34th Annual INCOSE

international symposium
i hybrid event
(X FEE - e |
0 1 |)

{\ Dublin, Ireland
July 2 -6,2024

A MODULAR SIMULATION-BASE
APPLIED TO A CLOUD-BA

O

MBSE APPROACH
ED SYSTEM

)

Thomas M. Booth Sudipto Ghosh
Colorado State University Colorado State University
200 W. Lake Street 200 W. Lake Street
Fort Collins, CO 80523-6029 Fort Collins, CO 80523-6029

tom.booth@colostate.edu sudipto.ghosh@colostate.edu

Copyright © 2024 by Thomas M. Booth and Sudipto Ghosh. Permission granted to INCOSE to publish and use.

Abstract. The current state of the practice of Model-Based Systems Engineering (MBSE)
methodologies, system specification models, and executable system simulations lack the capabil-
ity of simulation execution within a single system specification model with the fidelity required
for time-dependent simulation towards the design, analysis, and optimization of complex software-
based systems. In this paper we develop and demonstrate a modular simulation-based MBSE ap-
proach capable of filling this gap. To accomplish this within a single system specification model
we embed a combination of modeled simulation activities, opaque behaviors, and simulation spe-
cific functions to execute and manage the time-dependent simulation variable arrays. We applied
our MBSE approach on the design and analysis of a hybrid on-prem/cloud data system example
that meets the complex, software-based, and time-dependent requirements this approach was built
to solve. The results show that our approach produces a modular and time-dependent simulation-
enabled system specification model that accurately estimates cloud-based system performance and
storage cost as a function of time. Emergent system behaviors observed from the simulation results
indicate the system model provides foundational design and analysis capabilities that are required
for applying system optimization algorithms.

Keywords. cloud-based system design, model-based systems engineering, time-base simulation,
modular design modeling approach

Introduction

Many prominent Model-Based Systems Engineering (MBSE) trade study methodologies are devel-
oped with a specification model and at least one simulation model which are usually accomplished
with multiple integrated tool sets (e.g. Cameo, MATLAB, Model Center, Excel, etc.) to perform ar-
chitecture or system optimizations (Herzig et al., 2017; LaSorda et al., 2018; Ryan et al., 2014). In
these instances, the system simulation occurs outside of the core MBSE system specification model.

mailto:tom.booth@colostate.edu
mailto:sudipto.ghosh@colostate.edu

Whereas, our MBSE approach is specifically built to perform the necessary time-dependent simu-
lations inside the core system specification model and tool. The purpose of this is to reduce model
and tool integration needs and additionally verify the system specifications through simulation.
The goal of our approach is to provide system engineers the capability to build simulation-enabled
specification models towards the design, analysis, and optimization of complex, software-based,
and time-dependent systems. While our approach was developed to enable system optimization
techniques as a core feature, optimization methods and techniques are beyond the scope of this
paper. Our use-case based and modular MBSE approach produces sets of simulation-ready system
activities that enable system engineers to easily scale the size of the system model to one that is
larger or more complex. The modularity and scalability of our approach is derived from the lay-
ered Service-Oriented Architecture (SOA) (Broy, 2003) concept that defines loosely-coupled and
modular services in a layered architecture. Our approach uses two layers of visual-based Domain
Specific Language (DSL) system specification and simulation elements (i.e. services) and a com-
mon programming language based layer of simulation functions and utility services as illustrated
in Figure 1. We also define two viewpoints to distinguish between specification and simulation
perspectives.

SOA-based Layers and Viewpoints

Visual Element
Specification (layer 3) -0 -0 |:| Specification Viewpoint
Visual Element Cj C] :l

Simulation (layer 2)
Simulation Viewpoint

Simulation Functions

& Utilities (layer 1)

Figure 1. Simulation-enabled MBSE Approach Layers and Viewpoints

The uppermost layer (layer 3) consists of reusable system specification elements that are imple-
mented throughout the model. This reusability is already a best practice in system modeling. This
layer represents the specification viewpoint which contains the requirements, logical & physical
system architecture, structure, and the behavioral elements that define the system. The next layer
down (layer 2) consists of reusable simulation elements that are used by the specification layer (3)
to define the simulation configurations and activities. This is also fairly common in MBSE prac-
tice. However, one novel aspect of our approach is the application of the lowest layer (layer 1)
which consists of simulation functions that perform operations too complex for the visual layer (2)
and utilities that initialize and update the time-based arrays. This bottom layer is what allows our
approach to produce models with the fidelity needed to capture the state of the system as a func-
tion of time. Another novel aspect to our approach is the definition of the last two layers to form
the simulation viewpoint which includes the simulation configurations, analysis blocks, simulation
activities, opaque behaviors, and simulation functions and utilities.

The layered SOA concept enables scalable and modular systems, therefore since we’ve based our
approach on this architectural concept the models developed are also assumed to be scalable and
modular. The MBSE approach developed in this paper is generalized enough to model software-
based systems and the constraints specific to their domain. Therefore, we applied it to an exam-

ple cloud-based data system to demonstrate the approach’s ability to create a scalable and modu-
lar model of a software-based and time-dependent system. Data systems consist of a network of
communication channels, applications that transmit data across these channels, and the hardware
running these applications or generating the data. Specifically, the example system is a hybrid
on-prem/cloud data system that contains an Extract, Transform, Load (ETL) data pipeline for pro-
cessing large data sets automatically. We demonstrate the behavior of an automated process that
transfers data from through an on-prem network which then uploads the data to a cloud-based ETL
pipeline which processes the data and saves it to the cloud. This prototype data system is running in
Amazon Web Services (AWS) public cloud and provides performance data for the system example.

