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Abstract

Representing discourse as argument graphs fa-
cilitates robust analysis. Although computa-
tional frameworks for constructing graphs from
monologues exist, there is a lack of frameworks
for parsing dialogue. Inference Anchoring The-
ory (IAT) is a theoretical framework for extract-
ing graphical argument structures and relation-
ships from dialogues. Here, we introduce com-
putational models for implementing the IAT
framework for parsing dialogues. We experi-
ment with a classification-based biaffine parser
and Large Language Model (LLM)-based gen-
erative methods and compare them. Our results
demonstrate the utility of finetuning LLMs for
constructing IAT-based argument graphs from
dialogues, which is a nuanced task.

1 Introduction

Argumentation is prevalent in our daily verbal com-
munication and represents chains of thought pat-
terns and reasoning, making it an integral mode
of persuasion (Saha et al., 2022a). Although argu-
ment mining (AM) (Stab and Gurevych, 2014a,b;
Persing and Ng, 2016; Stab and Gurevych, 2017;
Nguyen and Litman, 2018; Eger et al., 2017; Mirko
et al., 2020; Morio et al., 2020; Lawrence and Reed,
2020; Ye and Teufel, 2021; Bao et al., 2021; Saha
et al., 2022a) from monologues is well studied, for-
mal models for parsing dialogues are lacking (Saha
et al., 2022b). DialAM-2024 (Ruiz-Dolz et al.,
2024) introduced the first shared task in dialogue ar-
gument mining, where argumentation and dialogue
information are modeled jointly in the domain-
independent IAT framework (Budzynska et al.,
2014, 2016; Janier et al., 2014). The framework
represents dialogues as a graph where the nodes
comprise (i) Locutions (L-nodes)-the Argumenta-
tive Discourse Units (ADUs) from each speaker
turn. (ii) Propositions (I-nodes)-reconstructed
L-nodes with resolved anaphora, pronouns, and
deixis, making them independently coherent. The

edges comprise (i) Default Transitions (TAs) be-
tween L-nodes. (ii) S-nodes that connect propo-
sitions (I-nodes) and can be of types RA (default
inference), MA (default rephrase), or CA (default
conflict). (iii) YA-nodes that connect L-nodes with
I-nodes, TAs with S-nodes, or TAs with I-nodes.

Here, we compare generative approaches against
classification-based approaches for implementing
the IAT framework. Since LLMs (Chang et al.,
2023; Min et al., 2023; Hadi et al., 2023) attain su-
perior results on several tasks, we test their utility
in dialogical argument mining and compare them
against a biaffine-parsing-based implementation
(Dozat and Manning, 2016, 2018). We ask the
following research questions: (i) Can LLMs be
used for parsing dialogues in the IAT frame-
work? We experiment with Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) and present dialAM as a
generative task where the L-nodes, I-nodes, and
TA-nodes are the context of the LLM, and the task
comprises determining the propositional (Task A)
and illocutionary (Task B) relations. (ii) How do
LLMs compare against simpler classification-
based dialogue parsers? We compare the LLM
parser against a biaffine-parsing-based parser that
predicts the relationship and type between nodes.

2 Proposed Method

2.1 Classification-Based Model

As illustrated in Figure 1, the classifier is Roberta-
based (Liu et al., 2019) and contains two biaffine
layers, each comprising two biaffine heads, which
predict the relationships and their types. Biaffine
classifiers (Dozat and Manning, 2016, 2018) are
generalizations of linear classifiers, which include
multiplicative interactions between two vectors.
The first biaffine layer determines the S-nodes and
labels the relationships between L - I-nodes and TA
- I-nodes. The second layer determines and labels
relationships between the TA and S-nodes.
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Figure 1: Architecture of the Roberta-based biaffine classifier.

