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ABSTRACT

Product disassembly is essential for remanufacturing
operations and recovery of end-of-use devices. However,
disassembly has often been performed manually with significant
safety issues for human workers. Recently, human-robot
collaboration has become popular to reduce the human workload
and handle hazardous materials. However, due to the current
limitations of robots, they are not fully capable of performing
every disassembly task. It is critical to determine whether a robot
can accomplish a specific disassembly task. This study develops
a disassembly score which represents how easy is to disassemble
a component by robots, considering the attributes of the
component along with the robotic capability. Five factors,
including component weight, shape, size, accessibility, and
positioning, are considered when developing the disassembly
score. Further, the relationship between the five factors and
robotic capabilities, such as grabbing and placing, is discussed.
The MaxViT (Multi-Axis Vision Transformer) model is used to
determine component sizes through image processing of the XPS
8700 desktop, demonstrating the potential for automating
disassembly score generation. Moreover, the proposed
disassembly score is discussed in terms of determining the
appropriate work setting for disassembly operations, under three
main categories: human-robot collaboration (HRC), semi-HRC,
and worker-only settings. A framework for -calculating
disassembly time, considering human-robot collaboration, is
also proposed.
Keywords: Human-Robot Collaboration, Disassembly Score,
Ease of Disassembly, Machine Learning, Automated Rating
Systems, Remanufacturing
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1. INTRODUCTION

Disassembly is necessary to break down used products, such
as electronic waste (e-waste) for end-of-use recovery. The
increasing rate of e-waste generation creates significant
environmental and health risks due to the improper disposal and
management of toxic materials in discarded electronics.
Disassembly reduces the risk of e-waste by facilitating the
extension of the product life cycle through reuse, remanufacture,
and recycling. One of the primary challenges for
remanufacturers is to make disassembly operations
economically viable through strategies such as the use of robots
for addressing the labor-intensive nature of disassembly and
developing analytical solutions for identifying the best sequence
to dismantle a device [1], [2].

The end-of-life phase is often overlooked in product design,
and disassembly and recyclability usually do not receive enough
attention during the design phase. Previous literature has tried to
develop disassemblability score [3] and ease of disassembly
metric (eDiM) [4] assuming that disassembly is performed
manually. These metrics determine how difficult it is to
disassemble a product by human workers. Table 1 summarizes
several existing metrics relevant to disassembly. The metrics
include repair scores that consider disassembly, such as the iFixit
score [5], and the Assessment Matrix for Ease of Repair
(AsMeR) [6]; the metrics developed for replacement such as
Priority Replacement Index (PRI) [7]; and finally the metrics
specifically for disassembly such as eDiM [8] and
disassemblability [9]. These scores have a wide range of
applications, particularly when evaluating different design
alternatives, and design-for-X methods) [10].
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Table 1: Examples of relevant disassembly scores.

Methods References
Repair metrics such as iFixit score, and

Assessment Matrix for ease of Repair [51,[11]
(AsMeR)

Replacement metrics such as Priority [12]
Replacement Index (PRI)

Disassembly metrics such as Ease of

Disassembly Metric (eDiM), and [13], [14]

Disassemblability

Previous studies have highlighted the importance of
considering disassemblability. For example, Qiu et al. (2014)
adopted a weighted design structure matrix (DSM) to analyze
disassemblability based on product configuration [9]. Germani
et al. (2014) evaluated the disassemblability during the product
design phase [15]. Zhu et al. (2020) assessed the
disassemblability of an entire product rather than components for
the product’s maintainability [14]. Sawanishi et al. (2015)
studied the disassembleability of mobile phones to increase the
feasibility of reuse and design improvements [16]. Ali et al.
(2022) defined a quantitative evaluation metric for disassembly
by considering the returning quality, design features of the
product, and technological requirements [17]. Parsa et al. (2019)
considered disassembly handling, operation, demand, and cost to
evaluate the degree of disassemblability [18]. Go et al. (2011)
reviewed the disassemblability of end-of-life vehicles and
discussed the relationship between disassembly time and
disassembly scores [19]. Rodriguez et al. (2023) addressed the
disassemblability and the importance of disassembly for repair
[20].

