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Abstract Globally, land subsidence (LS) often adversely impacts infrastructure, humans, and the
environment. As climate change intensifies the terrestrial hydrologic cycle and severity of climate extremes, the
interplay among extremes (e.g., floods, droughts, wildfires, etc.), subsidence, and their effects must be better
understood since LS can alter the impacts of extreme events, and extreme events can drive LS. Furthermore,
several processes causing subsidence (e.g., ice‐rich permafrost degradation, oxidation of organic matter) have
been shown to also release greenhouse gases, accelerating climate change. Our review aims to synthesize these
complex relationships, including human activities contributing to LS, and to identify the causes and rates of
subsidence across diverse landscapes. We primarily focus on the era of synthetic aperture radar (SAR), which
has significantly contributed to advancements in our understanding of ground deformations around the world.
Ultimately, we identify gaps and opportunities to aid LS monitoring, mitigation, and adaptation strategies and
guide interdisciplinary efforts to further our process‐based understanding of subsidence and associated climate
feedbacks. We highlight the need to incorporate the interplay of extreme events, LS, and human activities into
models, risk and vulnerability assessments, and management practices to develop improved mitigation and
adaptation strategies as the global climate warms. Without consideration of such interplay and/or feedback
loops, we may underestimate the enhancement of climate change and acceleration of LS across many regions,
leaving communities unprepared for their ramifications. Proactive and interdisciplinary efforts should be
leveraged to develop strategies and policies that mitigate or reverse anthropogenic LS and climate change
impacts.

Plain Language Summary Our article reviews existing research on the global issue of land
subsidence (LS), or the relative sinking of the land surface. At the global scale, a variety of LS drivers and
physical processes are present and interact with one another. The combination of climatic extremes (e.g.,
droughts, floods, wildfires, etc.) and LS can lead to devastating impacts on natural and built systems as well as
feedbacks within our Earth system that enhance climate change. Yet, a review of the combined effects of
extreme events, climate, subsidence, and their impacts, does not currently exist. In this article, we identify and
characterize LS drivers, rates, and impacts throughout many different climates (e.g., arid and humid regions)
and landscapes (coastal and inland locales, urban and agricultural areas). We also bring together the interplay
among extreme events and LS and their connections to climate, human activities, and infrastructure. Integrating
such relationships into LS analysis and monitoring frameworks is necessary to better understand cascading
hazards and identify vulnerable populations, assess at‐risk infrastructure, and develop mitigation and adaptation
strategies for LS.

1. Introduction
Land subsidence (LS) is a pressing global issue warranting immediate and continued attention. Subsidence, the
relative lowering or sinking of the land surface, causes significant infrastructure damage, environmental
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problems, and societal impacts, totaling billions of dollars in economic losses annually (R. L. Hu et al., 2004;
Oppenheimer et al., 2019). Natural and anthropogenic factors (e.g., compaction, natural resources exploitation,
permafrost degradation, peatland burning, dewatering, urbanization) combine to form a complex pattern of LS
rates and impacts stretching from coastal to inland areas worldwide. By unraveling the intricate responses of the
land surface to different drivers and characterizing their contributions to subsidence, especially related to the
climate system, we will be able to develop better mitigation and adaptation strategies and understand subsidence
effects across different regions. While the ramifications of climatic extreme events and LS affect one another,
additional research is still needed in this area.

As the global climate warms and amplifies the terrestrial hydrologic cycle (AghaKouchak et al., 2020;
IPCC, 2021), extreme climatic events and LS impacts will increasingly affect one another across many parts of the
world (IPCC, 2021; Melvin et al., 2017). Such relationships are already evident. High levels of LS were observed
where the devastating levee failures occurred in New Orleans (USA) during Hurricane Katrina in 2005 (Dixon
et al., 2006; NOAA, 2018). In 2017, regions of Houston (USA) with the largest LS also experienced the most
severe flooding from Hurricane Harvey (Miller & Shirzaei, 2019), which contributed to at least 65 deaths from
drowning, over 200,000 flood‐damaged buildings, and at least $125 billion in total damages (NOAA, 2018).
When combined with subsidence, the compounding effects of expanding megacities and coastal communities, sea
level rise, and extreme precipitation exacerbate the exposure and vulnerability of an increasing population to
flooding (Cao et al., 2021; Nicholls et al., 2021; Oppenheimer et al., 2019; Tessler et al., 2015; Wahl et al., 2015).
Other climate‐driven extremes (e.g., wildfires, drought) heighten the risk of LS or intensify this hazard. For
example, as temperatures warm and Arctic wildfires spread, thawing ice‐rich permafrost places critical infra-
structure (e.g., pipelines) at‐risk as the land subsides with the loss of the frozen soil's structure (Gibson
et al., 2018; Holloway et al., 2020; Karjalainen et al., 2020). The effects of subsidence can alter the potential
impacts of extreme events, and extreme events can contribute to LS. Furthermore, some processes that facilitate
subsidence (e.g., permafrost degradation and soil organic matter oxidation), also present significant positive
climate feedbacks that enhance climate change when trapped greenhouse gases from the soil escape to the at-
mosphere (Gibson et al., 2018).

Despite the devastating impacts that the combination of climatic extremes and subsidence have on natural and
built systems, a review of the interplay among extreme events, climate, subsidence, human activities, and their
impacts, remains a critical gap in understanding cascading hazards and complex feedbacks. An improved un-
derstanding of the feedback loops between these processes is necessary for identifying vulnerable populations, at‐
risk infrastructure, and also future research directions to address current gaps in this area, and developing suitable
mitigation and adaptation strategies. Recent satellite‐era technologies have made such investigations possible.
Yet, existing reviews commonly examine subsidence in only certain regions (e.g., coastal areas (Shirzaei
et al., 2021)) or from specific causes (e.g., groundwater‐driven (Herrera‐García et al., 2021)) with few studies
classifying the diverse factors causing subsidence across the globe (Bagheri‐Gavkosh et al., 2021). Nevertheless,
existing reviews do not examine the important interplay and feedback between extreme events and LS and their
connections to climate and infrastructure. By reviewing recent literature, we provide a global survey of LS rates
and causes across manifold landscapes and climate regions (e.g., coastal and inland areas, cities and agricultural
centers, and arid and humid regions). We also synthesize process‐based combined effects among climatic ex-
tremes, subsidence, human activities, and their impacts, by discussing a variety of observed examples and pro-
jections around the world. Finally, we identify existing knowledge gaps and opportunities that will help guide the
global monitoring and mitigation of subsidence impacts within our complex climate system.

