
DOES COMPRESSING ACTIVATIONS HELP MODEL PARALLEL TRAINING?

Song Bian * 1 Dacheng Li * 2 Hongyi Wang 2 Eric P. Xing 2 3 4 Shivaram Venkataraman 1

ABSTRACT
Foundation models have superior performance across a wide array of machine learning tasks. The training of
these models typically involves model parallelism (MP) to navigate the constraints of GPU memory capacity.
However, MP strategies involve transmitting model activations between GPUs, which can hinder training speed in
large clusters. Previous research has examined gradient compression in data-parallel contexts, but its applicability
in MP settings remains largely unexplored.

In this paper, we investigate the unique characteristics of compression in MP and study why strategies from gradient
compression might not be directly applicable to MP scenarios. Subsequently, to systematically understand the
capabilities and limitations of Model Parallelism Compression, we present a benchmarking framework MCBench.
MCBench not only includes four major categories of compression algorithms but also includes several widely used
models spanning language and vision tasks on a well-established distributed training framework, Megatron-LM.
We initiate the first comprehensive empirical study by using MCBench. Our empirical study encompasses both the
fine-tuning and pre-training of FMs. We probe over 200 unique training configurations and present results using
10 widely used datasets. To comprehend the scalability of compression advantages with the expansion of model
size and cluster size, we propose a novel cost model designed specifically for training with MP compression. The
insights derived from our findings can help direct the future development of new MP compression algorithms for
distributed training. Our code is available at https://github.com/uw-mad-dash/MCBench

1 INTRODUCTION

Foundation models (FMs) have taken center stage for a
multitude of machine learning tasks given their exceptional
performance across various benchmarks (Zhang et al., 2022;
Liang et al., 2022; Touvron et al., 2023). Nevertheless,
these state-of-the-art FMs have a staggering volume of pa-
rameters, making it a challenge for a single GPU to hold
the entire model (Brown et al., 2020; Radford et al., 2021;
Bommasani et al., 2021). For instance, models such as
GPT-3 (Brown et al., 2020) and OPT (Zhang et al., 2022)
have up to 175 billion parameters requiring over 700GB of
GPU memory. Consequently, pre-training of FMs often in-
volves distributing model parameters across multiple GPUs,
a process known as model parallelism (MP) (Jia et al., 2019;
Zhuang et al., 2022; Zheng et al., 2022). Pipeline model
parallelism, a recognized MP technique, allocates the layers
of an FM across multiple GPUs (Narayanan et al., 2019;
Huang et al., 2019), while tensor model parallelism, another
popular MP strategy, partitions neurons or elements within

*Equal contribution 1Department of Computer Science, Uni-
versity of Wisconsin-Madison 2Machine Learning Department,
Carnegie Mellon University 3MBZUAI 4Petuum Inc.. Correspon-
dence to: Song Bian <songbian@cs.wisc.edu>.

Proceedings of the 7 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

each FM layer (Shoeybi et al., 2019). These MP strategies,
both tensor and pipeline model parallelism, have proved
effective in minimizing the memory footprint of FM train-
ing (Shoeybi et al., 2019). However, the combination of
these MP strategies often leads to considerable communica-
tion overhead, as illustrated in Figure 1(a). For instance, a
frequently used tensor model parallelism strategy requires
two all-reduce communications with significant message
sizes for every Transformer layer in each iteration. This
communication overhead can severely slow down the FM
pre-training and fine-tuning (Shoeybi et al., 2019).

To address the high communication overhead in MP, one
solution is to compress the messages exchanged among
GPUs, such as activation values. Numerous prior works in
the data-parallel setting have explored gradient compression
to reduce the communication costs of training (Bernstein
et al., 2018; Lin et al., 2017; Wang et al., 2018b; Vogels
et al., 2019; Agarwal et al., 2021; Song et al., 2023).

However, compression in MP is fundamentally different
from that in data parallelism. Firstly, gradients exhibit a
low-rank nature, while activations do not (Figure 1(b)). Con-
sequently, low-rank gradient compression methods, which
have been shown to deliver end-to-end speedup in data-
parallel training, may not be directly applicable to MP (Vo-
gels et al., 2019). Second, gradients and activations have

https://github.com/uw-mad-dash/MCBench

Does Compressing Activations Help Model Parallel Training?

(a) Communication Analysis

��� ��� ��� ��	 ��
 ���
��������������������

���

���

���

��	

��

���

��
��

��
��

��
��
��
��
��

��
��

����������

�������

(b) Low-Rank Analysis (c) Distribution

Figure 1. Figure (a) illustrates the communication overhead of model parallelism on BERTLAREG across 4 GPUs, with varying batch sizes
and sequence lengths. The x-axis represents the combination of batch size and sequence length. In Figure (b), curves are plotted based
on the ordered singular values from the SVD decomposition, revealing that while the gradient is low-rank, the activation is not. The
activation corresponds to the output of the 12th transformer layer in the BERTLARGE model. Figure (c) examines the element distribution
of activation and gradient for the BERTLARGE model.

considerably different distributions as shown in Figure 1(c).
Thus, sparsification-based methods may also not be suitable
for MP settings (Han et al., 2015).

While recent research (Wang et al., 2022) has shown the
promise of quantization-based compression for pipeline par-
allel training on wide-area networks, it remains unclear
which compression algorithms would work well for other
parallelism strategies (e.g., tensor parallelism) or in envi-
ronments with higher bandwidth. Furthermore, as model
sizes (OpenAI, 2023) and cluster sizes (Zhang et al., 2022)
rapidly increase, practitioners need tools that can answer
questions like: "Will using quantization lead to better perfor-
mance compared to Top-K?" or "What will be the through-
put benefits if we use a cluster twice as large with NVLink?"

To address the above challenge, we aim to create a repre-
sentative benchmarking tool that can fairly evaluates MP
compression algorithms and meet the following goals: (1)
Allow ML researchers to easily implement new compres-
sion algorithms and test it with a wide range of datasets
and models (2) Allow developers to easily compare com-
pression methods in different MP settings ; (3) Handle both
fine-tuning and pre-training tasks (4) Enable ML practition-
ers to ask what-if questions to evaluate if MP compression
will be effective at scale.

