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ABSTRACT 

Product disassembly is essential for remanufacturing 
operations and recovery of end-of-use devices. However, 
disassembly has often been performed manually with significant 
safety issues for human workers. Recently, human-robot 
collaboration has become popular to reduce the human workload 
and handle hazardous materials. However, due to the current 
limitations of robots, they are not fully capable of performing 
every disassembly task. It is critical to determine whether a robot 
can accomplish a specific disassembly task. This study develops 
a disassembly score which represents how easy is to disassemble 
a component by robots, considering the attributes of the 
component along with the robotic capability. Five factors, 
including component weight, shape, size, accessibility, and 
positioning, are considered when developing the disassembly 
score. Further, the relationship between the five factors and 
robotic capabilities, such as grabbing and placing, is discussed. 
The MaxViT (Multi-Axis Vision Transformer) model is used to 
determine component sizes through image processing of the XPS 
8700 desktop, demonstrating the potential for automating 
disassembly score generation. Moreover, the proposed 
disassembly score is discussed in terms of determining the 
appropriate work setting for disassembly operations, under three 
main categories: human-robot collaboration (HRC), semi-HRC, 
and worker-only settings. A framework for calculating 
disassembly time, considering human-robot collaboration, is 
also proposed. 
Keywords: Human-Robot Collaboration, Disassembly Score, 
Ease of Disassembly, Machine Learning, Automated Rating 
Systems, Remanufacturing 

1. INTRODUCTION  
Disassembly is necessary to break down used products, such 

as electronic waste (e-waste) for end-of-use recovery. The 
increasing rate of e-waste generation creates significant 
environmental and health risks due to the improper disposal and 
management of toxic materials in discarded electronics. 
Disassembly reduces the risk of e-waste by facilitating the 
extension of the product life cycle through reuse, remanufacture, 
and recycling. One of the primary challenges for 
remanufacturers is to make disassembly operations 
economically viable through strategies such as the use of robots 
for addressing the labor-intensive nature of disassembly and 
developing analytical solutions for identifying the best sequence 
to dismantle a device [1], [2]. 

The end-of-life phase is often overlooked in product design, 
and disassembly and recyclability usually do not receive enough 
attention during the design phase. Previous literature has tried to 
develop disassemblability score [3] and ease of disassembly 
metric (eDiM) [4] assuming that disassembly is performed 
manually. These metrics determine how difficult it is to 
disassemble a product by human workers. Table 1 summarizes 
several existing metrics relevant to disassembly. The metrics 
include repair scores that consider disassembly, such as the iFixit 
score [5], and the Assessment Matrix for Ease of Repair 
(AsMeR) [6]; the metrics developed for replacement such as 
Priority Replacement Index (PRI) [7]; and finally the metrics 
specifically for disassembly such as eDiM [8] and 
disassemblability [9]. These scores have a wide range of 
applications, particularly when evaluating different design 
alternatives, and design-for-X methods) [10]. 
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Table 1: Examples of relevant disassembly scores. 

Methods References 
Repair metrics such as iFixit score, and 
Assessment Matrix for ease of Repair 
(AsMeR) 

[5], [11] 

Replacement metrics such as Priority 
Replacement Index (PRI) [12] 

Disassembly metrics such as Ease of 
Disassembly Metric (eDiM), and 
Disassemblability 

[13], [14] 

 
Previous studies have highlighted the importance of 

considering disassemblability. For example, Qiu et al. (2014) 
adopted a weighted design structure matrix (DSM) to analyze 
disassemblability based on product configuration [9]. Germani 
et al. (2014) evaluated the disassemblability during the product 
design phase [15]. Zhu et al. (2020) assessed the 
disassemblability of an entire product rather than components for 
the product’s maintainability [14]. Sawanishi et al. (2015) 
studied the disassembleability of mobile phones to increase the 
feasibility of reuse and design improvements [16]. Ali et al. 
(2022) defined a quantitative evaluation metric for disassembly 
by considering the returning quality, design features of the 
product, and technological requirements [17]. Parsa et al. (2019) 
considered disassembly handling, operation, demand, and cost to 
evaluate the degree of disassemblability [18]. Go et al. (2011) 
reviewed the disassemblability of end-of-life vehicles and 
discussed the relationship between disassembly time and 
disassembly scores [19]. Rodrıguez et al. (2023) addressed the 
disassemblability and the importance of disassembly for repair 
[20]. 

