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Abstract. Machine learning accelerators (MLAs) are increasingly im-
portant in many applications such as image and video processing, speech
recognition, and natural language processing. To achieve the needed per-
formances and power efficiencies, ML As are highly concurrent. The cor-
rectness of MLAs hinges on the concept of sequential consistency, i.e.,
the concurrent execution of a program by an MLA must be equivalent
to a sequential execution of the program. In this paper, we certify the
sequential consistency of modular ML As using theorem proving. We first
provide a formalization of the MLAs and define their sequential consis-
tency. After that, we introduce our certification methodology based on
inductive theorem proving. Finally, we demonstrate the feasibility of our
approach through the analysis of the NVIDIA Deep Learning Accelerator
and the Versatile Tensor Accelerator.
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1 Introduction

Advances in machine learning have led to the widespread adoption of deep learn-
ing models in various applications, such as image and video processing, voice
recognition, and natural language processing. Existing processors often struggle
to meet the computational demands of large-scale machine learning models in
terms of training time, inference latency, and power consumption. It has mo-
tivated the development of Machine learning accelerators (MLAs) that speed
up machine learning in training and inference while lowering power consump-
tion, e.g., Google’s Tensor Processing Unit [5], Intel’s Nervana Neural Network
Processor [13], NVIDIA Deep Learning Accelerator (NVDLA) [11] and Versa-
tile Tensor Accelerator (VTA) [10]. To achieve the required performance and
power efficiency, MLAs are highly concurrent and utilize design features such
as multi-core and pipelining. However, these concurrent designs may lead to
potential issues like race conditions, deadlocks, and non-deterministic outputs.
Furthermore, in the MLA ecosystem, the software stack generates sequential
workloads that are compiled and executed by hardware. This transition from
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sequential software execution to concurrent hardware processing potentially in-
troduces data inconsistencies and race conditions.

Therefore, central to the correctness of MLAs is the concept of sequential
consistency, that is, a concurrent execution of a program must be equivalent to
a sequential execution of the same program. Sequential consistency essentially
maps the executions of an MLA to the executions of its sequential reference
design. This greatly reduces the complexities in validating the MLA’s design.
Properties that can be established on the executions of the sequential reference
design also hold on to the executions of the concurrent MLA design if the se-
quential consistency is maintained.

Two major methods are widely used for design validation: simulation-based
validation and formal verification. Simulation-based validation exercises the be-
havior of a design with a series of tests and compares the test results against
expectations. However, exhaustive simulation is prohibitively expensive in time
and space, and this method only covers a limited set of execution paths, poten-
tially allowing design errors to go undetected. In contrast, formal verification uses
a set of formal models, tools, and techniques to mathematically reason about
the design and prove its correctness. Theorem proving is a crucial technique in
formal verification. It is powerful, imposes no a priori limit on the design size
or complexity, and tends to suffer fewer machine-scaling issues than more auto-
mated techniques. Nonetheless, it does often require significant human efforts.

In this paper, we present our approach to certifying the sequential equiva-
lence of modular MLAs using inductive theorem proving. Firstly, we propose a
formalization of MLAs by formalizing the instruction-driven accelerator design
based on the control data flow graph (CDFG). Then, based on this formaliza-
tion, we prove the sequential consistency of the MLA through induction on the
instruction sequence of a program being executed by MLA. Furthermore, we con-
duct case studies focusing on VTA and NVDLA, demonstrating the feasibility
of our approach. Our contributions can be summarized as follows:

1. Formalization of the modular MLAs and their sequential consistency;

2. An inductive theorem proving method to prove the sequential consistency of
modular instruction-driven MLAs;

3. Case studies of applying our method to the VTA and NVDLA designs.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on the CDFG, VTA, and NVDLA. Section 3 focuses on the
formalization of the modular MLA and its sequential consistency. In Section 4,
the proof sketch is presented. The case studies conducted on VTA and NVDLA
are discussed in Section 5. Section 6 explores relevant prior work in this area.
Finally, Section 7 concludes the study and discusses future work.

2 Background

2.1 Control Data Flow Graph

CDFG combines the concepts of control flow graphs and data flow graphs to
model the behavior of a program. Each instruction in a programming language
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can be decomposed into a series of primitive operations. This set of operations
includes assignments, comparisons, arithmetic, logical operations, classic if-then-
else, while-loop, and for-loop structures, etc. The control flow represents the
sequence of operations performed in a program, organized into basic blocks with
distinct entry and exit points. The data flow represents how data is used and
modified within a program.

