
Certifying Sequential Consistency of Machine

Learning Accelerators

Huan Wu1, Fei Xie1, and Zhenkun Yang2

1 Portland State University, Portland, OR 97201, USA
{wuhuan,xie}@pdx.edu

2 Intel Corporation, Hillsboro, OR 97124, USA
zhenkun.yang@intel.com

Abstract. Machine learning accelerators (MLAs) are increasingly im-
portant in many applications such as image and video processing, speech
recognition, and natural language processing. To achieve the needed per-
formances and power efficiencies, MLAs are highly concurrent. The cor-
rectness of MLAs hinges on the concept of sequential consistency, i.e.,
the concurrent execution of a program by an MLA must be equivalent
to a sequential execution of the program. In this paper, we certify the
sequential consistency of modular MLAs using theorem proving. We őrst
provide a formalization of the MLAs and deőne their sequential consis-
tency. After that, we introduce our certiőcation methodology based on
inductive theorem proving. Finally, we demonstrate the feasibility of our
approach through the analysis of the NVIDIA Deep Learning Accelerator
and the Versatile Tensor Accelerator.

Keywords: Machine Learning Accelerator · Sequential Consistency ·

Theorem Proving

1 Introduction

Advances in machine learning have led to the widespread adoption of deep learn-
ing models in various applications, such as image and video processing, voice
recognition, and natural language processing. Existing processors often struggle
to meet the computational demands of large-scale machine learning models in
terms of training time, inference latency, and power consumption. It has mo-
tivated the development of Machine learning accelerators (MLAs) that speed
up machine learning in training and inference while lowering power consump-
tion, e.g., Google’s Tensor Processing Unit [5], Intel’s Nervana Neural Network
Processor [13], NVIDIA Deep Learning Accelerator (NVDLA) [11] and Versa-
tile Tensor Accelerator (VTA) [10]. To achieve the required performance and
power efficiency, MLAs are highly concurrent and utilize design features such
as multi-core and pipelining. However, these concurrent designs may lead to
potential issues like race conditions, deadlocks, and non-deterministic outputs.
Furthermore, in the MLA ecosystem, the software stack generates sequential
workloads that are compiled and executed by hardware. This transition from

2 H. Wu et al.

sequential software execution to concurrent hardware processing potentially in-
troduces data inconsistencies and race conditions.

Therefore, central to the correctness of MLAs is the concept of sequential
consistency, that is, a concurrent execution of a program must be equivalent to
a sequential execution of the same program. Sequential consistency essentially
maps the executions of an MLA to the executions of its sequential reference
design. This greatly reduces the complexities in validating the MLA’s design.
Properties that can be established on the executions of the sequential reference
design also hold on to the executions of the concurrent MLA design if the se-
quential consistency is maintained.

Two major methods are widely used for design validation: simulation-based
validation and formal veriőcation. Simulation-based validation exercises the be-
havior of a design with a series of tests and compares the test results against
expectations. However, exhaustive simulation is prohibitively expensive in time
and space, and this method only covers a limited set of execution paths, poten-
tially allowing design errors to go undetected. In contrast, formal veriőcation uses
a set of formal models, tools, and techniques to mathematically reason about
the design and prove its correctness. Theorem proving is a crucial technique in
formal veriőcation. It is powerful, imposes no a priori limit on the design size
or complexity, and tends to suffer fewer machine-scaling issues than more auto-
mated techniques. Nonetheless, it does often require signiőcant human efforts.

In this paper, we present our approach to certifying the sequential equiva-
lence of modular MLAs using inductive theorem proving. Firstly, we propose a
formalization of MLAs by formalizing the instruction-driven accelerator design
based on the control data ŕow graph (CDFG). Then, based on this formaliza-
tion, we prove the sequential consistency of the MLA through induction on the
instruction sequence of a program being executed by MLA. Furthermore, we con-
duct case studies focusing on VTA and NVDLA, demonstrating the feasibility
of our approach. Our contributions can be summarized as follows:

1. Formalization of the modular MLAs and their sequential consistency;
2. An inductive theorem proving method to prove the sequential consistency of

modular instruction-driven MLAs;
3. Case studies of applying our method to the VTA and NVDLA designs.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on the CDFG, VTA, and NVDLA. Section 3 focuses on the
formalization of the modular MLA and its sequential consistency. In Section 4,
the proof sketch is presented. The case studies conducted on VTA and NVDLA
are discussed in Section 5. Section 6 explores relevant prior work in this area.
Finally, Section 7 concludes the study and discusses future work.