We propose MCBench, a benchmarking tool that builds
up on Megtraon-LM (Shoeybi et al., 2019) and develops
APIs for implementing and evaluating MP compression.
As a part of MCBench, we implement quantization-based
compression method (Alistarh et al., 2017; Bernstein et al.,
2018), low-rank and sparsification-based gradient compres-
sion techniques such as PowerSGD (Vogels et al., 2019),
Top-K (Alistarh et al., 2018; Aji & Heafield, 2017), and
Random-K (Xu et al., 2020; Stich et al., 2018), along with
a learning-based compression approach, i.e., auto-encoders
(AEs) (Hinton & Zemel, 1993). We then show examples on

how these algorithms can be integrated with several popular
datasets such as CIFAR-10, and CIFAR-100 and models
such as BERTBASE, ViT-Base, OPT, and XLM-RoBERTa-
XL from HuggingFace (Wolf et al., 2020). In addition,
this benchmark can also be extended to integrate recent
models such as LLaMA (Touvron et al., 2023) and Code
LLaMA (Rozière et al., 2023).

Using MCBench, we present the first comprehensive study
of achieving communication efficiency using compression
methods in MP settings. Our experiments cover both pre-
training and fine-tuning tasks, assessing the impact of var-
ious compression methods on throughput and accuracy.
In total, we evaluate compression methods across over
200 unique configurations, employing various compres-
sion algorithms, training stages, models, and more than 10
datasets (Krizhevsky et al., 2009; Wang et al., 2018a). We
also develop the first cost model for MP with activation com-
pression, validate it with experimental data (Section 4.4),
and use it to derive insights into MP compression at scale.
Our cost model and experiments reveal the following key
takeaways:

1. Learning-based compression methods are most suit-
able for MP. In the pre-training stage, only learning-based
methods (AEs) offer speedup (up to 16%) and preserve the
model’s accuracy. Sparsification-based methods (Top-K)
improve training time but compromise accuracy. Quantiza-
tion methods maintain the model’s accuracy but slow down
the training time. Low-rank methods (PowerSGD) slow
down training time and degrade accuracy. In the fine-tuning
stage, all evaluated compression methods fail to provide
end-to-end speedup, because their encoding and decoding
overhead outweighs the reduced communication time. We
provide further analysis in § 4.2 and § 4.3.

2. MP compression can yield around 25% throughput
improvements for large models when cluster size is pro-

Does Compressing Activations Help Model Parallel Training?

portionally scaled. Using our cost model for MP with
activation compression, we find that when we perform weak
scaling (Narayanan et al., 2021b) (i.e., we increase cluster
size proportional to model size), AE-based compression
can yield around 25% throughput improvements for models
with 100s of billions of parameters (Brown et al., 2020).

3. MP compression should be avoided for challenging
ML tasks. Our findings reveal that employing MP compres-
sion can significantly compromise model accuracy, espe-
cially in the context of challenging ML tasks, e.g., CIFAR-
100 is more challenging than CIFAR-10 (Section § 4.2 has
an in-depth discussion). Moreover, FMs like ViT-Base,
when exposed to MP compression, can deliver performance
worse than smaller models such as ResNet-50. As a result,
we recommend that for challenging ML tasks, FMs should
be trained without applying MP compression.

In conclusion, we have four key contributions: ∂ We es-
tablish a comprehensive benchmark MCBench that covers
diverse tasks, models, and compression methods to meet
design principles. ∑ By using MCBench, we carry out the
first empirical study on MP compression for FMs, taking
into account various compression methods, training stages,
downstream tasks, and models. We extensively evaluate four
major categories of compression algorithms across over 200
different settings and 10 popular datasets. ∏ We develop the
first general cost model for MP with activation compression,
demonstrating its correctness using experimental results and
analyzing speedup as model size and cluster size scale; Our
findings offer valuable insights for future MP compression
research. π We make MCBench available as an open-source
project.

2 BACKGROUND

In this section we first provide the necessary background
about data parallelism and model parallelism first. Then, we
discuss the need for developing a new benchmark for model
parallelism compression.

Data Parallelism (DP). DP divides the training examples
among multiple workers (Li et al., 2014; Ho et al., 2013) and
replicates the model at each worker. During each iteration,
each worker calculates the model gradient based on its as-
signed examples and then synchronizes the gradient with the
other workers (Sergeev & Del Balso, 2018). However, DP
requires each worker to compute and synchronize gradients
for the entire model, which can become challenging as the
model size increases. One issue is that the large gradients
can create a communication bottleneck, and several previous
studies have proposed gradient compression methods (Seide
et al., 2014; Bernstein et al., 2018; Dettmers, 2015; Lin
et al., 2017; Wang et al., 2018b) to address this. However,
gradient compression methods have moderate performance

improvement or even lead to an overall slowdown in DP
due to the non-negligible compression overheads (Agarwal
et al., 2022; Wang et al.). Furthermore, the worker may
not have enough memory to train with the entire model, in
which case model parallelism may be necessary.

Model Parallelism (MP). Model parallelism (MP) divides
the model among multiple workers, allowing large models
to be trained by only requiring each worker to maintain a
portion of the entire model in memory. There are two main
paradigms for MP: inter-layer pipeline model parallelism
(PP) and intra-layer tensor model parallelism (TP). PP di-
vides the layers among workers, with each worker executing
the forward and backward computations in a pipelined fash-
ion across different training examples (Narayanan et al.,
2019; 2021a). For example, a mini-batch of training exam-
ples can be partitioned into smaller micro-batches (Huang
et al., 2019), with the forward computation of the first micro-
batch taking place on one worker while the forward compu-
tation of the second micro-batch happens on another worker
in parallel. PP involves a communication overhead due to
the point-to-point communication between workers. TP (Lu
et al., 2017; Shazeer et al., 2018; Kim et al., 2016) divides
the tensor computations among workers. In particular, we
consider a specialized strategy developed for Transformer
models that divides the two GEMM layers in the attention
module column-wise and then row-wise, with the same
partitioning applied to the MLP module (Shoeybi et al.,
2019; Narayanan et al., 2021b). However, TP still involves
a communication overhead due to the need for two all-to-
all collective operations in each layer, motivating the use
of compression to reduce the communication overhead of
MP (Shoeybi et al., 2019).

Benchmarking Model Parallelism Compression. Com-
pared with data parallelism compression (Agarwal et al.,
2022), our community has a limited understanding of model
parallelism compression. This is because we don’t have
tools that can answer questions about which compression
algorithms are more effective and at what scale should one
use compression. Therefore, we aim to fill this gap by devel-
oping a model parallelism compression benchmark (called
MCBench) based on Megatron-LM.

3 MCBENCH DESIGN AND
IMPLEMENTATION

In this section, we first describe the interface and implemen-
tation of compression algorithms in MCBench. Then, we
introduce how we build a connection between MCBench
and Hugging Face to enable loading models and datasets.
Finally, in order to answer what-if questions in terms of
scale, we describe an analytical cost model that we develop
as a part of MCBench.