The rest of this paper discusses previous work related to non-SE cloud Modeling and Simulation
(M&S), MBSE simulations, the application of our approach, the demonstration example setup, and
the results of the simulations in the Cloud Performance and Cost Modeling, Executable SysML
Modeling, Applied MBSE Approach, Demonstration Setup, and Demonstration Results sections,
respectively.

Cloud Performance and Cost Modeling

In terms of our cloud-based data system example it is important to note that most modern data
systems range from minimal cloud-based storage to full cloud-based storage and compute systems.
While the cloud offers near limitless ability to scale up resources on demand to meet its users’ need,
most organizations don’t have the budget to let software developers’ applications scale without con-
straint. According to the 2023 State of the Cloud Report (Flexera, 2023), 66% of the 753 executives
and cloud decision-makers surveyed said that cloud usage was “higher than already planned this
year” with many saying that they were over budget by 18% for 2022 with an anticipated 30%
growth in cloud spend the following year. Additionally, these organizations self estimated they
wasted 28% of their cloud budget. Therefore, it is not surprising that the #1 cloud challenge for
those surveyed was managing cloud spending. As a result of this immense challenge across organi-
zations, a new discipline called Financial Ops (FinOps) (FinOps Foundation, 2023) has emerged to
address the issues of cloud spending. Therefore, a predictive Systems Engineering (SE) approach to
cloud system design, analysis, and optimization could save organizations tens of millions of dollars
a year when designing, modifying, and maintaining large, complex, cloud-based data systems.

The rest of this section describes the previous work done towards cloud performance and cost M&S
with non-SE based methods. For reference, cloud performance and cost estimation is not as simple
as hardware estimation for an on-prem data system. For instance, an on-prem data system has fixed
hardware costs, facility usage, and power costs that are straight forward calculations. However,
cloud costs are difficult to estimate due to the stochastic behavior of software running in shared
cloud environments, therefore costs can fluctuate significantly. This is the main reason most cloud
cost estimation tools are reactive rather than predictive.

The first of these reactive models is an instant cloud cost estimation tool that was created to estimate
Infrastructure as a Service (IaaS) (Cho & Bahn, 2020). This cost estimation model is 99.3% accu-
rate in comparison with actual cloud charges. However, this model deploys a monitoring daemon
to a currently running cloud system to measure virtual machine resource usage to estimate cumu-

lative cloud costs. While helpful for instant feedback and monitoring, vs waiting for the monthly
bill, this reactive model does not predict resource usage and does not include a system specification
model that could inform design and architectural decisions.

The next tool, CloudSim (Calheiros et al., 2011; Wickremasinghe et al., 2010), is an extensible
simulation toolkit that enables modeling and simulation of cloud computing system and applica-
tion provisioning environments. This application has shown to improve the application of Quality
of Service (QoS) requirements under fluctuating resources and service demand patterns. However,
this toolset requires the CloudSim software environment to be deployed to an on-prem server and
the cloud-based software to be written and deployed to the CloudSim environment. While this is a
high quality and accurate cloud resource modeling tool and may provide valuable prototype infor-
mation, the systems engineering must still be accomplished for design, analysis, and optimization
capabilities.

Aside from the capabilities of CloudSim, most common software languages provide the capabil-
ity to model, simulate, and analyze data system performance. However, a visual M&S language,
such as executable SysML, provides additional value beyond the capabilities common software
languages alone provide. For instance, the Department of Defense has been using SysML system
specifications for many value-added and visual-based artifacts for software-based systems such as:
Authority To Operate, safety, airworthiness, and nuclear certifications to name a few. Furthermore,
the Sandia report (Carroll & Malins, 2016) concludes that there is a significant advantage to project
performance when applying an MBSE approach compared to a paper-based SE approach. There-
fore, when an MBSE approach includes a simulation-enabled capability, such as ours, it is clear
this provides value over using common software language M&S alone.

Executable SysML Modeling

This section reviews other approaches to simulation-based MBSE models for the design of complex
and time-dependent systems. The Executable System Engineering Method (ESEM) (Karban et al.,
2016) for requirements verification, uses SysML modeling patterns that involve structural, behav-
ioral and parametric diagrams. While capable for requirements verification, their use of parametric
diagrams in their demonstration of dynamic power rollups do not work well for time-dependent
simulation. In our experience, parametric diagrams are not easily controlled by custom simulation
clocks, they execute out of order, and execute multiple times throughout a single time step. This
causes time-dependent simulation gradient errors and inaccurate results.

An executable SysML design model for an avionics architecture (Graves et al., 2009) demonstrates
that executable SysML design models are capable of simulating data flow on a real-time MIL-STD-
1553 aircraft avionics data bus. This simulation includes their own simulation clock to control the
fidelity and speed of the simulation. This study integrates the avionics specification model with
an exterior simulation model of an existing avionics system. The development effort successfully
met the technical challenges to cost effectively build design models with sufficient avionics timing
fidelity to provide valid results. This paper reinforces the strength of our postulation that using
a visual Domain Specific Language (DSL) coupled with a common programming language to es-
timate time-dependent system performance leads to better and more efficient designs of complex

data systems. However, their approach relied on integration with an external simulation model and
did not appear to be easily scaled to a larger or more complex system model.