2 Background

2.1 Control Data Flow Graph

CDFG combines the concepts of control ŕow graphs and data ŕow graphs to
model the behavior of a program. Each instruction in a programming language

6 H. Wu et al.

Let (in)
N
n=1={i1, i2, ..., iN |1≤n≤N,N∈N} be an instruction sequence, and

s0 be the initial state of an MLA. We formally deőne the function
isRunToComplete(s0, (in)

N
n=1) to determine, starting from s0, whether all in-

structions (in)
N
n=1 can be executed sequentially and completely, resulting in a

őnal state. The function returns a Boolean value, where the true value indicates
that all instructions can be executed completely.

Deőnition 6 (Valid Instruction Sequence). A valid instruction sequence is

a sequence of instructions (in)
N
n=1 satisfying the following conditions:

1. The function isRunToComplete(s0, (in)
N
n=1) returns true.

2. If there exist ik1
and ik2

(1≤k1<k2≤N), having the same opcodes and

memspace, and no instruction between them has the same opcodes and

memspace, and they control the same CDFG to write data in the same

space, then there exists ik3
(k1<k3<k2) with a different opcode but the same

memspace. ik3
controls another CDFG to read the data written by ik1

.

3. If multiple instructions that control different CDFGs perform load and store

operations on the global memory, their access locations are distinct.

Now, we formalize the IAP. As depicted in Figure 3 and deőned by Γ ≜

{(H,G1, G2, ..., Gn), C,M |n∈N}, the IAP encompasses the following compo-
nents: H, which represents a special CDFG; Gk (1≤k≤n), representing a CDFG,
where n denotes the total number of CDFGs excluding H; C, a set of edges rep-
resenting channels connecting these CDFGs; and M , the global memory. The
IAP satisőes the following conditions:

1. Instruction-driven. The CDFG H is responsible for fetching the sequence of
instructions (in)

N
n=1 from the global memory and distributing them to CD-

FGs (G1, G2, ..., Gn) through the channels c(H,G1), c(H,G2), ..., c(H,Gn).
Each CDFG Gk (1≤k≤n) executes under the control of these instructions.

2. Producer and consumer pattern. If there exists a data channel between two
CDFGs G1 and G2, a producer and consumer pattern is established between
them. There are two control channels, p2cCtrlC and c2pCtrlC , and at least
a data channel, dataC , between G1 and G2. An instruction channel, pInsC,
exists between H and G1, and another one, cInsC exists between H and G2.

Algorithm 1 Producer(pInsC,
p2cCtrlC, c2pCtrlC, dataC)

1: var pIns = pInsC.read()
2: var memSpace = pIns.memSpace
3: var readySig = c2pCtrlC.read()
4: while isFalse(readySig) do

5: skip
dataC.write(data,memSpace)

6: p2cCtrlC.write(validSig)

Algorithm 2 Consumer(cInsC,
p2cCtrlC, c2pCtrlC, dataC)

1: var cIns = cInsC.read()
2: var memSpace = cIns.memSpace
3: var validSig = p2cCtrlC.read()
4: while isFalse(validSig) do

5: skip

6: dataC.read(data,memSpace)
7: c2pCtrlC.write(readySig)

Certifying Sequential Consistency of Machine Learning Accelerators 7

Algorithm 1 demonstrates the producer mode. Initially, an instruction pIns is
read from pInsC . To produce and transmit new data to the consumer via dataC ,
it is crucial to check if there is available space for production. This is determined
by reading a ready signal from c2pCtrlC , indicating the consumer’s readiness to
receive new data. If the consumer is ready to receive the new data, the producer
writes data to dataC and sets a valid signal in p2cCtrlC to inform the consumer
of the availability of consumable data. If the consumer is not ready, the producer
waits until space becomes available for production.