2. Monitoring and Modeling Land Subsidence
LS can occur gradually (e.g., fluid extraction) or rapidly (e.g., earthquake activity, mining collapse) and over
localized (order of a few to tens of square meters; e.g., sinkhole from limestone dissolution) or large regions (order
of one to tens of square kilometers or more, e.g., California's Central Valley (USA), Bangkok (Thailand), the
Guangdong–Hong Kong–Macao Greater Bay Area (China), Jakarta (Indonesia), Gippsland Basin (Australia),
Ravenna (Italy)) with measurable downward displacements of the Earth's surface (M. Ao et al., 2015; Cao
et al., 2021; Faunt et al., 2016; Jago‐on et al., 2009; Marker, 2013; Ng et al., 2015; Teatini et al., 2005). A variety
of technologies are used to monitor LS (e.g., leveling, inclinometers, tiltmeters, borehole extensometers,
observation wells, Global Positioning Systems (GPS), and Synthetic Aperture Radar (SAR)) (Ferretti et al., 2015;
Galloway & Hoffmann, 2007; Motagh et al., 2008; Wang & Soler, 2015). Herein, we do not aim to review sensor
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technologies, monitoring techniques, or data processing methods as several comprehensive studies in these areas
exist (Bürgmann et al., 2000; Cruz et al., 2022; Musa et al., 2015; Ouchi, 2013; Rosen et al., 2000; Wang &
Soler, 2015). Instead, we focus on global LS rates, their drivers, and potential impacts. Nonetheless, we briefly
discuss SAR and the Interferometric SAR (InSAR) approach since we collected data from literature using
satellite‐based SAR observations to provide a consistent framework for comparing subsidence rates in Figures 1
and 2 (discussed below). Further, several studies have leveraged numerical modeling alone or in combination
with monitoring techniques, such as InSAR, to simulate subsidence processes and assess hydromechanical
behavior of aquifers/aquitards (e.g., Bockstiegel et al., 2023; Bonì et al., 2020; Calderhead et al., 2011; Catalao
et al., 2016; Galloway & Burbey, 2011; Zhang & Burbey, 2016). Numerical modeling is undoubtedly a valuable
tool for studying LS, as evidenced by its widespread use in the literature. However, the primary focus of this
review article is to critically synthesize the literature on the interplay of climatic extremes and LS. The emphasis is
placed on discussing the underlying factors and processes that contribute to the dynamics of climatic extremes and
LS. While we certainly acknowledge the relevance of previous studies employing various modeling tools (e.g.,
numerical modeling) and monitoring techniques (e.g., InSAR), it is essential to clarify that a comprehensive
review of the existing methods for numerical modeling and monitoring of LS falls beyond the scope of this article.

2.1. Satellite‐Based SAR Observations and InSAR

Advances in satellite remote sensing with SAR have moved us closer to monitoring and mapping LS and
monitoring its rates globally (e.g., Davydzenka et al., 2024). Since SAR‐based information is used to infer ground
deformation on the order of several millimeters per year (Bürgmann et al., 2000; Ferretti et al., 2007; Ouchi, 2013;
Zhou et al., 2009), it often aids impact assessment across a variety of fields (e.g., agriculture, infrastructure
monitoring, land management, geology, seismology, hydrology) (Baghdadi et al., 2007; Bru et al., 2013; Brunori
et al., 2015; Ferretti et al., 2015; Forkuor et al., 2014; Musa et al., 2015; Ouchi, 2013; Rosen et al., 2000).

In fact, the InSAR technique was developed to leverage the wavelength phase and amplitude information in SAR
imagery. InSAR derives an interferogram by computing the phase difference between two SAR snapshots over an
area, which is used to track surface deformation (Klein et al., 2017; Miller & Shirzaei, 2015; Sánchez‐Gámez &
Navarro, 2017). Traditional InSAR techniques provide deformation estimates along the line‐of‐sight direction of
the sensor relative to the position of the satellite during orbit (e.g., ascending or descending) (Du et al., 2023;
Erten et al., 2010; Motagh et al., 2008). Multiple methods exist for processing the phase information (e.g.,
Differential InSAR [DInSAR], Permanent Scatterers InSAR [PSInSAR]) (Ferretti et al., 2001; Ouchi, 2013;
Peltier et al., 2010).

SAR satellites often carry a single wavelength sensor (i.e., L‐band [23.5 cm wavelength], C‐band [5.6 cm], X‐
band [3.1 cm]), but multi‐frequency sensors also exist (Ouchi, 2013; Shirzaei et al., 2021). Depending on the
radar wavelength, the spatial resolution of SAR is on the order of meters to tens of meters (Merryman Bon-
cori, 2019). Shorter wavelengths yield higher spatial resolutions. Given that radar wavelength is related to the
spatial resolution of imagery, how the signal interacts with a surface, and the distance the signal penetrates into a
medium, SAR‐based information lends itself to a variety of applications (Tsokas et al., 2022). For example, X‐
band sensors are mainly used for collecting urban observations with built infrastructure since shrubs and canopies
highly scatter the short wavelengths (Castellazzi et al., 2016; Tsokas et al., 2022), whereas L‐band SAR penetrates
dense vegetation and shows greater coherence than data from C‐ and X‐bands (Kasischke et al., 2007; Ottinger &
Kuenzer, 2020; Raucoules et al., 2007; Shirzaei et al., 2021; Tsokas et al., 2022; Tsyganskaya et al., 2018). When
SAR‐based information is combined with auxiliary data (e.g., groundwater pumping rates, geology, shear wave
velocity), an improved understanding of the causes of observed subsidence and their potential impacts is
achievable (Fielding et al., 1998).

SAR sensors use active remote sensing by emitting electromagnetic radiation in the microwave spectrum,
allowing them to operate during both day and night and penetrate cloud cover with their longer wavelengths
(Ottinger & Kuenzer, 2020; Raucoules et al., 2007). Nonetheless, meteorological conditions can cause atmo-
spheric artifacts, and if not correctly identified or considered, they could lead to misinterpretations of ground
deformations. Furthermore, careful selection of interferometric pairs is important for minimizing the loss of
coherence, which is affected by factors such as changing land cover conditions (e.g., agricultural areas), the
temporal lag between images, and applications. Single‐sensor SAR images tend to have low resolution or small
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coverage in comparison to multi‐sensor SAR investigations for LS applications (Raspini et al., 2022). As noted
above, since entire reviews exist that focus on SAR‐based applications for LS monitoring (e.g., Raspini
et al., 2022; Raucoules et al., 2007), we only briefly summarize a few key advantages and limitations herein.

Figure 1. Reported land subsidence rates and drivers across the globe. (a) Global map of main LS drivers (colors) with mean (circles) and maximum (triangles) rates
(shape sizes). For the regional maps, shape sizes are defined in the leftmost panel. We use a shared color scheme (legend shown in (b)) to represent the primary causes of
subsidence in both (a) and (b). (b) Global comparison of the 50 largest mean subsidence rates. Indices along the x‐axis correspond to the listed locations. (This figure is
based on our assessment of literature (Text S1 in Supporting Information S1) and information therein. The subsidence rates reported here were taken from literature and
calculated as described therein. Note that LS rates change over time, occur at a variety of time scales, and exhibit nonlinear variability. Also, given the range of different
locations and studies assessed, not all rates were observed over the same time period or estimated similarly. LS rates of approximately 300 mm/yr for the Rafsanjan Plain
in Iran have been reported as both the maximum (Motagh et al., 2017) and mean (Bagheri et al., 2019) values. Meldebekova et al. (2020) reported the same value for the
mean and maximum rates in Kabul, Afghanistan).
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3. Natural and Anthropogenic Land Subsidence
Natural processes and human activities drive LS globally (Bagheri‐Gavkosh et al., 2021; Marker, 2013). Some
driving processes naturally occur and are also influenced by anthropogenic activities. Permafrost degradation
serves as one example driver that naturally occurs with seasonal temperature fluctuations, but is also driven or
amplified by urbanization and anthropogenic climate change (e.g., warming temperatures and climate change‐
driven wildfires and heatwaves) (Streletskiy et al., 2015). We classify subsidence into two broad categories,
natural and anthropogenic, based on its primary identified cause. Naturally occurring processes including sea-
sonal or inter‐annual variations in groundwater levels, volcanic activity, tectonic deformation, soil/rock disso-
lution, natural consolidation, and the decomposition of organic materials drive natural LS. Whereas human‐
related activities, such as the withdrawal of natural resources (e.g., fossil fuels, groundwater, geothermal
fluids), cultivation or burning of peatlands, wetland removal, and the loading of rapid urban development, propel
anthropogenic LS.