In recent years, human-robot collaboration (HRC) and
robotic-assisted disassembly have become popular due to the
potential for reducing human fatigue [21] and removing
hazardous materials [22]. The disassemblability can determine
whether the robot can complete the specific disassembly task or

Disassembilability Factors

Robotic Capability

not [23]. Although previous studies have discussed disassembly
scores, the disassemblability score that considers the capabilities
of robots is still a research gap. Nonetheless, such a disassembly
score would be a practical source for design improvements to
assess product circularity and facilitate initiatives such as right-
to-repair in Industry 4.0.

This study develops a disassembly score from the robotic
aspect. The score determines how easily robots can dismantle a
component. Five factors, including component size, shape,
weight, accessibility, and positioning, have been considered. The
impact of these factors on robotic capabilities, such as grabbing
and placing, has been further discussed. Finally, the proper work
setting (e.g., HRC, Semi-HRC, and worker only) is decided
based on the disassembly score to show how the proposed
disassembly score can be used in practice. Moreover, the
disassembly time in the aspect of the human worker and the robot
is discussed. To automate the process of developing such scores,
the MaxViT machine learning model is applied to identify the
component size using detailed segmented images.

The remainder of this paper is organized as follows. Section
2 discusses the methodology for developing the proposed
disassembly score. Section 3 discusses a case study to
demonstrate the application of the proposed disassembly score.
Section 4 discusses the results, and Section 5 concludes the

paper.

2. METHODOLOGY

This section discusses the process of developing the
disassembly score, the factors considered, and a machine
learning model to recognize competent size as one of the
disassembly factors.

2.1 Disassembly scores

Figure 1 shows the relationship between the five factors,
robotic capability, and work settings.

Work Collaboration Ability
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i | I | - Human-robot collaboration ||
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| Component size High grabbing & High placing ¢ | |
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| c tsh ::>| Semi H-R collaboration ||
i omponent shape Low grabbing & High placing | .
: o [ I
| Positioning . Low grabbing & Low placing I | |
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If the object exceeds the robotic limitation

Figure 1: The relationship between disassembly factors, robotic capability, and work settings.
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2.1.1 Disassemblability Factors

Table 2 shows the five factors, where each factor has three
categories, with the corresponding score for each category
ranging from 1, 3, to 5. A higher score means the robot better
handles the object. For example, if the component size is small,
the score is 1. The component size and component weight
depend on the robotic capability. While some robots are designed
for heavy lifting, there is an upper limit to the weight they can
handle. Also, robots have size constraints. Robots designed for
specific tasks may not be able to handle objects significantly
larger or smaller than those they are programmed to work with.
The size and weight limits are defined based on 33% and 66% of
robotic capability.

The component shape is defined by reflective symmetric
using the following Equation [24]:

Symmertic value = 1 — % )
L

Upon identifying the axis of symmetry, two regions are
evaluated. The larger region donates as A; ., is contrasted with
the smaller one to determine the disparity in their areas,
represented as A,. A value of A; = 0 indicates no discrepancy
between the two regions, showing that the shape is symmetrical.

Table 2: The disassembly factors, scores, and the
corresponding criteria.

Factors Scores Criteria
Component Large (5) >56.7 mm & < 85 mm
size Medium (3) >28.3mm & < 56.7 mm
Small (1) <28.3 mm
Component  Light (5) <1.67kg
weight Medium (3) >1.67 kg & <3.33 kg
Heavy (1) 333 kg & <5kg
Component Symmetric (5) 1
shape Semi-symmetric  >=0.5
3)
Asymmetric (1) <0.5
Positioning Ease to grasp(5)  Square or
RS order of 2,4, 6
Moderate to Cycle or RS order is an
grasp (3) odd number or greater
than 6
Difficult to The RS order is 1 (no
grasp (1) rotational symmetry) and
no line is parallel
Accessibility  High (5) Accessible without
removing any components
Medium (3) Accessible by removing
one component
Limited (1) Removing more than two

obstacles or
No space for the gripper

The positioning is determined based on the Rotational
Symmetry (RS). The categorization of objects based on RS order
facilitates their classification in terms of ease of manipulation.