In recent years, human-robot collaboration (HRC) and 
robotic-assisted disassembly have become popular due to the 
potential for reducing human fatigue [21] and removing 
hazardous materials [22]. The disassemblability can determine 
whether the robot can complete the specific disassembly task or 

not [23]. Although previous studies have discussed disassembly 
scores, the disassemblability score that considers the capabilities 
of robots is still a research gap. Nonetheless, such a disassembly 
score would be a practical source for design improvements to 
assess product circularity and facilitate initiatives such as right-
to-repair in Industry 4.0. 

This study develops a disassembly score from the robotic 
aspect. The score determines how easily robots can dismantle a 
component. Five factors, including component size, shape, 
weight, accessibility, and positioning, have been considered. The 
impact of these factors on robotic capabilities, such as grabbing 
and placing, has been further discussed. Finally, the proper work 
setting (e.g., HRC, Semi-HRC, and worker only) is decided 
based on the disassembly score to show how the proposed 
disassembly score can be used in practice. Moreover, the 
disassembly time in the aspect of the human worker and the robot 
is discussed. To automate the process of developing such scores, 
the MaxViT machine learning model is applied to identify the 
component size using detailed segmented images. 

The remainder of this paper is organized as follows. Section 
2 discusses the methodology for developing the proposed 
disassembly score. Section 3 discusses a case study to 
demonstrate the application of the proposed disassembly score. 
Section 4 discusses the results, and Section 5 concludes the 
paper. 
 
2. METHODOLOGY  

This section discusses the process of developing the 
disassembly score, the factors considered, and a machine 
learning model to recognize competent size as one of the 
disassembly factors. 

 
2.1 Disassembly scores 

Figure 1 shows the relationship between the five factors, 
robotic capability, and work settings. 

 

 

 
Figure 1: The relationship between disassembly factors, robotic capability, and work settings.  
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2.1.1  Disassemblability Factors 
Table 2 shows the five factors, where each factor has three 

categories, with the corresponding score for each category 
ranging from 1, 3, to 5. A higher score means the robot better 
handles the object. For example, if the component size is small, 
the score is 1. The component size and component weight 
depend on the robotic capability. While some robots are designed 
for heavy lifting, there is an upper limit to the weight they can 
handle. Also, robots have size constraints. Robots designed for 
specific tasks may not be able to handle objects significantly 
larger or smaller than those they are programmed to work with. 
The size and weight limits are defined based on 33% and 66% of 
robotic capability.  

The component shape is defined by reflective symmetric 
using the following Equation [24]: 

𝑆𝑦𝑚𝑚𝑒𝑟𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 = 1 −
𝐴𝑑

𝐴𝐿
(1) 

Upon identifying the axis of symmetry, two regions are 
evaluated. The larger region donates as 𝐴𝐿., is contrasted with
the smaller one to determine the disparity in their areas, 
represented as 𝐴𝑑. A value of 𝐴𝑑 = 0 indicates no discrepancy
between the two regions, showing that the shape is symmetrical. 

Table 2: The disassembly factors, scores, and the 
corresponding criteria. 

Factors Scores Criteria 
Component 
size 

Large (5) > 56.7 mm & < 85 mm
Medium (3) > 28.3mm & < 56.7 mm
Small (1) < 28.3 mm

Component 
weight 

Light (5) < 1.67 kg 
Medium (3) > 1.67 kg & < 3.33 kg
Heavy (1) 3.33 kg & < 5 kg

Component 
shape 

Symmetric (5) 1 
Semi-symmetric 
(3) 

>= 0.5 

Asymmetric (1) < 0.5 
Positioning Ease to grasp(5) Square or 

RS order of 2, 4, 6 
Moderate to 
grasp (3) 

Cycle or RS order is an 
odd number or greater 
than 6 

Difficult to 
grasp (1) 

The RS order is 1 (no 
rotational symmetry) and 
no line is parallel 

Accessibility High (5) Accessible without 
removing any components 

Medium (3) Accessible by removing 
one component 

Limited (1) Removing more than two 
obstacles or 
No space for the gripper 

The positioning is determined based on the Rotational 
Symmetry (RS). The categorization of objects based on RS order 
facilitates their classification in terms of ease of manipulation. 