Anthropogenic influences are widely documented as the dominant driving force (by orders of magnitude) over
natural subsidence processes across many regions (Chaussard et al., 2013; Gambolati et al., 2005; Kondolf
et al., 2022; Syvitski et al., 2009). Human activities often exacerbate a natural subsidence rate as evidenced by the
rapid urbanization and groundwater extraction that contributed to Otura, Spain subsiding at a rate of 10 mm/yr,
while tectonics throughout the region only accounted for a maximum of 1 mm/yr (Sousa et al., 2010). Other prime
examples where anthropogenic subsidence exceeds natural subsidence rates include: Iran (Rafsanjan, Tehran),
USA (Wilmington, California; Charleston, South Carolina; Houston‐Galveston area in Texas; California's
Central Valley), Italy (Po Plain), and Egypt (Cairo), China (Beijing), Mexico (Mexico City), and India (New
Delhi) (Aly et al., 2009; ASCE Land Subsidence Task Committee, 2022; Bagheri et al., 2019; Carminati &
Martinelli, 2002; Cigna & Tapete, 2021; Famiglietti, 2014; Gambolati et al., 2005; Garg et al., 2022; Y. Liu
et al., 2020; Mahmoudpour et al., 2013; Motagh et al., 2017; Richey et al., 2015; Zhu et al., 2015). Although
multiple factors may drive subsidence at a given location, we focus on the identified dominant factors based on
and synthesized from literature (Figures 1 and 2). We note that LS in many parts of the world is not well‐studied,

Figure 2. Distribution of literature reviewed in this study by LS driver in the following regions: (a) Europe, (b) Africa,
(c) Asia and Oceania, (d) North and South America, and (e) all global sites from Figure 1. (This figure is based on our
assessment of literature (Text S1 in Supporting Information S1) and information therein. It does not account for all possible
drivers or subsidence cases across a region, nor does it include an area or weighted average. Rather it is a summary of the
literature reviewed in this study and attribution of LS to a single driver is a challenging process).
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measurement uncertainties exist, and attributing the individual contribution of a driver to land deformation is
often difficult. Furthermore, we provide a survey of literature, which should not be considered a comprehensive
examination of all published LS studies.

4. Global Survey of Land Subsidence Causes and Hotspots
Using SAR‐based studies, we survey subsidence rates and causes for nearly 200 unique locations across the world
(Figure 1). It should be noted that LS has a different temporal structure depending on the geology of the region and
the LS driver. Furthermore, LS rates vary in both space and time, and therefore, cannot be assumed to be ongoing
or constant. Given this and the nonlinearity of LS rates, current rates should not be taken to imply future LS rates.
Here, we describe several of these processes contributing to the complex subsidence patterns observed (Figure 3).

4.1. Natural Resource Extraction

For centuries, agriculture and the extraction of natural resources (e.g., groundwater, oil, and gas) from the Earth
have shaped landscapes. Groundwater withdrawals have become more prevalent with increasing climate vari-
ability, agricultural irrigation, and population demands (Arnell, 2004; Awasthi et al., 2022; Erkens et al., 2016;
IPCC, 2021; Wada & Bierkens, 2014; Wada et al., 2011). Land deformations caused by groundwater fluxes
manifest in two primary ways: elastic and inelastic. Elastic deformation can occur due to natural seasonal var-
iations in water levels or even long‐term deformation, if the pre‐consolidation pressure (i.e., the maximum
historical pressure the soil has experienced) is not exceeded. Hence, seasonal deformation is elastic, but long‐term
deformation can also be recoverable (Ezquerro et al., 2014). On the other hand, inelastic deformation may occur
due to significant overdraft. Groundwater extraction often leads to sediment compaction and unrecoverable,
permanent loss of aquifer storage capacity (Awasthi et al., 2022; Miller et al., 2020). Increased effective stress
through loss of pore‐water pressure and reduced pore volume causes irreversible compaction of low permeability
layers (Miller et al., 2017). Therefore, collecting observations at a given site over consecutive full year periods,

Figure 3. Land subsidence and climate extreme interplay and combined effects of human activities.
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rather than a single season (e.g., summer) even if observed annually, provides a more robust understanding of LS
rates as they vary in time and have seasonal influences as well as a better indication of whether deformation is
controlled by elastic or inelastic compaction (Motagh et al., 2008).

Groundwater extraction is the primary (human‐induced) factor causing subsidence (Bagheri‐Gavkosh
et al., 2021), accounting for subsidence at approximately 55% of the global sites we surveyed (Figure 2e). The
greatest number of these sites occur in North America and Asia. The largest mean subsidence rate reported and
driven by groundwater extraction is approximately 300 mm/yr in the Rafsanjan Plain region in Iran (Figure 1b),
which is well‐known for pistachio production (Bagheri et al., 2019). A maximum subsidence rate of 300 mm/yr
localized near Rafsanjan, Iran was also attributed to groundwater extraction, with rates >50 mm/yr over the
1,000 km2 surrounding Koshkoueieh‐Rafsanjan region (Motagh et al., 2017). Other cities and regions with large
(>200 mm/yr) average subsidence rates due to groundwater extraction include the San Joaquin Valley
(275 mm/yr), Mexico City (260 mm/yr), Tehran (250 mm/yr), and Varamin (220 mm/yr) (Chaussard et al., 2021;
Haghshenas Haghighi & Motagh, 2019; Khorrami et al., 2023; Ojha et al., 2020). To minimize the loss of aquifer
capacity and subsidence, some areas (e.g., USA [Las Vegas; Kansas], China [Taiyuan basin]) recharge their
groundwater systems to prevent damage from overdraft, recover elevation declines, and develop sustainable
management policies (e.g., California's Sustainable Groundwater Management Act [SGMA]) (Neely et al., 2021;
Ojha et al., 2020; Sophocleous, 2005; Tang et al., 2022).

