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ABSTRACT1
As more drivers have switched to electric vehicles (EVs), there has been higher interest in in-2
stalling EV charging infrastructure. While most operators have focused on locating stationary3
charging stations (SCSs), several ideas have been proposed to implement wireless charging sys-4
tems without direct connections. Among different types of systems, mobile energy distributors5
(MEDs) can provide the highest flexibility since it does not require massive construction. If both6
systems become available to drivers, they will make decisions on routes that may include SCSs7
or MEDs, considering total travel time, state of charge, wait time and cost for charging, and other8
factors. This study proposes a decision-making support system for EV drivers by reviewing the9
contexts of given route options. The system 1) extracts feasible routes from the road network and10
EV charging system, 2) evaluates the value of routes regarding estimated weights of factors, 3)11
recommends the one with the highest value, and 4) observes and archives the drivers’ responses to12
recommendations. In an experiment with a small 3-by-3 grid network, the proposed system can13
suggest satisfactory routes 16.5-26.9 pp more than the reference recommendation policy.14

15
Keywords: Electric vehicle, Contextual AI, Charging infrastructure, Route recommendation, Wire-16
less charging17
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INTRODUCTION1
Electric vehicles (EVs) have been spotlighted as an alternative to conventional internal combustion2
engine vehicles as they are independent of gasoline or diesel fill-up. During operations, they3
emit less or near-zero pollutants including greenhouse gases and particle matter. However, there4
have been controversies about the environmental sustainability of EVs originating from several5
concerns. For example, battery production may induce excessive exploitation of minerals such as6
lithium and other rare-earth materials, accompanied by severe earth and water pollution. Moreover,7
they may generate more particle matter due to the friction between road surfaces and tires with8
more substantial torque. Nevertheless, EVs are perceived as critical in relieving global warming9
by reducing emissions.10

Global vehicle sales trend shows the recent popularity of EVs. In 2022, about 14% of new11
vehicles sold worldwide were EVs, exceeding 10 million (1). The market share has grown from12
around 5% in 2020 and around 9% in 2021, showing exponential growth. This explosive growth13
mainly results from individuals’ interest in environment-friendly vehicles and governments’ subsi-14
dies to supplement high prices due to batteries made of rare earth materials. In addition, customers15
expect to counter the initial vehicle cost with savings in operation cost, e.g. charging cost. Since an16
EV is a relatively novel technology and most of them recently started to hit the roads, they will be17
supported by various subsidies for a while until they can achieve economic feasibility. Although18
there are signals showing the dependence of EV demand on subsidies when phasing out them,19
it is expected that the unit production cost of EVs will fall along the technological advance and20
market maturation. To keep promoting EV sales, some regions like Europe decided to ban internal21
combustion engine vehicles (ICEVs) by 2035 (2).22

Meanwhile, inconvenience caused during EV charging is one of the largest disadvantages23
of EVs compared to regular vehicles. Drivers concern not only about the relative scarcity of avail-24
able charging stations but also the length of charging time. Especially, vehicles should stop longer25
at chargers when being charged than at gas pumps when being filled up. For example, while gas26
tanks of ICEVs can be full in 2 minutes (3), Tesla Superchargers, the fastest charging device pro-27
vided to drivers, can charge 200 miles in 15 minutes, about half of their sedan, Model S (4). This28
additional time for charging "energy" from sources can make customers be reluctant to switch to29
EVs.30

In consequence, numerous interests in charging infrastructure have been raised to relieve31
those concerned previously mentioned, attracting a vast number of researchers to study the alloca-32
tion and operation of fixed charging infrastructure. Qiu and Du (5) recently studied an EV-to-EV33
charging system, excluding infrastructure from these interactions. Nevertheless, there are a lim-34
ited number of studies that consider dynamic charging systems as serious alternatives to stationary35
charging systems (SCSs) because not only they are premature but also difficult to operate. For ex-36
ample, mobile energy distributors (MEDs) are similar to p̈ortable batteriesÄfter being connected37
to vehicles, they keep charging vehicles by following them along their travels.38