Algorithm 2 illustrates the consumer mode. Initially, an instruction cIns is
read from cInsC . To consume data through dataC , it is necessary to check if the
producer has produced data in this space. This is determined by reading a valid
signal from p2cCtrlC , indicating the presence of new data from the producer. If
new data is available, the consumer reads the data from dataC and sets a ready
signal into c2pCtrlC to notify the producer of its readiness to receive new data.
If the producer has not yet produced new data, the consumer waits until the
data becomes available for consumption.

The IAP has two execution semantics: sequential and concurrent.

Deőnition 7 (Sequential Semantics). The instruction sequence (in)
N
n=1 dis-

tributed by CDFG H is executed in the exact order of (in)
N
n=1. Each step involves

the execution of a single instruction.

Deőnition 8 (Concurrent Semantics). The instruction sequence (in)
N
n=1

distributed by CDFG H is executed concurrently, allowing only those instruc-

tions that have no dependencies on each other to be executed concurrently in a

single step.

The state of IAP includes the content of the global memory M , channels
C, and the state of all CDFGs H,G1, G2, ..., Gn. We deőne SeqM (s, (in)

N
n=1)

and ConM (s, (in)
N
n=1) as the state of the IAP obtained from the initial state s

after executing the instruction sequence (in)
N
n=1 sequentially and concurrently,

respectively. Now we specify the property of sequential consistency:

Deőnition 9 (Sequential Consistency). Given a valid instruction sequence

(in)
N
n=1, the initial state s0, and the IAP Γ , ConM (s0, (in)

N
n=1) is equivalent to

SeqM (s0, (in)
N
n=1).

4 Proof Sketch

We use an induction based on the instruction sequence to prove sequential con-
sistency. In conjunction with the formalization presented in the previous section,
we introduce seven auxiliary theorems that are integral to our proof. Figure 4
shows the relationship between these theorems and their role in establishing
sequential consistency. Figure 4(a) depicts that sequential consistency is estab-
lished based on the core step. This core step is to prove that the state obtained
after executing a valid instruction sequence (in)

k+1

n=1 concurrently is equivalent

Certifying Sequential Consistency of Machine Learning Accelerators 9

remaining instructions sequentially. It allows instructions to be grouped or asso-
ciated differently without affecting the őnal state. (5) Concurrent consistency.
The state obtained by concurrently executing the instruction sequence, sorted
according to the order of concurrent execution steps, is equal to the state ob-
tained from sequentially executing the same instruction sequence. (6) Sequential

independence. When an instruction has no dependencies with the other instruc-
tions within an instruction sequence, executing this instruction sequentially, fol-
lowed by the remaining instructions, yields the same state as executing the other
instructions őrst and then executing this instruction.

We present the formulation of the theorems above and provide sketches of
the proof for the core step and the őnal theorem that establishes sequential
consistency. Assume the total number of steps required to concurrently execute
the instructions (in)

N
n=1 is denoted as T , the sequence of steps is represented by

(tn)
T
n=1, and the instructions in each step are denoted as (rtn)

R
n=1, where 0<R≤N

represents the number of instructions in the step, and 0<t≤T represents the
step index. According to the valid instruction sequence deőnition, (in)

N
n=1 can

be executed concurrently and completely, resulting in a reachable őnal state.

Theorem 1 (Concurrent completeness). If isRunToComplete(s0, (in)
N
n=1)

is true, then sf = ConM (s0, (in)
N
n=1)), (in)

N
n=1 can be executed completely and

sf is reachable.

We deőne the function isValid(s0, (in)
N
n=1) to determine whether the se-

quence of instructions starting from the initial state s0 is a valid instruction
sequence. The function returns a Boolean value, where the true value indicates
that (in)

N
n=1 is a valid instruction sequence from s0.

Theorem 2 (Concurrent Commutativity). ∀0<t≤T , let (atn)
R
n=1 be the in-

struction sequence with random order of (rtn)
R
n=1. If isValid(s, (rtn)

R
n=1) is true,

then ConM (s, (rtn)
R
n=1)) = ConM (s, (atn)

R
n=1)).