Applied MBSE Approach

This section describes the application of our modular simulation-based MBSE approach to an au-
tomated hybrid on-prem/cloud ETL pipeline system towards estimation of performance and cloud
storage costs as a function of time. The application of this approach is based on a use-case driven
Agile SE methodology (Douglass, 2016) that iteratively and incrementally refines the system’s
structure, requirements, constraints, and behaviors based on stakeholder’s requested system behav-
iors and use cases.

As with any MBSE approach, the tools and languages selected are as important to consider as the
approach/methodology itself and should be chosen based on the user’s need. We chose SysML 1.6
as the base language to demonstrate our approach because it is currently the most common MBSE
language that is also being actively developed. Unfortunately, SysML is not currently defined well
enough to sufficiently create a time-dependent and executable model, therefore we use a combina-
tion of SysML, fUML, and Groovy for our visual-based DSL and common programming languages,
respectively. The Action Language for Foundational UML (ALF) specification could meet some
of the requirements for this demonstration, however we found that using this language alone did
not meet the simulation capabilities needed to capture the time-dependent simulation variable ar-
rays. We used Cameo Systems Modeler (CSM) Enterprise edition for this demonstration since it is
a common tool and supports the modeling languages we chose. However, the choice in tools and
languages best suited to apply our MBSE approach may change with the release of the SysML 2.0
specification and tools that support it.

We start out the application of our approach by visually distinguishing between specification and
simulation model diagrams for the two viewpoints illustrated in Figure 1. We made this distinction
obvious to any users of the model by changing the colors of two simulation elements. We applied a
«Simulation Behaviory stereotype to the system simulation activity diagrams and the «Simulation
Commenty stereotype to comments documenting the simulation activity diagrams. The borders of
these stereotyped elements were colored blue automatically by CSM to ensure an obvious separa-
tion.

Next, the structural ETL data pipeline system specification is built, then the primary ETL use case is
modeled by creating system behavior specifications and simulation behavior simultaneously. Later,
software performance data measured from a pilot project running in an AWS public cloud is used
to provide realistic values for the simulation input variables. Additionally, cloud resource costs use
AWS’s online pricing information for storage costs. Once the simulation-enable system model is
built, we use CSM and Cameo Simulation Toolkit (CST) to execute and record the time-history of
the simulation. The Specification Viewpoint and Simulation Viewpoint sections discuss the details
of the two perspectives our MBSE approach in the context of this data system example.

Specification Viewpoint

This section describes the system specification aspect of our MBSE approach. Figures 2, 3, and 4
show the internal block diagram, activity diagram, and the block definition diagram of the hybrid
on-prem/cloud data system, respectively. These elements and figures are associated with SOA layer
3 of our approach. Figure 2 shows the serial nature of this example system, however the pipeline is
capable of processing data in parallel. Therefore, this cloud-based pipeline is capable of elastically
scaling up or down to satisfy the data processing needs which is limited by a variable for maximum
number of pipelines. This data processing demand is a function of the amount of data staged in the
Cloud block’s dataProcessQueueSize variable which is inherited from the Data Sub-System block
as shown in 4. The initial use case driving this design is shown in Figure 3 which contains the
four call behavior actions defining the behavior of this ETL pipeline. Each of these call behavior
actions are activities with well defined system simulation behaviors that can be reused elsewhere

as the system expands.
ibd [Block] Data System[Data System Structural Connections Diagram]J

recorder : Recorder [1] B et [1]

Figure 2. SysML Internal Block Diagram of the ETL Pipeline

(‘act [Activity] ETL Data Activity [ETL Data Activity |]

cloud1 : Cloud [1]

pipeline : Pipeline [1]

]
Lv]

«allocatex
Data System

«allocatex
recorder : Recorder

«allocatex
server: server

«allocatex
cloud1 : Cloud

wallocates
cloud1 : Cloud

wallocates
pipeline : Pipeline

Transfer Data From

uplead to Cloud 1 :

Parse and

- Upload Data to Cloud e Hata

RawDataset h

._ — Recorder |.|.| —|— = Normalize Datlil = ;..@

RawDataset

Figure 3. SysML Activity Diagram of the ETL Pipeline

The Data Sub-System block in Figure 4 shows a generalized block from which all other block
elements in the system model inherit their attributes. The power of inheritance is a key aspect
of the system specification and simulation of our MBSE approach. Each sub-system in this data
system must have these same value properties in order to make the simulation activities easily
reusable. The Simulation Viewpoint section will further describe the role this plays withing the
simulation.

bdd [Package] Structure [Data System Definition]]

ablocks
Data Sub-System

/totalStorageUsed : stnrage swze[glblbyte] [D *Hunit = gib |t yie}
/dataProcessQ e : storage si iyt ,[D..*]_
/dataTransferQ ize : storage si ibibyt
/storageAvailable : sturage capacity[gibibyte] [D “’] Lr‘
storageCapacity : storage capacrty[glblby‘te] L.I"I[gib
JeurrentThroughputOut : data thr][0 g
IeurrentThre - data thr] [El *Hunit =
maxThroughputl :data thr ibibits.: } unit = gibibits:
maxThroughputOut : data thr ibibits/=}unit = gibibit
deleteXferData : Boolean = True
deleteRawData : Boolean = True

rawDataSize : storage size[gibibyte] [0..*}unit =
proceszedDataSize : storage size[gibibyte] [
disklO : data throughput[gibibits/sHunit = gibibits/s}
numTransferFiles : Integer [0..%]
numProcessedFiles : Integer [0..7]