Despite its immature technology and operational complexity, this study incorporates both39
SCS and dynamic charging systems at the same time. Specifically, it focuses on designing a pol-40
icy to recommend optimal routes to EV drivers considering: 1) their current vehicle state such41
as remaining battery level, 2) individual preferences, and 3) network and charging infrastructure42
characteristics. This paper is structured as follows. First, a methodology is proposed to integrate43
both SCS and DCS into EV drivers’ route choices after reviewing relevant literature. Third, a sam-44
ple experiment is conducted to illustrate the performance of the applied designed methodology.45
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Consequently, the paper concludes with the expected benefit and limitations of the methodology.1

METHODOLOGY2
Simple example of EV routing3
Consider a simple transportation network with both static and dynamic charging infrastructures4
with the link travel time (e.g., minutes), shown as numbers on them in Figure 1. The static charging5
infrastructure has two SCSs at Nodes 3 and 4. For the dynamic charging infrastructure, MED is6
assumed to follow a predefined schedule departing every 30 minutes from depot M and traveling7
along the given route (dashed line) (M)-2-5-6-(M).8

FIGURE 1 Base scenario and potential uncertainties.

If an EV driver should decide the shortest (travel time) path from origin O to destination D,9
the answer will differ depending on the initial state of charge (SoC). The en-route driver behaviors10
are influenced by the amount of energy available during the trip. For an EV with a 200-mile range11
and 50 kWh battery capacity, then in the deterministic case, the shortest path (1-5-6 and 1-4-5-6)12
consumes 37.5 kWh to reach D.13

However, an initial SoC of 25 kWh is only sufficient for traveling to Node 5. Recharge is14
required either at the SCS at Node 4 (Route 1-4-5-6 only) or with the MED connectable at Node15
5. For the SCS option (assuming a level 3 charger with a rating of 1 hr charge = 180 miles), at16
least 33 minutes of the minimum charge time requirement will be added to the travel time. On the17
other hand, if the EV driver instead uses MED at Node 5, the total travel time can be reduced as18
the EV connected with MED keeps moving while charging at an assumed speed of 80% of traffic19
flow speed. A 5.2 min of travel time savings is estimated when using MED (128.6+10.7=139.920
(min)) instead of charging at SCS (128.6+16.7=145.2 (min)). Furthermore, the driver may have to21
wait for the available charger or MED arrival and should tolerate longer travel time. SCS at node 322
is not be a feasible option for the EV with this initial SoC (i.e., 25 kWh), however, this path option23
and charging strategy (1-2-3-6) becomes feasible for EV with initial SoC of {38,50} kWh.24

As a variation of the above problem, a certain level of unpredictability or randomness in25
E-VRP has been considered (6–8). The main objective of the literature has been optimizing travel26
distance/time and the fleet size constrained by vehicle weight capacity, time windows, station ca-27
pacity, and tour duration limit. However, total energy consumption or recharging cost that may28
depend on the speed has been overlooked (9). The charging availability has been treated as negli-29
gible (10) only applied for private ownership of chargers. Only a few studies in the E-VRP context30
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considered charging availability in probabilistic model (11) or queuing model (12) driven from1
vehicle arrival interval and average service time.2

As shown in Figure 2, temporal aspects of E-VRPSMC makes the above problem non-3
trivial. Depending on the departure time, the time-dependent travel time in each link generates4
different total cost of paths. Each EV driver would have different perspective on uncertainties in5
travel time and wait time/availability of SCSs and/or MEDs. Path uncertainties associated with6
SCSs may cause higher variability with lower mean, while MEDs would have less source of un-7
certainty by nature therefore lower variability. In this particular example, a risk-averse person may8
prefer charging with MEDs.9

FIGURE 2 Illustrative example of the dynamics in a stochastic time dependent EV network

For this sequential EV route decision making problem under multiple sources of uncertain-10
ties (e.g., travel time, wait time, availability) in charging, in this study, we develop computationally11
efficient and explainable contextualized machine intelligence. The statistical profile of features and12
costs of each charging option will be analyzed and paired with driver preferences. The proposed13
transfer learning efficiently updates prior beliefs on charging in a sequence and the posterior infer-14
ence will have lower uncertainty as more observations in those behaviors are available.15

