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ABSTRACT

Battery lifetime and reliability depend on accurate state-of-
health (SOH) estimation, while complex degradation
mechanisms and varying operating conditions strengthen this
challenge. This study presents two physics-informed neural
network (PINN) configurations, PINN-Parallel, and PINN-
Series, designed to improve SOH prediction by combining an
equivalent circuit model (ECM) with a long short-term memory
(LSTM) network. PINN-Parallel process input data through
parallel ECM and LSTM modules and combine their outputs for
SOH estimation. On the other hand, the PINN-Series uses a
sequential approach that feeds ECM-derived parameters into the
LSTM network to supplement temporal data analysis with
physics information. Both models utilize easily accessible
voltage, current, and temperature data that match realistic
battery monitoring constraints. Experimental evaluations show
that PINN-Series outperforms the PINN-Parallel and the
baseline LSTM model in accuracy and robustness. It also adapts
well to different input conditions. This demonstrates that the
simulated battery dynamic states from ECM increase the LSTM's
ability to capture degradation patterns and improve the model's
ability to explain complex battery behavior. However, the trade-
off between the robustness and training efficiency of PINNs is
also discussed. The research findings show the potential of PINN
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models (particularly the PINN-Series) in advancing battery
management systems, but the required computational resources
need to be considered.

Keywords: Lithium-ion battery; Electric vehicle; State of
health; Physics-Informed Neural Network

1. INTRODUCTION

Electric vehicles (EVs) and their lithium-ion batteries are
among the primary focuses of sustainable transportation [1]. As
EVs become more widespread, understanding and predicting
battery performance and lifespan is critical to vehicle reliability
and lifecycle management [2]. The inevitable aging during usage
results in a deterioration of the battery state of health (SOH) and
makes the modeling of degradation critical for a reliable battery
management system.

1.1 Related Work

There are two broad approaches to building the battery
degradation model for battery in-use status prediction and
diagnosis: the physics-based and the data-driven approach. The
physics-based method can be further divided into
electrochemical models and equivalent circuit models (ECM).
The electrochemical model describes the degradation
mechanisms of a battery based on its specific material properties
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and operating parameters [3]. For example, the most widely
adopted pseudo-two-dimensional (P2D) model offers a thorough
examination of the thermal energy balance, mass balances,
charge balances, and kinetics of electrochemical reactions within
the cell [4]. However, the P2D model usually includes solving a
set of tightly coupled differential equations [5]. The process is
too complex and slow to be used for real-time management of
in-use batteries. In order to reduce the computational demand,
simplified versions of the P2D model have been developed, such
as the single particle model [6]. For fast simulation, this model
did not consider the variations in the electrolyte concentration
and the potential [7]. Hence, it is not applicable to the simulation
of high discharge rate cases, which is one of the required
characteristics of EV batteries.

The ECM simulates the electrical behavior of a battery by
using a combination of circuit elements [8,9]. A standard ECM
typically employs an RC network, which consists of resistors and
capacitors arranged in parallel, to replicate the dynamic
behaviors of the battery [10]. Similar to the electrochemical
model, it captures the dynamics of battery current and voltage in
a physically explainable way. But ECM has a simpler structure
and governing equations and therefore offers faster computation.
Different orders of ECMs are shown to be effective in simulating
batteries and can be used for SOH prediction [9]. The common
ECMs include the Rint model, RC model, Thevenin model,
Dual-Polarization model, and Partnership for a New Generation
of Vehicles (PNGV) model [11]. However, the identification of
ECM parameters based on underlying experimental data tends to
limit its application [5]. For example, a parameterized ECM that
assumes low C-rate charging and discharging of batteries at
ambient temperature may not be applicable to another scenario.

On the other hand, the data-driven model can utilize large
datasets to train the model to capture various operating
parameters and battery responses. Among others, deep learning
models have been evidenced to accurately simulate complex
nonlinear battery systems, such as the long short-term memory
(LSTM) network. This indicates that the physical-based model
in practice can be improved with a data-driven approach to
compensate for its incompleteness or inflexibility [12]. In
addition, the interpretability of the physical model can be
protected and provides the opportunity to reduce the demand for
large amounts of training data. The integrated model shows
promise in addressing the uncertainty of aging conditions [13],
thermal management [14], and state of charge estimation
[15,16].