Let the instruction sequence (jn)
N
n=1 be the collection of concurrently ex-

ecuted instructions (in)
N
n=1 arranged in the order of steps. By the concurrent

semantics, the concurrent equivalence theorem follows.

Theorem 3 (Concurrent Equivalence). If isValid(s, (in)
N
n=1) is true, then

ConM (s, (in)
N
n=1)) = ConM (s, (jn)

N
n=1).

Based on the sequential semantics, if there are N instructions, executing N

instructions sequentially results in a state consistent with executing the őrst A

instructions (A<N) sequentially and then executing the remaining instructions
sequentially.

Theorem 4 (Sequential Associativity). If A≤N and isValid(s, (in)
N
n=1) is

true, then sa=SeqM (s, (in)
A
n=1), SeqM (s, (in)

N
n=1) = SeqM (sa, (in)

N
n=A+1

).

The concurrent execution of (jn)
N
n=1 can be viewed as the sequential execu-

tion of the instructions within each concurrent step.

10 H. Wu et al.

Theorem 5 (Concurrent Consistency). If isValid(s, (in)
N
n=1) is true, then

ConM (s, (jn)
N
n=1)) = SeqM (s, (jn)

N
n=1).

To determine whether there is a dependency relationship between instruction
ik1

and all instructions in (in)
k3

n=k2
, we use the function dep(ik1

, (in)
k3

n=k2
). Here,

k1 ̸=k2, k1 ̸=k3, and k2≤k3. The function returns a Boolean value. If the return
value is false, it indicates that ik1

and (in)
k3

n=k2
can run simultaneously without

causing a deadlock, thereby implying that ik1
has no dependencies with any

of the instructions in (in)
k3

n=k2
. If the őrst instruction i1 has no dependence on

the remaining instructions in (in)
N
n=2, then i1 can be scheduled to be executed

in the last step without changing the őnal state obtained by executing (in)
N
n=1

sequentially.

Theorem 6 (Sequential Independence). If N>1, isValid(s, (in)
N
n=1) is true

and dep(i1, (in)
N
n=2) is false, then st=SeqM (s, (in)

N
n=2), SeqM (s, (in)

N
n=1) =

SeqM (st, (in)
1
n=1).

Based on the previous theorems, we prove the core step theorem:

Theorem 7 (Core Step). If isValid(s, (in)
N+1

n=1) is true, then s1 =
ConM (s, (in)

N
n=1), ConM (s, (in)

N+1

n=1)) = SeqM (s1, (in)
N+1

n=N+1
).

Proof. As shown in Figure 4(b), based on Theorem 3 (concurrent equivalence),
the original instruction sequence (in)

N+1

n=1 can be converted to an instruction
sequence (jn)

N+1

n=1 arranged according to the step order of concurrent execution
while preserving the őnal state. Then according to Theorem 5 (concurrent consis-
tency), where ConM (s, (jn)

N+1

n=1) = SeqM (s, (jn)
N+1

n=1), the concurrent execution
can be substituted with the sequential execution. Next, let’s consider the last
instruction iN+1 in (in)

N+1

n=1 , which is also present in (jn)
N+1

n=1 . Assume (pn)
N
n=1

is the instruction sequence that preserves the order of the remaining instruc-
tions after removing iN+1 from (jn)

N+1

n=1 , with pN+1 = iN+1. Applying Theorem
6 (sequential independence), the sequential execution can be divided into two
parts: executing (pn)

N
n=1 sequentially and then executing pN+1. Additionally,

due to Theorem 5 and Theorem 3, the state obtained from executing (pn)
N
n=1

sequentially is the same as that obtained by executing (in)
N
n=1 concurrently.

Finally, we prove the theorem of sequential consistency:

Theorem 8. if isValid(s, (in)
N
n=1) is true, then

ConM (s, (in)
N
n=1) = SeqM (s, (in)

N
n=1).

