶  and 
𝑅𝑖𝑛𝑡 simulations. Despite the identical module architecture and 
inputs, the observed differences in values between parameters in 
different runs emphasize the stochastic nature of the neural 
network. This randomness is introduced by the different initial 
weights and parameters in the training. Therefore, in the absence 
of reference values for 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡 , the ECM part cannot 
achieve a robust output. Directly utilizing the ECM output for 
SOH prediction might negatively affect the prediction by 
introducing noise, as shown in the results of PINN-Parallel. 

On the other hand, PINN-Series performs significantly 
better than PINN-Parallel. This improvement is attributed to 
PINN-Series learning the temporal characteristics of ECM 
estimation using LSTM module. As shown in Figure 6, both the 
two losses are well optimized during training, although the ECM 

loss decreases more slowly than the SOH one. After about 50 
epochs, the SOH loss tends to stabilize while the ECM loss 
continues to decrease, which shows that the ECM part does not 
significantly improve the accuracy of the SOH prediction in this 
standard setup. This was also mentioned in Section 3.2, where 
PINN-S shows advantages mainly in terms of model stability. 

In short, since the ECM component can only indirectly 
predict 𝑉𝑂𝐶  and 𝑅𝑖𝑛𝑡 , it is not desirable to use these output 
values directly as physics improvement. However, extracting 
temporal information from the ECM predicted parameters is 
more useful. In the case of sufficient training data and 
appropriate sliding window lengths, the impact on model 
performance is not obvious, but more on this will be discussed 
in subsequent sections. 

 
3.4 Influence of limited training data 

This section investigates the performance of LSTM and two 
PINNs on different limited training datasets. Exploring the 
impact of limited training data is motivated by practical 
considerations in real-world applications. In many cases, it is 
time-consuming and costly to collect battery data for a large 
number of different operating conditions. 

Especially for rapidly evolving battery technologies, new 
chemistries are more likely to encounter a lack of historical data. 
Therefore, we need to understand the applicability of the models 
considering the data limitations. In addition, this experiment can 
evaluate the model's ability to handle overfitting, a common 
problem when training with limited data. It is critical that models 
not only fit the training data, but also capture the underlying 
patterns that can be generalized to new unseen data. 

The three models are trained on a combined dataset of 
batteries 0006, 0007, and 0018, as well as on three individual 
battery data. The results are summarized in Figure 9. With 
sufficient training data, all three models demonstrated their best 
performance. The PINN-Series model consistently shows low 
error over different training conditions. This model is more 
capable of dealing with the variability inherent in the different 
batteries. On the other hand, LSTM shows a more serious 
overfitting problem when faced with a limited single battery 
training set.  

 

 
FIGURE 6: TRAJECTORY OF SOH LOSS AND ECM LOSS DURING TRAINING 
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FIGURE 7: PREDICTED VOLTAGE (A/D), OPEN CIRCUIT VOLTAGE (B/E), AND INTERNAL RESISTANCE (C/F) FROM PINN-
PARALLEL IN TWO DIFFERENT RUNS 

 
FIGURE 8: PREDICTED VOLTAGE (G/J), OPEN CIRCUIT VOLTAGE (H/K), AND INTERNAL RESISTANCE (I/L) FROM PINN-SERIES 
IN TWO DIFFERENT RUNS 

As seen in Figure 9, LSTM has a relatively low prediction 
error when trained with battery 0007, which has the most similar 
degradation trajectory to the test battery observed in Figure 1.  

Moreover, with a smaller training set, the running time cost 
of the two PINNs is reduced by at least 50%. This significantly 
narrows the gap between their training costs and a single neural 
network. While the LSTM model is still more computationally 
efficient, it does not achieve the same level of precision as the 
two PINN models. Between these two PINN methods, the 
PINN-Parallel method has a faster training time but 
compromises prediction accuracy and consistency. 