Problem statement16
As shown in Figure 3, depending on the initially available network, vehicle, charging infrastruc-17
ture, and network travel time information, the vehicle can decide which action to take: charge,18
wait, or move to the next node. Vehicle state and charging infrastructure information are updated19
corresponding to chosen actions. A session terminates when the battery is completely discharged20
or the vehicle arrives at the destination. The algorithm moves on to the next session with newly21
accumulated knowledge about the given situation.22

For detailed formulation, a transportation network is considered as a graph network G =23
(N,L), where n ∈ N is the set of nodes representing charging locations or intersections for di-24
rectional changes and l ∈ L is the set of links representing the roadway connection between the25
nodes. Each SCS p ∈ P (where P ⊂ N) has uncertain availability (i.e. occupied by another ve-26
hicle), denoted by a random variable νp. The EV can wait for a time interval W max

p to charge27
if SCS p is unavailable (νp = 0) on arrival. We define the expected waiting time at each p as28
[1−Pr(νp = 1)]∗W p, where W p is the average of waiting times (E[Wp|νp = 0]) at p dependent on29
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FIGURE 3 The Contextual AI framework for EV routing with wireless charging

several parameters such as time of day. We note that [1−Pr(νp = 1)] is zero when Pr(νp = 1) = 1.1
To support the energy demands of EVs in the network, a set of MED k ∈ K is provided for dy-2
namic charging services. Each MED k has a predefined schedule given by a sequence of stops3
Sk = (sk

1,s
k
2, ...,s

k
M), and arrival time at those stops. The estimated EV waiting time arrived at k’s4

stop sk
m at time t is given as Wk = tk

m− t. The waiting time of EV is estimated based on advance5
information on the availability of the MED at the given stop. The total cost measured in mone-6
tary units Ctotal is designed to be the sum of all costs: travel time Ctt , waiting time at charging7
infrastructure Cwt , charging time Cct , charging monetary Ccm, and energy consumption Ce.8

Ctotal =Ctt +Cwt +Cct +Ccm +Ce

= ωtt ∑
(i, j)∈P

ti j +ωwt(Wp +Wk)+ωct(Bp +Bk)+(δpcp +δkck)+δede (1)

State space9
The state space of the EV problem with SCS and MEDs for dynamic charging is represented by
S =

{(
i, t,bi,Avt

SCSi=p,Avt
MEDi=sk

m

)
: i ∈ N,bi ∈ [0,Qmax] ,AvSCSi ∈ {0,1},AvMEDi ∈ {0,1}

}
where i is the current location of the EV, t is the current time, bi is the State of Charge (SoC) at10
current location, Avt

SCSp is the availability of SCS at location i at current time t, and Avt
MEDk is the11

availability of MED at location i at current time t. The following scenarios are used to characterize12
the terminal states (i.e., states that define the end of a learning episode)13

Terminal states14
• if e(ti j,v) > bi, and waiting time at i = ∞ for AvSCSi/AvMEDi = 0 and i ̸= destination:15

min reward.16
• if bi ≥ 0, and i = destination: max reward.17
Previous studies assumed the probability of a station being available and the expected wait-18

ing time when a station is unavailable to be independent of all external factors except for the station19
itself (11). However, in reality, these parameters could be influenced by multiple variables, such as20
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the time of day, the number of cars observed at the station, or previously observed availabilities at1
other stations that have been visited.2

Incorporating the additional information (features) would cause the state space, decision
policy, and algorithm computation time to increase exponentially due to the curse of dimensional-
ity, making the models even more computationally difficult (13). For example, for each SCSp, the
probability of availability (Pr(AvSCSp = 1)) is dependent on factors such as time of day, number of
EV observed at the station, or previously observed availabilities at other (visited/unvisited) SCS,
weather, etc. (14–16).

Pr(AvSCSp = 1|Day, Time of day, No. of obs. EV, Prev. obs. avail., Weather).

