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Abstract

Egocentric temporal action segmentation in videos is a
crucial task in computer vision with applications in various
fields such as mixed reality, human behavior analysis, and
robotics. Although recent research has utilized advanced
visual-language frameworks, transformers remain the back-
bone of action segmentation models. Therefore, it is neces-
sary to improve transformers to enhance the robustness of
action segmentation models. In this work, we propose two
novel ideas to enhance the state-of-the-art transformer for
action segmentation. First, we introduce a dual dilated at-
tention mechanism to adaptively capture hierarchical repre-
sentations in both local-to-global and global-to-local con-
texts. Second, we incorporate cross-connections between
the encoder and decoder blocks to prevent the loss of lo-
cal context by the decoder. We also utilize state-of-the-art
visual-language representation learning techniques to ex-
tract richer and more compact features for our transformer.
Our proposed approach outperforms other state-of-the-art
methods on the Georgia Tech Egocentric Activities (GTEA)
and HOI4D Office Tools datasets, and we validate our in-
troduced components with ablation studies. The source
code and supplementary materials are publicly available on
https://www.sail-nu.com/dxformer.*

1. Introduction

Automated detection and segmentation of human activi-
ties from an egocentric perspective have numerous applica-
tions in fields such as mixed reality, human behavior anal-
ysis, and robotics [9, 10]. However, egocentric action seg-
mentation is particularly challenging due to several factors.
First, the videos are untrimmed and can span several min-
utes, making it difficult to assign an action label to each
frame accurately. Second, egocentric videos often have oc-
clusions, where the camera wearer’s body or objects in the

*This work is supported by the NSF Grant No. 2128743. Any opinions,
findings, and conclusions expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

foreground obstruct the view of the action. Random move-
ment and camera motion can also lead to inconsistent view-
points, making it challenging to track actions across frames.
Third, active hand-object interactions, which are prevalent
in egocentric videos, can result in actions slightly outside
the frame, further complicating the segmentation task. To
address these challenges, action segmentation methods for
egocentric videos focus on modeling the temporal relations
among frames using pre-extracted frame-wise feature se-
quences, while also considering the unique characteristics
of egocentric videos.

Recent advances in action segmentation models have
shown promising results through the use of cutting-edge vi-
sual language feature representations [11, 15]. However,
there remains scope for improvement in the transformer
backbone, which serves as the fundamental component of
these models. Specifically, enhancing the transformer back-
bone can aid in precise action identification by effectively
attending to salient regions within the video. A strength-
ened attention mechanism within the improved transformer
plays a pivotal role in capturing temporal dependencies, ul-
timately leading to improved model accuracy.

In this paper, we introduce DXFormer, a new
transformer-based architecture that improves the state-of-
the-art transformer backbone for action segmentation by
introducing a dual dilated attention mechanism and cross-
connections between encoder and decoder blocks. In ad-
dition, we build on advanced visual-language representa-
tion learning approaches to extract richer and more com-
pact characteristics for the transformer. We evaluate DX-
Former on two challenging egocentric video datasets and
show that it outperforms other state-of-the-art action seg-
mentation methods both quantitatively and qualitatively.
Furthermore, we conduct an ablation study to validate the
effectiveness of newly added components in improving the
results with respect to various metrics.

2. Method

The proposed DXFormer is an improved backbone
model for action segmentation, based on the ASFormer
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Figure 1. The proposed DXFormer model for temporal action segmentation uses a multi-decoder approach to capture temporal dependen-

cies more effectively.