The state of a CDFG is a list of all variables with their corresponding values.
To formally define CDFG, let V,, be a set of operations involving variables, and
Vs be a set of basic blocks, each consisting of a sequence of operations from V.

Definition 1 (Control Flow and Data Flow Graphs). A data flow graph
is a directed acyclic graph defined as Gp £ (Vop, Eq), where an edge e € Ey
from operation opy to ops represents a data dependency of opy on ops. Similarly,
a control flow graph is denoted as Go = (Ve, Ec), where an edge e € E,. from
basic block bbg to bby represents a control dependency of bby on bb; .

Definition 2 (CDFG). A CDFG is a triple G 2 (Gp,Gc, R), where Gp is the
data flow graph, G¢ is the control flow graph, and R is a mapping R : Vo, — Vi
such that R(V,p,) = Vip; if and only if Vo, occurs in V.

2.2 Versatile Tensor Accelerator

VTA [10] is an open-source, customizable hardware platform for accelerating
tensor-based computations. Figure 1 gives a high-level overview of the VTA ar-
chitecture. It comprises four modules: fetch, load, compute, and store. Together,
these modules define a task pipeline, which enables high compute resource uti-
lization and high memory bandwidth utilization. These modules communicate

DRAM
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loadinsQ computelnsQ

12cDepQ c2sDepQ
s2cDepQ

c2IDepQ

load
module

store
module

compute
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inputBuf

= outputBuf
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Fig.1: VTA architecture
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via first-in-first-out (FIFO) queues (12cDepQ, c2lDepQ, c2sDep@, s2cDepQ)
and on-chip shared memories (inputBuf, weightBuf, outputBuf) that act as uni-
directional data channels. The memory accesses are synchronized through the
dependency FIFO queues to prevent data hazards.

2.3 NVIDIA Deep Learning Accelerator

NVDLA is an open-source, scalable deep learning accelerator architecture devel-
oped by NVIDIA [11]. It has a modular architecture that can be customized and
optimized for specific use cases. The architecture consists of multiple modules
working together in a pipeline to perform convolution operations, as shown in
Figure 2, including Convolution Direct Memory Access (CDMA), Convolution
Buffer (CBUF), Convolution Sequence Controller (CSC), Convolution Multiply-
Accumulate (CMAC), and Convolution Accumulator (CACC). Configuration

[ CsB ]
REG FILE | REGFILE | | REGFILE I | REGFILE | | REGFILE |

| CBUF DATAPATH | CSC DATAPATH

CDMA DATAPATH CMAC DATAPATH CACC DATAPATH

POST
| PROCESSERR
POST

PROCESSOR
CONTROL

CMAC CONTROL
CACC CONTROL

CDMA CONTROL | CSC CONTROL

Memory

Fig.2: NVDLA architecture

Space Bus (CSB) serves as an interface that connects the host system with
NVDLA.

3 Formalization

To perform verification on an MLA such as VTA, we formalize its design and
the desired property into mathematical specifications for theorem proving. MLAs
are hardware accelerators designed to speed up machine learning tasks, and they
rely on instructions provided by the software to execute these tasks efficiently.
These instructions can encompass various aspects, such as defining the model
layers and operations to be executed, configuring parameters, and managing
data transfers between the host system and the accelerator.

Given the significance of instructions in driving ML A behavior, we propose an
instruction-driven architectural pattern (IAP), as depicted in Figure 3. Within
the IAP, we define the components involved and establish the necessary con-
straints. Furthermore, we specify the specific property of sequential consistency.
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The architecture of an MLA is usually composed of multiple modules and global
memory. Each module can be viewed as a CDFG. All modules can load and store
data in the global memory.

Definition 3 (Global Memory). Let M be the memory between some CDFGs
G1,Ga,...,GN(N € N), where G, (0<n<N) is capable of either loading data from
or storing data to M.

Data exchange and communication often occur between various modules. To
describe these interactions, we introduce the notion of a ‘channel’.

Definition 4 (Channel). A channel, denoted as c¢(G1, G2), represents a dedi-
cated pathway between CDFGs Gy and Gg for transmitting data. Each channel
1s unidirectional, allowing data exchange from source G to destination Gs.