nit = g'\t ibyte}

ﬁl

«blocks
Data System

cloud1 |1

«blocks
Cloud

Total Cloud Cost : Total Cost

totalCost : cost{USD] [0..*}unit = USD}
totalComputeCost : cost[USD] [0..*Kunit = US
totalCRUDCost : cost{USD] [0. *Hunit = U
totalStorageCost : cost[USD] [0..*Hunit H
totalEgressCost : cost{USD] [0..*Hunit = USD
egressCostRate : size cost rate[USD.-’g\Dmy‘te] unit =
putCostRate : access cost rate[USDVRequestHuni
geiCostRate : access cost rate[USD/Request{un
storageCostRate : storage-time cost rate[LISD.-’glblbytea’mln] [1 *’J
server [1 cumputeCDstRate time cost rate[USDimin}H{unit = USDVmin}
fmType : String

wblocks threadCapacty - Integer totalRecordedDataSize - storage size[aibibyte] [1Funt = aibibyte}
Server storagelevelName : String [1..%] avgRecordedFileSize : storage size[gibibytel{unit = gibibyte]

p\pelineI1
wblocks
Pipeline

recorder,

wblocks

15D gibibyvtedmint
USDigibibytedr Recorder

compressionRate : Real

numGetEachFile : Integer

numPutEachFile : Integer

singlePipelineCostRate : time cost rate[USDémin}{unit = USD/min}
bazelineClusterCostRate : time cost rate[USD.n’mm] unit = USD/min}
allowSchedulerTrigger : Boolean = True
schedulerDtRuninterval : time[min] = 5.0 min. {unit = minute}
singlePipeThroughput : data throughput{gibibits/sHunit = gib
maxNumPipes : Integer

lcurrentNumPipes : Integer [0..%]

numymPerPipe : Integer [1..%]

vmTypePerPipe : String [1..%]

costRatePerVM : time cost rate[USD/min] [1. *Hunit = USD/min}

Figure 4. SysML Block Definition Diagram of the ETL Pipeline Composition

Simulation Viewpoint

This section describes the modular and scalable simulation aspect of our approach. When executed,
this simulation will provide the state of our system as a function of time based on instantiations of
the system specifications. Every simulation activity, opaque behavior, and simulation function is
built in such a way to read or modify the time-series variables of the Data Sub-System block or any
specializations of it. In addition to the power of inheritance, the modularity is further expanded
through the use of allocation activity partitions. The activity partitions provide the correct part
property context to the simulation activities allocated to them. For instance, Figures 5, 6, and 7
each show reusable call behavior actions allocated to specific parts to provide their simulation con-
text. Of note, these figures also show the application of the «Simulation Behavior» and «Simulation
Commenty stereotypes and coloring scheme to denote that they are simulation viewpoints instead

of specification viewpoints. Additionally, data transfers between sub-systems are done with a gen-
eralized Data block object for modularity, reuse, and future system model capability upgrades.

(«Simulation Behaviors B

SysML Activity Diagram [Activity] ETL Analysis[|*F| ETL Analysis |

| Analysis Loop I

R - =zetup

«Simulation Comments [|

This function initializes the recorder, then iterates through the 'ETL Data Activity” until the | |

end of the totalAnalysisTime' defined in the analysis block that owns this behavior. |

wallocates |test |

. system : Data System P self.iTime+1 < self.nTimeSteps | |

| wallocates | l—luutput‘-falue |
recorder : Recorder

| . — — — — |

| |budy I

. . initializeUseCaseData | Iterate on ETL Use Case: |

ereadSelfs analysisObj ETL Data Activity ‘ — 9@

seIfD— -———q-—--= th |

| T |

I I — |

| | startNextTime5tep | I

Figure 5. Simulation Activity Diagram of the ETL Analysis Block

(«Simulation Behaviors N
SysML Activity Diagram [Activity] Transfer Data From Recorder [*| Transfer Data From Recorder]

«Simulation Comments

This simulation activity solves the throughput data size going out of the recorder, then updates the recorder's
data queue size. The throughput will drop to 0 when the data queue is 0.

The data obj being sent to the output is only the size of the data that can be transferred in this time interval.

«allocates
system : Data System

wallocates
recorder : Recorder

. analysisObj ————————————— dataObj
areadSelf» transferDataOut blocks
._ a| analysisObj D_% D out ut:DataQ
B S =

Figure 6. Simulation Activity Diagram of the Transfer Data From Recorder Activity

To align with the use-case driven Agile SE methodology, we build a single simulation block for
each use case. This helps incrementally build the model and also provides the ability to measure
impact to the system for each use-case as it is added. A master simulation block contains all use-
case simulation blocks for a full time-synced system simulation. This simulation modularity also
makes it easier to troubleshoot the system model if needed.

The use-case simulation block for this example system is called ETL Analysis and it defines the
simulation variables and constraints used in the execution of this use-case. It is composed of the
Data System block that defines the system specifications so that it has access to all system spec-
ification values. Figure 5 shows the activity diagram of the ETL Analysis block which defines
our custom simulation clock that is controlled by the length and step size of our simulation time
variables. The simulation block contains these timing variables while the custom simulation clock
syncs the timing across all sub-system parts.