Proof. As shown in Figure 4(a), by induction on the sequence of instructions.
Base case: if N = 1, it is true trivially.
Inductive case: assume ConM (s, (in)

k
n=1)=SeqM (s, (in)

k
n=1) holds, we need

to prove ConM (s, (in)
k+1

n=1)=SeqM (s, (in)
k+1

n=1). Let s1 = ConM (s, (jn)
k
n=1), since

ConM (s, (in)
k+1

n=1)) = SeqM (s1, (in)
k+1

n=k+1
) (Theorem 4.8),

SeqM (s0, (in)
k+1

n=1) = SeqM (s1(in)
k+1

n=k+1
) (Theorem 4.5)

Therefore, this theorem holds.

Certifying Sequential Consistency of Machine Learning Accelerators 11

5 Case Studies

For case studies, we utilize VTA and NVDLA to illustrate how these accelera-
tors align with our previously formalized IAP architectural pattern. When the
architectures of MLAs adhere to IAP, the proof process outlined in Section 4
can be applied to establish the sequential consistency of the MLA. Our analysis
primarily evaluates how well these accelerators adhere to the speciőcations and
characteristics deőned in our formalization.

5.1 Case Study 1: VTA

The VTA architecture is an instruction-driven architecture. Each instruction in
VTA is encoded with speciőc őelds to indicate the type of operation, control
ŕags, memory addresses, data sizes, and other relevant information. The VTA
architecture consists of four functional modules shown in Figure 1, each designed
to handle speciőc tasks. The fetch module, represented by CDFG H in IAP,
retrieves an instruction stream from DRAM and decodes the instructions. It
routes the instructions to one of three instruction FIFO queues. Within VTA,
there are two sets of producer and consumer models, and between each set, there
exist two control FIFO queues and at least a data buffer.

The load and compute modules follow the producer and consumer pattern.
There are two control FIFO queues l2cDepQ and c2lDepQ , and two buffers
inputBuf and weightBuf between the load and compute modules. The data and
control communication process between these modules is as follows:

ś The load module operates by reading an instruction from the load instruc-
tion FIFO queue. Each load instruction contains ŕags associated with con-
trol FIFO queues, indicating dependencies on the compute module. If the
ŕag corresponding to c2lDepQ is set, the load module checks the status of
c2lDepQ to determine if it’s empty. In the event that c2lDepQ is empty, in-
dicating that the consumer is not ready to receive new data, the load module
waits for the compute module to write the control information into c2lDepQ .
Otherwise, the load module proceeds to load input or weight tensors from
DRAM into weightBuf or inputBuf . Additionally, if the ŕag corresponding to
the control queue l2cDepQ is set, the load module writes control information
into l2cDepQ .

ś The compute module reads an instruction from the compute instruction
FIFO queue. Each compute instruction has ŕags associated with control
FIFO queues, indicating dependencies on the load module. If the ŕag for
l2cDepQ is set, the compute module checks the status of l2cDepQ . If
l2cDepQ is found to be empty, indicating that there is no new data available
for consumption, the compute module waits for the load module to write the
control information into l2cDepQ . Otherwise, the compute module proceeds
to read data from buffers and performs various computations on the input
data. Furthermore, if the ŕag corresponding to the control queue c2lDepQ

is set, the compute module writes control information into c2lDepQ .

12 H. Wu et al.

The compute and store models also function following the producer and con-
sumer pattern. Similarly, they have two control FIFO queues, c2sDepQ and
s2cDepQ , and a buffer, outputBuf , between them. Similar to the communica-
tion process described above between the load and compute modules, both the
compute and store modules follow a similar procedure. They start by reading an
instruction from their respective instruction queues and then check the corre-
sponding control queue based on the ŕag speciőed in the instruction. The com-
pute module stores the computed data in the buffer outputBuf , while the store
module reads data from outputBuf and stores it in DRAM. Finally, they write
control information to each control queue based on the ŕag in the instruction.

The VTA architecture and IAP demonstrate a strong alignment in terms of
their instruction-driven nature and the communication between different mod-
els. In both cases, there is a module for acquiring instructions and effectively
distributing them to their respective instruction channels. Additionally, the com-
munication patterns within VTA exhibit a clear producer-consumer relationship,
where data ŕows from one module to another in a coordinated manner. This cor-
respondence further solidiőes the compatibility between the VTA architecture
and IAP, reinforcing the effectiveness and accuracy of the formalized model in
capturing the essential aspects of the accelerator architecture.