Aykol et al. [17] categorized integration models for physical
knowledge and deep learning into two broad categories:
sequential combination of independent models and hybridized
models. The first category does not require fundamental changes
in the physics or the deep learning model. For instance, physical
models can be used to generate synthetic data to train deep
learning, while reducing the demand for experimental data
collection [18]. The second category includes a hybrid
architecture that embeds the physical or deep learning model in
the other. The subsequent discussion mainly focuses on the
hybridized model for predicting battery capacity or SOH.

To name several recent examples, Xu et al. [19] applied
physical equations from a first-order Thevenin model to
constrain and refine the predictions of an autoencoder. Models
trained on battery discharge data can be used to predict SOH
trajectories for the entire lifecycle of a test battery under similar
operating conditions. Singh et al. [20] utilized Fick's law of
diffusion from a single particle model to train the neural network,
with inputs being a spatial vector of electrode particle radius
along with a temporal vector for time. The simulated lithium
solid-phase concentration is then used to calculate the state of
charge, capacity, and SOH of the battery. Ye et al. [21]
incorporated the monotonous relationship between the peak of
the incremental capacity curve and the SOH into a neural
network. Their enhanced model shows improvement in
prediction accuracy. Fu et al. [22] integrated a second-order
ECM into the recurrent neural network to estimate battery
discharge profiles. The ohmic resistances identified from this
hybrid network can be used to approximate SOH based on the
assumed linear relationship. Lin et al. [23] proposed a framework
that combines ECM with deep learning to extract key parameters
from electrochemical impedance spectroscopy, reflecting the
internal states of the battery. The multi-task learning and physical
regularization are integrated to achieve more accurate and
interpretable estimation results.

1.2 Problem Statement

Previous research has shown the promise of combining
physics with data-driven models to improve battery SOH
estimation. However, there are more directions to be explored in
this emerging area. It is important to note that many hybrid
models require pre-defined or known parameters based on
physical (especially electrochemical) models. This requirement
limits the generalizability of plain data-driven models to
different battery chemistries and operating conditions. In
addition, the incorporation of certain physical laws improves the
interpretability of the model. However, this might also require
additional battery testing, such as electrochemical impedance
spectroscopy and differential capacity analysis, which are not
easily accessible during routine battery operations. Moreover,
discussions on the comparison of training costs between hybrid
models and purely data-driven approaches are uncommon.

To address these gaps, this study develops Physics-Informed
Neural Network (PINN) frameworks for SOH estimation that
consider robustness and practicality. The PINNs are designed to
process easily accessible voltage, current, and temperature
measurements without presetting physical parameters, thus
increasing the model’s application in practice. The hybrid
architecture integrates physics information from the ECM and
LSTM network. The ECM is chosen because its governing
equations are simple and fewer parameters to be processed by
PINNs. Also, the good performance of LSTM in battery
condition diagnosis shows its potential to capture complex
temporal relationships. This paper comparatively explores
parallel and sequential configurations of ECM and LSTM
components, referred to as PINN-Parallel and PINN-Series,
respectively. The parameters of both components are trainable
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and optimized by a custom loss function that contains physical
constraints. During the evaluation phase, an independent LSTM
model is used as a baseline to comparatively analyze the
accuracy, robustness, and computational efficiency of each
model.

The rest of this paper is organized as follows. Section 2
includes the description of the dataset and structure of PINN
frameworks. Section 3 provides details on the experiment
implementation and a comparative analysis of these models in
different scenarios. Finally, Section 4 summarizes the work and
future research perspectives.