(«Simulation Behaviors N
SysML Activity Diagram [Activity] Upload Data to Cloud [[¥| Uplead Data to Cloud]

«Simulation Comment»
This analysis activity updates the server gqueue with the data coming in and geing
out, plus it deletes the data off the server ifthe flag is setto do so. Italso sends a
data object outto the next activity of the size being transferred out To know the
amount of data being out it must solve the throughput output size.

wallocates
system : Data System
«allocates
server: Server
wblocks
transferDataOut dataObj I output : Data =
—>|
areadSelfy obj
.' 2 analysisObj
4 d
S d=deleteXferData «decisiunlngutFluw&_ .] dﬂtﬂODL deleteRawDataFunction L a@
’ e
[else]
W nalysisObj
(
«comments
These happen in
parallel.
e
A N transferRawDataln analysisOhj updateXferQueueSize
~) "
sblocks [dataOb] | dataSize xferSize L _ _ a@
input : Data 2

Figure 7. Simulation Activity Diagram of the Upload Data to Cloud Activity

Each of the four system specification activities in Figure 3 is defined by a simulation activity to
simulate its time dependent behavior. Figures 6 and 7 show two of these simulation activities
that map to SOA layer 2 of our approach. The opaque behavior called transferDataOut is an
example of a reusable simulation activity and is shown in Figures 6 and 7. The specification context
of this simulation activity is based on the sub-system its allocated to the activity partition. For
instance, transferDataQOut executes on the server sub-system in Figure 7 compared to the recorder
sub-system in Figure 6. As mentioned previously, this enables system engineers to use these small
"building blocks’ to easily scale-up the size or complexity of the model.

Furthermore, the transferDataOut simulation activity, or opaque behavior, is defined using Groovy
as shown in Figure 8. The body of this opaque behavior makes calls to simulation functions and
utilities that are contained in the SOA layer 1 of our approach. Unfortunately, Cameo did not
have an easy method to call stand-alone functions so we had to embed these simulation functions
into other opaque behaviors and call those functions with Cameo’s ALH callBehavior API. Two
simulation utilities and one simulation function are seen in Figure 8. Specifically, the simulation
utilitie checkListInit and updateDataSize initialize the time-series arrays and updates the specific
time-series array for the values provided, respectively. Whereas the simulation functions so/ve-
LANThroughput solves throughput of the LAN connection.

Our choice to use Groovy rather than another language was based on simulation execution speed
for CST. CST is Java based and therefore Groovy executes the simulation faster than the other
languages it supports such as Jython, Jruby, or Beanshell. We believe Groovy is also relatively easy

W Body and Language X
Edit Body and Language
Select language from the language list and specify body in a dedicated editor. ﬁ
Language:
Groovy (recommended) ary
Body: &
transferDataOut(anaIymsObJ, data Obj)
/ he array has b
11 : args [nSteps, dataTranaferfueusSize]
12 : dataTransferQueus5ize = ALH.callBehavior('checkListInit", args)
a5 e 1ze of data qu the system this gllocated to.
14
Al
16 m object
17
18
15
20
21
22 /.
23 | args = [maxOut, dar.as:l.ze, dr.sec]
24 | throughput = ALH.callBehavior("soclvelLANThroughput™, args)
25
26 -
27 i, to see 1 array has b it
28 | args [nSteps, currentThroughputlut]
25 | currentThroughputOut = ALH.callBehavior ('checklistInit', args)
30 | //update current (n) throughput that will transfer the
31 : currentThroughputCut [n] = throughput
32
33 -
34
35
36
37 = & dataset O
38 data{}b] = rawDataset
35 | datalbj.totalSize = size
40
41
42 : xferSize = -gize /
43 : args = [xferSize, analysisCb], dar.aIransferQueueSlze, debug]
44 : dataTransferfueusSize = ALH.callBehavior("updateDataSize"”, args)
£ >
Language instructions
| oK | | Cancel | | Evaluation Mode

Figure 8. Modular Opaque Behavior Example

to understand for non-software engineers. When this model is integrated with system optimization
algorithms in the future the speed of the simulation is be very important, since many simulations
will need to be executed to find optimal results.

10

Demonstration Setup

This section describes the configuration of two simulation systems for our demonstration. Each
configuration was built to demonstrate different aspects of four system-specific decision variables
that affect: system emergent behaviors, total time to process recorder data, and cloud storage cost
as a function of time. Both configurations start with 500 GiB of recorded data, simulation duration
of 40 minutes, and time step of 1 minute. The system’s data flow simulation is triggered by the
presence of data on the recorder (fotalRecorderDataSize). Table 1 shows the two simulation config-
urations. To summarize this table and objective of these configurations, scenario 1 has a maximum
throughput out (maxThroughputOut) of the recorder that is slower than the throughput out of the
server, whereas scenario 2 is the opposite. The expected result is that the server in scenario 1 will
always transfer data out as fast as it receives it, while the second scenario server will have data
build-up in its queue while it is slowly uploaded to the cloud. We varied the two simulation config-
urations by the four decision variables that we’ve deemed business rules’ that affect cloud system
performance and cost. The following four business rules describe the function they serve and the
potential cost or performance effect.