Oil and gas extraction from underground formations has contributed to an estimated 4% of global LS sites
surveyed, as shown in Figure 2e. Typically, these processes facilitate more localized subsidence than groundwater
pumping (Gambolati et al., 2005). When these resources are extracted, reduced pore pressure within the reservoir
leads to compaction under the overlying materials' weight (Gurevich & Chilingarian, 1993). An area of subsi-
dence over 12,000 km2 in the coastal San Jacinto region of Texas, for instance, is affected by fluid pumping,
primarily from groundwater withdrawals (Gabrysch & Neighbors, 2005), and to a lesser extent from oil and gas
extraction (Holzer & Bluntzer, 1984). In the absence of groundwater abstraction, the oil fields of Lost Hills,
California have experienced maximum subsidence rates reported in excess of 400 mm/yr (Fielding et al., 1998).
Several areas across the Gulf Coast of the U.S. have seen LS rates exceeding 10 mm/yr, with oil and gas extraction
contributing to the maximum observed rate in the region of 56 mm/yr at the Stratton Ridge Oil Field, Texas (Qu
et al., 2023). Observations in the Cold Lake heavy oil field (Alberta, Canada) exhibit substantial vertical
deformation exceeding 36 cm in a month from producing bitumen, but did not indicate permanent subsidence
since cyclic steam stimulation (injection, soaking, and pumping) helps recover the land elevation (Stancliff & van
der Kooij, 2001).

Demand for natural resources soars with socioeconomic expansion and urbanization (Awasthi et al., 2022; Dang
et al., 2014; Hayashi et al., 2009; Wada & Bierkens, 2014; Wada et al., 2011). Underground mines, prevalent in
the former coal‐rich regions of Europe and in current mining operations in Ukraine, Poland, and China, catalyze
short‐ and long‐term local and regional ground deformations (Peng, 2008). Methane extraction was identified as
the primary factor causing the 3–5 m of LS observed during the twentieth century in the Po Delta and Plain
(Giosan et al., 2014), where roughly one‐third of Italy's population resides (Carminati & Martinelli, 2002;
Herrera‐García et al., 2021). Also, coal and iron mining operations have led to thousands of active and abandoned
underground tunnels. Over 300 km of underground tunnels previously used as quarries lie under Paris, and around
1,000 km‐mine galleries/km2 lie in the coal‐rich northern France (Hachez‐Leroy, 2014). Activities such as mining
for minerals and hydrocarbons creates voids in the subsurface, with the eventual collapse of these voids
contributing to soil compaction and LS, especially in extensive mining operations. Sudden mine gallery collapses
cause pit subsidence (local) and sag subsidence (larger scale), which have been found to spread over several
hectares (Marino & Gamble, 1986) decades after their closure (Samsonov et al., 2013).

4.2. Urbanization

Urban developments can compact underlying soils depending on several factors such as soil type, soil loading
history and mechanical properties, geological conditions, and the nature of urban development practices in a
given area (F. Chen et al., 2012; Holtz & Kovacs, 1981; Nawaz et al., 2013; Tiwari et al., 2023). The construction
of new buildings, roads, and other infrastructure in urban areas due to urbanization often involves significant
loads being placed on the soil (Z. Ao et al., 2024). Over time, this additional load can compress the soil, leading to
a reduction in pore space and increased soil density, a process known as soil compaction (Holtz & Kovacs, 1981;
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Nawaz et al., 2013). The magnitude of soil compaction and the resulting soil settlements depend on the soil
loading history and mechanical properties. If the additional loads from urbanization are less than the maximum
historical pressure the soil has undergone, the soil will exhibit limited settlement due to the added loads.
Conversely, if the added loads represent the highest load in the entire history of the soil, substantial settlement
may occur due to the new loading patterns from urbanization (F. Chen et al., 2012; Holtz & Kovacs, 1981; Nawaz
et al., 2013).

Further, urbanization is often associated with increased demand for water, leading to extensive and unsustainable
groundwater extraction, which exacerbates groundwater level decline and elevates subsidence risk (Dong
et al., 2014; Galloway & Burbey, 2011). As groundwater is pumped out, the water table drops, and the soil
particles lose buoyant support, causing them to compact and leading to LS (Ezquerro et al., 2014). Beijing is an
example of one city in China where both urbanization and groundwater extraction drive LS rates up to 110 mm/yr
(B. Hu et al., 2014). An estimated 45% of China's major cities experience LS rates exceeding 3 mm/yr, which
affects about 29% of the nation's urban population, and 16% of its cities are sinking faster than 10 mm/yr (Z. Ao
et al., 2024). Urbanization alone primarily accounts for 12% of sinking global sites we surveyed (Figure 2e).

Urbanization can also accelerate natural subsidence processes (Parsons et al., 2023). In the Mississippi and
Ganges‐Brahmaputra‐Meghna Deltas, natural subsidence is hypothesized to be underway due to factors like
sediment compaction, where sediments are transported and deposited, resulting in sediment loading and isostatic
adjustment, and sea level changes; however, isolating a single factor or even the contributions of one or more
drivers of LS at a particular site remains challenging, especially since LS rates and drivers are time dependent
(Blum et al., 2008; F. Chen et al., 2012; Grall et al., 2018; Parsons et al., 2023; Wolstencroft et al., 2014). In other
coastal areas and large river deltas where natural subsidence is high, urbanization, coupled with human activities
such as the extraction of hydrocarbons and/or groundwater, expedites these natural subsidence processes (e.g.,
Manila, Philippines; Galveston, Texas, USA; Po Delta, Italy; Chao Phraya Delta, Thailand; Rhine‐Meuse Delta,
the Netherlands) (Giosan et al., 2014; Oppenheimer et al., 2019; Shirzaei et al., 2021). Deltas and coastal regions
also face rising sea levels that place subsiding regions at even higher flood risk (e.g., Galveston Bay contends with
a relative sea level rise (SLR) rate [the combination of regional SLR and local subsidence] that is approximately
four times greater than the global average (Y. Liu et al., 2020) and the maximum subsidence rates observed in
coastal Tianjin, Semarang, and Jakarta are nearly 15 times more than the global mean SLR (Wu et al., 2022)).
Globally (Figure 2e), and regionally for Europe (Figure 2a) and Asia‐Oceania (Figure 2c), urbanization is the
second largest driver of subsidence according to the literature. However, in North and South America (Figure 2d)
tectonics and natural compaction are the second and third greatest drivers, respectively. In Africa (Figure 2b),
these three drivers (urbanization, tectonics, and natural compaction) are identified as the primary factors leading
to LS for an equal number of sites in the literature.

From our synthesis of literature for SAR‐based LS rates, anthropogenic activities are the principal sources of
subsidence at ∼82% of the locations in Figure 1. Out of the top 50 rates, 43 have drivers that fall into this category
(Figure 1b). In addition to those drivers already discussed, extreme and compound events are increasing in their
frequency, severity, and intensity across much of the world (IPCC, 2021) and their impacts influence and are
influenced by subsidence.