Action space3
The actions at each current location consist of the possible links that can be traversed from the EVs4
current location. The EV must satisfy the energy requirement for traversing the link or must use a5
SCS or MED if available at the current location (i.e., i= p or sk

m) to support its energy requirement:6

A(i,bi) =
{
( j,rci) : (i, , j) ∈ E,rci ∈ RCi j(bi)

}
,

where each action consists of the next node j to visit, along with the amount of charge7
rci > 0 feasible at the current node if i = p or sk

m. if rci > 0, then the EV must charge at current8
location i. This allows only the actions that will enable EV to reach the next node (b j ≥ 0)9

EV SoC update10
While the main contribution of this study is on optimal learning for EV routing, it’s critical to11
consider appropriate relationships between SoC and vehicle activities regarding wireless charging12
while driving. Folloing components are considered for sophisticated SoC updates.13

We use a piecewise-linear EV battery charging function (17) c(t̂,b), depending on charging
time t̂ and initial SoC level b. The function c(t̂,b) accounts for the battery’s reduced capability of
absorbing energy when the SoC is high. Assuming the maximum EV charging rate is r, three
sections have different charging rates: r in SoC of 0−85%, r

2 in 85−95%, and r
2 in 95−100%. For

an empty battery (i.e., b = 0) and charging time t̂, the SoC after charging (assuming that no energy
is consumed while charging) is
ĉ(t̂) = min{r1t̂,0.85Q+ r2 (t̂− t1) ,0.95Q+ r3 (t̂− t2) ,Q} , (2)
where t1 =

0.85Q
r1

and t2 = t1 +
0.1Q

r2
are the first two breakpoints of the piecewise-linear, concave,14

and nondecreasing charging function. Q is the EV battery size.15
We use a speed-dependent energy consumption model (18).

e(t,v) = t
(
γ1v+ γ2v3 + γ3

)
. (3)

t is travel time, v for speed, and γ1,γ2,γ3 are vehicle-specific constants: γ1 =
g·Cr·m

η
, γ2 =

Cw·AF·ρ
2·η ,16

and γ3 = P0 where g is gravity, Cr is rolling resistance, m is weight, η is engine efficiency, Cw is17
drag coefficient, AF is frontal surface area, ρ is air density (200 meters above sea level, temperature18
20◦C), and P0 is auxiliary power.19

We use a dynamic charging/discharging model while driving (19) for EVs’ SoC when it20
traverses link/arc (i, j) ∈ E. The model will estimate the SoC of the EV after it travels on link21
(i, j)∈ E either connected or unconnected to MED. To ensure longer charge duration, it is assumed22
that EV’s reduce speed for dynamic charging on links/routes when connected to MED. The SoC23
β ( j, ti j,bi) at location j, considering the travel time ti j on link (i, j) and initial SoC bi at current24
location i is defined as25
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β ( j, ti j,bi) =

{
c(ti j,bi) if EV is connected to MED for distance da,

bi− e(ti j,v) if EV traverses distance da(unconnected), and bi− e(ti j,v)≥ 0,

Note that v =
di j
ti j

. Any scenario where β ( j, ti j,bi) = bi j− e(ti j,v) < 0 is infeasible since1

battery lower limit is zero. In such cases, the link (i, j) can not be traversed by the EV unless it has2
been charged to a sufficient level. The total time of contact between a MED and EV is calculated3
according to the length of the road segment di j and the velocity(speed) of the MED, vmed .4

t̂t = ∑
(i, j)∈P′

di j

vmed

P′ is the shared path between MED and EV after the initial point of contact.5

Algorithm 1 DRL for EV routing with DWC
1: Input: G = (N,E), destination nd , learning rate α

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ

Initialize action-value function Q̂ with random weights θ ′ = θ

2: for each EV routing decision (number of episodes) do
3: s1←{x1} and preprocessed sequence φ1 = φ (s1) ▷ initial state or feature vector
4: for h = 1...H do
5: Select random node ah ∈ A(sh) with probability ε

6: Otherwise select ah = argmaxa Q(φ (sh) ,a;θ)
7: Perform action ah and observe reward rh and new feature vector xh+1
8: Set sh+1 = sh,ah,xh+1 and preprocess φh+1 = φ(sh+1)
9: Store transition (φh,ah,rh,φh+1) in D

10: Sample random minibatch of memories (φ j,a j,r j,φ j+1) from D
11: if terminal at step j+1 then
12: y j = r j
13: else
14: y j = r j + γ maxa Q̂

(
φ
(
s j+1

)
,a′;θ ′

)
15: end if

▷ Train Neural Network with stored experiences to find optimal weights
16: Calculate ∇L(θ) = Eφ ,a