2. METHODOLOGY
2.1 Data Description and SOH Definition

This study used data from the NASA Ames Diagnostic
Center of Excellence database, that was measured on
commercial lithium-ion rechargeable batteries under controlled
experimental conditions [24]. Data from batteries 0005, 0006,
0007, and 0018 were selected for the experiment, which have the
same chemical composition. The process of data collection
included repeated charging and discharging cycles of the
batteries at room temperature. The initial temperature of each
battery was around 24°C. The batteries were charged at a
constant current of 1.5 A until each cell reached a voltage of 4.2
V. The charging mode was then switched to constant voltage
until the charging current was reduced to 20 mA. Discharging
was performed at a constant current of 2 A, with cutoff voltages
of2.7V,2.5V,22V,and 2.5V for batteries 0005, 0006, 0007,
and 0018, respectively. The dataset does not mention the rest
periods between cycles when describing the experiment process.
The voltage (V), current (I), and temperature (T) signals were
recorded at a frequency of 10 Hz throughout the
charge/discharge cycle. The batteries have shown significant
aging, which is mainly due to repeated cycling. The experiments
were completed once the battery capacity was reduced by 30%,
which indicated that the battery had reached its end-of-life. The
capacity changes observed in the four target batteries are
presented in Figure 1. Although all batteries have the same
nominal capacity of 2.0 Ah, variations in their initial states and
minor manufacturing differences can lead to different initial
capacities at the start of the experiments. The four batteries also
have different degradation trajectories due to differences in
depth of discharge and intrinsic variability. This uncertainty in
reflecting actual use is addressed by the proposed model.

After completing a full charge/discharge cycle, the cycle
number count of the battery is incremented by one. The data
utilized as input for the models in this study are time-series
signals of voltage, current, and temperature during the charging
phase of each battery cycle. These are considered measurable
parameters, easily accessible during battery operation.
Corresponding to these three charging profiles, the model's
targeted output is the battery's SOH for the current cycle. The
SOH is defined by the ratio of the nominal capacity to the
releasable capacity, and it is displayed as:

SOH (%) = g”ﬂ x 100% (1)

norm

where Q4. is the maximal available capacity at the current
cycle, and Qnorm 1s the nominal capacity given by the
manufacturer.

Due to the varying charging time for different cycle, the
V,I,T data also show different lengths. In the data
preprocessing, each V,I,T curve is interpolated to produce a
uniform series of 100 equidistant points. This approach preserves
the time-series nature of the data while normalizing the length of
the input signal. It also reduces the number of raw data points
and decreases the computational load.
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FIGURE 1: CAPACITY DEGRADATION OF BATTERIES

2.2 Equivalent Circuit Model Embedded in PINN

The proposed PINN models in this study embed the ECM
into the LSTM framework. The ECM and electrochemical
models are two classical physics-based models for providing
information about the battery's internal processes. Compared to
the electrochemical model, the ECM is easier to parameterize
and verify but is also effective in predicting battery states [25].
There are multiple options for ECMs that can be embedded for
simulating the battery's internal dynamics, such as the common
ECMs mentioned in Section 1.1. However, in order to minimize
the reliance on prior physical parameters and additional battery
tests, the unknown parameters in the ECM are all represented by
the MLP in the proposed framework. A complex ECM increases
the difficulty of the neural network parameter optimization
process and requires more computational cost [26]. For the
consideration of the lightweight structure of the hybrid model,
the basic Rint model is selected for the experiment. The
schematic representations of the Rint model are shown in Figure
2 and Equation (2). Although the structure is simple, the Rint
model’s ability to increase the performance of a conventional
data-driven model is demoni;crated in the results section.
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FIGURE 2: SCHEMATIC REPRESENTATION OF THE RINT
MODEL
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where V' and I denote the battery terminal voltage and load
current, V,. indicates the open circuit voltage, and R,
represents ohmic resistance.

In the Rint model, terminal voltage and load current reflect
the direct electrical response of the battery under load conditions.
The equation essentially captures how the battery's V wvaries
with the I, Rj,:, and V. During the battery operation, V and
I are accessible and measurable parameters. While V,, and
R;n: are critical to understanding the battery's internal state, they
cannot be directly measured. In particular, internal resistance is
a key parameter that can characterize battery degradation.
Therefore, V and [ can be employed as input in the ECM
component to infer these internal parameters. Although the effect
of temperature is ignored in the Rint model, including easily
accessible temperature data as input increases the reliability of
the ECM component.