Channels can be classified based on the transmitted data type: instruction
channels for instructions, control channels for control information, and data
channels for input and weight data. We now provide a formal definition of the
instruction, which is the critical element driving the functionality of MLAs.

Definition 5 (Instruction). An instruction is defined as i =
{opcode, memspace, option}, where opcode identifies the CDFG to be con-
trolled by this instruction; memspace specifies the address and size of data when
the CDFG performs data loading or storing operations; option provides flexibility
for accommodating design-specific requirements or custom functionalities.
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Let (in,)N_,={i1,42,...,in|1<n<N, NEN} be an instruction sequence, and
sop be the initial state of an MLA. We formally define the function
isRunToComplete(sg, (in)N_1) to determine, starting from s, whether all in-
structions (i, )"_; can be executed sequentially and completely, resulting in a
final state. The function returns a Boolean value, where the true value indicates
that all instructions can be executed completely.

Definition 6 (Valid Instruction Sequence). A valid instruction sequence is
a sequence of instructions (i,)N_, satisfying the following conditions:

1. The function isRunToComplete(so, (in)N_,) returns true.

2. If there exist g, and i, (1<k1<ka<N), having the same opcodes and
memspace, and mo instruction between them has the same opcodes and
memspace, and they control the same CDFG to write data in the same
space, then there exists iy, (k1<ks<ks) with a different opcode but the same
memspace. i, controls another CDFG to read the data written by i, .

8. If multiple instructions that control different CDFGs perform load and store
operations on the global memory, their access locations are distinct.

Now, we formalize the IAP. As depicted in Figure 3 and defined by I" £
{(H,G1,Ga,...,G,),C, M|neN}, the IAP encompasses the following compo-
nents: H, which represents a special CDFG; Gy, (1<k<n), representing a CDFG,
where n denotes the total number of CDFGs excluding H; C, a set of edges rep-
resenting channels connecting these CDFGs; and M, the global memory. The
IAP satisfies the following conditions:

1. Instruction-driven. The CDFG H is responsible for fetching the sequence of
instructions (i,)_; from the global memory and distributing them to CD-
FGs (G1,Ga,...,Gy) through the channels ¢(H,G1),c(H, Gs),...,c(H,Gy,).
Each CDFG G, (1<k<n) executes under the control of these instructions.

2. Producer and consumer pattern. If there exists a data channel between two
CDFGs G and G2, a producer and consumer pattern is established between
them. There are two control channels, p2cCtriC and c2pCtriC, and at least
a data channel, dataC, between GG1 and G5. An instruction channel, pInsC),
exists between H and Gy, and another one, cInsC exists between H and Gs.

Algorithm 1 Producer(pInsC, Algorithm 2 Consumer(cInsC,

p2cCtrlC, ¢2pCtrlC, dataC) p2cCtrlC, ¢2pCtrlC, dataC)
1: var pIns = pInsC.read() 1: var cIns = cInsC.read()
2: var memSpace = plns.memSpace 2: var memSpace = clns.memSpace
3: var readySig = c2pCtrlC.read() 3: var validSig = p2cCtrlC.read()
4: while isFalse(readySig) do 4: while isFalse(validSig) do
5: ski 5: skip
dataC.write(data,memSpace) 6: dataC.read(data,memSpace)
6: p2cCtrlC.write(validSig) 7: c2pCtrlC.write(readySig)
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Algorithm 1 demonstrates the producer mode. Initially, an instruction plns is
read from pInsC'. To produce and transmit new data to the consumer via dataC,
it is crucial to check if there is available space for production. This is determined
by reading a ready signal from ¢2pCtriC, indicating the consumer’s readiness to
receive new data. If the consumer is ready to receive the new data, the producer
writes data to dataC and sets a valid signal in p2c¢CtriC to inform the consumer
of the availability of consumable data. If the consumer is not ready, the producer
waits until space becomes available for production.

Algorithm 2 illustrates the consumer mode. Initially, an instruction clns is
read from cInsC. To consume data through dataC, it is necessary to check if the
producer has produced data in this space. This is determined by reading a valid
signal from p2c¢CtrlC, indicating the presence of new data from the producer. If
new data is available, the consumer reads the data from dataC and sets a ready
signal into ¢2pCtriC to notify the producer of its readiness to receive new data.
If the producer has not yet produced new data, the consumer waits until the
data becomes available for consumption.

The IAP has two execution semantics: sequential and concurrent.