 

 
FIGURE 9: MODEL PERFORMANCE OVER DIFFERENT 
TRAINING SETS 
 

3.5 Influence of Historical Information Length 
This section discusses the performance of the three models 

in predicting SOH under different sliding window sizes. Details 
of the operation of the sliding window are provided in Section 
2.3. The size of the sliding window relates to the length of 
historical information that can be utilized by the model to make 
predictions. More historical information can increase the ability 
of the LSTM block in all three models to capture long-term 
dependencies. However, if the window is too long, the hidden 
states in the models may be difficult to capture subtle changes 
due to information saturation. A long window may allow the 
LSTM layer to accumulate more noise. More importantly, it 
would give the model more potential for overfitting as well as a 
higher computational burden.  

The effects of different window sizes varying between 5 to 
25 on the model are summarized in Figure 10. The single LSTM 
model's performance shows variance as the window size 
increases. This fluctuation in RMSE possibly reflects the 
overfitting of the LSTM model. Especially with larger window 
sizes, the model may have learned more noise rather than the 
underlying pattern. Although PINN-Parallel has physical 
information involved, its LSTM module is not constrained by the 
introduced physics. Therefore, the model has the same 
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deficiency as the single LSTM model when dealing with long 
windows. 

In contrast, the PINN-Series model integrates the laws of 
physics through the ECM component prior to the LSTM layer 
and presents greater resistance to overfitting and noise. The loss 
function in this model restricts the learning process and ensures 
that the model learns temporal features that adhere to the 
physical principles. Despite its high training cost, the PINN 
model achieves consistently high accuracy in SOH prediction. 
This trend is particularly observable as the window size 
increases, which means that the model performs well in 
capturing the temporal dynamics inherent in battery behavior 
using long historical data. PINN-Series remains the best 
predictive performer among its competitors, even when 
historical information is most limited by a window size of 5. 

 
FIGURE 10: MODEL PERFORMANCE OVER DIFFERENT 
WINDOW SIZE 
 
3.6 Discussion 

When comparing the three models, the greatest strength of 
LSTM is its computational efficiency. With sufficient training 
data and the proper setting of the sliding window, LSTM can 
show good prediction accuracy. However, its performance is 
easily affected by the input data and is prone to overfitting. 
PINN-Parallel aims to improve predictive performance by 
incorporating physical features directly into its architecture. 
However, the ECM module does not provide accurate 
representations of the internal states. Thus, the parallel 
architecture may introduce noise instead of features that favor 
SOH prediction. 

The PINN-Series model, with its sequential integration of 
ECM components into the LSTM network. It learns the temporal 
patterns and dependencies of these ECM estimations over time, 
which can be more informative for SOH prediction than the raw 
ECM outputs themselves. It consistently achieves superior 
performance with the lowest error and highest robustness. It 
better handles variability under different battery conditions and 
also is applicable to cases with limited training data. 

PINN-Series requires more training costs than single deep 
learning networks. However, its robustness shows the potential 
to run efficiently on smaller training datasets and does not 
require additional feature engineering. It is worth mentioning 
that the difference in prediction speed between the trained PINN-
Series and the LSTM on the test set is small, with the LSTM 
being only 10% faster. When deploying pre-trained models, the 
benefits of the PINN-Series accuracy may outweigh the slight 

increase in predicting time. This makes the PINN-Series worth 
considering for tasks where prediction quality is critical. 

 

4. CONCLUSION 
In this paper, physics-informed neural networks with 

different structures are explored for battery state-of-health 
estimation. The results show that PINN-Series outperforms 
conventional LSTM and PINN-Parallel models in terms of 
prediction accuracy and robustness against noise and overfitting. 
The integration of physical principles through the equivalent 
circuit model within the LSTM framework improves the model's 
interpretability and reliability, especially in scenarios with 
limited training data or varying operational conditions.  

While the PINNs present promising results, ongoing 
research is needed to further refine these models and expand their 
applicability. The current study utilized a simple Rint model 
within the framework to represent the battery's internal behavior. 
Future research could explore the incorporation of more complex 
ECMs, which may capture the battery dynamics more 
accurately. Although this may increase the computational 
complexity, advances in optimization algorithms or data-
efficient training strategies can mitigate these challenges. In 
addition, the significant robustness of the PINN-Series 
represents the potential to deal with noise and uncertainty in real-
world field data. Its usefulness can be tested in future studies. 
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