2.3 Long Short-Term Memory Module in PINN

The LSTM module is designed to capture temporal
dependencies within the time-series data of battery charging
cycles. The LSTM can remember long-term dependencies and
mitigate the vanishing gradient problem commonly associated
with traditional recurrent neural networks [27]. By processing
the input time series data using a sliding window, LSTM can
have the memory of historical information. For battery
application, a sliding window would consist of a series of input
signals across multiple battery cycles. The window "slides"
forward in time, moving one or more timesteps after each
operation, depending on the stride. The signal vector X at
battery cycle t can be shown as:

signaly 1(t) signal; ,(t) signaly i, (t)
X, = Sign‘.l‘l‘z,1(t) Sign‘.l.l.z,z ®) signa.%‘z'm(t) (3)
signaly, ;(t) signaly, 1(t) signaly, ()

where signal; ;(t) is the value of i*" input signal for the j™
time point within battery cycle t, the signal could be voltage,
current, and temperature profiles during charging.

A window SW, of size w containing the signal vectors
over the previous w — 1 cycles and the current cycle ¢, where:

SWe = [Xe—ws1r Xemwazs - 5 Xe] 4

Each of these subsequences is then fed into the LSTM
network, and the network learns from the temporal structure
within each window. The LSTM recurrence equations at each
time step t are given in Equation (5) to Equation (10) [28,29]:

i =0 W [hey, SW] + b)) )
fe= o W+ [he-1, SW,] + by) (6)
o, = 0 W, [he—y, SW;] + b,) @)

gy = tanh (W, - [he—1, SW,] + bg) ®)
= fercort i gt ©)
h; = o, - tanh(c;) (10)

where i, f;, 0, g; are input gate, forget gate, output gate, and
candidate cell state, respectively; o and tanh are activation
functions; Wi, We, Wy, W, are the weight matrices; bi,bf, bo,bg
are the bias vectors; h; and ¢, are hidden states and cell
states that update over time.

The LSTM processes the time-series battery cycle and
updates its cell and hidden states at each timestep within the
window. The final output of the LSTM module, h,, serves as a
representation of the learned temporal information of window
SW;.

2.4 Proposed PINN framework

This study presents two PINN architectures, PINN-Parallel
and PINN-Series, as shown in Figure 3. Both structures consist
of an Equivalent Circuit Model (ECM) module, a Long Short-
Term Memory (LSTM) module, and a customized loss function
embedded with physical constraints. The main difference
between the two is the layout: the ECM and LSTM modules are
operated in parallel in PINN-Parallel, whereas they are
sequentially connected in PINN-Series.

The ECM module is constructed based on the selected Rint
model from Section 2.2. Its operational principle involves using
a Multilayer Perceptron (MLP) network to estimate the battery's
internal states from the dataset's voltage, current, and
temperature signals. Due to the dynamic nature of the ECM, the
module can process input time-series data of battery V, I, and
T for each cycle. Therefore, the ECM component generates
corresponding time-series estimates for the open-circuit voltage
(Vy¢) and internal resistance (R ).

To validate the internal state estimation, two physical
constraints are required on the ECM module. First, the predicted
values of Vy. and R;,; should not be negative. Second, due to
the nonlinear relationship between the two internal parameters
and the battery's state of charge, the ECM outputs are required to
show temporal continuity. Large discrepancies between
parameters at consecutive time points are penalized to maintain
this continuity.

The LSTM module is capable of understanding temporal
information within the batter cycling data, as described in
Section 2.3. The sliding window helps the LSTM consider the
target cycle as well as a predefined length of historical data. This
provides the network with a richer framework for making
predictions.

In the PINN-Parallel model, both the ECM and LSTM
modules receive input signals {V,[,T} from the battery
charging process. The ECM block only processes signals on
target battery cycle t and outputs the corresponding
[Voc (@), Rin:(t)] . The LSTM receives a sliding window of
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[V(t),I(t), T(t)] over multiple cycles, where each window
includes data from the target cycle and a predefined number of
past cycles (Equation 4). The LSTM processes this window to
output a final hidden state containing learned temporal
information. The final dense layer of PINN-Parallel combines
outputs from both the ECM and LSTM to predict the SOH for
the target cycle.

In the PINN-Series model, the ECM first processes a sliding
window of input signals [V (t),I(t), T (t)], with its outputs fed
into the LSTM along with the original signals. Therefore, the
LSTM processes a [V(t),I(t), T(t),Voc(t), Rin:(t)] sliding
window over multiple cycles. The final dense layer takes the
hidden state vector that captures both the temporal patterns in the
original signals and the dynamics reflected in the ECM outputs
to predict the SOH.