Table 1. Instantiated ETL Pipeline Scenario Configuration Values

Value Name Scenario 1 Scenario 2 Units

Simulation Variables

dtmin 1.0 1.0 min.
totalAnalysisTime 40 40 min.
Specification Variables
Recorder
maxThroughputOut 2.6 4.0 Gibps
storageCapacity 1000 1000 GiB
totalRecordedDataSize 500 500 GiB
Server
deleteXferData true false boolean
maxThroughputln 4.0 8.0 Gibps
maxThroughputOut 8.0 2.6 Gibps
storageCapacity 400 400 GiB
Cloud
maxThroughputln 10 10 Gibps
maxThroughputOut 4.0 4.0 Gibps
storageCapacity 1000 1000 GiB
storageCostRate 5.0E-7 5.0E-7 $/GiB/min.
Pipeline
deleteRawData true false boolean
singlePipeThroughput 8.66 8.66 Gibps
allowSchedulerTrigger false false boolean
schedulerDtRunlInterval 5.0 3.0 min.
maxNumPipes 5 2 integer
compressionRate 0.5 0.5 real

11

Business rule 1 deletes the server data after it is uploaded to the cloud if deleteXferData for the
server sub-system is true. You can see from Table 1 that Scenario 1 has this is turned on but scenario
2 does not. This rule does not impact cloud cost or speed, but impacts the size of the server’s storage
requirements as it is acting like a data storage queue for the cloud.

Business rule 2 is a data pipeline orchestration tool time interval setting. As a general rule of
thumb, most commercial pipeline orchestration tools recommend setting an interval to execute
the pipeline rather than executing each time data shows up. The variable schedulerDtRuninterval
sets the pipeline orchestration interval to execute the ETL pipeline when there is data in the cloud
processing queue. Scenario 1 is set to run every five minutes while scenario 2 runs every three.

Business rule 3 is a setting to limit the number of parallel pipelines allowed to run at the same
time which is set by maxNumPipes. Scenario 1 is allowed to run up to 5 pipelines in parallel while
scenario 2 can only run up to 2 in parallel. This business rule in conjunction with the interval timing
(business rule 2) creates an equivalent possible throughput for the pipeline when taking into account
singlePipeThroughput. Therefore, Scenario 1 could potentially have 5 parallel pipelines running
every 5 minutes, whereas scenario 2 would only have up to 4 pipelines every 6 minutes. Since they
both have the same single pipeline throughput it seems reasonable to assume that scenario 1 has
the fastest processing time.

Business rule 4 is based on the decision to delete the raw data in the cloud after it has been processed
through the data pipeline. This is a cost vs risk decision. If the data pipeline incorrectly processes
the data and the raw data has already been deleted then valuable data will be lost. However, keeping
both sets of data in the cloud costs money. When deleteRawData is true the pipeline will delete
this data after it is processed. Scenario 1 deletes data after being processed whereas scenario 2 does
not.

All other values for these two scenarios were kept the same. The other values are shown to provide
context and are not part of business rules we demonstrate in this paper. Values such as single pipe
throughput are tied to the performance specifications of the VMs (AWS EC2 instances) used for the
pipeline applications and this can affect performance and cost. The values used in this simulation
are from a simple pilot study.

Demonstration Results

This section presents the results from the two simulation scenarios described in the previous section.
Figures 9 and 10 are the time-series plots of simulation scenarios 1 and 2, respectively. The lines
plotted in these figures are color coded to align to the colors of the sub-systems in the cloud example
specification diagram in Figure 2. For instance, the recorder line plot in Figure 9 is light orange to
match the orange recorder sub-system part in Figure 2.

Figures 9(a) and 10(a) show the data size in GiB as a function of time for scenario 1 and 2, respec-
tively. These figures display data from the recorder, server, and cloud sub-systems. The xfer queue
sizes represent the data queued to be transferred to the next sub-system. The storage sizes are the
total data being stored on that sub-system while the cloud data sizes represent the amount of the
total cloud storage size dedicated to the raw or processed data.

12

. Recorder Xfer Queue
= ---- Server Xfer Queue
e —— Server Storage Size
& —— Cloud1 Total Storage Size
g 0 —-— Cloudl Raw Data Size
B 20 ---- Cloudl Processed Data Size
100
(b) System Storage Cost
001z
o010
008
v
+ 000
8 —— Cloudl Cumulative Storage Cost
0004
0002
0000
W (c) System Throughput
o
o
a
Qaw Recorder Out
° N === ServerIn
5 —— Server Out
.r:; © ---- Cloudl In
2 —— Pipeline
3¢
- [V T
3) B E] 30 EJ
Time (Minutes)
Figure 9. Scenario 1 Performance and Cost Results
w0 (a) System Storage Sizes
00
o Recorder Xfer Queue
=R ---- Server Xfer Queue]
e —— Server Storage Size
%m —— Cloud1 Total Storage Size
5 —:— Cloudl Raw Data Size]
B 20 --=-- Cloudl Processed Data Size
100
(b) System Storage Cost
o012
o010
. o008
s
4 000
8 —— Cloudl Cumulative Storage Cost
0004
000z
0000
. (¢) System Throughput
.
M
a
Qow Recorder Out
2 ---- ServerIn
‘g_ — Server Out
£ & ---- Cloudl In
=] —— Pipeline
3+
E3 B

(a) System Storage Sizes

Time (Mlnutes)

Figure 10. Scenario 2 Performance and Cost Results

13

The purple line in Figure 9(a) shows that scenario 1 server storage size and the server transfer queue
remain near zero. This corresponds with the higher server throughput and the decision to delete
server data after it is transferred to the cloud (rule 1). Figure 10(a) on the other hand, shows that
scenario 2 server storage queue gradually increases over time as it uploads data to the cloud at
a slower rate. This happens until all recorder data has been transferred at which point the server
queue slowly diminishes. This figure also shows that scenario 2 server storage size increases to
500 GiB of data since it does not delete any data after it uploads it to the cloud (rule 1).