Mechanized Proof In Dafny We use Dafny [9] as our theorem prover to cer-
tify the sequential consistency of VTA. Table 1 summarizes the statistics about
our Dafny implementation. The łFormalizationž column shows the lines of code,
including the formalization of the instruction deőnition, the valid instruction
sequence, VTA, and sequential consistency. The łProofž column shows lines of
code of all proofs we need to certify the sequential consistency. The overall ver-
iőcation time for proof-checking all Dafny code is about 35 minutes.

Table 1: Code size and veriőcation time
Formalization (LoC) Proof (LoC) Veriőcation Time (Min)

1788 14274 35

We illustrate the implementation details with the theorem that ultimately
proves sequential consistency. Figure 5 shows the proof of Theorem 8 in Dafny.
The input of lemma function theorem8 includes: the instruction sequence in-

sSeq1 ; the global memory gsmem; the buffers InputB, WeightB, and OutputB ;
and FIFO queues L2CQ, C2LQ, C2SQ, and S2CQ. The precondition requires
a valid instruction sequence, denoted as validInsSeq, while the property to be
proven is sequential consistency, represented as seqConsistency. The proof fol-
lows an induction method based on the input sequence of instructions. The base
case involves only one instruction, and the property holds trivially. In the induc-
tive step, sequential consistency is proved by leveraging theorem 7, the induction
hypothesis theorem8, and theorem4. Overall, Theorem 8 is certiőed by Dafny.

Certifying Sequential Consistency of Machine Learning Accelerators 13

lemma theorem8(insSeq1: seq<ins>, gsmem:seq<nat>, InputB: seq<int>,

WeightB: seq<int>, OutputB: seq<int>, L2CQ:seq<nat>, C2LQ:seq<nat>,

C2SQ:seq<nat>, S2CQ:seq<nat>)

requires validInsSeq(insSeq1, L2CQ, C2LQ, C2SQ, S2CQ)

ensures seqConsistency(insSeq1, gsmem, InputB, WeightB, OutputB,

L2CQ, C2LQ, C2SQ, S2CQ)

{ var length := |insSeq1|;

if length <= 1

{ assert true;

}else{

assert seqConsistency(insSeq1, gsmem, InputB, WeightB, OutputB,

L2CQ, C2LQ, C2SQ, S2CQ) by {

theorem7(insSeq1, gsmem, InputB, WeightB, OutputB,

L2CQ, C2LQ, C2SQ, S2CQ);

theorem8(insSeq1[..length-1], gsmem, InputB, WeightB, OutputB,

L2CQ, C2LQ, C2SQ, S2CQ);

theorem4(insSeq1, gsmem, InputB, WeightB, OutputB,

L2CQ, C2LQ, C2SQ, S2CQ);}

}}

Fig. 5: Mechanized Proof of Theorem 8 in Dafny

5.2 Case Study 2: NVDLA

NVDLA also follows an instruction-driven architecture. The CSB module facil-
itates communication between the host system and NVDLA, allowing the host
system to send commands and conőguration parameters to deőne the behav-
ior and settings of NVDLA. CSB acts as the CDFG H in IAP and distributes
instructions to the register őle in various modules within NVDLA. These in-
structions can include conőguration parameters, control commands, memory
addresses, and other information for conőguring and controlling the accelerator.
The speciőc instructions that CSB distributes depend on the desired operation
and functionality of NVDLA, as speciőed by the host system.

The NVDLA convolution core pipeline consists of 5 stages that work together
to perform convolution operations efficiently. The CDMA is responsible for fetch-
ing input and weights from memory and storing the data in CBUF, which acts as
a buffer for holding the received data. The CSC controls the sequencing of convo-
lution operations. It takes input and weights from CBUF and distributes them to
the relevant CMAC units for processing. The CMAC performs the convolutions,
receiving CSC data and executing the multiply and accumulate operations. The
CACC accumulates the results from CMAC by collecting the partial products
generated and combining them to produce the őnal output. There are two sets
of producers and consumers.