[
(y j−Q(φ j,a j;θ))∇θ Q(φ j,a j;θ)

]
▷ Gradient descent

17: Update θ ← θ −α∇L(θ)
18: Reset Q̂ = Q every C steps
19: end for
20: end for

Charging policy6
Each EV can charge to a maximum charging capacity Qmax and the charge level can not drop7
below zero. At the EVs current location i, the set of required and/or feasible charging amount8
RCi j(bi), prior to traveling along link (i, j) is given as RCi j(bi) = [(e(ti j,v)−bi)

+,Qmax−bi]. The9
minimum required energy/charge amount to traverse link (i, j) is restricted to positive numbers10
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(i.e., (e(ti j,v)− bi) > 0). When this amount is less or equal to zero, EVs can traverse link (i. j)1
without charging. The maximum possible charging for each EV at the current location is given as2
Qmax−bi, assuming that e(ti j,v)≤ Qmax, for all (i, j) ∈ E.3

For scenarios where EVs are connected to MEDs to traverse link (i, j), the charging amount4
is estimated using the by the non-linear charging function c(ti j,bi).5

Reward and solution approach6
The reward function r = R(s,a,s′) estimates to a scalar value when the state transitions into state7
s′ from state s after taking action a. The reward is utilized to update the weights in the solution.8
For example, in convolutional neural networks, each weight can be updated through backpropa-9
gation using action-driven rewards. The below algorithm shows black box-based deep RL as the10
benchmark. The full paper will include both the black box approach and contextual AI approach11
built upon previous work to identify a subset of more valuable factors to incorporate.12

Once there is a new observation of wait and travel time in SCS and MEDs, the external13
module TMML will update the prior and approximate the posterior distribution.14

NUMERICAL EXPERIMENT15
In the numerical experiment, a 3-by-3 grid network in Figure 4 is used, consisting of 9 nodes16
and 14 links. It shares the same markers to indicate nodes with SCSs and MED stops. Numbers17
in shapes are node IDs, and those in parentheses are the mean and standard deviation of travel18
time on links. For example, when traveling on the link connecting Node 1 and 2 would take19
38.6 minutes on average, and the standard deviation of travel time is 6.6 minutes. Dashed links20
represent the direction of MED routes, and they have 1.2 times longer travel time compared to21
normal links, considering the assumption of speed reduction due to the safety issue. In addition,22
nodes with access to charging systems have s̈uperscriptsänd s̈ubscripts,̈ and each indicates the23
mean and standard deviation of wait time for chargers.24

On this network, 8 unique routes can be observed for traveling from Node 1 to 9. However,25
there are 21 different routes available when counting the same route as different ones regarding the26
usage of charging systems. Table 1 illustrates the sequence of nodes and charging system usages27
of routes. For instance, when using Route 11 in the table, a vehicle will start from Node 1, visit28
Node 2, 5, and 8, and arrive at Node 9. It will use SCS at Node 5 and MED between Node 8 and29
9. As a result, the goal of the policy is to pick a route out of 21 that can be accepted by the driver30
who has different sensitivity to various aspects.31

In the experiment, three different drivers are assumed to travel between Node 1 and 9 and32
get recommendations from the system. Their responses to suggestions are archived to estimate33
their perspectives on different trip attributes. Each driver is recommended with random routes 10034
times and with ones with the highest value for the next 900 times.35

RESULT36
The main output of this research is the identification of an optimal policy for individual EV routing.37
With the route generated by the policy, drivers will have a higher probability to complete their trips38
within a reasonable time and tolerable variability before their batteries are depleted. Under the39
deterministic settings, the optimal route may be equivalent to the most cost-efficient one with the40
lowest generalized cost integrating travel cost, charging cost, and value of wait time. In contrast, a41
vehicle would be asked to follow a route with longer expected travel time and lower variability ac-42
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FIGURE 4 Sample network for numerical experiment