[17] baseline model. It introduces two innovative tech-
niques, dual dilated attention (DA) and encoder-decoder
cross-connection (CC), to elevate its performance. The
overall architecture of DXFormer, depicted in Figure 1, is
presented to provide a high-level overview. The proposed
model comprises a single encoder and three decoders. Ini-
tially, video frames are passed through a feature extractor
model, which is a vision transformer pre-trained using vi-
sual language contrastive learning methods (e.g., Bridge-
Prompt [11] and CLIP [14]). The encoder leverages the
extracted frame-wise features to generate initial action pre-
dictions for each frame. Subsequently, the three decoders
refine these initial outputs, yielding improved frame action
labels as the final output. This multi-decoder approach ef-
fectively enhances the accuracy of the action segmentation
by capturing temporal dependencies in the egocentric video
data.

2.1. Dual Dilated Attention Mechanism

The baseline model, ASFormer [ 7], maintains a hierar-
chical pattern representation to focus first on local informa-
tion and then gradually expand the attention span to capture
the global feature. In this approach, while the attention span
is very large for the higher attention blocks, lower blocks
may suffer from a small attention span. Due to the smaller
attention windows, the initial attention blocks capture the
local context from neighboring frames quite well, but miss
the global contexts. On the other hand, the higher-attention
blocks capture the global context quite well because of the
larger attention span, but they miss out on the local contexts.
To address the limitations mentioned above, we propose a
dual-dilated attention (DA) approach, to help the model to
capture both global and local contexts adaptively in both
lower and higher attention blocks. Figure 2 shows the ar-
chitecture of the proposed DA module.

The new DA module consists of two different attention
branches, one with an increasing window size and the other
with a decreasing window size. Each attention branch starts
with a dilated convolution layer followed by an attention
layer. Following [17], we keep the dilation size of the con-
volution layers and the window size of its attention layer

the same. For the first attention branch, the window size
is doubled at each block (e.g., 2¢ where i = 1, 2,...). On
the other hand, for the second branch, the window size is
halved in each block (e.g., 2N—i where N =9 and i = 1,
2,...). Hence, in the initial attention blocks, the first branch
has a small attention span and captures local context from
neighboring frames. In contrast, the second branch starts
with a large attention span and captures global context ex-
ploring both near and distant frames. These two branches
are then merged through concatenation, followed by a con-
volution operation. This adaptive combination enables the
model to dynamically learn the emphasis placed on each
branch, facilitating the effective capture of both local and
global contexts.

The proposed DA uses different attention mechanisms
for the encoder and the decoders. The encoder uses the self-
attention mechanism and the output of the previous layer as
the query @, the key K, and the value V. On the other
hand, the decoders use a cross-attention mechanism where
the query () and the key K are generated by concatenating
the outputs from its previous layer and the corresponding
encoder attention block, and the value V is taken from the
previous layer as self-attention.

2.2. Encoder-Decoder Cross Connections

Connecting the encoder and decoder sequentially in the
transformer backbone can lead to a semantic gap between
their features. For example, in the ASFormer [17], the first
decoder takes the output from the last block of the encoder
as input, while the subsequent decoders take the output from
their previous decoder’s last block as input. Although the
output of any encoder or decoder’s last block already con-
tains global context of the input, sharing only this feature
with the decoder blocks can result in a loss of local infor-
mation. This can hinder the learning process of both local
and global patterns using DA and limit the effectiveness of
the overall architecture.

To address the issue of losing local context, we propose
cross-connections between the encoder and decoder blocks.
These cross-connections connect each decoder block with
its corresponding encoder block (as depicted in Figure 1)
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and pass the local information from the lower encoder block
to its corresponding decoder blocks, preventing the model
from losing important local information at the decoders.
Each cross-connection takes the output of an encoder block
and passes to its corresponding decoder block. In the de-
coder blocks, the features are concatenated with the input
of their cross-attention layer, and the result is used as the
query ) and the value V, as shown in Figure 2.