Does Compressing Activations Help Model Parallel Training?

g g

C

C

C

C

Machine 1

Machine 2

C

Transform
er Layer

Transform
er Layer

 Activation

Transform
er Layer

Machine 1,2 Machine 3,4

DC

DC

DC

DC

Micro-batch

C DC

Transform
er Layer

Transform
er Layer

Transform
er Layer

 Activation

DC

Figure 2. Illustration of compression on a 6-Layer Transformer model with 4 machines. Machine 1 and Machine 2 maintain the first three
layers according to the TP strategy (pipeline stage 1). g stands for an all-reduce operation in the forward pass. A compression method C
is used to reduce the message size for the all-reduce operation to reduce TP communication time. Correspondingly, a de-compression
method DC is used after the communication.

3.1 Model Parallelism Compression Algorithms

In order to enable ML researchers to design and evaluate
new compression algorithms, we develop a new API that in-
tegrates with Megatron-LM. Our API design ensures that the
algorithms can be used in both tensor parallel and pipeline
parallel settings. To ascertain the generality of our API, we
implement a range of representative compression methods
including low-rank-based approaches, sparsification-based
approaches, learning-based approaches, and quantization-
based approaches (as illustrated in Figure 2).

Our implementation includes:

• For learning-based approach (AEs), which compress
messages using a pair of small neural networks (Hinton
& Zemel, 1993), we multiply the activation using a
learnable matrix We 2 Rh⇥hc (the encoder) before
the all-reduce step, where hc < h is the compressed
size. After the all-reduce step, another learnable matrix
of dimension Wd 2 Rhc⇥h (the decoder) is used to
decompress the compressed activation.

• For the sparsification-based approaches (Top-K and
Random-K), we use torch.topk function to se-
lect the k largest absolute values of the activation and
random.sample function to randomly select k val-
ues from the activation respectively (Stich et al., 2018).

• For the low-rank-based approach (PowerSGD), we fol-
low the algorithm mentioned in (Vogels et al., 2019)
and use torch.linalg.qr to do orthogonalize op-
eration.

• Our implementation of the quantization-based ap-
proaches is based on the code released by (Wang et al.,
2022):

AQ = dA
�
c, � =

max(|A|)
2Nb�1 � 1

where A is the activation, AQ is the quantized activa-
tion, � is the quantization step size, d·c is the rounding
function, and Nb is the number of bits. We omit some
implementation details here due to the limited space.
Please refer to Appendix B for details.

3.2 Adding Datasets and Models

Existing code in Megatron-LM (@898a89) only provides
three transformer-based models (BERTLARGE, GPT, and T5).
and a few language datasets for fine-tuning tasks. To meet
our benckmark’s design goal, we build a connection be-
tween Megatron-LM and Hugging Face (Wolf et al., 2020)
to enable the following features: (1) Load datasets from
Hugging Face; (2) Implement the Hugging Face models
by using functions provided by Megatron-LM; (3) Convert
Hugging Face checkpoints into Megatron-LM format; (4)
Split the checkpoints according to MP settings.

We consider image classification with the ViT-Base model
as an example to explain the above steps in detail. First, we
use the load_dataset function from Hugging Face to
load CIFAR-10 and CIFAR-100 datasets. Second, we imple-
ment the following three parts of transformer-based models:
(1) preprocessing; (2) transformer; (3) post-processing. For
the preprocessing step, we transform the input into an em-
bedding format that the model can utilize. Subsequently,

Does Compressing Activations Help Model Parallel Training?

we employ the ParallelTransformer function from
Megatron-LM to implement the transformer layers of the
model. The ParallelTransformer function allows us
to train the models under various MP settings. Finally, the
post-processing part of ViT-Base is a simple linear layer.

To handle different checkpoint formats, and given that a
model’s checkpoint can be saved as a dictionary, we trans-
form the Hugging Face checkpoint format to the Megatron-
LM format by reordering the keys and values in the dic-
tionary. Then, we split the checkpoints into several files
based on MP settings such that they can be loaded into
Megatron-LM for fine-tuning tasks.

3.3 Analytical Cost Model

While our implementation of MP compression algorithms
can be used to measure accuracy and performance with
empirical experiments, in MCBench, we also aim to help
developers understand how the effects of compression will
change as we scale model size and cluster size. In order
to minimize the amount of time and resources required to
answer scaling questions, we develop a cost model that
captures the speedup from the above-named compression
methods under various settings.

To develop our cost model, we consider the model par-
allelism scaling strategy developed in (Narayanan et al.,
2021b). Concretely, we use tensor model parallelism in the
same node, and pipeline model parallelism across nodes.
We build a performance model for MP compression for real-
world settings similar to (Narayanan et al., 2019) in two
steps. First, we develop our cost model on a single-node,
and analyze how costs change as we scale up the model
size on a single node. Second, we increase the cluster size
and, according to the model-parallelism strategy we choose,
we assign additional GPUs to pipeline parallelism, and use
off-the-shelf pipeline parallelism cost models to predict the
performance (Li et al., 2022b; Zheng et al., 2022).

Denote the vocabulary size as V , hidden size as h, sequence
length as s, and batch size as B. From (Narayanan et al.,
2021b), we know that the number of floating points opera-
tions (FLOPs) and all-reduce message size in a Transformer
layer is 96Bsh2+16Bs2h+6BshV , and Bsh respectively.

Cost Model on Single Node. Without compression, the
total time of a Transformer layer can be modeled as a sum
of the all-reduce communication step and the computation
time step. These two steps can not overlap because the
all-reduce communication depends on the computational
results:

T = Tcomp(96Bsh2 + 16Bs2h+ 6BshV)

+ Tcomm(Bsh) (1)

Let X be the compression method and the all-reduce mes-

sage size after compression be Mc. The total time of a single
Transformer layer with model parallelism compression can
be written as:

TX = Tcomp(96Bsh2 + 16Bs2h+ 6BshV)

+ Tcomm(Mc) + Toverhead (2)

where Toverhead is the computation time of the compression
algorithm. The speedup with L transformer layers on the
single node is L⇥T

L⇥TX
= T/TX .

Scaling Up the Cluster Size. Next, we analyze the speedup
when scaling up the cluster size by combining the pipeline
parallelism cost model developed in (Li et al., 2022b; Zheng
et al., 2022). Formally, the running time is modeled as a
sum of per-micro-batch pipeline communication time, per-
micro-batch of non-straggler pipeline execution time, and
the per-mini-batch straggler pipeline execution time. To use
the cost model, we denote the number of micro-batches as
m, the number of nodes (the cluster size) n, the number of
layers L, the pipeline communication time p or pC .