TABLE 1 Attributes of Enumerated Routes on Sample Network

Route # Node Sequence SCS usage MED usage
1 1-2-6-9
2 1-4-8-9
3 1-4-8-9 8-9
4 1-2-3-6-9
5 1-2-3-6-9 3
6 1-2-5-6-9
7 1-2-5-6-9 5
8 1-2-5-8-9
9 1-2-5-8-9 5
10 1-2-5-8-9 8-9
11 1-2-5-8-9 5 8-9
12 1-4-5-6-9
13 1-4-5-6-9 5
14 1-4-5-8-9
15 1-4-5-8-9 5
16 1-4-5-8-9 8-9
17 1-4-5-8-9 5 8-9
18 1-4-7-8-9
19 1-4-7-8-9 8-9
20 1-4-7-8-9 7-8
21 1-4-7-8-9 7-8,8-9
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cording to the driver’s inclination. The more the system learns the situation, the better expectation1
of successful completion of trips. After multiple times of observations, the system can estimate2
parameters for evaluating routes.3

FIGURE 5 Sample illustration of expected result

The first result that represents the performance of the routing policy is the cumulative ac-4
ceptance rate (see Yoon et al. (20)) and illustrated in Figure 5. First, operating a reinforcement5
learning-based routing algorithm in the numerical example will yield a sequence of choices and re-6
wards. As the model continues to learn, its predictability for a successful route would be improved,7
leading to an asymptotically increasing cumulative acceptance rate. This enables the comparison8
of performance between the initial and mature models. In Figure 5, cumulative acceptance rate9
curves before the 100th time step are lower than plateaus near the 1000th time step respectively.10
By repeating the recommendation after collecting information from random route guidance, the11
algorithm can develop the model to increase the probability of recommending routes that can be12
accepted by the driver. Table 2 illustrates the extent of improvement per driver. Since all the given13
information including the network and the true parameters are artificially generated, the improve-14
ments shown in this figure may not reflect phenomena in the real world. Nevertheless, it shows15
evidence that the proposed algorithm can capture the direction of the policy which can increase the16
chance of recommending acceptable alternatives to users.17

TABLE 2 Improvement of Cumulative Acceptance Rate by Vehicle

Vehicle Rate at 100th Rate at 1000th Increment
A 41% 67.9% 26.9 pp
B 37% 63.2% 26.2 pp
C 53% 69.5% 16.5 pp
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FIGURE 6 Cumulative route choice rate of Vehicle A

FIGURE 7 Cumulative route choice rate of Vehicle B

FIGURE 8 Cumulative route choice rate of Vehicle C
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Secondly, the system can track the trend of choices made over routes to provide insights1
to users. In Figure 6, 7, and 8, curves represent the proportion of time steps that recommended2
the specific route. For example, in Figure 6, Route 21 was constantly recommended to the driver,3
followed by Route 5, 11, and 9. Since different true parameters are assigned to drivers, the result4
varies by vehicle. The origin of these differences can be found in Table 1. This historical informa-5
tion can be useful if the system should switch to the offline setting due to an emergency such as6
the failure of a component.7

There can be some other results that can be derived such as significant factors influencing8
the routing the most. It seems to be possible to observe the extent of the impact of numerous factors9
and identify which one becomes more influential. After sufficient choice instances, the model can10
develop a set of parameters representing the effect of corresponding features. Nevertheless, due11
to a lack of real-world data, consideration of correlations among various factors was limited. This12
implies that the parameter estimation might not be accurate if comparing the assumed values and13
estimated ones. Therefore, it should be cautious to conclude the relationship and priority among14
factors.15

CONCLUSION16
This research provides a solution for EV routing that navigates drivers along a route with the high-17
est value regarding travel time and cost, reliability, and charger availability if necessary. Despite18
the involved uncertainties, the algorithm based on reinforcement learning can identify the best19
action to choose by analyzing collected information.20

The current design is for the individual EVs, but it can be expanded to the system level to21
enable the system-wide analysis for the evaluation of AI-based EV routing. If the algorithm can22
consider the social benefit during the routing, the system-level performance measures such as total23
mile-traveled can be compared between "greedy" and "altruistic" scenarios.24

Moreover, one of future studies can concentrate on the optimization of wireless charging25
systems to respond to uncertainties from the user side such as sudden crowdedness. The result of26
this study can support the simulation structure of user groups, and the strategy of the operator can27
be validated by testing on that virtual environment.28
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