5. Extreme and Compound Events and Land Subsidence Impacts
5.1. Coastal Regions and Flooding

LS may not be the sole factor triggering catastrophic damages or failures in buildings and lifeline infrastructure
systems (Shiklomanov et al., 2017) because it is commonly compounded by other climatic trends (e.g., SLR,
warming temperatures) and/or extreme events (e.g., hurricane, flood, drought, earthquake). Subsidence alters
flow and runoff patterns, exposing additional areas to urban flooding and nonlinearly affecting the spatial dis-
tribution of flooding (Ohenhen, Shirzaei, Ojha, et al., 2024; Yin et al., 2016). Throughout many of the world's
coastal and deltaic megacities, anthropogenic LS increases the vulnerability and exposure of large populations
and infrastructure to urban flooding (e.g., Jakarta, Manila, New Orleans, Tokyo) (Jago‐on et al., 2009; Show-
stack, 2014; Syvitski et al., 2009; Tessler et al., 2015) (Figure 3). In the Chesapeake Bay region (USA), Eggleston
and Pope (2013) estimated that LS accounted for about half of the relative SLR, which accelerates local sinking.
More recently, heterogeneous subsidence across the Chesapeake Bay area was estimated to be up to 5.5 mm/yr
(Sherpa et al., 2023). In this region and many others where subsidence is high, there is an increasing trend in
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occurrence and severity of nuisance flooding (Sherpa et al., 2023; Sweet et al., 2014)—minor floods that do not
pose major threats to public safety, but cause frequent disruption and urban inundation (Moftakhari et al., 2018).
The combination of ongoing local LS and regional SLR will likely enhance coastal and tidal flooding from high
tides and storm surges, leading to short‐term sea level increases by several meters (Cooper et al., 2008; Syvitski
et al., 2009; Wahl et al., 2015). The 2008 Cyclone Nargis storm surge flooded the lowlands of the Irrawaddy Delta
(Myanmar) up to 6 m above sea level (Syvitski et al., 2009). The abovementioned hazards may compound to
expand episodically flooded land, perpetual coastline loss from erosion and/or inundation of lowlands, and
salinization of inland freshwater and soil (Cooper et al., 2008; Shirzaei & Bürgmann, 2018) (Figures 4c and 4e).

Figure 4. Land subsidence feedback loops and cascading hazards involving extreme events, climate change, and infrastructure. Feedbacks: (a) peatland‐carbon,
(b) permafrost‐carbon, and (c) salinization‐subsidence. Cascading hazards: (d) infrastructure‐subsidence, (e) flood‐subsidence, and (f) drought‐subsidence. Black
arrows indicate positive feedback. Orange dashed arrows indicate enhancement of impacts.
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Such potential impacts are anticipated in Asian deltaic megacities (e.g., Manila, Tokyo, Ho Chi Minh City,
Jakarta) (Cao et al., 2021; Colombani et al., 2016; IPCC, 2021).

The drainage of tropical coastal peatlands in southeast Asia causes communities to face many of these same
hazards from subsidence and oxidation of peat (and greenhouse gas emissions), loss of productive land, and
flooding since most of these areas are near sea level (Hoyt et al., 2020). Low‐lying coastal regions are also often
vulnerable to saline intrusion (J. Chen & Mueller, 2018), as detailed in Section 7.2. Furthermore, the com-
pounding effects of SLR and the changing distribution and severity of climate change fueled‐extremes on LS
(Knutson et al., 2010; Vitousek et al., 2017) may increase the frequency of a given magnitude flood. Therefore,
existing flood control infrastructure (e.g., levees, dikes, flood walls) is hypothesized to become effectively
“under‐designed” for the future 100‐ or 500‐year flood of a larger magnitude than historically estimated
(Buchanan et al., 2016; IPCC, 2021).

5.2. Droughts

Globally, groundwater overdraft, induced by drought and large water demands for agricultural and domestic uses,
contributes to LS (Famiglietti, 2014; Faunt et al., 2016; Ghorbani et al., 2022; Richey et al., 2015) (Figure 4f).
Heatwaves further compound societal and environmental stresses to enhance the effects of droughts (Agha-
Kouchak et al., 2020; Mazdiyasni & AghaKouchak, 2015). Substantial groundwater level declines were observed
during the multiyear droughts in the 1990s, 2000s, 2007–2010, and 2012–2016 in California's irrigated agri-
cultural San Joaquin Valley (Smith & Knight, 2019). The latter two droughts across the region led to significant
increases in groundwater pumping, causing highly variable subsidence (rates and cumulative magnitudes) (Faunt
et al., 2016; Jeanne et al., 2019; Levy et al., 2020; Miller et al., 2020) because of factors such as subsurface
hydrostratigraphy, despite similar water volumes extracted during both droughts (Smith & Knight, 2019).
Drought induced abrupt subsidence adjacent to the California Aqueduct that supports the state's Central Valley
agriculture and millions of people in southern California (Miller et al., 2020). Within a 112‐day period amidst the
drought in summer 2014, the 1‐ha area experiencing 10–15 cm of elevation decline increased to 1,287 ha, and by
2016, a maximum cumulative displacement of 70–75 cm occurred along the aqueduct (Miller et al., 2020).
Conveyance systems generally require costly retrofitting and repairing from LS (e.g., sealing leaks, restoring
capacity, raising linings and embankments), to avoid overtopping, erosion, and delivery outages. Water
conveyance and flood control systems throughout the region face such ongoing challenges (Faunt et al., 2016).
Notwithstanding observed increasing groundwater levels and precipitation, subsidence may continue for years
after drought termination (i.e., residual compaction) (Neely et al., 2021; Ojha et al., 2020). From 1999 to 2012,
drought caused significant groundwater level decline and subsidence in Beijing; however, subsidence could not
be definitively attributed to increased pumping rates, but rather correlated with groundwater storage anomalies
resulting from low levels of precipitation and recharge (Gong et al., 2018). Since droughts can contribute to LS,
which subsequently increases the flood risk for a region, this implies that impacts from one extreme or hazard
have the potential to influence the risk of the “opposite” hazard (Ward et al., 2020).

6. Climate Feedbacks and Infrastructure Damage
6.1. Peatlands and Oxidation of Soil Organic Carbon and Matter

Peatlands comprise only about 3% of the Earth's land surface (Kaat & Joosten, 2009), but possess the largest
natural terrestrial carbon storage containing over 550 gigatonnes of carbon, or 42% of all soil carbon (Cris
et al., 2014). Anthropogenic activities and growing demands for land and cultivation have drained about 15% of
the world's peatlands for agriculture or forestry (Cris et al., 2014), causing major CO2 emissions from peatlands to
the atmosphere and subsidence (Qiu et al., 2021). Primary causes of subsidence in organic soils and peatlands are
grouped into five categories: (a) compaction and shrinkage of soil above the groundwater table from drainage or
the application of heavy loads on the ground surface, (b) consolidation of saturated organic soil below the
groundwater table from loss of buoyancy, (c) water and wind erosion, (d) microbial oxidation of soil organic
matter (SOM) or soil organic carbon (SOC) decomposing peat above the groundwater table through breakdown of
organic matter, and (e) burning (Deverel et al., 2016; Hooijer et al., 2012; Robinson & Vahedifard, 2016;
Vahedifard et al., 2016). Records of subsidence in organic soils and peatlands span the globe including North
America, Europe (e.g., the Netherlands, Italy, Russia, England, Norway), southern Asia (e.g., Indonesia,
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Malaysia), Middle East (Israel), and Oceania (New Zealand) (Deverel et al., 2016; Erkens et al., 2016; Hooijer
et al., 2012; Hoyt et al., 2020; Pronger et al., 2014).