Rotational Symmetry (RS) is known by a shape's ability to 
maintain symmetry upon being rotated. The degree of rotation 
required to achieve this symmetry is referred to as the order of 
RS.[25]. Specifically, objects with an even RS order are 
considered easy to grasp. On the other hand, objects with an odd 
RS order, cyclical shapes, or an RS order that exceeds six present 
moderate difficulty for grabbing. An RS order of one indicates 
the absence of rotational symmetry and the challenge of robotic 
handling. Furthermore, accessibility is determined by the 
number of components that should be removed to access the 
current component, which depends on the robotic gripper's size. 
Adequate space is needed so that the robot can quickly grasp the 
object. 

2.1.2  Robotic capability 
In this study, the UR5e robot, equipped with a Robotiq 

gripper, is used to show the application of the proposed 
disassembly score. The UR5e's specifications, as listed in the 
manual, include a maximum payload capacity of 5 kg and a 
gripper opening of up to 8.5 cm. Based on these specifications, 
disassembly factors such as component size and weight are 
categorized into two thresholds, 33% and 66% of the robot's 
capability, as summarized in Table 2. We should note that the 
criteria for disassembly score can vary with the type of robotic 
arm used. We used a two-fingered gripper, while other 
alternative gripper types such as vacuum or humanoid hand 
grippers can be used. In addition, the gripper's maximum length 
of 15.2 cm is a critical factor for assessing accessibility as 
described in Figure 2. 

Figure 2: Robotiq gripper connected with the UR5e. 

The UR5e robotic arm conducts two main functions: 
positioning the gripper at designated locations and grasping 
objects. The performance of the grasping function is impacted by 
component size, weight, and shape, whereas the positioning 
function is determined by the factors of positioning and 
accessibility, as shown in Table 3. Each factor is assigned a 
median score of 3. The aggregate scores of 9 and 6 represent the 
sum of factors associated with robotic capability and can be 
benchmarked to distinguish between low and high capability 
levels. 
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Table 3: The relationship between factors of disassembly 
scores and robotic capability. 

Factors Robotic Capability Scores 
Component size 

Grasping
Low: <= 9 
High: > 9 Component weight 

Component shape 
Positioning Placing Low: <= 6 

High: > 6 Accessibility 

2.1.3  The usage of disassembleability score 
The robot's capability determines the work environment 

configurations, such as Human-Robot Collaboration (HRC), 
Semi-HRC, and Worker-Only settings, as shown in Figure 3. In 
an HRC setting, there is a collaboration between the human 
worker and the robotic arm, where humans and robots work on 
the same task. On the other hand, Semi-HRC shows a work 
setting where tasks between humans and robots are either 
sequential or parallel. The Worker-Only setting applies when the 
object's weight or size exceeds the robotic arm's capacity for 
manipulation and requires direct human intervention without the 
robot's assistance. 

(a) (b) 

(c) 

Figure 3: The three types of work settings: (a) Human-robot 
collaboration, (b) Semi-HRC, and (c) Worker only. 

Figure 3 presents three scenarios: (a) HRC, (b) Semi-HRC, 
and (c) worker-only. In Figure 3(a), a human worker and a robot 
collaborate to disassemble a RAM module. The human releases 
the slot and holds the RAM, while the robot places and grabs it. 
Figure 3(b) depicts Semi-HRC, where the robot grabs the HDD, 
and the human worker unscrews the CPU fan bolts. The HDD 
placement follows a sequence where the human disassembles it 
before the robot intervenes. Figure 3(c) illustrates the worker-
only disassembly of the power supply, as its size prevents the 
robot from handling it. 

2.2 Applying MaxViT to classify component size 
The MaxViT (Multi-Axis Vision Transformer) machine 

learning model is used to determine the size of components, 
which is a critical factor in disassembly processes. According to 

[26], the MaxViT was introduced in 2022. This architecture 
combines the MaxViT block with MBConv (Mobile Inverted 
Bottleneck Convolution) [27], Block Attention, and Grid 
Attention mechanisms. MBConv combines the squeeze-and-
excitation (SE) module with convolution layers to improve 
feature extraction. This research uses the MaxViT model to 
classify component sizes into four categories: small, medium, 
large, and oversized. The process consists of segmenting the 
input from an RGB image and categorizing it into one of these 
four size classes. 