The loss function designed as the optimization objective for
both frameworks is a composite of three parts, integrating the
final SOH prediction accuracy in Equation (11), errors from the
ECM predictions in Equation (12) (13), and the continuity of
ECM parameters in Equation (14). To mathematically describe
the three parts of loss:

1
Lossgoy = N 1tV=1(SOHtrue(t) - SOHpred(t))z (1
where N is the number of battery cycles; SOHp.(t) ,

SOHpeq(t) are true and predicted SOH for the t* battery
cycle.

1 1
LOSSECM = ; {yziﬁ ﬁl(vtrue,i(t) - Vpred,i(t))z (12)
Vorea,i(t) = Voc,i(€) = L;() * Rine,i (D) (13)

where M is the number of voltage predictions within the t*

battery cycle; i indexes the time points within the tt" battery
cyele; Vipyei(t), Vpreai(t) are i" true and predicted voltage;
where Viyyeq,(t) is calculated based on i*" estimated Vpc(t),
Rint (), and known current I(t) within the t** battery cycle.

1 1 M-
LosScont = 3 Xte1 57— 2L (Voc,i+1(8) = Voc (8] +
|Rint,i41(6) = Rinei (O] (14)

where this component ensures smooth transitions for ECM
parameters V,. and R, between consecutive time points i
within t*"  cycle, reflecting physical consistency.

The total loss is a weighted sum of these components:

LoSSiotqr = @ LOSSsoy + f LOSSgey + ¥V LOSScone  (15)

where a,f,y are weighting factors that balance the
contributions of each loss component to the total loss.

The proposed PINN architectures offer a hybrid framework
for predicting battery behavior. The loss function confirms that
the PINN models accurately predict the battery's internal states

and SOH while respecting the physical constraints and
continuity inherent in the battery's behavior. Moreover, LosSsoy
should be given higher weight relative to the other losses to
emphasize its importance in the framework.

Charging signal LSTM module PINN-Parallel
\') . E E 1 Losssoy (@)
—
I Lossgey (6) D—
oo
Voe LosS ont (6)
T —
R | ECM parameters
\r'v ) estimation
f backpropagation
Charging signal LSTM module PINN-Series
"SR
v L a
ECM parameters 255501 (€)
estimation s s
1 ) 5 E Lossgey (6) ®
Voc
T g LosScont (6)
. J . /
t I backpropagation

FIGURE 3: STRUCTURE OF PINN-PARALLEL AND PINN-
SERIES

3. RESULTS AND DISCUSSION
3.1 Experimental details

In this work, the two PINN models and baseline LSTM
model employed for SOH estimation are implemented in Python
utilizing the Tensorflow framework. All training and testing
procedures are executed and run on a single CPU. The
configurations and hyperparameters are empirically determined
with the trial-and-error procedure as summarized in Table 1.
Consistent hyperparameters are maintained for the single LSTM
network and the LSTM components within the two PINNs to
ensure a common baseline. This allows performance differences
to be attributed directly to architectural variations rather than
fine-tuning effectiveness. Future work could explore to identify
the optimal configurations for each network.

The LSTM is a simple baseline model without an ECM
component, which emphasizes temporal data processing.
Alternatively, PINN-Parallel introduces an ECM block that
operates in parallel with the LSTM network. This component
uses a shared dense layer and different branches for V,. and
R;n: outputs, thus increasing the model's input with physics-
informed features. On the other hand, PINN-Series uses a
sequential approach to feed the ECM component outputs directly
into the LSTM network. This structure provides a deeper
integration of physics data into the temporal learning process.
Each model employs the Adaptive Moment Estimation (Adam)
algorithm to stabilize the training process and minimize the loss
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function. Early stopping is implemented throughout the training
to mitigate the overfitting and speed up model convergence.

Data from batteries 0006, 0007, and 0018 are used as the
training set, while battery 0005 is the test set. All models employ
a sliding window of length 10, which means that data from the
previous 9 cycles are used to assist in predicting the current state
of the battery. In addition to the above standard scenario, the
impacts of using less training data and varying lengths of
historical information are also explored in Sections 3.4 and 3.5.