Rotational Symmetry (RS) is known by a shape's ability to
maintain symmetry upon being rotated. The degree of rotation
required to achieve this symmetry is referred to as the order of
RS.[25]. Specifically, objects with an even RS order are
considered easy to grasp. On the other hand, objects with an odd
RS order, cyclical shapes, or an RS order that exceeds six present
moderate difficulty for grabbing. An RS order of one indicates
the absence of rotational symmetry and the challenge of robotic
handling. Furthermore, accessibility is determined by the
number of components that should be removed to access the
current component, which depends on the robotic gripper's size.
Adequate space is needed so that the robot can quickly grasp the
object.

2.1.2 Robotic capability

In this study, the URSe robot, equipped with a Robotiq
gripper, is used to show the application of the proposed
disassembly score. The URS5e's specifications, as listed in the
manual, include a maximum payload capacity of 5 kg and a
gripper opening of up to 8.5 cm. Based on these specifications,
disassembly factors such as component size and weight are
categorized into two thresholds, 33% and 66% of the robot's
capability, as summarized in Table 2. We should note that the
criteria for disassembly score can vary with the type of robotic
arm used. We used a two-fingered gripper, while other
alternative gripper types such as vacuum or humanoid hand
grippers can be used. In addition, the gripper's maximum length
of 15.2 cm is a critical factor for assessing accessibility as
described in Figure 2.

Figure 2: Robotiq gripper connected with the URSe.

The URS5Se robotic arm conducts two main functions:
positioning the gripper at designated locations and grasping
objects. The performance of the grasping function is impacted by
component size, weight, and shape, whereas the positioning
function is determined by the factors of positioning and
accessibility, as shown in Table 3. Each factor is assigned a
median score of 3. The aggregate scores of 9 and 6 represent the
sum of factors associated with robotic capability and can be
benchmarked to distinguish between low and high capability
levels.
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Table 3: The relationship between factors of disassembly
scores and robotic capability.

Factors Robotic Capability  Scores
Component size Low: <=9
Component weight  Grasping High: >9
Component shape

Positioning Placing Low: <=6
Accessibility High: > 6

2.1.3 The usage of disassembleability score

The robot's capability determines the work environment
configurations, such as Human-Robot Collaboration (HRC),
Semi-HRC, and Worker-Only settings, as shown in Figure 3. In
an HRC setting, there is a collaboration between the human
worker and the robotic arm, where humans and robots work on
the same task. On the other hand, Semi-HRC shows a work
setting where tasks between humans and robots are either
sequential or parallel. The Worker-Only setting applies when the
object's weight or size exceeds the robotic arm's capacity for
manipulation and requires direct human intervention without the
robot's assistance.

Figure 3: The three types of work settings: (a) Human-robot
collaboration, (b) Semi-HRC, and (c) Worker only.

Figure 3 presents three scenarios: (a) HRC, (b) Semi-HRC,
and (c) worker-only. In Figure 3(a), a human worker and a robot
collaborate to disassemble a RAM module. The human releases
the slot and holds the RAM, while the robot places and grabs it.
Figure 3(b) depicts Semi-HRC, where the robot grabs the HDD,
and the human worker unscrews the CPU fan bolts. The HDD
placement follows a sequence where the human disassembles it
before the robot intervenes. Figure 3(c) illustrates the worker-
only disassembly of the power supply, as its size prevents the
robot from handling it.

2.2 Applying MaxViT to classify component size

The MaxViT (Multi-Axis Vision Transformer) machine
learning model is used to determine the size of components,
which is a critical factor in disassembly processes. According to

[26], the MaxViT was introduced in 2022. This architecture
combines the MaxViT block with MBConv (Mobile Inverted
Bottleneck Convolution) [27], Block Attention, and Grid
Attention mechanisms. MBConv combines the squeeze-and-
excitation (SE) module with convolution layers to improve
feature extraction. This research uses the MaxViT model to
classify component sizes into four categories: small, medium,
large, and oversized. The process consists of segmenting the
input from an RGB image and categorizing it into one of these
four size classes.