The model inputs the L, I-node input ids, and
the TA-node position mappings- A set of pairs of L-
node indexes that form a TA-node. First, the parser
independently encodes all L and I-nodes and then
performs multi-headed attention between the em-
beddings (sum-pooled representation of the trans-
former last layer). The TA-node position mappings
are sum-pooled to yield the TA-node embeddings.
Then, the L, I, and TA-node embeddings are passed
through a single-layer feed-forward neural network
(FF) to generate the source representation of the bi-
affine heads of the first biaffine layer. The FF layer
reduces the input representation from 768 dimen-
sions to 600. Another single-layered FF computes
a 600-dimensional representation of the I-node em-
beddings, and are the targets of the biaffine heads.
Since S-node prediction is a pre-requisite for

determining relationships between the TA and S-
nodes, two subsequent biaffine heads determine
and label their relationship. We generate pairs of
all possible I-nodes, sum-pool their embeddings,
and weigh them by the predicted logits from the
S-node relationship biaffine head. A single-layered
FF computes the final 600-dimensional representa-
tion, which is the target of the biaffine heads. The
source of the biaffine heads is the prior computed
600-dimensional representation of the TA-nodes.
During inference, we only consider relationship
labels with a predicted probability > 0.1 and persist
the highest scored relationships such that a node is
referenced only once.

2.2 Generative Model

To determine the utility of using LLMs for ar-
gument mining, we experiment with Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023) using two types of

instructions. We pose the problem as a generation
task where the model is presented with a descrip-
tion of the IAT annotation framework, the L, I, and
TA-nodes and tasked to identify the S and YA-nodes
sequentially. The ordering of the L and I-nodes
are randomized to prevent the model from learning
spurious ordering-based associations. Figures 2
and 3 illustrate Type 1 and 2 instructions with the
model-generated responses. Compared to Type 1,
the Type 2 instructions explicitly include all the
relation labels in the response text.

2.3 Training Details

The dataset comprised 1,477 IAT annotated conver-
sations from the QT30 corpus (Hautli-Janisz et al.,
2022). We preprocess the corpus and preserve re-
lations that strictly adhere to the IAT relationship
definitions and discard others. Although training on
the reduced examples might hamper performance,
it eases answering the research questions- our pri-
mary objective. We randomly split the dataset into
1,327 training and 150 testing examples for our
experiments. The classification-based model used
Roberta-base as the base model and was trained
for 15 epochs, processing 32 batches at a time,
using a 5e-5 learning rate, and accumulating gradi-
ents for 16 steps. The LLM-based models were
trained for two epochs using LoRA (Hu et al.,
2021), a parameter-efficient fine-tuning method
(Mangrulkar et al., 2022). The LoRA r and alpha
were set to 16 and 32 and trained the q, v, k, o, gate,
up, and down projection modules of the attention
heads and the LM head using a 2.5e-5 learning rate.
We use greedy decoding during inference and limit
the number of new tokens to 1,000.
While evaluating the results of Type 1 and 2 in-
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Figure 2: Mistral Type 1 instruction with generated response.

structions, we observed that the model often leads
to incomplete annotations. For example, for the
Type 1 instructions, the model stops generating
past the S-nodes. Similarly, for the Type 2 instruc-
tions, the model frequently does not generate all the
distinct types of YA-nodes. Hence, we implement
an iterative decoding approach by re-prompting the
model with partially generated annotations until
it predicts all relationship types. For the Type 1
instructions, we first pass the IAT definitions and
task details (left side of Figure 2) as prompt and
generate the S-nodes (II-nodes in Figure 2). We it-
eratively append the generated output (highlighted
in purple) to the prompt and re-prompt the model
to generate the YA-nodes (LI-edges in Figure 2).
We follow this approach until the model identifies
all types of relationships (LLII and LLI-edges in
Figure 2). We follow a similar approach for Type 2
instructions by re-prompting the model incremen-
tally with the highlighted sections in Figure 3.

2.4 Results and Observations
Although our iterative decoding approach for the
generative models facilitates better annotations,
they are computationally expensive. Compared to
regular decoding, they are approximately 4x more
expensive for the Type 1 instructions and approx-
imately 4-15x costlier for the Type 2 instructions.
Hence, we internally compare the three model vari-

ants on a random sample of 10 examples from the
test set and share the results in Table 1. We use
the original task evaluation script, which computes
Precision, Recall, and F1 scores at Focused and
General levels. Focused evaluates the performance
of the systems by looking at the related proposi-
tions/locutions in the evaluation files only, exclud-
ing all the non-related cases. General looks at the
whole map, including the non-related class. High
performance in General but low in Focused repre-
sents over-reliability on the non-related nodes, and
vice-versa for Focused.