The performance of the SOH estimation models is evaluated
using two principal statistical measures: Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE). RMSE reflects the
stability of the model and quantifies its prediction error. MAE
serves as a direct indicator to quantify the accuracy of the model.
While the PINNs are trained using custom loss functions that
incorporate physical constraints and estimations of ECM
parameters, the final evaluation of performance is from the SOH
prediction. To provide a comparative analysis, all reported
model results represent averages from five separate runs.

TABLE 1: MODEL CONFIGURATIONS AND
HYPERPARAMETERS
Parameter/ LSTM | PINN-Parallel | PINN-Series
Component
Mean LosStotqr = LOSSsoy +
Loss Function Squared 0.5 Lossgcy + 0.5 LoSScone
Error (Equation 11 - 15)
ECM Shared layers: 32, 16 (ReLU);
Component N/A Voc branch: 100 (Softplus);
Rin¢ branch: 100 (Softplus)

Sliding window
size
LSTM
Component

10

128, 64

Dense Layers to 32 (ReLU), 1 (Linear)

output SOH
Optimizer Adam (learning rate = 0.001)
Regularization Early stopping
Batch Size 32
Max. Epochs 1000

3.2 SOH Prediction Performance

Within the experimental setting outlined in Section 3.1, the
SOH predictions from three models are visualized in Figure 4.
The RMSE, MAE and training cost are summarized in Figure 5.
The PINN-Series and single LSTM demonstrated comparable
levels of prediction accuracy, with PINN-Series showing slightly
superior performance in terms of lower errors. This modest
difference in performance can be attributed to LSTM's tendency
for less accurate predictions in the early stages of battery life. As
illustrated in Figure 4, the single LSTM model fails to capture
the fluctuations in the data during the initial 20 battery cycle
predictions. Batteries often behave differently in early cycling

than following in their aging patterns due to different dominant
degradation mechanisms [30]. A single LSTM model requires a
certain amount of data to learn patterns, and early-stage
behaviors may not provide sufficiently consistent patterns for the
model to capture. The observed better performance of the LSTM
model during the middle stage is likely due to its ability to
quickly adapt to stable and consistent patterns in this phase. On
the other hand, the PINN-Series incorporates knowledge of the
underlying physical processes in their architecture. This helps to
take into account the different degradation behaviors present in
the early cycles. As a result, PINN-Series can provide more
accurate representations at this critical stage.

In addition, the PINN-Series has the advantage of a lower
standard deviation in different runs, which shows better
performance consistency. This suggests that incorporating
temporal characteristics of parameters provided by the ECM
block can improve the robustness of the model. The PINN-Series
could be more consistent in various operational conditions and
potentially less sensitive to fluctuations in the data or initial
starting conditions of the model. However, the PINN-Parallel
shows a reduced accuracy in comparison to the other two. This
suggests that the way it uses the output directly from the ECM
module instead introduces noise into the model. The evaluation
of the validity of ECM output is discussed in Section 3.3.

Despite these advantages, it's important to acknowledge that
the additional MLP structure in the PINNs introduces a higher
training cost. As shown by the yellow curves in Figure 5, the
computational burden for the two PINN models primarily comes
from the extra MLP component. The operational cost of an MLP
can be influenced by various factors, including the volume of
input data. Therefore, the impact of a reduced training dataset
and different lengths of history information on model
performance should be investigated further.

LSTM PINN-Parallel PINN-Series

— True S0H e — True SOH — True 50H
-=- Predicted SOH Qe fi === Predicted SOH | o | S === Predicted SOH

SOH (%)

0 25 S0 75 100 125 150
cycle cycle cycle

FIGURE 4: SOH PREDICTION PERFORMANCE OF THREE

0 25 50 75 100 125 150 0 25 S0 75 100 125 150
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e RMSE s MAE Training cost

0.03 60

]
0.02 a0
0.01 20
0.00 0

LSTM PINN-Parallel PINN-Series

FIGURE 5: RMSE, MAE AND TRAINING COST OF THREE
MODELS
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3.3 Evaluation of the ECM parameter estimation

The Vyc and R;,; parameters in both the PINN-Parallel
and PINN-Series models are estimated using the same MLP
network configuration. In addition, these models are trained
using the identical customized loss function that combines the
SOH prediction error, the ECM parameter estimation error, and
the time-continuity constraints on V,, and R;,.. Since the
framework primarily focuses on SOH prediction, this part of the
loss is given a higher weight during training to prioritize
accuracy.