2.3 Human-robot collaborative disassembly time

In practical applications, it is important to note that the
allocation of disassembly tasks between humans and robots
should be determined not only based on their capabilities but also
by considering the disassembly time required for each task. In
this section, we introduce a general framework to calculate
disassembly times for both manual operations and human-robot
collaboration scenarios. We identify the optimal option as the
minimum between the manual disassembly time and the human-
robot collaboration disassembly time.

Human-robot collaborative disassembly time is derived
from the operational time estimates from connector
specifications by using disassembly parameters. We can use a
user-friendly spreadsheet to calculate disassembly time. Within
this spreadsheet, individual rows represent different connectors,
and their arrangement determines the disassembly sequence
under evaluation. The ease of disassembly time metric requires
three parts: disassembly information, disassembly parameters,
and individual humans' and robots' disassembly time (Figure 4).

Disassembly information consists of four segments,
provided by product designers. First, the Product Description
defines information about components and connectors. The
subsequent Manual disassembly description provides details
regarding connector visibility, tools required, positioning,
manipulation techniques, and component removal procedures.
The Robot disassembly factors evaluate the feasibility of robotic
disassembly for connectors considering the five factors
discussed in disassembly scores. Finally, the Robot disassembly
description provides the specifics of robotic disassembly,
including task types, tools employed, positioning considerations,
fixture manipulation, grasping techniques, and methods for
component removal.

Disassembly parameters consist of parameters that are used
to calculate the disassembly time based on the provided
disassembly information. It incorporates both calculated time
parameters and robotic disassembly factor parameters. Manual
disassembly time parameters are computed using the MOST
technique [4] and the robotic disassembly time is calculated
through experiments. For robotic disassembly parameters, the
calculation incorporates a 50% maximum robot speed
assumption based on a robot’s maximum cartesian speed of 10
m/s, accounting for trapezoidal motion profiles and short
distances during disassembly. Fixed action times of 5s are
assumed for tool changing, grasping, and precise positioning and
2.5s seconds for task handover.
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Figure 4: Human-robot collaborative disassembly time metric.

The parameters for the robotic disassembly factor take into

account the disassembly scores. It is worth noting that
disassembly parameters are calculated parameters, not measured
parameters and as the robotic setup might vary for different
applications, a generic robotic setup parameter is assumed for the
metric which aids in evaluating the product design irrespective
of the human-robot collaborative setup design. These parameters
could be revised by the remanufacturers depending on their setup
for obtaining a more accurate disassembly time for task planning
and scheduling.
Now, to determine whether to select manual disassembly or
HRC, we need to calculate Manual Disassembly Time (M), and
Human-Robot Collaborative Time. Manual Disassembly time
(M,) is calculated using:

M, = Tool Change + Identifying
+ Manipulation + Positioning 2
+ Disconnection + Removing

Human-Robot Collaborative Time is calculated using the
following equation:

o (Rt C 3)
Human Robot collaboartive time = Y + H,

Where R; is the Robotic disassembly time calculated using,
Ry = Tool change + Traversal
+ Fixture Manipulation + Positioning
+ Disconnection + Removing
C, is the Task handover time which is determined by counting
task transitions between humans and robots.
n is the cost factor and it is determined based on parameters such
as robot usage cost, availability, and labor cost (e.g., n = 2,
assuming the robot incurs half the labor cost).
If a task is executable by both a human and a robot, the
metric attributes it to the robot, calculating the remaining tasks

n - cost factor E

as human working time (Hy). The final disassembly time is then
computed as the minimum time between manual and human-
robot collaborative disassembly.

3. CASE STUDY
3.1 XPS 8700 desktop

This study used an XPS 8700 desktop computer as a case
study to show the application of the proposed disassembly score.
Figure 5 and Table 4 show the images and the list of components,
including the power supply, HDD, CD reader, and other
electronic devices. The desktop has two memory RAMs that
were disassembled. Figure 6 shows the precedence relationships
among the components, where the number in each cycle
corresponds to the entries in Table 4. The figure differentiates
between two types of lines: those without arrows indicate
components at the same level of disassembly sequence, whereas
lines with arrows show that certain components should be
removed before proceeding to the next component. We excluded
the side cover and the base as they are too large for the robotic
gripper's capacity.