2.3 Human-robot collaborative disassembly time 
In practical applications, it is important to note that the 

allocation of disassembly tasks between humans and robots 
should be determined not only based on their capabilities but also 
by considering the disassembly time required for each task. In 
this section, we introduce a general framework to calculate 
disassembly times for both manual operations and human-robot 
collaboration scenarios. We identify the optimal option as the 
minimum between the manual disassembly time and the human-
robot collaboration disassembly time. 

Human-robot collaborative disassembly time is derived 
from the operational time estimates from connector 
specifications by using disassembly parameters. We can use a 
user-friendly spreadsheet to calculate disassembly time. Within 
this spreadsheet, individual rows represent different connectors, 
and their arrangement determines the disassembly sequence 
under evaluation. The ease of disassembly time metric requires 
three parts: disassembly information, disassembly parameters, 
and individual humans' and robots' disassembly time (Figure 4). 

Disassembly information consists of four segments, 
provided by product designers. First, the Product Description 
defines information about components and connectors. The 
subsequent Manual disassembly description provides details 
regarding connector visibility, tools required, positioning, 
manipulation techniques, and component removal procedures. 
The Robot disassembly factors evaluate the feasibility of robotic 
disassembly for connectors considering the five factors 
discussed in disassembly scores. Finally, the Robot disassembly 
description provides the specifics of robotic disassembly, 
including task types, tools employed, positioning considerations, 
fixture manipulation, grasping techniques, and methods for 
component removal. 

Disassembly parameters consist of parameters that are used 
to calculate the disassembly time based on the provided 
disassembly information. It incorporates both calculated time 
parameters and robotic disassembly factor parameters. Manual 
disassembly time parameters are computed using the MOST 
technique [4] and the robotic disassembly time is calculated 
through experiments. For robotic disassembly parameters, the 
calculation incorporates a 50% maximum robot speed 
assumption based on a robot’s maximum cartesian speed of 10 
m/s, accounting for trapezoidal motion profiles and short 
distances during disassembly. Fixed action times of 5s are 
assumed for tool changing, grasping, and precise positioning and 
2.5s seconds for task handover.   
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Figure 4: Human-robot collaborative disassembly time metric.

The parameters for the robotic disassembly factor take into 
account the disassembly scores. It is worth noting that 
disassembly parameters are calculated parameters, not measured 
parameters and as the robotic setup might vary for different 
applications, a generic robotic setup parameter is assumed for the 
metric which aids in evaluating the product design irrespective 
of the human-robot collaborative setup design. These parameters 
could be revised by the remanufacturers depending on their setup 
for obtaining a more accurate disassembly time for task planning 
and scheduling.  
Now, to determine whether to select manual disassembly or 
HRC, we need to calculate Manual Disassembly Time (Mt), and 
Human-Robot Collaborative Time. Manual Disassembly time 
(Mt) is calculated using: 
 

𝑀𝑡  =  𝑇𝑜𝑜𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 +  𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝑖𝑛𝑔 
+  𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 +  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 
+  𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 +  𝑅𝑒𝑚𝑜𝑣𝑖𝑛𝑔 

(2) 

 
Human-Robot Collaborative Time is calculated using the 

following equation: 

Human Robot collaboartive time = (
𝑅𝑡 + 𝐶𝑡

n
+ 𝐻𝑡) (3) 

 
Where Rt is the Robotic disassembly time calculated using, 
𝑅𝑇  =  𝑇𝑜𝑜𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 +  𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 

+  𝐹𝑖𝑥𝑡𝑢𝑟𝑒 𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 +  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 
+  𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 +  𝑅𝑒𝑚𝑜𝑣𝑖𝑛𝑔 

Ct is the Task handover time which is determined by counting 
task transitions between humans and robots.  
n is the cost factor and it is determined based on parameters such 
as robot usage cost, availability, and labor cost (e.g., 𝑛 = 2 , 
assuming the robot incurs half the labor cost). 

If a task is executable by both a human and a robot, the 
metric attributes it to the robot, calculating the remaining tasks 

as human working time (Ht). The final disassembly time is then 
computed as the minimum time between manual and human-
robot collaborative disassembly. 
 
3. CASE STUDY 
3.1 XPS 8700 desktop 

This study used an XPS 8700 desktop computer as a case 
study to show the application of the proposed disassembly score. 
Figure 5 and Table 4 show the images and the list of components, 
including the power supply, HDD, CD reader, and other 
electronic devices. The desktop has two memory RAMs that 
were disassembled. Figure 6 shows the precedence relationships 
among the components, where the number in each cycle 
corresponds to the entries in Table 4. The figure differentiates 
between two types of lines: those without arrows indicate 
components at the same level of disassembly sequence, whereas 
lines with arrows show that certain components should be 
removed before proceeding to the next component. We excluded 
the side cover and the base as they are too large for the robotic 
gripper's capacity. 