Oxidation of SOM is recognized as a key factor causing subsidence in many deltas and peatlands worldwide.
Microbial oxidation of SOM is reported to account for approximately 75% and 53% of historic subsidence in the
Sacramento‐San Joaquin Delta, California (Mount & Twiss, 2005) and Everglades peats, Florida (Stephens
et al., 1984) (USA), respectively. In tropical peatlands of southern Asia, 75% and 92% of total subsidence after 5
and 18 years of drainage, respectively, was caused by oxidation of SOM (Hooijer et al., 2012). In the Netherlands,
at least 70% of the human‐induced subsidence is attributed to oxidation of SOM (Den Haan & Kruse, 2006).
While other factors trigger subsidence (e.g., shrinkage, consolidation), oxidation is the only mechanism that
causes CO2 emission to the atmosphere (Erkens et al., 2016). Oxidation of SOM represents a central coupling
between LS and the climate system that is expected to accelerate climate change (IPCC, 2019) (Figure 4a).
Furthermore, as the climate warms and leads to more severe droughts, vegetation and soil may become stressed.
The heightened stress can enhance soil desiccation cracking that causes greater exposure of soil carbon to
oxidation, and thereby, amplifies climate change by increasing greenhouse gas emissions from the soil to the
atmosphere (Vahedifard, Goodman, et al., 2024). Thus, these processes give rise to an amplifying feedback loop.
If such feedbacks are overlooked, inaccuracies in modeling and predicting greenhouse gas emissions from soils
may cause us to underestimate important climate change impacts on soil and crop health, the structural integrity of
earthen infrastructure systems, and the acceleration of LS (Vahedifard, Goodman, et al., 2024).

Anthropogenic climate change and land use and land cover change can trigger greater subsidence in organic soils
and peatlands by accelerating microbial oxidation of SOC in these soils. Climate change‐induced changes in soil
temperature and moisture greatly alter SOC dynamics. With their high activation energies (i.e., slow rates),
organic soils undergo larger proportional increases in decomposition with rising temperature (Conant et al., 2011;
Davidson & Janssens, 2006). This implies that prolonged droughts can induce larger subsidence not only through
creating higher demands for more groundwater extraction (triggering deep subsidence), but also through
increasing the decomposition rates of SOC (triggering shallow subsidence) (Vahedifard et al., 2016). Further-
more, preservation of the organic‐rich peatlands, often found in wetlands, is important for ecosystem services in
disaster risk management and infrastructure protection. In fact, U.S. coastal wetlands provide an estimated $23.2
billion annually through storm protection services, for example, reducing flooding from hurricanes, which is
valued at $8,240/ha/yr (Costanza et al., 2008). These areas should be valued significantly higher if their role in the
carbon budget were included (Dean et al., 2018). As wetlands are drained, this causes oxygen to move into deeper
layers of the soil. This leads to aerobic activity that decomposes the organic matter, leading to LS with large
carbon dioxide emissions from the soil into the atmosphere. As a result, these drained and degraded peatlands
become net carbon sources that feedback into the climate system to cause further atmospheric warming and
enhance this cycle (Dean et al., 2018). Moreover, the loss of wetlands is exacerbated by the compounding effects
of LS and SLR (Ohenhen et al., 2023). The preservation of wetlands as well as subsidence rates in these regions
are influenced by climate factors such as rainfall and human interventions such as dams that affect the func-
tionality of the wetlands by altering the sediment supply and transport to these areas (Ganju et al., 2015; Z. Liu
et al., 2021).

6.2. Critical Infrastructure

Monitoring the proximity of subsidence to critical infrastructure is crucial since infrastructure damage can result
in loss of life and critical lifeline failures/outages (e.g., water conveyance, transportation, and utility systems) (Ge
et al., 2010; Miller et al., 2020) (Figure 4d). The interaction between LS and infrastructure is exemplified by the
levee failures in New Orleans, Louisiana during Hurricane Katrina in 2005, which caused over 1,300 deaths and
more than $100 billion in economic loss (Briaud et al., 2008). A 2002–2005 period of LS gave rise to the
overtopping failures of the levee system during the hurricane's peak storm surge (Dixon et al., 2006). Uniform and
differential settlements induced by subsidence degrade the functionality and integrity of infrastructure at element
(e.g., foundations, structural components, utility) and system scales. LS has been reported to cause considerable
damage to buildings and lifeline infrastructure systems such as pipelines (Baum et al., 2008), roads (Shi
et al., 2018), railways (Li et al., 2021), bridges (B. Chen et al., 2021), electric power network systems (Tzam-
poglou & Loupasakis, 2018), and irrigation and drainage systems (Abidin et al., 2015). Leaking water, oil, or
sewage from a pipe or drain, ice/snow melt, or precipitation can also trigger subsidence of unstable media, further
damaging infrastructure. Long‐term leaky pipelines or a sudden water main burst may cause or be caused by LS.
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This occurs when the fluid erodes the underlying soil foundation or compresses/weakens soils such that they are
no longer able to support the overlying structural load, resulting in subsidence and additional infrastructure
damage (Marker, 2013).

Human activities (e.g., infrastructure expansion and development) and climate change amplify permafrost thaw
during warm periods, leading to infrastructure damage and failures (Hjort et al., 2022; Shiklomanov et al., 2017).
The impacts of land degradation on infrastructure underlain by permafrost or perennially frozen ground place
food security, livelihoods, and cultural traditions at risk (Gibson et al., 2021). With over two‐thirds of Russia
underlain by permafrost, several examples of infrastructure damage exist across the country (e.g., Norilsk,
Vorkuta), where warming is nearly three times faster than the global average with climate change (Shiklomanov
et al., 2017; Streletskiy et al., 2015). In Arctic Russia, bearing capacity declines up to 40% from the 1960s–2000s
were measured in urban areas where the formation of the uneven thermokarst topography and thawed layers are
common (Hjort et al., 2022). Thawing frozen ground has also left up to 30% of the road embankments in the
Qinghai‐Tibet Plateau experiencing permafrost‐related damage (Hjort et al., 2022).

6.3. Wildfires and Permafrost Thaw

Wildfires in permafrost areas can trigger LS by altering the surface albedo, thawing the permafrost layer through
heat exposure, and removing vegetation cover (Vahedifard, Abdollahi, et al., 2024; Yanagiya & Furuya, 2020).
Following a 2014 wildfire across an ice‐rich permafrost region near Batagay, Eastern Siberia, the 1‐year
maximum subsidence of 10 cm or more was observed where permafrost thawed and thermokarst formations
developed (Yanagiya & Furuya, 2020). By the second post‐fire thawing season, fire‐induced permafrost
degradation of up to 20 cm of subsidence was estimated and deepening of the active layer of up to 80 cm 2 years
post‐fire in the boreal forests in Yukon Flats, Alaska (USA) (Eshqi Molan et al., 2018). When LS and thermokarst
exhibit greater heterogeneity than the burn severity, this poses challenges for relating burn characteristics and
subsidence (Yanagiya & Furuya, 2020). Roughly half of the world's northern peatland regions are underlain by
permafrost with an estimated 50% of the globe's peatland carbon stored within 60–70°N (Hugelius et al., 2020).
Since the regrowth of burnt peatlands is a slow process, the released carbon has significant long‐term global
climate effects (Witze, 2020). Thus, thawing ice‐rich permafrost releases large amounts of greenhouse gases
stored in the frozen subsurface (Figure 4b) changing these regions from carbon sinks to sources and promoting
global warming (Dean et al., 2018). Snow thickness and albedo, among other factors, greatly influence the
temperature of permafrost (Streletskiy et al., 2015). Hence, declines in snow cover and shorter snow seasons
could lead to the warming of permafrost, its degradation, and subsidence.