Figure 5: The components of the XPS 8700 desktop.
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Figure 6: The precedence relationships of XPS 8700
disassembly tasks.

Table 4: The list of the components of XPS 8700.

# Component # Component # Component
Side Cover 7  IstRAM 13 Front Cover
Port Cover 8 2nd RAM 14 Orange Cable

Side Fan 9  Power Supply 15 CD Reader
CPU Fan 10 HDD Cover 16 Motherboard
CPU Chip 11 Blue Cable 17 Base

GPU Card 12 HDD

AN N DW=

3.2 Components used for classification by MaxViT

Seven components were selected for analysis using the
MaxViT model to identify component sizes. These components
include a CD reader, HDD, CPU chip, GPU card, CPU fan, front
cover, and power supply. Classification results show that the
GPU card and HDD are considered small size; the CD reader and
CPU chip are medium size; the CPU fan and front cover are large
size; and the power supply is oversized. The camera was
positioned at an equal distance for each component.

CD reader

CPU chip GPU card Power supply

CPU fan Front cover
Figure 7: Segmented images of seven components: CD reader,
HDD, CPU chip, GPU card, CPU fan, front cover, and power
supply.

Moreover, we have collected 130 RGB images, which were
manually labeled and resulted in 209 segmented images, as some
examples are shown in Figure 7. These segmented images were
divided into training, validation, and testing datasets, with a ratio

of 70%, 15%, and 15%, respectively. Data augmentation
techniques were used on the training dataset before training the
MaxViT model.

This study manually labels image segmentations, as shown
in Figure 7, and uses these segmented images as inputs to the
MaxVit model for classifying component sizes. Although
manual segmentation requires extra preprocessing, it increases
accuracy by creating precise boundaries, improving training data
quality, and reducing background noise. This method also
benchmarks automated segmentation, reduces overfitting, and is
helpful for high-precision tasks such as medical imaging and
component analysis. In practice, RGB images can be directly
input into the classification model or first processed by a
segmentation model to create segmented images for Max Vit to
identify size classifications. While training a single object
detection model may be simpler, a separate segmentation model
offers valuable benefits despite the added complexity.

4. RESULTS AND DISCUSSIONS

This section presents the disassembly score calculated for
the XPS 8700 desktop, along with the application of the MaxViT
machine learning model for classifying component sizes and
disassembly time calculation.

4.1 Disassembly score for the XPS 8700 desktop

The disassembly score is calculated for each component of
the XPS 8700 desktop. Table 5 lists the characteristics of each
component in terms of five factors: size, weight, shape,
positioning, and accessibility. The shape of the component is
quantified using Equation (1), while positioning shows the
component's order of rotational symmetry. Based on the data in
Table 5, Table 6 shows the corresponding score for each factor.
Most of the components are small in size and lightweight. The
CPU chip and CD reader are categorized as medium-sized,
whereas the CPU fan and front cover are large. The power supply
and motherboard are considered oversized, as their sizes exceed
the maximum gripper opening of 8.5 cm. The blue and orange
cables are considered asymmetric due to their variable shapes.

Regarding positioning, most components have an even order
of rotational symmetry and are more accessible for the robot to
handle. However, cables and the front cover are challenging to
manipulate since their order of rotational symmetry is 1.
Accessibility is limited for most components due to tight
integration with the desktop casing or restricted space. The GPU
card and two cables have medium accessibility, while the second
RAM slot has sufficient space for the robotic gripper to navigate
inside the desktop shell.

Table 7 shows the robotic capabilities for grabbing and
placing components. The grabbing scores are calculated from the
cumulative values of component size, weight, and shape, and the
placing scores are calculated from the aggregation of positioning
and accessibility. Due to oversized dimensions, the power supply
and motherboard need manual disassembly. Most of the
components have high grabbing capability due to their
lightweight and favorable shape; however, they have low placing
capability.
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Table 5: The information of five factors for each component of the XPS 8700 desktop.