We use the default pipeline layer assignment strategy
in (Shoeybi et al., 2019), which balances the number of
transformer layers. Thus, every pipeline stage requires the
same amount of time: L

nT or L
nTX . We use the pipeline

communication model in (Jia et al., 2019; Li et al., 2022b),
p = Bsh

w , pX = Mc
w , where w is the bandwidth. Thus the

overall speedup can be written as:

(m�1
n + 1)⇥ L⇥ T + (n� 1)⇥ Bsh

w

(m�1
n + 1)⇥ L⇥ TX + (n� 1)⇥ Mc

w

(3)

In Section 4, we validate the cost model and analyze the
implications.

4 PERFORMANCE ANALYSIS WITH
MCBENCH

In this section, we present the first comprehensive study
of model parallelism compression by using MCBench to
answer the following questions:

• What is the impact of activation compression on system
throughput and which compression method achieves
the best throughput?

• What is the impact of compression on model accu-
racy? How do different downstream tasks affect the
performance of compression methods?

• What happens when we scale up the model size and
the cluster size?

We answer these questions in the context of two commonly
used scenarios: fine-tuning on the GLUE benchmark (Wang

Does Compressing Activations Help Model Parallel Training?

et al., 2018a), CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), and pre-training on the Wikipedia (Devlin et al.,
2018) and the BooksCorpus (Zhu et al., 2015) datasets.

4.1 Experimental Setup

We next describe the system configuration used, models
tested, and other experiment settings.

System Configuration. In default, we use AWS p3.8xlarge
instances where each instance is equipped with 4 V100
GPUs, 10 Gbps interconnect bandwidth, and NVLink in
each instance.

Models. We use the BERTLARGE model provided by
Megatron-LM (Shoeybi et al., 2019) which has 345M param-
eters. We configure the model to have 24 layers with each
layer having a hidden size of 1024 and 16 attention heads.
Moreover, we also integrate BERTBASE, ViT-Base (Doso-
vitskiy et al., 2020), XLM-RoBERTa-XL (Duplyakin et al.,
2019), and OPT-3B (Zhang et al., 2022) into Megatron-
LM (Shoeybi et al., 2019). Both BERTBASE and ViT-Base
have 12 layers with each layer having a hidden size of 768
and 12 attention heads. Additionally, XLM-RoBERTa-XL
has 36 layers, each with a hidden size of 2560 and 32 at-
tention heads. Similarly, OPT-3B has 32 layers, each also
having a hidden size of 2560 and 32 attention heads. We
use fp16 training in all experiments.

Experimental Settings. For fine-tuning, we follow similar
settings in previous studies (Devlin et al., 2018; Liu et al.,
2019; Dosovitskiy et al., 2020; Li et al., 2022a). We use
a micro-batch size of 32 and a sequence length of 512 for
BERTLARGE, a micro-batch size of 32 and a sequence length
of 128 for BERTBASE, and a micro-batch size of 512 with a
patch size of 32 for ViT-Base. Unless otherwise specified,
the model evaluated is BERTLARGE. We use 4 GPUs (in one
machine) for fine-tuning. We vary the tensor model-parallel
size and the pipeline model-parallel size across the follow-
ing three parallelism degrees: {(1, 4), (2, 2), (4, 1)}, where
the first number of the tuple represents the tensor model-
parallel degree and the second number of the tuple stands
for the pipeline model-parallel degree. For pre-training, we
use 4 machines with 16 GPUs in total. We use the recipe
from (Izsak et al., 2021) which uses large batch size with
shorter sequence length. We set micro-batch size 128, global
batch size 1024, and sequence length 128. To study the im-
pact of the distributed settings, we use the following three
different parallelism degrees: {(2, 8), (4, 4), (8, 2)}.

Hyperparameters. We also evaluate compression algo-
rithms with different hyper-parameters. For AE, we vary
compression dimension between {50, 100}. For Top-K and
Random-K algorithms, we keep the same compression ra-
tio as AE (i.e., we compress the activation around 10 and 20
times). We evaluate quantization with {2, 4} bits. Due to

Notation Description

A1 AE with encoder output dimension 50
A2 AE with encoder output dimension 100

T1 Top-K: same comp. ratio as A1
T2 Top-K: same comp. ratio as A2

R1 Rand-K: same comp. ratio as A1
R2 Rand-K: same comp. ratio as A2

Q1 Quantization: reduce the precision to 2 bits
Q2 Quantization: reduce the precision to 4 bits

P1 PowerSGD: same comp. ratio as A1
P2 PowerSGD: same comp. ratio as A2

TP Tensor model-parallelism degree
PP Pipeline model-parallelism degree

Table 1. Notation Table. TP/PP stands for the degree of ten-
sor/pipeline model parallelism. ‘comm’ and ‘comp’ are short
for ‘communication’ and ‘compression’.

the instability of PowerSGD under FP16 training, we used
FP64 to execute the PowerSGD algorithm.

By default, we perform experiments on BERTLARGE model
with 24 layers and compress the activation for the last 12 lay-
ers. For instance, when the pipeline model-parallel degree
is 2 and the tensor model-parallel degree is 2, we compress
the activation between two pipeline stages and the commu-
nication cost over tensor parallelism in the last 12 layers (we
evaluate the impact of varying the number of compression
layers in Appendix A.4). Similarly, we compress the acti-
vation for the last 6 layers when we perform experiments
on BERTBASE and ViT-Base. Furthermore, we compress
the activations of the final 18 layers of XLM-RoBERTa-XL
and the final 16 layers of OPT-3B. Due to the limited space,
we only present results from BERTLARGE, ViT-Base, and
XLM-RoBERTa-XL in this section and include other results
in the Appendix A.

4.2 Fine-tuning on Single Node

Takeaway 1 Among all evaluated compression methods,
none of the techniques can be used to improve system
throughput (by more than 1%) by compressing activations
when doing fine-tuning tasks.

When running fine-tuning experiments on a p3.8xlarge in-
stance on Amazon EC2, we observe that we cannot improve
system throughput by using any compression algorithms
from Figure 3(a). We also find that the best configuration
for fine-tuning is TP=4, PP=1 without using any evaluated
compression methods. This is primarily due to the high
bandwidth of NVLink, which means that communication is
not a significant bottleneck, and the overhead of compres-

Does Compressing Activations Help Model Parallel Training?