 
Figure 5: The components of the XPS 8700 desktop. 
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Figure 6: The precedence relationships of XPS 8700 
disassembly tasks. 

Table 4: The list of the components of XPS 8700. 
# Component # Component # Component 
1 Side Cover 7 1st RAM 13 Front Cover 
2 Port Cover 8 2nd RAM 14 Orange Cable 
3 Side Fan 9 Power Supply 15 CD Reader 
4 CPU Fan 10 HDD Cover 16 Motherboard 
5 CPU Chip 11 Blue Cable  17 Base 
6 GPU Card 12 HDD 

  

 
3.2 Components used for classification by MaxViT 

Seven components were selected for analysis using the 
MaxViT model to identify component sizes. These components 
include a CD reader, HDD, CPU chip, GPU card, CPU fan, front 
cover, and power supply. Classification results show that the 
GPU card and HDD are considered small size; the CD reader and 
CPU chip are medium size; the CPU fan and front cover are large 
size; and the power supply is oversized. The camera was 
positioned at an equal distance for each component. 

 
Figure 7: Segmented images of seven components: CD reader, 
HDD, CPU chip, GPU card, CPU fan, front cover, and power 
supply. 

Moreover, we have collected 130 RGB images, which were 
manually labeled and resulted in 209 segmented images, as some 
examples are shown in Figure 7. These segmented images were 
divided into training, validation, and testing datasets, with a ratio 

of 70%, 15%, and 15%, respectively. Data augmentation 
techniques were used on the training dataset before training the 
MaxViT model. 

This study manually labels image segmentations, as shown 
in Figure 7, and uses these segmented images as inputs to the 
MaxVit model for classifying component sizes. Although 
manual segmentation requires extra preprocessing, it increases 
accuracy by creating precise boundaries, improving training data 
quality, and reducing background noise. This method also 
benchmarks automated segmentation, reduces overfitting, and is 
helpful for high-precision tasks such as medical imaging and 
component analysis. In practice, RGB images can be directly 
input into the classification model or first processed by a 
segmentation model to create segmented images for MaxVit to 
identify size classifications. While training a single object 
detection model may be simpler, a separate segmentation model 
offers valuable benefits despite the added complexity. 
 
4. RESULTS AND DISCUSSIONS  

This section presents the disassembly score calculated for 
the XPS 8700 desktop, along with the application of the MaxViT 
machine learning model for classifying component sizes and 
disassembly time calculation. 

 
4.1 Disassembly score for the XPS 8700 desktop 

The disassembly score is calculated for each component of 
the XPS 8700 desktop. Table 5 lists the characteristics of each 
component in terms of five factors: size, weight, shape, 
positioning, and accessibility. The shape of the component is 
quantified using Equation (1), while positioning shows the 
component's order of rotational symmetry. Based on the data in 
Table 5, Table 6 shows the corresponding score for each factor. 
Most of the components are small in size and lightweight. The 
CPU chip and CD reader are categorized as medium-sized, 
whereas the CPU fan and front cover are large. The power supply 
and motherboard are considered oversized, as their sizes exceed 
the maximum gripper opening of 8.5 cm. The blue and orange 
cables are considered asymmetric due to their variable shapes. 

Regarding positioning, most components have an even order 
of rotational symmetry and are more accessible for the robot to 
handle. However, cables and the front cover are challenging to 
manipulate since their order of rotational symmetry is 1. 
Accessibility is limited for most components due to tight 
integration with the desktop casing or restricted space. The GPU 
card and two cables have medium accessibility, while the second 
RAM slot has sufficient space for the robotic gripper to navigate 
inside the desktop shell. 

Table 7 shows the robotic capabilities for grabbing and 
placing components. The grabbing scores are calculated from the 
cumulative values of component size, weight, and shape, and the 
placing scores are calculated from the aggregation of positioning 
and accessibility. Due to oversized dimensions, the power supply 
and motherboard need manual disassembly. Most of the 
components have high grabbing capability due to their 
lightweight and favorable shape; however, they have low placing 
capability.  
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Table 5: The information of five factors for each component of the XPS 8700 desktop. 