Definition 7 (Sequential Semantics). The instruction sequence (i,)_, dis-
tributed by CDFG H is executed in the exact order of (i,)Y_;. Each step involves
the execution of a single instruction.

Definition 8 (Concurrent Semantics). The instruction sequence (in)N_,
distributed by CDFG H is executed concurrently, allowing only those instruc-
tions that have no dependencies on each other to be executed concurrently in a
single step.

The state of TIAP includes the content of the global memory M, channels
C, and the state of all CDFGs H,Gy,Go,...,G,. We define SeqM (s, (i,)_;)
and ConM (s, (i,))_,) as the state of the AP obtained from the initial state s
after executing the instruction sequence (i,))_, sequentially and concurrently,

respectively. Now we specify the property of sequential consistency:

Definition 9 (Sequential Consistency). Given a valid instruction sequence
(in)N_,, the initial state so, and the IAP I", ConM (so, (i,)Y_,) is equivalent to
SegM (so, (in)N_1).

n=1

4 Proof Sketch

We use an induction based on the instruction sequence to prove sequential con-
sistency. In conjunction with the formalization presented in the previous section,
we introduce seven auxiliary theorems that are integral to our proof. Figure 4
shows the relationship between these theorems and their role in establishing
sequential consistency. Figure 4(a) depicts that sequential consistency is estab-
lished based on the core step. This core step is to prove that the state obtained

after executing a valid instruction sequence (zn)ﬁiﬁ concurrently is equivalent
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to the state obtained by executing the first £ instructions concurrently and then
executing the last instruction 1. The proof process of this core step is detailed
in Figure 4(b).

Theorem 1 l [Concurrent completeness]

Theorem 2 [Concurrent commutativity]
Theorem 1 | [Concurrent completeness]
Theorem 2 | [Concurrent commutativity] ConM (so, (i,)"21)
C’onM(so , (in )i‘li}) Theorem 3 [Concurrent equivalence]
\

(70nM(503 (ju )t‘zJ:r}

Theorem 7 | [Core step]
\/

Theorem 5 [Concurrent consistency]
sk = ConM (so, (in)5_y) y
: 3 . \k+1
SeqM (si (in)i11 1) Seal (so: (in)na
Theorem 6 [Sequential Independence]
[Induction hypothesis] v
Y
S = SeqM(S[), (pn )ﬁ:l)
— LAY 5
Sk = S€QM(80, (’ln)nzl) SeqM(sk,(pn)]r‘liLrl)
SeqM (s, (in )lﬁgﬂ )
Theorem 5 [Concurrent consistency]
Theorem 3 [Concurrent equivalence]
Theorem 4 | [Sequential associativity] y
Y s = (70nM(sDA?+(f,l)fj:1)
SeqM (s, (in)5t1) SeqM (sks (in)pLr
(a) Sequential consistency (b) Core step

Fig. 4: Proof Overview

To prove the core step, we introduce the following six theorems. (1) Concur-
rent completeness. A valid instruction sequence can be executed concurrently and
completely, reaching a reachable final state. Otherwise, there may be deadlocks.
(2) Concurrent commutativity. The instructions in each concurrent step can be
executed in any order without affecting the final state of each step. Concur-
rency improves performance while preserving correctness. Concurrent complete-
ness and commutativity are the fundamental properties of concurrent execution
and are the premise of other theorems. (3) Concurrent equivalence. The state
resulting from executing a valid instruction sequence concurrently is consistent
with the state obtained from concurrently executing the corresponding instruc-
tion sequence rearranged in the concurrent step order of execution. Although
the instruction order may differ, the final state remains the same. (4) Sequen-
tial associativity. The state obtained from sequentially executing all instructions
is equivalent to executing the preceding instructions sequentially and then the
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remaining instructions sequentially. It allows instructions to be grouped or asso-
ciated differently without affecting the final state. (5) Concurrent consistency.
The state obtained by concurrently executing the instruction sequence, sorted
according to the order of concurrent execution steps, is equal to the state ob-
tained from sequentially executing the same instruction sequence. (6) Sequential
independence. When an instruction has no dependencies with the other instruc-
tions within an instruction sequence, executing this instruction sequentially, fol-
lowed by the remaining instructions, yields the same state as executing the other
instructions first and then executing this instruction.