(a) Fine-tuning (b) Pre-training

Figure 3. Average iteration time (ms) for fine-tuning (left) and pre-training (right) with various compression techniques and distributed
setting. For each setting, we repeat experiments for 5 times. Red rectangular boxes highlight the best method. ’w/o’ is short for ’with of
compression’.

Compression
Algorithm MNLI-(m/mm) QQP SST-2 MRPC CoLA QNLI RTE STS-B Avg.

w/o 88.07/88.70 92.02 95.07 88.46 62.22 93.39 82.67 89.16 86.64

A1 85.42/85.43 91.07 92.09 86.14 54.18 91.31 70.04 87.61 82.59
A2 85.53/85.65 91.24 93.23 85.86 55.93 91.01 65.34 87.76 82.40

T1 32.05/32.18 74.31 83.60 70.78 0.00 58.37 51.99 0.00 44.81
T2 44.12/45.67 39.68 90.83 78.09 0.00 84.42 49.82 62.70 55.04

P1 83.03/83.43 91.08 90.60 79.07 0.00 89.73 59.21 74.66 72.31
P2 83.46/83.77 91.10 91.86 81.62 51.32 89.71 50.54 85.44 78.76

Q1 87.25/87.81 91.71 93.46 87.01 55.99 61.38 67.51 88.02 80.02
Q2 87.85/88.47 91.93 93.23 87.42 57.67 93.01 78.34 87.43 85.04

Table 2. Fine-tuning results over GLUE dataset with tensor model-parallel size 2 and
pipeline model-parallel size 2. F1 scores are reported for QQP and MRPC, Matthews
correlation coefficients are reported for CoLA, and Spearman correlations are reported for
STS-B, and accuracy scores are reported for the other tasks.

Compression
Algorithm CIFAR-10 CIFAR-100

w/o 98.81 91.83

A1 97.19 82.76
A2 97.14 83.51

T1 61.77 6.27
T2 65.54 10.74

P1 28.50 47.95
P2 21.32 5.02

Q1 92.96 84.09
Q2 98.85 91.94

Table 3. Fine-tuning results over CIFAR
10 and CIFAR 100 on ViT-Base with ten-
sor model-parallel size 2 and pipeline
model-parallel size 2.

sion algorithms, which in turn leads to additional time spent
in encoding/decoding.

Moreover, we see similar results as with other models
and our takeaway still holds for the XLM-RoBERTa-XL
model. Table 4 shows the results from evaluating XLM-
RoBERTa-XL over Cloudlab (Duplyakin et al., 2019) d8545
instances where each instance is equipped with 4 A100
GPUs and NVLink. Note that the hidden dimension for
XLM-RoBERTa-XL is 2560, we set the output dimensions
of A1 and A2 to 128 and 256, respectively, to maintain the
same compression ratio used in prior experiments. Other
compression methods maintain the same compression ratio
as the autoencoder. In addition, Q1 and Q2 still reduce the
precision to 2 bits and 4 bits respectively.

Takeaway 2 For fine-tuning tasks, model parallelism com-
pression can considerably degrade the model’s accuracy,
especially in the face of complex tasks. Additionally,

Transformer-based models employing model parallelism
compression can potentially underperform compared to
smaller models.

Given the higher complexity of CIFAR-100 over CIFAR-10
and RTE’s status as one of the most challenging tasks in the
GLUE benchmarks, an examination of Table 2 and Table 3
reveals that AE struggles to uphold the fine-tuning accuracy
across the RTE and CIFAR-100 tasks. Furthermore, in con-
trast to the accuracy detailed in (Dosovitskiy et al., 2020),
ViT-Base featuring AE compression exhibits inferior perfor-
mance to Resnet-50 on CIFAR-10 and CIFAR-100 during
fine-tuning. Hence, we suggest training smaller models for
complex tasks to speed up.

4.3 Pre-training on Multiple Nodes

Takeaway 3 Among all evaluated methods, AE is the best
compression methods over pre-training. AE not only pre-

Does Compressing Activations Help Model Parallel Training?

Distributed Setting w/o A1 A2 T1 T2 P1

TP=2, PP=2 549.81 545.12 553.34 593.20 613.24 1,077.11

Distributed Setting w/o P2 R1 R2 Q1 Q2

TP=2, PP=2 549.81 1,609.01 16,525.53 35,240.28 602.86 609.45

Table 4. The average iteration time (ms) for fine-tuning XLM-RoBERTa-XL with various compression techniques by setting TP=2, PP=2.
The results are collected from the Cloudlab d8545 machine with NVLink by using batch size 16, and sequence length 512. The best
setting is bolded in the table. And the settings which see benefits compared with the baseline, are underlined.

Compression
Algorithm MNLI-(m/mm) QQP SST-2 MRPC CoLA QNLI RTE STS-B Avg.

w/o 84.87/84.79 91.25 92.43 86.84 56.36 92.26 70.40 86.83 82.89
A2 83.77/84.32 91.14 91.63 86.55 58.61 91.96 71.48 87.16 82.96
T2 61.06/60.93 80.74 80.16 63.83 10.01 59.55 47.29 0.37 51.55
Q2 84.47/85.32 91.36 93.23 85.10 58.84 91.69 71.84 86.39 83.14

Table 5. Fine-tuning results over GLUE dataset by using the checkpoint obtained by pre-training. F1 scores are reported for QQP and
MRPC, Matthews correlation coefficient is reported for CoLA, and Spearman correlations are reported for STS-B, and accuracy scores
are reported for the other tasks.

Compression
Algorithm Forward Backward Optimizer Waiting &

Pipeline Comm. Total Time Tensor Enc. Tensor Dec. Tensor
Comm.

w/o 467.73 419.26 7.42 527.99 1,422.40 \ \ 91.08

A1 546.95 455.26 7.29 233.47 1,242.97 8.64 16.20 32.76
A2 459.26 467.51 9.64 286.78 1,223.20 12.96 20.52 43.56

T1 813.03 433.42 7.35 156.67 1,410.47 108.00 268.92 115.92
T2 1,068.38 444.26 6.75 202.48 1,721.87 153.36 427.68 151.56

R1 78,906.91 444.88 6.08 3,707.37 83,065.23 73,847.16 279.72 649.44
R2 \ \ \ \ >100,000 \ \ \

P1 2,032.54 605.72 4.01 202.60 2,844.88 169.96 7.53 32.18
P2 4,316.74 712.26 6.81 359.70 5,395.51 405.12 10.20 46.82

Q1 803.63 417.33 8.61 1,205.46 2,435.03 90.72 304.56 193.68
Q2 805.33 417.74 7.55 1,364.32 2,594.94 85.32 271.08 111.60

Table 6. We breakdown the average iteration time (ms) for pre-training with various compression techniques when using tensor model-
parallel size 4, pipeline model-parallel size 4, micro batch size 128, global batch size 1024, and sequence length 128. The results are
collected from 4 AWS p3.8xlarge machines with NVLink. The total time (ms) is divided into following parts: forward step, backward
step, optimizer, and waiting & pipeline communication. The last three columns further breakdown the tensor encoder/decoder and
communication times which are considered part of the forward step.

serves the model’s accuracy but also achieves the highest
pre-training throughput.