Figure 6 illustrates the changes in Lossgpy and LoSSgcy
during the training of PINN-Parallel and PINN-Series. To
observe their trends more clearly, 1000 epochs are finished
without early stopping. It is shown that the ECM-related losses
in both PINN models converge with sufficient training.
However, the computation of Lossgcy is based on prediction
error of voltage in Equation (12), since real Vy. and Ry,
values are difficult to obtain. This indirect optimization implies
that even highly precise voltage predictions from the ECM block
may not transfer to accurate estimates of V. and R;,;.

Figures 7 and 8 present the predictive performance of PINNs
for the V, Vo and R, of the same battery cycle in two
separate runs. Both models can fit the voltage data well,
compatible with the convergence of Lossgcy shown in Figure
6. However, it does not guarantee the fidelity of the V,, and
R+ simulations. Despite the identical module architecture and
inputs, the observed differences in values between parameters in
different runs emphasize the stochastic nature of the neural
network. This randomness is introduced by the different initial
weights and parameters in the training. Therefore, in the absence
of reference values for V,. and R;,;, the ECM part cannot
achieve a robust output. Directly utilizing the ECM output for
SOH prediction might negatively affect the prediction by
introducing noise, as shown in the results of PINN-Parallel.

On the other hand, PINN-Series performs significantly
better than PINN-Parallel. This improvement is attributed to
PINN-Series learning the temporal characteristics of ECM
estimation using LSTM module. As shown in Figure 6, both the
two losses are well optimized during training, although the ECM

PINN-Parallel

0.030

SOH Loss

0.025 1 —— ECM Loss
0.020 A

(2]
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0.015 -
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. Dot

0.000

T
400 600
Epoch

T T
0 200 800

T
1000

Loss

loss decreases more slowly than the SOH one. After about 50
epochs, the SOH loss tends to stabilize while the ECM loss
continues to decrease, which shows that the ECM part does not
significantly improve the accuracy of the SOH prediction in this
standard setup. This was also mentioned in Section 3.2, where
PINN-S shows advantages mainly in terms of model stability.

In short, since the ECM component can only indirectly
predict Vy. and R;y;, it is not desirable to use these output
values directly as physics improvement. However, extracting
temporal information from the ECM predicted parameters is
more useful. In the case of sufficient training data and
appropriate sliding window lengths, the impact on model
performance is not obvious, but more on this will be discussed
in subsequent sections.

3.4 Influence of limited training data

This section investigates the performance of LSTM and two
PINNs on different limited training datasets. Exploring the
impact of limited training data is motivated by practical
considerations in real-world applications. In many cases, it is
time-consuming and costly to collect battery data for a large
number of different operating conditions.

Especially for rapidly evolving battery technologies, new
chemistries are more likely to encounter a lack of historical data.
Therefore, we need to understand the applicability of the models
considering the data limitations. In addition, this experiment can
evaluate the model's ability to handle overfitting, a common
problem when training with limited data. It is critical that models
not only fit the training data, but also capture the underlying
patterns that can be generalized to new unseen data.

The three models are trained on a combined dataset of
batteries 0006, 0007, and 0018, as well as on three individual
battery data. The results are summarized in Figure 9. With
sufficient training data, all three models demonstrated their best
performance. The PINN-Series model consistently shows low
error over different training conditions. This model is more
capable of dealing with the variability inherent in the different
batteries. On the other hand, LSTM shows a more serious
overfitting problem when faced with a limited single battery
training set.

PINN-Series 7
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FIGURE 6: TRAJECTORY OF SOH LOSS AND ECM LOSS DURING TRAINING
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As seen in Figure 9, LSTM has a relatively low prediction
error when trained with battery 0007, which has the most similar
degradation trajectory to the test battery observed in Figure 1.