7. Climate Change‐Fueled Future Risks and Vulnerabilities
7.1. Sea Level Rise

LS projections are inherently coupled to the climate system and human activities. By 2040, the projected potential
subsidence areas will increase by 7%, while a 30% rise in the population affected by subsidence is expected
(Herrera‐García et al., 2021) due to many compounding factors, including human migration and urbanization,
intensification of droughts, changes in land cover and land use, SLR, and overall warming temperatures
(Figure 3). High population density in coastal areas accelerates compaction and human‐induced subsidence
(mainly groundwater‐driven) and consequently, local SLR much higher than climate‐induced SLR (Nicholls
et al., 2021). Also, upstream reduction of active tributaries and increased infrastructure development prevent
sediment redistribution and delta aggradation, which contribute to sinking rates that exceed regional SLR
(Shirzaei et al., 2021; Syvitski et al., 2009; Tessler et al., 2015). Despite challenges in predicting basin man-
agement and infrastructure investments, the frequency of flooding is estimated to double across most of the U.S.
shoreline (Shirzaei et al., 2021) and deltas vulnerable to flooding could increase by at least 50% by 2100 (Syvitski
et al., 2009; Tessler et al., 2015) from compounding LS rates and SLR. By 2050, projections based solely on
socioeconomic change raise the average global flood losses to $52 billion/yr, and with projected subsidence and
SLR rates included, losses would further increase by $8–11 billion/yr even if adaptation strategies maintained
current flood probabilities (Hallegatte et al., 2013). Population growth in dry/arid climates is also expected to
strain available freshwater sources from increased demand and precipitation seasonality in such climate zones.

Current global estimates indicate that irrigated areas cover about 300 Mha and irrigation water accounts for
over 90% of the global water consumption (AghaKouchak et al., 2021; Hoekstra & Mekonnen, 2012;
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Siebert et al., 2015). As the global population grows, the corresponding demand for agricultural products and
irrigation water will also rise (Qin et al., 2020; Tilman et al., 2011; Wada et al., 2011). This is compounded by
shifts in evaporative losses, runoff and snowmelt magnitude and timing, and shrinkage of existing surface water
bodies, causing greater reliance on alternative water supplies such as groundwater (Huning & Agha-
Kouchak, 2018, 2020; IPCC, 2021; Qin et al., 2020; Rodell et al., 2018; Siirila‐Woodburn et al., 2021; Wada &
Bierkens, 2014) that may exacerbate subsidence in overdrawn groundwater aquifers. Intensified droughts
decrease groundwater levels from reduced recharge via precipitation and cause increased pumping that enhances
subsidence in overdrawn aquifers (Figure 4). Future groundwater‐related subsidence estimates are thereby
complicated by uncertain precipitation projections from climate models (IPCC, 2021; Langenbrunner et al., 2015;
Shen et al., 2018). Nonetheless, projections suggest that dry areas will become drier while wet areas will become
wetter (Greve et al., 2014; Hao et al., 2018; IPCC, 2021; Padrón et al., 2020). Also, climate change‐induced
acceleration of the terrestrial water cycle increases floods and droughts across many regions (AghaKouchak
et al., 2020; Chagas et al., 2022; IPCC, 2021).

7.2. Water Quality and Environmental Effects of Salinization

Climate change is hypothesized to also contribute to water quality issues through salinization of ground and
surface water (Figure 4c) from SLR and/or LS in coastal regions (Colombani et al., 2016). As soils and water
sources become saltier, this often alters nutrient dynamics, increases environmental stress, and reduces SOM,
leading to further subsidence and challenges for maintaining water and food security (Ullah et al., 2021). If
vegetation cannot survive under saline conditions and protect the soil, wind and water may cause erosion,
decreasing the ground elevation (Hassani et al., 2021). Furthermore, “ghost forests” develop in low‐lying coastal
areas when saltwater intrudes with rising sea levels and poisons the freshwater‐dependent, living trees. As the
seawater intrudes, it leaves dead and dying standing trees or a ghost forest as these regions transform into more
salt‐tolerant marshes or wetlands (Kirwan & Gedan, 2019; Smart et al., 2020). Additional LS occurs as the roots
of these trees rot. In agricultural areas with saline soils, lost income has spurred migration and urbanization (J.
Chen & Mueller, 2018), which commonly contributes to subsidence. Salinization from metallurgy activities also
occurs in other regions, including permafrost areas such as Norilsk (Russia), where soil salinization decreases the
stability of infrastructure by reducing the freezing temperature of soil, lowering the likelihood of permafrost
recovery especially with climate change, and corroding building materials in the active layer (Streletskiy
et al., 2015). It is challenging to project salinization extent from human activities since salinization occurs from
one or multiple uncertain/variable drivers.

7.3. Permafrost, Peatlands, and Climate Feedbacks

As Arctic temperatures warm across permafrost regions, it is anticipated that areas experiencing thermokarst
formation and thaw‐driven subsidence will expand. Projections indicate that by mid‐century, the thawing and loss
of permafrost will affect an estimated 3.3 million people in the Arctic with 42% of settlements on permafrost
becoming permafrost‐free zones (Ramage et al., 2021). By this time, models project losses of 20%–33% of the
permafrost environment and more than 50% on average with unmitigated emission scenarios by 2061–2080
(Karjalainen et al., 2020). As much as 50% of the Arctic infrastructure is expected to be at high‐risk for dam-
age from permafrost thaw by 2050 (Hjort et al., 2022). Future permafrost recovery, however, is not well‐estimated
since thermokarst is generally neglected in models (Holloway et al., 2020). Nonetheless, it is well‐known that
differential subsidence causes cracking and buckling of structures and roadways. By the mid‐to‐late twenty‐first
century, infrastructure costs from permafrost degradation could total to tens of billions of dollars (Hjort
et al., 2022).

Permafrost loss will also affect biogeochemical processes, hydrology, biodiversity, and global climate (Karja-
lainen et al., 2020). Therefore, considering thermokarst‐inducing processes and permafrost degradation is
important for estimating thaw‐affected carbon release (Figure 4b), which by 2100 could be 3 to 12‐fold of what is
currently projected in the northeast Siberian Arctic lowlands (Nitzbon et al., 2020). Moreover, larger and more
severe wildfires combined with the warmer and longer fire seasons in boreal and tundra regions accelerate the
melting of ground ice more than would be expected from warming effects alone (Gibson et al., 2018; Holloway
et al., 2020). Wildfires deepen the active layer and expand talik areas with effects persisting or being delayed
for decades afterward. Peatlands of northwestern Canada saw increases of continuously thawed soil layers or
taliks of 70%–100% in burned areas 10–20 years after fires compared to increases of only 20% in unburned areas
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(Gibson et al., 2018). Since permafrost recovery must contend with a warming climate and extremes (e.g.,
wildfires, heatwaves), this leads to slower recoveries (if at all), which also may cause more talik and thermokarst
development, warmer deep soil temperatures, and greater future subsidence (Holloway et al., 2020).