For pre-training tasks, from Figure 3(b), we observe that, by
using A2 to compress the activation over the last 12 layers,
we can improve throughput for pre-training by 16%. From
Table 5, compared with the baseline (without compression),
we can observe that using AE is able to keep the accuracy
when compared to the uncompressed model. In addition,

we observe that we can use the AE at the pre-training
phase and remove it during the fine-tuning phase. In
other words, we only need to load the parameter of the
BERTLarge model to do fine-tuning, and the parameters of
the AE can be ignored. Furthermore, Table 5 shows that pre-
trained models suffer significant accuracy loss when using
Top-K for compression. Finally, we find that quantization
can preserve the model’s accuracy, but we cannot achieve
end-to-end speedup since the overhead of the quantization

Does Compressing Activations Help Model Parallel Training?

method is too large as shown in Table 6. In conclusion, it
is not a good choice to compress the activation by using
quantization or Top-K.

Pipeline Stages Comm. (w/o) Comm. (A2)

0 $ 1 77.82 76.13
1 $ 2 88.69 13.19
2 $ 3 97.67 14.09

Table 7. The average communication time (ms) per iteration be-
tween two pipeline stages. The first column indicates the pipeline
stage. And the second column shows the communication time
per iteration without compression. Moreover, the third column
presents the communication time with A2. We only compress
the activation in the last 12 layers and thus the time for the first
pipeline stage is unchanged.

Takeaway 4 Compressing activation for models can im-
prove throughput for multi-node pre-training by 16%. The
reason behind this is that we can reduce the communica-
tion cost between the two pipeline stages. In addition, the
main factor affecting the performance of the compression
algorithm is the overhead of the compression methods.

From Table 6, we notice that using AE and Top-K can
reduce the waiting time and pipeline communication time
of pre-training. This is because the inter-node bandwidth
(10Gbps) is smaller than the intra-node bandwidth (40GB/s
with NVLink), so compression is effective at reducing the
communication time between two pipeline stages. From
Table 7, we can observe that, by using A2 to compress the
activation over the last 12 layers, we can reduce the com-
munication cost between the two pipeline stages effectively.
Additionally, as seen in Table 6, the performance impact
of MP compression is primarily due to the overhead of the
compression techniques.

4.4 Analysis of Scaling Up

We next study how the benefits from compression will
change with increase in model sizes / cluster size. Pre-
vious studies (Narayanan et al., 2021b) have focused solely
on modeling the computational costs of Transformer-based
models, overlooking the communication costs and com-
pression overheads associated with model parallelism. To
overcome these limitations, we develop the first cost model
specifically tailored for hybrid-parallel distributed training
that incorporates compression techniques. Our model ac-
counts for both compression overhead and communication
costs across nodes, making it more generally applicable for
distributed training.

Given the promising results from AE in the previous section,
we choose AE as the compression method with our cost
model from § 3.3. We first validate the correctness of our
cost model by comparing its prediction to ground truth. The

ground truth is real experimental results collected from the
AWS platform by using MCBench.

Modeling Tcomp. We model Tcomp, the computation time
of each Transformer layer, as a linear function of FLOPs
with the coefficient ↵ that corresponds to the peak per-
formance of the GPU. In particular, we estimate ↵ using
ground truth wall clock time of the largest hidden size we
can fit, where the GPU is likely to be of the peak utiliza-
tion (Williams et al., 2009). During experiments, we found
that fitting ↵ using time of smaller hidden sizes can result in
a 30x higher prediction time for larger hidden sizes because
of low GPU utilization. Our prediction versus the ground
truth time is plotted in Figure 4(a).

Modeling Tcomm. we model Tcomm, the communication
time of each Transformer layer, as a piece-wise function of
the message size (Agarwal et al., 2022). Formally,

Tcomm(Bsh) =

(
C if Bsh < d

�Bsh if Bsh � d

If the message size is smaller than a threshold d, then
Tcomm(Bsh) is a constant C because the worker needs
to launch at least one communication round (Li et al., 2020).
Otherwise, the number of communication rounds is propor-
tional to the message size. The fitting results are shown in
Figure 4(b).

Modeling Toverhead. In AE, Toverhead is the encoder and
decoder computation time. It is a batched matrix multiplica-
tion with input dimension B ⇥ s⇥ h and h⇥ hc (hc < h).
Toverhead = �Bsh since h⇥ hc is negligible compared to
B ⇥ s⇥ h. The fitting results are shown in Figure 4(c).

Using the above cost model, we now compute the speedup
as we vary the FM size by computing T

TAE
. Using a fixed

encoder dimension hc for AE (we set hc to 100), the commu-
nication time in Eq. (2) can be modeled as Tcomm(Bshc).
Compared to the setting without compression, the compu-
tation time remains unchanged. In addition, Tcomm(Bshc)
is roughly equal to C because Bshc is usually smaller than
the threshold d.

Since each Transformer layer has identical configurations in
popular Transformer models (Devlin et al., 2018; Radford
et al., 2018), the overall speedup ratio from using compres-
sion will remain the same as we vary the number of layers.
Thus, we can estimate the speedup of different hidden sizes
of any number of Transformer layers using T

TAE
. We pro-

vide the fitting result for this fraction in Figure 4(d).

To sum up, the fitting results shown in Figure 4 indicate
that our cost model can predict the performance of MP
compression correctly with various batch size and hidden
size. Therefore, we use the cost model to estimate speedup
for various FM sizes and cluster sizes next.

Does Compressing Activations Help Model Parallel Training?

(a) Tcomp (b) Tcomm (c) Toverhead (d) Speedup

Figure 4. Cost model validation with different batch size and hidden sizes. From left to right, we show computation time, communication
time, overhead by using AE compression, and end-to-end speedup. We use a fixed tensor model-parallel degree 4. ’bs’ is short for ’batch
size’, and ’pred’ means the line is predicted by our developed cost model.

Understanding the Trend The asymptotic behavior of large
hidden size h based on Eq. (1) and (2):

T

TAE
⇡ ↵⇥ FLOPs + �Bsh

↵⇥ FLOPs + �Bsh+ C

where FLOPs = 96Bsh2 + 16Bs2h+ 6BshV .