General Focused
Id Model Pr Re F1 Pr Re F1
1 Biaff 68.7 68.6 68.6 60.0 36.1 41.0
2 LLM (Type-1) 82.4 85.5 83.8 59.0 55.8 57.3
3 LLM (Type-2) 81.7 73.4 75.5 49.5 37.0 40.4

4
Biaff + LLM
(Type-1)

75.2 89.3 80.1 68.9 67.1 67.9

5
Biaff + LLM
(Type-2)

69.4 80.1 73.1 61.2 54.7 56.1

6
LLM
(Type-1 + Type-2)

77.6 80.4 78.7 60.5 56.6 58.1

7
Biaff + LLM
(Type-1 + Type-2)

68.8 83.2 73.6 67.1 65.0 65.4

Table 1: Model performance on internal test set.

We also ensemble the three model variants and
report results in Table 1 (lower half). We observe
the following: (i) For all model variants, the F1
scores at General level are higher than Focused,
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Figure 3: Mistral Type 2 instruction with generated response.

denoting that the models does not relate all proposi-
tions/locutions. This is expected as the models are
trained on reduced relations (discussed in Section
2.3). (ii) Comparing the F1 score, the LLMs outper-
forms the biaffine classifier at both levels. Further-
more, the LLM trained on the Type 1 instruction
outperforms the Type 2 instruction-trained model
at both levels of evaluation. (iii) Ensembling the bi-
affine and Type 1 instruction-based LLM yields the
best Precision, Recall, and F1 scores when evalu-
ated at the Focused level. An ensemble comprising
all three models performs the second best.

General Focused
Task Model Pr Re F1 Pr Re F1

Task A
Majority-BL 28.8 30.3 29.5 0.0 0.0 0.0
RoBERTa-BL 28.6 34.7 26.5 37.1 18.4 22.8
Ours 30.8 31.5 30.8 19.0 4.2 6.7

Task B
Majority-BL 34.7 35.9 35.3 0.0 0.0 0.0
RoBERTa-BL 39.1 62.1 45.8 73.1 72.6 72.1
Ours 51.4 57.1 53.3 43.8 26.1 30.4

Global
Majority-BL 31.8 33.1 32.4 0.0 0.0 0.0
RoBERTa-BL 33.9 48.4 36.1 55.1 45.5 47.5
Ours 41.1 44.3 42.0 31.4 15.2 18.5

Table 2: Model performance on official test set.

Following our internal results, we use the ensem-
bled biaffine and Type 1 instruction-based LLM-
Biaff + LLM (Type 1) to parse the official test set
samples and share our official test set results in
Table 2. The table compares our implementation

against majority-based and Roberta-based base-
lines for tasks A and B. It also shares global-level
evaluations by looking at the complete argument
maps. We observe the following: (i) Across all
tasks, our implementation attains the best F1 score
at the General level, whereas the Roberta baseline
attains the best score at the Focused level. This
observation is warranted as the Focused evaluates
only the types of relationships prevalent in the di-
alogue and ignores all other classes. Our iterative
decoding approach explicitly prompts the LLM
to generate annotations for all relationship types,
which can lead to spurious predictions by promot-
ing recall. (ii) Similar to the baseline, our model
performs Task B better than Task A.

3 Conclusion

Here, we computationally implement the theoreti-
cal IAT framework using classification and LLM-
based models. We question the viability of leverag-
ing LLMs, which are generative models, for such
a nuanced task and compare them against simpler
classifiers (non-generative) such as biaffine parsers.
Our results indicate that posing the graph construc-
tion problem as a generative task and finetuning
LLMs outperforms biaffine classifiers. Further-
more, ensembling the generative and classification-
based approaches yields the best results.
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