3. Experiments
3.1. Datasets and Experiment Setup

We utilize two challenging egocentric video datasets to
assess the performance of the proposed approach. The first
dataset, Georgia Tech Egocentric Activities (GTEA) [5],
comprises 28 instructional videos recorded from an egocen-
tric perspective. It includes 11 distinct action classes repre-
senting daily kitchen activities. The second dataset, HOI4D
Office Tools, is a subset of the larger HOI4D dataset [13]
and consists of 553 egocentric videos depicting hand inter-
actions with office tools such as scissors, pliers, and sta-
plers. It covers 12 action classes related to office tool usage.
To evaluate the performance of our approach, we conducted
a four-fold cross-subject validation for both datasets. This
evaluation technique ensures robustness and mitigates the
influence of subject-specific biases on the results.

For our experiments, we closely follow the settings em-
ployed by the ASFormer model [17], our baseline. How-
ever, for the large HOI4D dataset, we make specific adjust-
ments for efficient training. We utilized a batch size of 8, a
learning rate of 0.001, and incorporated 7 attention blocks
in each encoder and decoder.

Table 1. Performance comparison of different configurations of
our proposed method vs. the baseline (ASFormer) on the GTEA
dataset (using only BrPrompt feature representation).

Backbone Model ‘ F1@{10, 25, 50} ‘ Edit ‘ Acc
Baseline 91.4 89.9 814 | 88.2 | 80.7
Baseline + DA 91.7 90.5 82.6 | 83.8 | 81.7
Baseline + CC 91.8 90.3 80.6 | 88.3 | 80.9
Baseline + DA+ CC | 91.0 89.8 819 | 89.0 | 81.3

* DA = Dual Dilated Attention, CC = Cross-Connection

Table 2. Performance comparison of different feature representa-
tions with DXFormer on the GTEA dataset.

Feature ‘ F1@{10, 25, 50} ‘ Edit ‘ Ace
13D 89.1 88.0 78.1 | 84.9 | 80.3
ViT 853 832 726 | 834 | 74.1
BrPrompt | 91.4 89.8 81.9 | 89.0 | 81.3

3.2. Effect of Dual-Attention and Cross-Connection

To verify the influence of the new components in our
DXFormer model, we perform an ablation study on the
GTEA dataset. We specifically test various combinations
of these elements and assessed how they affect the perfor-
mance indicators. The addition of dual dilated attention
(DA) increases the F1 @50 score by 1.2% and accuracy by
1%, according to the findings of the ablation study. The best
F1@10 score is achieved by including cross-connections
(CC) between the encoder and decoder blocks. Finally,
adding both DA and CC allows us to achieve the highest edit
score. The findings in Table | show how well the newly in-
corporated components work and how they help the action
segmentation models function better.

3.3. Effect of Feature Representations

We experiment with various feature representations of
video frames as input to our transformer-based DXFormer
model. The results on the GTEA dataset show that DX-
Former performs best with BridgePrompt feature represen-
tation, trained using visual-language contrastive learning
with custom prompts [11]. We also evaluate the perfor-
mance of two commonly used pre-trained models, 13D [2]
and ViT [15], which are pre-trained on the Kinetics400
dataset [8]. The results demonstrate that BridgePrompt
achieves the highest performance, followed by I3D, while
ViT exhibits comparatively lower performance. Detailed
comparison of these results is provided in Table 2.

3.4. Comparison with the State-of-the-Art

Table 3 presents a comprehensive comparison between
the proposed DXFormer model and other state-of-the-art
approaches for temporal action segmentation on the GTEA
dataset. Notably, our DXFormer model outperforms all
other models, achieving state-of-the-art performance with
an F1@50 score of 82.6% and a frame-wise accuracy of
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Figure 3. Qualitative Evaluation: DXFormer outperforms the baseline (ASFormer) approach in challenging scenarios, as demonstrated on

a representative video (‘S1_Tea_C1’) from the GTEA dataset.

Table 3. Action segmentation results on GTEA dataset.