For a fixed cluster, as hidden size increases, the benefits
from model parallelism compression diminish and has
less than 5% benefit when hidden size � 12288. 1

Scaling Up the Cluster Size. The overall speedup can be
obtained by using Mc = Bshc and TX = TAE based on
Eq. (3). Under the pre-training setup, the cost model predicts
an acceleration of 15%, which is in agreement with our
experimental results. From Table 8, the setting with a hidden
size of 6144 is very similar to GPT-2 (Radford et al., 2019),
and we see that we can achieve ⇠1.09x speedup. When
the hidden size is scaled up to 25,600, AE compression can
achieve ⇠1.26x speedup. This shows that if we increase
the number of nodes when we increase in the number of
layers, AE compression benefits can increase. Moreover,
from Table 14 in the Appendix, model compression with
AE attains ⇠25% per-iteration speedup at scale.

In summary, model parallelism compression has diminish-
ing returns if we only scale up the model on a fixed cluster.
To gain benefits, one needs to also properly manage other
parameters in the cost model, e.g., scaling up the number
of nodes and using pipeline parallelism.

4.5 Limitations

Our experimental study, due to resource constraints, does
not encompass some of the recent advances in FMs pre-
training, such as LLaMA (Touvron et al., 2023). Never-
theless, our cost model can offer accurate guidance on per-
formance at these scales. Additionally, our study does not
account for the error feedback (EF) schemes, which are
frequently incorporated in data-parallel compression (Seide

1In our hardware setup, ↵ ⇡ 6.33⇥ 10�13, � ⇡ 3.37⇥ 10�8,
� ⇡ 1.5⇥ 10�10, C ⇡ 0.2, and we pick d = 204, 800.

hidden size # layers # nodes batch size speedup

6144 40 1 1024 1.09⇥

8192 48 2 1536 1.08⇥

10240 60 4 1792 1.09⇥

12288 80 8 2304 1.10⇥

16384 96 16 2048 1.15⇥

20480 105 35 2520 1.22⇥

25600 128 64 3072 1.26⇥

Table 8. Weak-scaling speedup for the Transformer models. The
degree of tensor model parallelism is 4, and the micro-batch
size is min{128, batch size/# nodes}. We follow the other hyper-
parameters as in Table 1 of (Narayanan et al., 2021b).

et al., 2014; Stich et al., 2018). While EF might help im-
prove accuracy, we note that using EF will increase the
overhead of compression methods.

5 RELATED WORK

In this section, we first outline the evolution of large foun-
dation models, followed by an examination of strategies for
training them at scale. Lastly, we discuss previous research
that accelerates distributed ML model training by employing
compression techniques.

Foundation models, first introduced by Vaswani et al. (2017)
in the context of machine translation, have demonstrated
effectiveness in various language understanding tasks, such
as text generation, text classification, and question answer-
ing (Devlin et al., 2018; Radford et al., 2018; Wang et al.,
2018a; Rajpurkar et al., 2016). More recent research has
expanded foundation models to encompass images (Doso-
vitskiy et al., 2020; Touvron et al., 2021), audio (Gong et al.,
2021), and video (Sharir et al., 2021). Due to their extensive
applications, multiple optimizations have been proposed to
expedite foundation model training, including optimized

Does Compressing Activations Help Model Parallel Training?

I/O management (Dao et al., 2022) and simplifying the at-
tention module (Wang et al., 2020). In our research, we
focus on accelerating the training of foundation models in a
distributed setting by reducing communication cost.

Various parallelism strategies have been proposed for train-
ing foundation models in a distributed manner. Mega-
tron (Shoeybi et al., 2019) presents tensor model parallelism,
which enables parallel computation in attention layers and
subsequent matrix multiplications. DeepSpeed (Rasley
et al., 2020) adopts a specialized pipeline parallelism
form (Huang et al., 2019; Narayanan et al., 2019) that treats
a transformer layer as the smallest unit in pipeline stages.
It further integrates tensor model parallelism from Mega-
tron and data parallelism to train foundation models with
trillions of parameters. Li et al. (Li et al., 2022b) investigate
a more intricate model parallelism strategy space for foun-
dation models and use a cost model to automatically find
the optimal strategy.

However, distributed ML model training requires frequent
and significant synchronization between workers. This syn-
chronization leads to substantial communication costs. To
mitigate the communication bottleneck, several methods
have been proposed to compress message size. One ap-
proach focuses on data parallelism settings, where work-
ers exchange model gradients (Wang et al., 2021; Agarwal
et al., 2022) during backward propagation. Techniques
for reducing gradient communication include low-rank up-
dates (Wang et al., 2018b), sparsification (Lin et al., 2017),
and quantization (Seide et al., 2014; Bernstein et al., 2018;
Dettmers, 2015). Another recent direction acknowledges
that large neural network activations during forward prop-
agation can benefit from compression (Wang et al., 2022).
This approach employs quantization to compress the activa-
tion volume between pipeline parallelism workers, specifi-
cally targeting the geo-distributed setting with low network
bandwidth. Moreover, this approach also needs additional
storage of activations which makes it challenging to use
with large datasets that are typically used for pre-training.
In this paper, we conduct a comprehensive evaluation of var-
ious popular compression techniques, assessing their impact
on tensor and pipeline parallelism within a typical cloud
computing environment.

6 CONCLUSION

In this work, we studied the impact of compressing activa-
tions for models trained using model parallelism. We first
developed a general performance model for model paral-
lelism compression. Next, we implemented and integrated
several popular compression algorithms into an existing dis-
tributed training framework (Megatron-LM) and evaluated
their performance in terms of throughput and accuracy un-
der various settings. Our results show that learning-based

compression algorithms are the most effective approach for
compressing activations in model parallelism. Based on
the experimental results, we evaluate the correctness of our
performance model and analyze the speedup when scaling
up the model. Our experiments provide valuable insights for
the development of compression algorithms in the future.

Acknowledgments

Shivaram Venkataraman is supported by the Office of the
Vice Chancellor for Research and Graduate Education at
UW-Madison with funding from the Wisconsin Alumni
Research Foundation and by NSF award OAC2311766.
Eric Xing is supported by NGA HM04762010002, NSF
IIS1955532, NSF CNS2008248, NIGMS R01GM140467,
NSF IIS2123952, NSF BCS2040381, NSF IIS2311990, a
Semiconductor Research Corporation (SRC) AIHW award,
and DARPA ECOLE HR00112390063.