We present the formulation of the theorems above and provide sketches of
the proof for the core step and the final theorem that establishes sequential
consistency. Assume the total number of steps required to concurrently execute
the instructions (i, ))_; is denoted as T, the sequence of steps is represented by
(t,)X_,, and the instructions in each step are denoted as (%)% _; where 0< R<N
represents the number of instructions in the step, and 0<t<T represents the
step index. According to the valid instruction sequence definition, (4, )"_; can
be executed concurrently and completely, resulting in a reachable final state.

Theorem 1 (Concurrent completeness). If isRunToComplete(so, (in)Y_;)
is true, then sy = ConM (so, (in)N_1)), (in)N_, can be executed completely and
sy is reachable.

We define the function isValid(so, (i,)Y_;) to determine whether the se-
quence of instructions starting from the initial state sg is a valid instruction
sequence. The function returns a Boolean value, where the true value indicates

that (i,))_; is a valid instruction sequence from sg.

Theorem 2 (Concurrent Commutativity). YO<t<T, let (a!)E_, be the in-
struction sequence with random order of (rt)E_,. If isValid(s, (rt)E_,) is true,

then ConM (s, (rt)E_})) = ConM (s, (a})E_,)).

n=1 n=1

Let the instruction sequence (j,))_; be the collection of concurrently ex-
ecuted instructions (i,))_; arranged in the order of steps. By the concurrent
semantics, the concurrent equivalence theorem follows.

Theorem 3 (Concurrent Equivalence). If isValid(s, (i,)N_,) is true, then
ConM (s, (i,))_1)) = ConM (s, (jn)N_1).

n=1

Based on the sequential semantics, if there are NV instructions, executing N
instructions sequentially results in a state consistent with executing the first A
instructions (A<N) sequentially and then executing the remaining instructions
sequentially.

Theorem 4 (Sequential Associativity). If A<N and isValid(s, (i,)Y_;) is
true, then sq=SeqM (s, (i,)2_,), SeqM (s, (in)N_,) = SeqM (s, (in)ﬁ;’:AH),

n=1 n=1

The concurrent execution of (j,)N_; can be viewed as the sequential execu-
tion of the instructions within each concurrent step.
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Theorem 5 (Concurrent Consistency). If isValid(s, (i,)N_,) is true, then
ConM (s, (jn)n=1)) = SeaM (s, (jn)n=1)-

To determine whether there is a dependency relationship between instruction
ik, and all instructions in (in):?’:kQ, we use the function dep(ig,, (z‘n):?’:kz). Here,
k1#ksa, k1#ks, and ke<ks. The function returns a Boolean value. If the return
value is false, it indicates that iz, and (zn)ff: k, can run simultaneously without
causing a deadlock, thereby implying that i, has no dependencies with any
of the instructions in (zn)ff’: k- 1f the first instruction 4; has no dependence on
the remaining instructions in (i,)_,, then i; can be scheduled to be executed
in the last step without changing the final state obtained by executing (i, ))_,
sequentially.

Theorem 6 (Sequential Independence). If N>1, isValid(s, (i,)N_ 1) is true
and dep(iy, (in)N_,) is false, then sy=SeqM (s, (i,)N_,), SeqM( (i,)N_1) =
SeqM (s, (in)p=1)-

Based on the previous theorems, we prove the core step theorem:

Theorem 7 (Core Step). If isValid(s,(in)"1}) is true, then s; =

n=1

ConM (s, (in)j=1), ConM (s, (in)N“))=SeqM(817(Zn)NL§+1)'

n=1 n

Proof. As shown in Figure 4(b), based on Theorem 3 (concurrent equivalence),
the original instruction sequence (i,,))" can be converted to an instruction
sequence (jn)ﬁf:ﬁl arranged according to the step order of concurrent execution
while preserving the final state. Then according to Theorem 5 (concurrent consis-
tency), where ConM (s, (jn)N1}) = SeqM (s, (j,)Y=}'), the concurrent execution
can be substituted with the sequential execution. Next, let’s consider the last
instruction x4y in (i,) ', which is also present in (jn)N+1 Assume (p,)N_;
is the instruction sequence that preserves the order of the remaining instruc-
tions after removing iy 41 from (jn)n 1, with pyy1 = in41. Applying Theorem
6 (sequential independence), the sequential execution can be divided into two
parts: executing (p,))_; sequentially and then executing pyy;. Additionally,
due to Theorem 5 and Theorem 3, the state obtained from executing (p,)Y_,

sequentially is the same as that obtained by executing (i, ))\_; concurrently.