The CDMA and CSC follow the producer and consumer pattern. There are
two ports, sc2cdmaC and cdma2scC, and a buffer CBUF between CDMA and

14 H. Wu et al.

CSC. These ports facilitate the transmission of CBUF’s status between CDMA
and CSC. The communication process follows these steps:

ś The CDMA reads the instruction from the register őle to determine the data
and weights to be fetched from memory. It checks the status of the CBUF
using port sc2cdmaC to determine if there is available space in the CBUF
to store the data. If space is available, the CDMA writes the data into the
CBUF and sends the current status of the CBUF to the CSC through port
cdma2scC, informing the CSC about the data availability. If there is no
space, the CDMA waits until space becomes available.

ś The CSC reads the instruction from the register őle to determine which data
to retrieve from the CBUF. It checks the status of the CBUF using the port
cdma2scC to determine if there is data available in CBUF for processing. If
data is available in the CBUF, the CSC reads the data from the CBUF for
further processing and sends the updated status of the CBUF to the CDMA
through the port sc2cdmaC. This status update informs the CDMA about
the current status of the CBUF after data retrieval. If no data is available,
the CSC waits until data becomes available.

The CSC, CMAC, and CACC also follow the producer and consumer pattern.
The CSC serves as the producer model, while the combined CMAC and CACC
modules function as the consumer model. There is a data port sc2macDC and
a control port sc2macC between the CSC and the CMAC. Similarly, there is a
data port mac2accDC and a control port mac2accC between the CMAC and
the CACC. Additionally, there is a control port acc2scC between CACC and
CSC. The communication process follows these steps:

ś The CSC reads the instruction from the register őle. It checks the credit
signal from the CACC through acc2scC to determine if there is available
space for the CACC to perform computations. If space is available, the CSC
sends the data to the CMAC through sc2macDC and sends the valid signal
to the CMAC through sc2macC . If no space is available, the CSC waits until
space becomes available.

ś The CMAC reads the instruction from the register őle. It checks the valid
signal from CSC through sc2macC to determine if there is valid data to
receive. If there is valid data, the CMAC gets the data and performs the
convolution computation, producing intermediate results. The intermediate
data is then sent to the CACC through mac2accDC , and the valid signal is
sent to the CACC through mac2accC . If there is no valid data, the CMAC
waits until valid data is available.

ś The CACC reads the instruction from the register őle. It checks the valid
signal from CMAC through mac2accC to determine if there is valid data
to receive. If there is valid data, the CACC gets the data and performs
the accumulated operations. The CACC sends a credit signal to the CSC
through acc2scC , indicating the space available for the CSC. If there is no
valid data, the CACC waits until valid data is available.

Certifying Sequential Consistency of Machine Learning Accelerators 15

The NVDLA architecture aligns with IAP. The CSB plays the role of CDFG
H in the pattern. Within NVDLA, there are two sets of producers and consumers.
In one set, the CDMA is the producer, while the CSC is the consumer. In the
other set, the CSC is the producer, and the CMAC and CACC act as consumers.
Using Theorem 7, Theorem 4, and the induction method, we can establish the
sequential consistency of NVDLA.

6 Related Work

There have been many approaches to certifying concurrent processor features
using theorem proving techniques. For example, Kroening et al.[8] demonstrate
the correctness of generating a pipelined microprocessor from an arbitrary se-
quential speciőcation. They employ the PVS proof assistant [2] to implement this
proof. Sawada et al.[14] verify the equivalent of the state transitions of pipelined
and non-pipelined machines in the presence of external interrupts. They create
a table-based model of pipeline execution and achieve this proof in the ACL2
theorem prover[6]. Damm et al.[3] establish the property that out-of-order exe-
cution produces the same őnal state as a purely sequential machine running the
same program. Their proof is based on the semantic model of synchronous tran-
sition systems[12]. Vijayaraghavan et al.[15] develop a modular proof structure
to prove that the distributed shared-memory hardware system implements se-
quential consistency. This method is based on labeled transition systems (LTSes)
theory [7], and the proof is carried out using the Coq proof assistant[1].

The statement of correctness in our work is sequential consistency; that is,
the MLA produces the same őnal state as the same design with sequential seman-
tics. The formalization follows the style of Communicating Sequential Processes
(CSP) [4] and adds features to formalize MLA designs.