Method F1@{10, 25,50} | Edit | Acc
MS-TCN++ [12] 88.8 857 76.0 | 83.5 | 80.1
BCN [16] 88.5 87.1 773 | 84.4 | 79.8
G2L [6] 89.9 873 758 | 84.6 | 78.5
ASRF [7] 894 878 79.8 | 83.7 | 77.3
SSTDA [3] 90.0 89.1 78.0 | 86.2 | 79.8
SSTDA+HASR [1] 909 88.6 764 | 87.5 | 78.7
I3D+ASFormer [17] 899 883 782 | 854 | 79.3
BrPrompt+ASFormer [111* | 91.4 89.9 81.4 | 882 | 80.7
BrPrompt+DXFormer (DA) | 91.7 90.5 82.6 | 88.8 | 81.7
BrPrompt+DXFormer 914 89.8 819 | 89.0 | 81.3

* Reproduced results on our hardware configuration
DA = Dual Dilated Attention Only

81.7%. The incorporation of dual dilated attention and
cross-connections in our architecture proves highly effec-
tive in improving the performance of the baseline. More-
over, on the HOI4D Office Tools dataset, where the action
labels are more fine-grained, the cross-connection mecha-
nism shows a particularly positive impact. In Table 4, DX-
Former consistently outperforms other state-of-the-art mod-
els on this dataset as well. These results further validate the
efficacy of the proposed approach, showcasing its potential
to advance action segmentation and facilitate the develop-
ment of robust video understanding models.

3.5. Qualitative Evaluation

To further examine the performance of DXFormer, we
conducted a visual analysis of the model outputs for sev-
eral videos. Although DXFormer performs similarly to the
baseline in most general cases, our findings indicate that it
outperforms the baseline in challenging cases. For instance,
in Segment (a) of Figure 3, DXFormer accurately predicts
the shaking action by capturing subtle local movements and
global patterns in consecutive frames, while the baseline
misclassifies it as a ‘take’ action. In Segment (b), we dis-
cover an error in the ground truth labeling of an action as
‘shake’, which should have been labeled as a ‘background’.
Despite the incorrect ground truth label, our model correctly
predicts the label, demonstrating reliability in subtle action

Table 4. Action segmentation results on HOI4D (Office Tools)
dataset.

Method* F1@{10, 25,50} | Edit | Acc
MS-TCN [4] 88.1 842 71.2 | 914 | 747
MS-TCN++[12] | 88.6 849 72.6 | 92.0 | 75.1
ASFormer [17] 89.4 85.6 74.3 | 93.0 | 76.1
DXFormer (CC) | 89.8 86.0 74.7 | 934 | 76.4
DXFormer 89.8 859 73.8 | 93.0 | 76.5

* . . .
CLIP is used here for frame-wise feature extraction
CC = Cross-Connection Only

scenarios. Segment (d) presents a case where the pouring
action is followed by the scooping action in the video. The
baseline ASFormer model misclassifies the pouring action
as ‘scoop’ due to the influence of the previous action, and
irrelevant global patterns. However, DXFormer effectively
captures more critical local contexts and correctly predicts
the pouring action, demonstrating its ability to accurately
segment actions in the presence of complex temporal de-
pendencies. Overall, our model demonstrates greater flexi-
bility and robustness by adaptively incorporating global and
local context through the proposed dual dilated attention
and cross-connection components, leading to better perfor-
mance in challenging cases compared to baseline.

4. Conclusion

In this paper, we proposed two novel ideas, dual di-
lated attention and encoder-decoder cross-connection, to
enhance the performance of the transformer backbones for
the egocentric action segmentation task. We also conduct a
comprehensive comparison of different feature representa-
tions for action segmentation models. Our proposed model
demonstrates performance comparable to that of the base-
line in general scenarios, while outperforming it in more
challenging cases due to its ability to adaptively focus on
temporally local and global contexts. Moving forward, we
will continue to explore innovative ideas to further enhance
the transformer backbone and extend our evaluations to a
wider range of datasets, aiming to push the boundaries of
egocentric action segmentation research.
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