Component Size (cm) Weight (g) Shape (Ref. Symmetry) Positioning (Rot. Symmetry ) Accessibility 
Port Cover 8.8x0.4x1 15 1 2 No space 
Side Fan 9.2x9.2x1.5 75 1 4 No space 
CPU Fan 8x8x6 365 1 4 No space 
CPU Chip 3.8x3.8x0.4 25 1 4 No space 
GPU Card 5.5x9.6x1.5 140 1 2 Need to remove the CPU fan 
1st RAM 3x13.5x0.1 10 1 2 Need to remove the GPU card and 1st RAM 
2nd RAM 3x13.5x0.1 10 1 2 High Accessibility 
Power Supply 14x15x8.6 1540 1 2 No space 
HDD Cover 11x13.7x0.1 135 1 2 No space 
Blue Cable 26.5x0.8x0.3 5 < 0.5 1 Medium Accessibility 
HDD 11x14.6x2 390 1 2 No space 
Front Cover 5x18x41 570 1 1 No space 
Orange Cable 36.5x0.8x0.3 5 < 0.5 1 Medium Accessibility 
CD Reader 14.6x17x4.1 645 1 2 No space 
Motherboard 22.2x24x0.4 460 1 2 No space 

Table 6: The resulting score for each factor. 
Component Size Weight Shape Positioning Accessibility 
Port Cover Small (1) Light (5) Symmetric (5) Easy (5) Low (1) 
Side Fan Small (1) Light (5) Symmetric (5) Easy (5) Low (1) 
CPU Fan Large (5) Light (5) Symmetric (5) Easy (5) Low (1) 
CPU Chip Medium (3) Light (5) Symmetric (5) Easy (5) Low (1) 
GPU Card Small (1) Light (5) Symmetric (5) Easy (5) Medium (3) 
1st RAM Small (1) Light (5) Symmetric (5) Easy (5) Low (1) 
2nd RAM Small (1) Light (5) Symmetric (5) Easy (5) High (5) 
Power Supply X Light (5) Symmetric (5) Easy (5) Low (1) 
HDD Cover Small (1) Light (5) Symmetric (5) Easy (5) Low (1) 
Blue Cable Small (1) Light (5) Asymmetric (1) Difficult (1) Medium (3) 
HDD Small (1) Light (5) Symmetric (5) Easy (5) Low (1) 
Front Cover Large (5) Light (5) Symmetric (5) Difficult (1) Low (1) 
Orange Cable Small (1) Light (5) Asymmetric (1) Difficult (1) Medium (3) 
CD Reader Medium (3) Light (5) Symmetric (5) Easy (5) Low (1) 
Motherboard X Light (5) Symmetric (5) Easy (5) Low (1) 

Table 7: The work settings based on disassembly factors and robotic capability. 
Component Grasping Placing Grasping Capability Placing Capability Work Setting 
Port Cover 11 6 High Low Semi-HRC 
Side Fan 11 6 High Low Semi-HRC 
CPU Fan 15 6 High Low Semi-HRC 
CPU Chip 13 6 High Low Semi-HRC 
GPU Card 11 8 High High HRC 
1st RAM 11 6 High Low Semi-HRC 
2nd RAM 11 10 High High HRC 
Power Supply X X X X Human worker only 
HDD Cover 11 6 High Low Semi-HRC 
Blue Cable 7 4 Low Low Human worker only 
HDD 11 6 High Low Semi-HRC 
Front Cover 15 2 High Low Semi-HRC 
Orange Cable 7 4 Low Low Human worker only 
CD Reader 13 6 High Low Semi-HRC 
Motherboard X X X X Human worker only 
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This limitation in placing capability is because of the limited 
space available, as listed in Tables 5 and 6, which results in most 
of the components being classified under semi-HRC conditions. 
This classification means the worker should position the 
component precisely before the robot grabs it and places it into 
the collection bin. The GPU card and second RAM have a high 
capability for both grabbing and placing, where the robotic 
gripper can access and manipulate these components inside the 
desktop. The robotic arm can work with the worker concurrently 
under the HRC setting. 
 
4.2. Component size classification results 

This limitation in placing capability is because of the limited 
space available, as listed in Tables 5 and 6, which results in most 
of the components being classified under semi-HRC conditions. 
This classification means the worker should position the 
component precisely before the robot grabs it and places it into 
the collection bin. The GPU card and second RAM have a high 
capability for both grabbing and placing, where the robotic 
gripper can access and manipulate these components inside the 
desktop. The robotic arm can work with the worker concurrently 
under the HRC setting. 