Finally, we prove the theorem of sequential consistency:

Theorem 8. if isValid(s, (i,,)_,) is true, then

n=1

ConM (s, (in)n=y) = SeqM (s, (in)ns)-

Proof. As shown in Figure 4(a), by induction on the sequence of instructions.
Base case: if N =1, it is true trivially.
Inductive case: assume ConM (s, (zn)n 1) SeqM (s, (in)*_,) holds, we need
to prove ConM (s, (i,)"T1)=SeqM (s, (zn)n D). Let s1 = ConM (s, (]ﬂ)n:1)7 since

n=1

ConM (s, (zn)ff%)) SeqM (s1, (zn)fL k+1) (Theorem 4.8),

SeqM (s, (in)" 1) = SeqM(sl(in)ﬁik+1) (Theorem 4.5)
Therefore, this theorem holds.
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5 Case Studies

For case studies, we utilize VTA and NVDLA to illustrate how these accelera-
tors align with our previously formalized IAP architectural pattern. When the
architectures of MLAs adhere to IAP, the proof process outlined in Section 4
can be applied to establish the sequential consistency of the MLA. Our analysis
primarily evaluates how well these accelerators adhere to the specifications and
characteristics defined in our formalization.

5.1 Case Study 1: VTA

The VTA architecture is an instruction-driven architecture. Each instruction in
VTA is encoded with specific fields to indicate the type of operation, control
flags, memory addresses, data sizes, and other relevant information. The VTA
architecture consists of four functional modules shown in Figure 1, each designed
to handle specific tasks. The fetch module, represented by CDFG H in IAP,
retrieves an instruction stream from DRAM and decodes the instructions. It
routes the instructions to one of three instruction FIFO queues. Within VTA,
there are two sets of producer and consumer models, and between each set, there
exist two control FIFO queues and at least a data buffer.

The load and compute modules follow the producer and consumer pattern.
There are two control FIFO queues [2cDep@ and c2lDep@, and two buffers
inputBuf and weightBuf between the load and compute modules. The data and
control communication process between these modules is as follows:

— The load module operates by reading an instruction from the load instruc-
tion FIFO queue. Each load instruction contains flags associated with con-
trol FIFO queues, indicating dependencies on the compute module. If the
flag corresponding to c2lDep@ is set, the load module checks the status of
c2lDep@ to determine if it’s empty. In the event that c2lDep@ is empty, in-
dicating that the consumer is not ready to receive new data, the load module
waits for the compute module to write the control information into c2lDep@.
Otherwise, the load module proceeds to load input or weight tensors from
DRAM into weightBuf or inputBuf. Additionally, if the flag corresponding to
the control queue I12c¢Dep( is set, the load module writes control information
into [2c¢Dep@Q.

— The compute module reads an instruction from the compute instruction
FIFO queue. Each compute instruction has flags associated with control
FIFO queues, indicating dependencies on the load module. If the flag for
[2¢Dep(@) is set, the compute module checks the status of [2cDep@. If
[2cDep( is found to be empty, indicating that there is no new data available
for consumption, the compute module waits for the load module to write the
control information into [2cDep@. Otherwise, the compute module proceeds
to read data from buffers and performs various computations on the input
data. Furthermore, if the flag corresponding to the control queue c2lDep@
is set, the compute module writes control information into c2[Dep@.
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The compute and store models also function following the producer and con-
sumer pattern. Similarly, they have two control FIFO queues, c¢2sDep@ and
s2c¢Dep@, and a buffer, outputBuf, between them. Similar to the communica-
tion process described above between the load and compute modules, both the
compute and store modules follow a similar procedure. They start by reading an
instruction from their respective instruction queues and then check the corre-
sponding control queue based on the flag specified in the instruction. The com-
pute module stores the computed data in the buffer outputBuf, while the store
module reads data from outputBuf and stores it in DRAM. Finally, they write
control information to each control queue based on the flag in the instruction.

The VTA architecture and TAP demonstrate a strong alignment in terms of
their instruction-driven nature and the communication between different mod-
els. In both cases, there is a module for acquiring instructions and effectively
distributing them to their respective instruction channels. Additionally, the com-
munication patterns within VTA exhibit a clear producer-consumer relationship,
where data flows from one module to another in a coordinated manner. This cor-
respondence further solidifies the compatibility between the VTA architecture
and TAP, reinforcing the effectiveness and accuracy of the formalized model in
capturing the essential aspects of the accelerator architecture.