Figures 9(b) and 10(b) display the cumulative cloud storage cost as a function of time for scenarios
1 and 2, respectively. The final cost difference is the cost of storing raw data in the cloud after being
processed (rule 4). Figures 9(c) and 10(c) plot the throughput for the recorder, server, cloud, and
pipeline for scenarios 1 and 2, respectively. These figures highlight the difference in the scenario
1 and 2 pipeline throughput spikes as a function of their different maximum parallel pipes (rule 3)
and time intervals (rule 2). Scenario 2 has shorter throughput spikes that occur more frequently
compared to scenario 1.

In terms of performance and cost comparisons between these two scenarios, Figures 9(a) and 10(a)
show that scenario 1 took longer to finish processing the data than scenario 2. However, Figures 9(b)
and 10(b) show that scenario 1 cost less than scenario 2 by the end of the 40 minute simulation.

Discussion

The results in the previous section reveal at least one emergent system behavior that is not imme-
diately apparent when comparing the two scenario configurations. Initially it appears that scenario
1 should be the fastest of the two, however the simulation results indicate otherwise. Specifically,
Scenario 1 can have up to 5 pipelines running every 5 minutes, whereas scenario 2 can only have
up to 4 pipelines every 6 minutes. This emergent system behavior shows that the data transfer rate
from the server limits the data rate at which data ’builds-up’ in the cloud processing queue. This
smaller queue size between pipeline executions limits the number of parallel pipelines needed to
meet the demand. This means that scenario 1 pipeline did not use all 5 parallel pipelines. There-
fore, the longer time interval of scenario 1 reduced the system’s overall speed. This is a result of
the combination of pipeline interval timing (rule 2), maximum number of parallel pipelines (rule
3), and the rate of data transfer from the server to the cloud.

Figures 9(b) and 10(b), show that the slopes of the cost accumulation lines are noticeably different
which indicates a higher cost rate for scenario 2. This intuitive result is from deleting data after it
is processed (rule 4). As mentioned earlier, this is a cost vs. risk decision and we now have the
estimated cost difference for cloud storage during the 40 minute simulation. This cost can now
be weighed against the risks of deleting data and will enable informed decisions about the design.
These results are nominally validated against cost estimations based on data from AWS, however
this system model and simulation capability should be validated properly against time-series system
data once it is collected.

One limitation of this approach we observe is upfront cost to build a system specification model and
the simulation functionality in parallel. However, we believe upfront cost to build the foundational

14

SOA layers 1 and 2 will be offset by the speed of scaling this model to a larger size or more
complex system later. We also assume the additional simulation capabilities the model provides
and the reduction in time needed to integrate multiple toolsets will further offset this upfront cost.

Conclusions

The results of this demonstration show that our MBSE approach creates a time-dependent and sim-
ulation capable system specification model which accurately captures the state of the system as a
function of time. In addition to successfully estimating the performance and cost, this system speci-
fication model accurately captures the emergent system behavior of processing speed, as discussed
in the 3 section, that is not immediately obvious from the two scenario configurations. Captur-
ing emergent system behaviors indicate the system model can produce valuable system design and
analysis capabilities that are the basis for system optimization algorithms. System optimization and
the resulting analysis is one of the main reason for building our approach. Optimization techniques
can extract Pareto-optimal solutions and dominant system characteristics which provide trade space
information to system engineers to more efficiently balance the system’s performance against its
costs. For complex cloud-based systems this could save companies tens of millions of dollars a
year in cloud storage and compute costs. These saving will continue to grow as the adoption of
cloud resources across all industries continue to climb each year.

The modularity and scalability of this approach is derived by the adoption of the layered SOA
concept. Additionally, the modularity of this model and, by extension, this approach is shown by
the capability to reuse these specification and simulation layers throughout the model and continue
to produce valuable results. The ability to easily scale a small model up to one that is more complex
or larger can reduce the time and effort needed when compared to an MBSE approach that does
not scale well. The modularity of the specification model, also a result of our approach, can further
reduce system engineering time and effort when troubleshooting issues with the model. Saving
system engineering time and effort reduces system design and analysis costs.

The addition of model specification and simulation viewpoints allow system modelers and model
users to understand the designed system. Clear and understandable system specifications can result
in systems that are more likely to have fewer issues with system integration which also saves time
and money.

Future Work

This MBSE approach is developed for system optimization approaches, therefore future work will
focus on using Particle Swarm Optimization algorithms to produce Pareto-optimal solutions and
extract Fuzzy Pareto Frontiers for this system and more complex cloud-based data systems. Addi-
tional work will also focus on refining our approach and applying it to expand the example system
model to include, but not limited to: egress throughput and cost, ETL compute costs, Kubernetes
(K8s) cluster baseline costs, Create, Read, Update, Delete (CRUD) costs, and stochastic network
throughput.

15

Acknowledgments

In addition to the authors’ affiliation with Colorado State University (CSU), we would like to ac-
knowledge funding and support from the US Air Force STEM+M program, the AFSC/SW 309"
SWEGQG, the National Science Foundation (Award Number: OAC 1931363), and Nexus Digital En-
gineering LLC.