The MaxViT classifies component sizes into four categories: 
small, medium, large, and oversize, which are assigned labels 1, 
2, 3, and 4, respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 8: The normalized confusion matrix of (a) training 
results with 98% accuracy, (b) validation results with 100% 
accuracy, and (c) testing results with 100% accuracy. 

Figure 8 shows the normalized confusion matrix results of 
training, validation, and testing datasets. The training accuracy 
is 98%, while the validation and testing accuracy is 100%. The 
MaxViT model can classify the component size perfectly. In the 
training phase shown in Figure 8 (a), the sizes, such as medium, 
large, and oversize, lost some accuracy, which the MaxViT 
classed into the nearby size. For example, in oversize (4), 7% of 
images are classed into large sizes, and others, such as small and 
medium, do not have misclassification. This shows the 
capabilities of using machine learning to identify disassembly 
factors towards an automated rating system. 

In this study, we do not consider summing the pixels in 
segments. While summing pixels can indicate the area of a 
component, it does not reflect whether the robot can grasp it. For 
instance, two objects- one measuring 90x90 mm and another 
30x270 mm- have the same area, but the robot cannot grasp the 
first one due to its 85 mm limitation. 

The MaxViT model demonstrates an example of 
classification with automated size assessment. This example 

suggests that future studies could develop an automated rating 
system for disassembly scores based on the MaxViT model, even 
with unknown size information. The deep learning model 
requires only the image as input and then evaluates the 
disassembly scores automatically. 

 
4.3 Calculation of disassembly time for the XPS 8700 

desktop 
Considering the robot's capabilities and the design of the 

case study product especially low placing capability due to the 
limited space available, predominant of the tasks are carried out 
by manual disassembly. Considering the human-robot 
collaborative disassembly time calculation, the total manual 
disassembly time (Mt) for the XPS 8700 desktop was found to 
be 145.8 sec. Factoring in robotic capabilities, the robotic 
disassembly time (Rt) was 60.82 sec with the remaining tasks 
accounting for human working time (Ht) at 128.16 seconds and 
a task changeover time (Ct) of 37.5 seconds. Considering a cost 
factor (n) of 2, the final disassembly time was calculated as 145.8 
seconds. We should note that the obtained disassembly time is 
based on the calculated disassembly parameters for uniformity 
of the product design evaluation and hence, the calculated 
disassembly time values will differ from the actual measured 
disassembly times in practice. 

While the disassembly scores define each component’s 
work setting, the disassembly time reflects the overall efficiency 
of the XPS 8700 desktop. This metric can inform product design 
improvements for more HRC-friendly disassembly. Future 
research can use disassembly time to evaluate different design 
alternatives. 
 
5. CONCLUSION 

This study proposes a framework for assessing the 
disassembly score suitable for robotic disassembly based on five 
factors: component size, weight, shape, positioning, and 
accessibility. It discusses the connection between disassembly 
factors, robotic capabilities, and workplace settings. The 
application of the proposed disassembly score is shown by using 
an XPS 8700 desktop. Moreover, the study uses MaxViT, a 
transformer-based machine learning model, to categorize 
component sizes into four classes: small, medium, large, and 
oversized. The framework provides a rating system for 
determining the ease of robots performing disassembly tasks. 
Further, the use of MaxViT proves that artificial intelligence 
techniques can be used to automate the development of scoring 
systems. The study also provided a framework for comparing 
manual disassembly time with human-robot disassembly time as 
the base for decision-making and determining a practical 
disassembly work setting.  

The study can be extended in several ways. The future 
automated rating systems can be further developed. It will be 
easier for robots to evaluate the ease of disassembly and handling 
of each component by using computer vision techniques. 
Moreover, other types of robotic grippers, such as vacuum and 
humanoid hand grippers, can be used beyond just the two-finger 
gripper. The analysis mainly considers the robotic perspective 
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and neglects the human worker's viewpoint. Future research 
could broaden the disassembly scoring framework to include 
both robotic and human considerations, such as human factors 
and fatigue. Also, the use of a disassembly score can be shown 
in the product design phase to facilitate designing products that 
are easier for robots to disassemble. 
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