Component Size (cm) Weight (g) Shape (Ref. Symmetry) Positioning (Rot. Symmetry ) Accessibility

Port Cover 8.8x0.4x1 15 1 2 No space

Side Fan 9.2x9.2x1.5 75 1 4 No space

CPU Fan 8x8x6 365 1 4 No space

CPU Chip 3.8x3.8x0.4 25 1 4 No space

GPU Card 5.5x9.6x1.5 140 1 2 Need to remove the CPU fan
Ist RAM 3x13.5x0.1 10 1 2 Need to remove the GPU card and 1st RAM
2nd RAM 3x13.5x0.1 10 1 2 High Accessibility

Power Supply 14x15x8.6 1540 1 2 No space

HDD Cover 11x13.7x0.1 135 1 2 No space

Blue Cable 26.5x0.8x0.3 5 <0.5 1 Medium Accessibility

HDD 11x14.6x2 390 1 2 No space

Front Cover 5x18x41 570 1 1 No space

Orange Cable  36.5x0.8x0.3 5 <0.5 1 Medium Accessibility

CD Reader 14.6x17x4.1 645 1 2 No space

Motherboard ~ 22.2x24x0.4 460 1 2 No space

Table 6: The resulting score for each factor.

Component Size Weight Shape Positioning Accessibility
Port Cover Small (1) Light (5) Symmetric (5) Easy (5) Low (1)
Side Fan Small (1) Light (5) Symmetric (5) Easy (5) Low (1)
CPU Fan Large (5) Light (5) Symmetric (5) Easy (5) Low (1)
CPU Chip Medium (3) Light (5) Symmetric (5) Easy (5) Low (1)
GPU Card Small (1) Light (5) Symmetric (5) Easy (5) Medium (3)
1st RAM Small (1) Light (5) Symmetric (5) Easy (5) Low (1)
2nd RAM Small (1) Light (5) Symmetric (5) Easy (5) High (5)
Power Supply X Light (5) Symmetric (5) Easy (5) Low (1)
HDD Cover Small (1) Light (5) Symmetric (5) Easy (5) Low (1)
Blue Cable Small (1) Light (5) Asymmetric (1) Difficult (1) Medium (3)
HDD Small (1) Light (5) Symmetric (5) Easy (5) Low (1)
Front Cover Large (5) Light (5) Symmetric (5) Difficult (1) Low (1)
Orange Cable Small (1) Light (5) Asymmetric (1) Difficult (1) Medium (3)
CD Reader Medium (3) Light (5) Symmetric (5) Easy (5) Low (1)
Motherboard X Light (5) Symmetric (5) Easy (5) Low (1)
Table 7: The work settings based on disassembly factors and robotic capability.

Component Grasping  Placing  Grasping Capability Placing Capability Work Setting

Port Cover 11 6 High Low Semi-HRC

Side Fan 11 6 High Low Semi-HRC

CPU Fan 15 6 High Low Semi-HRC

CPU Chip 13 6 High Low Semi-HRC

GPU Card 11 8 High High HRC

Ist RAM 11 6 High Low Semi-HRC

2nd RAM 11 10 High High HRC

Power Supply X X X X Human worker only
HDD Cover 11 6 High Low Semi-HRC

Blue Cable 7 4 Low Low Human worker only
HDD 11 6 High Low Semi-HRC

Front Cover 15 2 High Low Semi-HRC

Orange Cable 7 4 Low Low Human worker only

CD Reader 13 6 High Low Semi-HRC

Motherboard X X X X Human worker only

© 2024 by ASME



This limitation in placing capability is because of the limited
space available, as listed in Tables 5 and 6, which results in most
of the components being classified under semi-HRC conditions.
This classification means the worker should position the
component precisely before the robot grabs it and places it into
the collection bin. The GPU card and second RAM have a high
capability for both grabbing and placing, where the robotic
gripper can access and manipulate these components inside the
desktop. The robotic arm can work with the worker concurrently
under the HRC setting.

4.2. Component size classification results

This limitation in placing capability is because of the limited
space available, as listed in Tables 5 and 6, which results in most
of the components being classified under semi-HRC conditions.
This classification means the worker should position the
component precisely before the robot grabs it and places it into
the collection bin. The GPU card and second RAM have a high
capability for both grabbing and placing, where the robotic
gripper can access and manipulate these components inside the
desktop. The robotic arm can work with the worker concurrently
under the HRC setting.