7 Conclusions and Future Work

This paper presents a comprehensive formalization of MLAs and speciőes and
certiőes their sequential consistency, that is, the concurrent execution of a pro-
gram by the MLA is equivalent to a sequential execution of the program by its
sequential reference design. This őnding is crucial as it paves the way for simpli-
fying the veriőcation process of concurrent MLAs by leveraging their sequential
counterparts. Building upon the foundation of sequential consistency, in future
work, we can explore and validate various properties of concurrent MLAs, such
as correctness, optimizations, resource utilization, or novel execution models.

Acknowledgement

This research is partially supported by a gift from Intel Corporation.

16 H. Wu et al.

References

1. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Me-
dia (2013)

2. Cyrluk, D., Rajan, S., Shankar, N., Srivas, M.K.: Effective theorem proving for
hardware veriőcation. In: Theorem Provers in Circuit Design: Theory, Practice and
Experience Second International Conference, TPCD’94 Bad Herrenalb, Germany,
September 26ś28, 1994 Proceedings. pp. 203ś222. Springer (1995)

3. Damm, W., Pnueli, A.: Verifying out-of-order executions. In: Advances in Hardware
Design and Veriőcation: IFIP TC10 WG10. 5 International Conference on Correct
Hardware and Veriőcation Methods, 16ś18 October 1997, Montreal, Canada. pp.
23ś47. Springer (1997)

4. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
21(8), 666ś677 (1978)

5. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S.,
Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a
tensor processing unit. In: Proceedings of the 44th annual international symposium
on computer architecture. pp. 1ś12 (2017)

6. Kaufmann, M., Moore, J.S.: Acl2: An industrial strength version of nqthm. In:
Proceedings of 11th Annual Conference on Computer Assurance. COMPASS’96.
pp. 23ś34. IEEE (1996)

7. Keller, R.M.: Formal veriőcation of parallel programs. Communications of the
ACM 19(7), 371ś384 (1976)

8. Kroening, D., Paul, W.J., Mueller, S.M.: Proving the correctness of pipelined
micro-architectures. In: MBMV. pp. 89ś98 (2000)

9. Leino, K.R.M.: Dafny: An automatic program veriőer for functional correctness. In:
Logic for Programming, Artiőcial Intelligence, and Reasoning: 16th International
Conference, LPAR-16, Dakar, Senegal, April 25śMay 1, 2010, Revised Selected
Papers 16. pp. 348ś370. Springer (2010)

10. Moreau, T., Chen, T., Vega, L., Roesch, J., Yan, E., Zheng, L., Fromm, J., Jiang,
Z., Ceze, L., Guestrin, C., et al.: A hardwareśsoftware blueprint for ŕexible deep
learning specialization. IEEE Micro 39(5), 8ś16 (2019)

11. Nvidia: Nvidia deep learning accelerator (2018), http://nvdla.org/primer.html
12. Pnueli, A., Shankar, N., Singerman, E.: Fair synchronous transition systems and

their liveness proofs. In: Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems: 5th International Symposium, FTRTFT’98 Lyngby, Denmark, September
14ś18, 1998 Proceedings 5. pp. 198ś209. Springer (1998)

13. Rao, N., Bhagavatula, S., Amer, M.R., Ali, K., Lugato, D., Krishnamoorthy, S.,
Menon, R., Khosrowshahi, A.: Intel nervana: A next-generation neural network
processor. In: Proceedings of the 2017 IEEE Hot Chips Symposium on High Per-
formance Chips (HOTCHIPS). pp. 1ś28. IEEE, Cupertino, CA, USA (Aug 2017)

14. Sawada, J., Hunt Jr, W.A.: Processor veriőcation with precise exceptions and spec-
ulative execution. In: CAV. vol. 98, pp. 135ś146 (1998)

15. Vijayaraghavan, M., Chlipala, A., Dave, N.: Modular deductive veriőcation of mul-
tiprocessor hardware designs. In: Computer Aided Veriőcation: 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part II 27. pp. 109ś127. Springer (2015)