Mechanized Proof In Dafny We use Dafny [9] as our theorem prover to cer-
tify the sequential consistency of VTA. Table 1 summarizes the statistics about
our Dafny implementation. The “Formalization” column shows the lines of code,
including the formalization of the instruction definition, the valid instruction
sequence, VTA, and sequential consistency. The “Proof” column shows lines of
code of all proofs we need to certify the sequential consistency. The overall ver-
ification time for proof-checking all Dafny code is about 35 minutes.

Table 1: Code size and verification time
Formalization (LoC) | Proof (LoC) | Verification Time (Min)
1788 14274 35

We illustrate the implementation details with the theorem that ultimately
proves sequential consistency. Figure 5 shows the proof of Theorem 8 in Dafny.
The input of lemma function theorem8 includes: the instruction sequence in-
sSeql; the global memory gsmem; the buffers InputB, WeightB, and OutputB;
and FIFO queues L2CQ, C2LQ, C25Q, and S2C(Q. The precondition requires
a valid instruction sequence, denoted as wvalidInsSeq, while the property to be
proven is sequential consistency, represented as seqConsistency. The proof fol-
lows an induction method based on the input sequence of instructions. The base
case involves only one instruction, and the property holds trivially. In the induc-
tive step, sequential consistency is proved by leveraging theorem 7, the induction
hypothesis theorem8, and theorem. Overall, Theorem 8 is certified by Dafny.
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lemma theorem8(insSeql: seq<ins>, gsmem:seq<nat>, InputB: seqg<int>,
WeightB: seq<int>, OutputB: seq<int>, L2CQ:seq<nat>, C2LQ:seqg<nat>,
C2SQ:seq<nat>, S2CQ:seq<nat>)
requires validInsSeq(insSeql, L2CQ, C2LQ, €2SQ, S2CQ)
ensures seqConsistency(insSeql, gsmem, InputB, WeightB, OutputB,
L2cqQ, C2LQ, C28Q, S2CQ)
{ var length := |insSeqll;
if length <=1
{ assert true;
Yelse{
assert seqConsistency(insSeql, gsmem, InputB, WeightB, OutputB,
L2CQ, C2LQ, €2SQ, S2CQ) by {
theorem7 (insSeql, gsmem, InputB, WeightB, OutputB,
L2cQ, C2LQ, C€2SQ, S2CQ);
theorem8(insSeql[..length-1], gsmem, InputB, WeightB, OutputB,
L2CQ, C2LQ, C€2SQ, S2CQ);
theorem4 (insSeql, gsmem, InputB, WeightB, OutputB,
L2CQ, C2LQ, C2SQ, S2CQ);}
13

Fig.5: Mechanized Proof of Theorem 8 in Dafny

5.2 Case Study 2: NVDLA

NVDLA also follows an instruction-driven architecture. The CSB module facil-
itates communication between the host system and NVDLA, allowing the host
system to send commands and configuration parameters to define the behav-
ior and settings of NVDLA. CSB acts as the CDFG H in IAP and distributes
instructions to the register file in various modules within NVDLA. These in-
structions can include configuration parameters, control commands, memory
addresses, and other information for configuring and controlling the accelerator.
The specific instructions that CSB distributes depend on the desired operation
and functionality of NVDLA, as specified by the host system.

The NVDLA convolution core pipeline consists of 5 stages that work together
to perform convolution operations efficiently. The CDMA is responsible for fetch-
ing input and weights from memory and storing the data in CBUF, which acts as
a buffer for holding the received data. The CSC controls the sequencing of convo-
lution operations. It takes input and weights from CBUF and distributes them to
the relevant CMAC units for processing. The CMAC performs the convolutions,
receiving CSC data and executing the multiply and accumulate operations. The
CACC accumulates the results from CMAC by collecting the partial products
generated and combining them to produce the final output. There are two sets
of producers and consumers.

The CDMA and CSC follow the producer and consumer pattern. There are
two ports, sc2edmaC and cdma2scC, and a buffer CBUF between CDMA and
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CSC. These ports facilitate the transmission of CBUF’s status between CDMA
and CSC. The communication process follows these steps:

— The CDMA reads the instruction from the register file to determine the data
and weights to be fetched from memory. It checks the status of the CBUF
using port sc2cdmaC' to determine if there is available space in the CBUF
to store the data. If space is available, the CDMA writes the data into the
CBUF and sends the current status of the CBUF to the CSC through port
cdma2scC, informing the CSC about the data availability. If there is no
space, the CDMA waits until space becomes available.