Overall, LS is a global, multi‐faceted issue that affects people, infrastructure, and ecosystems beyond local
impacts. When viewed within the larger context of the climate, LS couplings (Figures 3 and 4) have the potential
to impact remote regions (e.g., via migration, resource competition, agricultural productivity, climate change).

8. Research Gaps and Opportunities
Our global community must recognize the urgency of mitigating, and where possible, reversing anthropogenic
LS. Subsidence‐related policies, regulations, and mitigation measures tend to be reactive rather than proactive due
to the complexity of this chronic hazard, which often goes unnoticed initially as sinking occurs slowly (Kondolf
et al., 2022; Ohenhen, Shirzaei, & Barnard, 2024; Oppenheimer et al., 2019; Siriwardane‐de Zoysa et al., 2021).
Human perception of risk significantly influences the characterization and evaluation of LS, impacting the speed
and manner in which adaptation, mitigation strategies, and public policies are formulated worldwide to address
LS hazards and their repercussions. Furthermore, perception of risk to LS has contributed to LS not becoming a
proactive public policy topic in many regions of the world (Dinar et al., 2021; Siriwardane‐de Zoysa et al., 2021).
Therefore, rather than LS being viewed as a purely “technical” or “scientific” issue, as commonly occurs, LS
consideration must be integrated into societal policies and decisions (Batubara et al., 2023). Additionally, sig-
nificant, yet highly localized subsidence is frequently overlooked if monitoring solely relies on limited point
observations (Levy et al., 2020). If the spatial variability of LS is not well‐represented in models, estimates of
future exposure to flooding will likely be inaccurate, meaning that communities may be ill‐prepared and mis-
informed when developing and implementing adaptation and mitigation strategies (Ohenhen, Shirzaei, Ojha,
et al., 2024). In spite of major advances in monitoring and modeling subsidence and impacts, continued tech-
nological, engineering, and policy advancements must be coupled with adaptation strategies to avoid intensifying
climate change and heightening flood risks to large populations, water quality issues, etc. from subsidence‐related
disasters. Namely, we must leverage the often‐undervalued ecological services that peatlands play in reducing
damage to infrastructure and loss of life, and mitigating climate change.

Currently, we lack models and tools for developing holistic adaptation and mitigation strategies. Additional
research is still needed to develop high‐resolution LS maps at scales necessary for management, adaptation,
mitigation, and policy (Levy et al., 2020; Shirzaei et al., 2021). Most of the processes described here do not
operate in isolation; therefore, for reasonable management‐scale outcomes, neither should our models. Model
projections of subsidence are complicated by trying to predict the interconnected anthropogenic sources and
locations of LS, which are layered on top of natural causes (Gambolati et al., 2005). Integrated models that
incorporate multiple drivers and processes are required to fully understand the magnitude of subsidence and its
interplay with population, infrastructure, climate change, and other hazards. Anthropogenic subsidence and
related feedbacks (sediment dynamics, carbon cycle, climate extremes as in Figure 4, etc.) must be accounted for
in studies related to projected SLR and future flooding risks (Oppenheimer et al., 2019; Shirzaei & Bürg-
mann, 2018; Shirzaei et al., 2021), and particularly in coastal and urban areas given their potential costly so-
cioeconomic and environmental implications. Climate simulations should account for increased wildfire
frequency when estimating subsidence in permafrost and permafrost‐free peatlands (Gibson et al., 2018). Since
climate models do not represent abrupt permafrost thaw, the magnitude and rate of carbon emissions, and the
acceleration of climate change, are hypothesized to differ from current large‐scale model estimates (Turetsky
et al., 2020). Yet, these are non‐trivial modeling tasks that cannot be accomplished without additional obser-
vational analyses, basic research, and integrated, more detailed process understandings. In addition, many regions
around the world face challenges from inadequate access to accurate data and/or technological resources for
collecting data related to LS rates, drivers, impacts, and climate feedbacks (Avornyo et al., 2024; Nicholls &
Shirzaei, 2024). Therefore, collecting additional data across the globe and in particular, in data scarce regions, will
be highly beneficial.

Hence, efforts to compile and maintain longer observational and spatially distributed records remain necessary.
Data fusion, data assimilation, and machine learning are examples of methods that facilitate integrating infor-
mation from various data streams together (e.g., Davydzenka et al., 2024); however, combining measurements
from different satellite and observational sources poses challenges where instruments, measurement types, record
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lengths, and spatiotemporal resolutions differ. While progress has been made in this area, we lack multi‐sensor,
composite, and spatially consistent subsidence estimates. Such a data set will help constrain models and inform
further investigations of complex LS‐climate couplings and adaptation and mitigation strategies.

Many questions and gaps still remain related to integrating climate, extremes, and human drivers with overall
subsidence as our review presents. Further studies are needed to better quantify the effects of temperature rise due
to climate change on the decomposability and response rates of SOC. Our current understanding is limited about
how much carbon is stored deep in alluvial soil profiles, for example, >1 m below the surface, and how sus-
ceptible the carbon is to oxidation. It is often understood that this pool of carbon is much older, more stable, and
more protected from oxidation. Also, many existing terrestrial ecosystem models do not consider these deeper
pools. So, a key question is: what effects will protracted drought and drought‐induced deep cracking of soils have
on these deep SOC pools and subsequent LS? Furthermore, while it is understood that heatwaves amplify
droughts and hence soil cracking, to what extent does this translate into deeper soil carbon reserves being accessed
in peatlands and permafrost? Also, to what extent do compounding heatwaves and droughts heighten groundwater
depletion and subsidence? What heatwave frequency, severity, and duration can increase the active zone in
permafrost regions leading to irreversible impacts of subsidence? What are the implications of rapid versus
gradual thaw of permafrost on subsidence, climate change, and the positive carbon feedback? Beyond permafrost
regions, what role do wildfires play in LS?

We urge the community to build upon work from other fields (e.g., drought monitoring application/literature
(Mishra & Singh, 2010; Svoboda & Fuchs, 2016)) to develop a severity scale, associated subsidence indices, and/
or a subsidence monitor/database. The establishment of common globally accepted approaches would provide a
consistent framework for better understanding the measured and reported rates and identifying at‐risk commu-
nities and effective mitigation strategies. Risk mitigation cannot be outpaced by exposure. Interdisciplinary,
synergistic collaborations should be forged to develop more reliable global subsidence monitoring and translate
observations and modeling into actionable strategies for hazard/risk mitigation, resource management, climate
resilience, engineering design, urban planning, and sustainable policy. International organizations such as
UNESCO already recognize the earnestness of land deformation issues with the development of their “Land
Subsidence International Initiative” for globally mapping subsidence (UNESCO, n.d.). To better inform the
abovementioned strategies and initiatives, and prioritize vulnerable areas, advancements in predicting future LS
at a variety of spatiotemporal scales and under different conditions related to climate, hydrologic anomalies,
water/resource demands, urbanization, etc. must be made (Smith & Knight, 2019). Process‐based integrated
management modeling from the atmosphere to bedrock would benefit LS research, but also require a concerted
effort across disciplines and sectors.

Data Availability Statement
All data is available from published sources (see Supporting Information S1).
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