REFERENCES

Agarwal, S., Wang, H., Lee, K., Venkataraman, S., and
Papailiopoulos, D. Adaptive gradient communication via
critical learning regime identification. Proceedings of
Machine Learning and Systems, 3:55–80, 2021.

Agarwal, S., Wang, H., Venkataraman, S., and Papailiopou-
los, D. On the utility of gradient compression in dis-
tributed training systems. Proceedings of Machine Learn-
ing and Systems, 4:652–672, 2022.

Aji, A. F. and Heafield, K. Sparse communica-
tion for distributed gradient descent. arXiv preprint
arXiv:1704.05021, 2017.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. Advances in neural information
processing systems, 30, 2017.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N.,
Khirirat, S., and Renggli, C. The convergence of sparsi-
fied gradient methods. Advances in Neural Information
Processing Systems, 31, 2018.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signsgd: Compressed optimisation for non-
convex problems. In International Conference on Ma-
chine Learning, pp. 560–569. PMLR, 2018.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Does Compressing Activations Help Model Parallel Training?

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. arXiv preprint arXiv:2205.14135, 2022.

Dettmers, T. 8-bit approximations for parallelism in deep
learning. arXiv preprint arXiv:1511.04561, 2015.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J.,
Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K.,
et al. The design and operation of {CloudLab}. In 2019
USENIX annual technical conference (USENIX ATC 19),
pp. 1–14, 2019.

Gong, Y., Chung, Y.-A., and Glass, J. Ast: Audio spec-
trogram transformer. arXiv preprint arXiv:2104.01778,
2021.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Hinton, G. E. and Zemel, R. Autoencoders, minimum de-
scription length and helmholtz free energy. Advances in
neural information processing systems, 6, 1993.

Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B.,
Gibson, G. A., Ganger, G., and Xing, E. P. More effective
distributed ml via a stale synchronous parallel parameter
server. In Advances in neural information processing
systems, pp. 1223–1231, 2013.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

Izsak, P., Berchansky, M., and Levy, O. How to
train bert with an academic budget. arXiv preprint
arXiv:2104.07705, 2021.

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model
parallelism for deep neural networks. Proceedings of
Machine Learning and Systems, 1:1–13, 2019.

Kim, J. K., Ho, Q., Lee, S., Zheng, X., Dai, W., Gibson,
G. A., and Xing, E. P. Strads: A distributed framework for
scheduled model parallel machine learning. In Proceed-
ings of the Eleventh European Conference on Computer
Systems, pp. 1–16, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, D., Shao, R., Wang, H., Guo, H., Xing, E. P., and Zhang,
H. Mpcformer: fast, performant and private transformer
inference with mpc. arXiv preprint arXiv:2211.01452,
2022a.

Li, D., Wang, H., Xing, E., and Zhang, H. Amp: Automati-
cally finding model parallel strategies with heterogeneity
awareness. arXiv preprint arXiv:2210.07297, 2022b.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), pp.
583–598, 2014.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P.,
Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P.,
et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704,
2020.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J.
Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Lu, W., Yan, G., Li, J., Gong, S., Han, Y., and Li, X.
Flexflow: A flexible dataflow accelerator architecture
for convolutional neural networks. In 2017 IEEE In-
ternational Symposium on High Performance Computer
Architecture (HPCA), pp. 553–564. IEEE, 2017.

Does Compressing Activations Help Model Parallel Training?

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pp. 1–15, 2019.

Narayanan, D., Phanishayee, A., Shi, K., Chen, X., and Za-
haria, M. Memory-efficient pipeline-parallel dnn training.
In International Conference on Machine Learning, pp.
7937–7947. PMLR, 2021a.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P.,
Bernauer, J., Catanzaro, B., et al. Efficient large-scale
language model training on gpu clusters using megatron-
lm. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021b.

OpenAI, R. Gpt-4 technical report. arXiv, pp. 2303–08774,
2023.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Proceed-
ings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 3505–3506,
2020.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and its application to data-parallel
distributed training of speech dnns. In Fifteenth annual
conference of the international speech communication
association. Citeseer, 2014.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Sharir, G., Noy, A., and Zelnik-Manor, L. An image is worth
16x16 words, what is a video worth? arXiv preprint
arXiv:2103.13915, 2021.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
C., et al. Mesh-tensorflow: Deep learning for super-
computers. Advances in neural information processing
systems, 31, 2018.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Song, J., Yim, J., Jung, J., Jang, H., Kim, H.-J., Kim, Y., and
Lee, J. Optimus-cc: Efficient large nlp model training
with 3d parallelism aware communication compression.
In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, pp. 560–573, 2023.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified sgd
with memory. Advances in Neural Information Process-
ing Systems, 31, 2018.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International Con-
ference on Machine Learning, pp. 10347–10357. PMLR,
2021.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd:
Practical low-rank gradient compression for distributed
optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018a.

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos,
D., and Wright, S. Atomo: Communication-efficient

Does Compressing Activations Help Model Parallel Training?

learning via atomic sparsification. Advances in Neural
Information Processing Systems, 31, 2018b.

Wang, H., Agarwal, S., and Papailiopoulos, D. Pufferfish:
communication-efficient models at no extra cost. Pro-
ceedings of Machine Learning and Systems, 3:365–386,
2021.

Wang, J., Yuan, B., Rimanic, L., He, Y., Dao, T., Chen,
B., Re, C., and Zhang, C. Fine-tuning language models
over slow networks using activation compression with
guarantees. arXiv preprint arXiv:2206.01299, 2022.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wang, Z., Wu, X. C., Xu, Z., and Ng, T. E. Cupcake: Acom-
pression optimizer for scalable communication-efficient
distributed training.

Williams, S., Waterman, A., and Patterson, D. Roofline:
an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76,
2009.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on em-
pirical methods in natural language processing: system
demonstrations, pp. 38–45, 2020.

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou,
E. H., Karatsenidis, K., Canini, M., and Kalnis, P. Com-
pressed communication for distributed deep learning: Sur-
vey and quantitative evaluation. Technical report, 2020.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Gonzalez, J. E., et al. Alpa:
Automating inter-and intra-operator parallelism for dis-
tributed deep learning. arXiv preprint arXiv:2201.12023,
2022.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. In Proceedings of the
IEEE international conference on computer vision, pp.
19–27, 2015.

Zhuang, Y., Zhao, H., Zheng, L., Li, Z., Xing, E. P., Ho, Q.,
Gonzalez, J. E., Stoica, I., and Zhang, H. On optimizing

the communication of model parallelism. arXiv preprint
arXiv:2211.05322, 2022.