16

References

Broy, M. (2003). Service-oriented systems engineering: Modeling services and layered architec-
tures. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2767, 48—61. doi. 10.1007/978-3-540-
39979-7{\ }4

Calheiros, R. N., Ranjan, R., Beloglazov, A., & Rose, A. F. D. (2011). CloudSim : a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource pro-
visioning algorithms. (August 2010), 23—50. doi. 10.1002/spe

Carroll, E. R., & Malins, R. J. (2016). Systematic Literature Review.: How is Model-Based Systems
Engineering Justified? (Tech. rep.). Sandia National Laboratories. http://www .ntis.gov/
help/ordermethods.asp?loc=7-4-0#online

Cho, K., & Bahn, H. (2020). A Cost Estimation Model for Cloud Services and Applying to PC Lab
Platforms.

Douglass, B. P. (2016). Agile systems engineering.

FinOps Foundation. (2023). FinOps Organization. https://www.finops.org/

Flexera. (2023). 2023 State of the Cloud Report (tech. rep.). Flexera. https://info.flexera.com/CM-
REPORT-State-of-the-Cloud?lead _source=Website%20Visitor&id=Blog

Graves, H., Guest, S., Vermette, J., Bijan, Y., Banks, H., Whitehead, G., & Ison, B. (2009). 4ir
Vehicle Model-Based Design and Simulation Pilot (tech. rep.).

Herzig, S. J., Mandutianu, S., Kim, H., Hernandez, S., & Imken, T. (2017). Model-transformation-
based computational design synthesis for mission architecture optimization. I[EEE Aerospace
Conference Proceedings. doi. 10.1109/aer0.2017.7943953

Karban, R., Jankevicius, N., & Elaasar, M. (2016). ESEM: Automated Systems Analysis using
Executable SysML Modeling Patterns. INCOSE International Symposium, 26(1), 1-24. doi.
10.1002/j.2334-5837.2016.00142.x

LaSorda, M., Borky, J. M., & Sega, R. M. (2018). Model-based architecture and programmatic op-
timization for satellite system-of-systems architectures. Systems Engineering, 21(4), 372—
387. doi. 10.1002/sys.21444

Ryan, J., Sarkani, S., & Mazzuchi, T. (2014). Leveraging Variability Modeling Techniques for Ar-
chitecture Trade Studies and Analysis. Systems Engineering, 17(1), 10-25. doi. 10.1002/sys

Wickremasinghe, B., Calheiros, R. N., & Buyya, R. (2010). CloudAnalyst: A cloudsim-based vi-
sual modeller for analysing cloud computing environments and applications. Proceedings
- International Conference on Advanced Information Networking and Applications, AINA,
446-452. doi. 10.1109/aina.2010.32

17

https://doi.org/10.1007/978-3-540-39979-7{_}4
https://doi.org/10.1007/978-3-540-39979-7{_}4
https://doi.org/10.1002/spe
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online
https://www.finops.org/
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Website%20Visitor&id=Blog
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Website%20Visitor&id=Blog
https://doi.org/10.1109/aero.2017.7943953
https://doi.org/10.1002/j.2334-5837.2016.00142.x
https://doi.org/10.1002/sys.21444
https://doi.org/10.1002/sys
https://doi.org/10.1109/aina.2010.32

Biography

| Mr. Thomas M. Booth is the System Architect and Integration Director for a
research and development team within the 309th Software Engineering Group
at Hill AFB. Among many other projects, this team is focused on data analytics,
data pipelines, DevSecOps SW development, and data mesh product develop-
ment. Furthermore, this team is refining MBSE approaches and techniques for
complex, software-based systems towards data driven system design, analysis,
and optimization. He received his BS in Mechanical Engineering (ME) from
the University of Utah (UofU) in 2003, his MS in ME from the UofU in 2012,
passed his Ph.D. preliminary exam in Systems Engineering from Colorado State
University in 2023, and is currently working on his Ph.D. dissertation. His cur-
rent research interests focus on leveraging SysML for Pareto-optimal and Fuzzy
Pareto Frontiers towards design analyses for complex software-based cloud data
systems. His previous experience includes: USAF avionics software system in-
tegration and test director, NASA CFD and wind tunnel test engineer, and USAF
aero-performance engineer.

Dr. Sudipto Ghosh is a Professor of Computer Science at Colorado State Uni-
versity with an affiliate appointment in Systems Engineering. He received the
. Ph.D. degree in Computer Science from Purdue University in 2000. His research
interests are in software engineering (design and testing). He is on the editorial
boards of IEEE Transactions on Reliability, Software and Systems Modeling,
§ Software Quality Journal, and Information and Software Technology. Previ-
% ously he was on the editorial board of the Journal of Software Testing and Re-
— liability. He was a general co-chair of MODELS 2009 (Denver) and Modular-
ity 2015 (Fort Collins). He was a program co-chair of ICST 2010 (Paris), DSA
2017 (Beijing), ISSRE 2018 (Memphis), ISEC 2024 (Bangalore), and QRS 2024
(Cambridge). He has served on program committees of multiple conferences.
He is a member of the ACM and a Senior Member of the IEEE.

18

	Copyright © 2024 by Thomas M. Booth and Sudipto Ghosh. Permission granted to INCOSE to publish and use.
	Introduction
	Cloud Performance and Cost Modeling
	Executable SysML Modeling

	Applied MBSE Approach
	Specification Viewpoint
	Simulation Viewpoint
	Demonstration Setup
	Demonstration Results

	Discussion
	Conclusions
	Future Work

	Acknowledgments
	Biography