The Max ViT classifies component sizes into four categories:
small, medium, large, and oversize, which are assigned labels 1,
2, 3, and 4, respectively.

(N1} 0.000.00|0.00

= 2/0.00 RN

=

g

< 3/0.00| 0.00 K0
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Figure 8: The normalized confusion matrix of (a) training
results with 98% accuracy, (b) validation results with 100%
accuracy, and (c) testing results with 100% accuracy.
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Figure 8 shows the normalized confusion matrix results of
training, validation, and testing datasets. The training accuracy
is 98%, while the validation and testing accuracy is 100%. The
MaxViT model can classify the component size perfectly. In the
training phase shown in Figure 8 (a), the sizes, such as medium,
large, and oversize, lost some accuracy, which the MaxViT
classed into the nearby size. For example, in oversize (4), 7% of
images are classed into large sizes, and others, such as small and
medium, do not have misclassification. This shows the
capabilities of using machine learning to identify disassembly
factors towards an automated rating system.

In this study, we do not consider summing the pixels in
segments. While summing pixels can indicate the area of a
component, it does not reflect whether the robot can grasp it. For
instance, two objects- one measuring 90x90 mm and another
30x270 mm- have the same area, but the robot cannot grasp the
first one due to its 85 mm limitation.

The MaxViT model demonstrates an example of
classification with automated size assessment. This example

suggests that future studies could develop an automated rating
system for disassembly scores based on the MaxViT model, even
with unknown size information. The deep learning model
requires only the image as input and then evaluates the
disassembly scores automatically.

4.3 Calculation of disassembly time for the XPS 8700
desktop

Considering the robot's capabilities and the design of the
case study product especially low placing capability due to the
limited space available, predominant of the tasks are carried out
by manual disassembly. Considering the human-robot
collaborative disassembly time calculation, the total manual
disassembly time (M) for the XPS 8700 desktop was found to
be 145.8 sec. Factoring in robotic capabilities, the robotic
disassembly time (R¢) was 60.82 sec with the remaining tasks
accounting for human working time (H;) at 128.16 seconds and
a task changeover time (C;) of 37.5 seconds. Considering a cost
factor (n) of 2, the final disassembly time was calculated as 145.8
seconds. We should note that the obtained disassembly time is
based on the calculated disassembly parameters for uniformity
of the product design evaluation and hence, the calculated
disassembly time values will differ from the actual measured
disassembly times in practice.

While the disassembly scores define each component’s
work setting, the disassembly time reflects the overall efficiency
of the XPS 8700 desktop. This metric can inform product design
improvements for more HRC-friendly disassembly. Future
research can use disassembly time to evaluate different design
alternatives.

5. CONCLUSION

This study proposes a framework for assessing the
disassembly score suitable for robotic disassembly based on five
factors: component size, weight, shape, positioning, and
accessibility. It discusses the connection between disassembly
factors, robotic capabilities, and workplace settings. The
application of the proposed disassembly score is shown by using
an XPS 8700 desktop. Moreover, the study uses MaxViT, a
transformer-based machine learning model, to categorize
component sizes into four classes: small, medium, large, and
oversized. The framework provides a rating system for
determining the ease of robots performing disassembly tasks.
Further, the use of MaxViT proves that artificial intelligence
techniques can be used to automate the development of scoring
systems. The study also provided a framework for comparing
manual disassembly time with human-robot disassembly time as
the base for decision-making and determining a practical
disassembly work setting.

The study can be extended in several ways. The future
automated rating systems can be further developed. It will be
easier for robots to evaluate the ease of disassembly and handling
of each component by using computer vision techniques.
Moreover, other types of robotic grippers, such as vacuum and
humanoid hand grippers, can be used beyond just the two-finger
gripper. The analysis mainly considers the robotic perspective

8 © 2024 by ASME



and neglects the human worker's viewpoint. Future research
could broaden the disassembly scoring framework to include
both robotic and human considerations, such as human factors
and fatigue. Also, the use of a disassembly score can be shown
in the product design phase to facilitate designing products that
are easier for robots to disassemble.
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