Moreover, with a smaller training set, the running time cost
of the two PINNSs is reduced by at least 50%. This significantly
narrows the gap between their training costs and a single neural
network. While the LSTM model is still more computationally
efficient, it does not achieve the same level of precision as the
two PINN models. Between these two PINN methods, the
PINN-Parallel method has a faster training time but
compromises prediction accuracy and consistency.
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PINN-Series
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FIGURE 9: MODEL PERFORMANCE OVER DIFFERENT
TRAINING SETS

3.5 Influence of Historical Information Length

This section discusses the performance of the three models
in predicting SOH under different sliding window sizes. Details
of the operation of the sliding window are provided in Section
2.3. The size of the sliding window relates to the length of
historical information that can be utilized by the model to make
predictions. More historical information can increase the ability
of the LSTM block in all three models to capture long-term
dependencies. However, if the window is too long, the hidden
states in the models may be difficult to capture subtle changes
due to information saturation. A long window may allow the
LSTM layer to accumulate more noise. More importantly, it
would give the model more potential for overfitting as well as a
higher computational burden.

The effects of different window sizes varying between 5 to
25 on the model are summarized in Figure 10. The single LSTM
model's performance shows variance as the window size
increases. This fluctuation in RMSE possibly reflects the
overfitting of the LSTM model. Especially with larger window
sizes, the model may have learned more noise rather than the
underlying pattern. Although PINN-Parallel has physical
information involved, its LSTM module is not constrained by the
introduced physics. Therefore, the model has the same
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deficiency as the single LSTM model when dealing with long
windows.

In contrast, the PINN-Series model integrates the laws of
physics through the ECM component prior to the LSTM layer
and presents greater resistance to overfitting and noise. The loss
function in this model restricts the learning process and ensures
that the model learns temporal features that adhere to the
physical principles. Despite its high training cost, the PINN
model achieves consistently high accuracy in SOH prediction.
This trend is particularly observable as the window size
increases, which means that the model performs well in
capturing the temporal dynamics inherent in battery behavior
using long historical data. PINN-Series remains the best
predictive performer among its competitors, even when

historical information is most limited by a window size of 5.
0.04
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0.02
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0.01
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0.00
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FIGURE 10: MODEL PERFORMANCE OVER DIFFERENT
WINDOW SIZE

3.6 Discussion

When comparing the three models, the greatest strength of
LSTM is its computational efficiency. With sufficient training
data and the proper setting of the sliding window, LSTM can
show good prediction accuracy. However, its performance is
easily affected by the input data and is prone to overfitting.
PINN-Parallel aims to improve predictive performance by
incorporating physical features directly into its architecture.
However, the ECM module does not provide accurate
representations of the internal states. Thus, the parallel
architecture may introduce noise instead of features that favor
SOH prediction.

The PINN-Series model, with its sequential integration of
ECM components into the LSTM network. It learns the temporal
patterns and dependencies of these ECM estimations over time,
which can be more informative for SOH prediction than the raw
ECM outputs themselves. It consistently achieves superior
performance with the lowest error and highest robustness. It
better handles variability under different battery conditions and
also is applicable to cases with limited training data.

PINN-Series requires more training costs than single deep
learning networks. However, its robustness shows the potential
to run efficiently on smaller training datasets and does not
require additional feature engineering. It is worth mentioning
that the difference in prediction speed between the trained PINN-
Series and the LSTM on the test set is small, with the LSTM
being only 10% faster. When deploying pre-trained models, the
benefits of the PINN-Series accuracy may outweigh the slight

increase in predicting time. This makes the PINN-Series worth
considering for tasks where prediction quality is critical.

4. CONCLUSION

In this paper, physics-informed neural networks with
different structures are explored for battery state-of-health
estimation. The results show that PINN-Series outperforms
conventional LSTM and PINN-Parallel models in terms of
prediction accuracy and robustness against noise and overfitting.
The integration of physical principles through the equivalent
circuit model within the LSTM framework improves the model's
interpretability and reliability, especially in scenarios with
limited training data or varying operational conditions.

While the PINNs present promising results, ongoing
research is needed to further refine these models and expand their
applicability. The current study utilized a simple Rint model
within the framework to represent the battery's internal behavior.
Future research could explore the incorporation of more complex
ECMs, which may capture the battery dynamics more
accurately. Although this may increase the computational
complexity, advances in optimization algorithms or data-
efficient training strategies can mitigate these challenges. In
addition, the significant robustness of the PINN-Series
represents the potential to deal with noise and uncertainty in real-
world field data. Its usefulness can be tested in future studies.
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