— The CSC reads the instruction from the register file to determine which data
to retrieve from the CBUF. It checks the status of the CBUF using the port
cdma2scC to determine if there is data available in CBUF for processing. If
data is available in the CBUF, the CSC reads the data from the CBUF for
further processing and sends the updated status of the CBUF to the CDMA
through the port sc2ecdmaC'. This status update informs the CDMA about
the current status of the CBUF after data retrieval. If no data is available,
the CSC waits until data becomes available.

The CSC, CMAC, and CACC also follow the producer and consumer pattern.
The CSC serves as the producer model, while the combined CMAC and CACC
modules function as the consumer model. There is a data port sc2macDC and
a control port sc2macC between the CSC and the CMAC. Similarly, there is a
data port mac2accDC and a control port mac2accC between the CMAC and
the CACC. Additionally, there is a control port acc2scC between CACC and
CSC. The communication process follows these steps:

— The CSC reads the instruction from the register file. It checks the credit
signal from the CACC through acc2scC to determine if there is available
space for the CACC to perform computations. If space is available, the CSC
sends the data to the CMAC through sc2macDC and sends the valid signal
to the CMAC through sc2macC. If no space is available, the CSC waits until
space becomes available.

— The CMAC reads the instruction from the register file. It checks the valid
signal from CSC through sc2macC to determine if there is valid data to
receive. If there is valid data, the CMAC gets the data and performs the
convolution computation, producing intermediate results. The intermediate
data is then sent to the CACC through mac2accDC, and the valid signal is
sent to the CACC through mac2accC. If there is no valid data, the CMAC
waits until valid data is available.

— The CACC reads the instruction from the register file. It checks the valid
signal from CMAC through mac2accC to determine if there is valid data
to receive. If there is valid data, the CACC gets the data and performs
the accumulated operations. The CACC sends a credit signal to the CSC
through acc2scC, indicating the space available for the CSC. If there is no
valid data, the CACC waits until valid data is available.
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The NVDLA architecture aligns with IAP. The CSB plays the role of CDFG
H in the pattern. Within NVDLA, there are two sets of producers and consumers.
In one set, the CDMA is the producer, while the CSC is the consumer. In the
other set, the CSC is the producer, and the CMAC and CACC act as consumers.
Using Theorem 7, Theorem 4, and the induction method, we can establish the
sequential consistency of NVDLA.

6 Related Work

There have been many approaches to certifying concurrent processor features
using theorem proving techniques. For example, Kroening et al.[8] demonstrate
the correctness of generating a pipelined microprocessor from an arbitrary se-
quential specification. They employ the PVS proof assistant [2] to implement this
proof. Sawada et al.[14] verify the equivalent of the state transitions of pipelined
and non-pipelined machines in the presence of external interrupts. They create
a table-based model of pipeline execution and achieve this proof in the ACL2
theorem prover[6]. Damm et al.[3] establish the property that out-of-order exe-
cution produces the same final state as a purely sequential machine running the
same program. Their proof is based on the semantic model of synchronous tran-
sition systems|[12]. Vijayaraghavan et al.[15] develop a modular proof structure
to prove that the distributed shared-memory hardware system implements se-
quential consistency. This method is based on labeled transition systems (LTSes)
theory [7], and the proof is carried out using the Coq proof assistant|[1].

The statement of correctness in our work is sequential consistency; that is,
the MLA produces the same final state as the same design with sequential seman-
tics. The formalization follows the style of Communicating Sequential Processes
(CSP) [4] and adds features to formalize MLA designs.

7 Conclusions and Future Work

This paper presents a comprehensive formalization of MLAs and specifies and
certifies their sequential consistency, that is, the concurrent execution of a pro-
gram by the MLA is equivalent to a sequential execution of the program by its
sequential reference design. This finding is crucial as it paves the way for simpli-
fying the verification process of concurrent MLAs by leveraging their sequential
counterparts. Building upon the foundation of sequential consistency, in future
work, we can explore and validate various properties of concurrent MLAs, such
as correctness, optimizations, resource utilization, or novel execution models.
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