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Abstract

We consider the problem of minimizing a continuous function given given access
to a natural quantum generalization of a stochastic gradient oracle. We provide
two new methods for the special case of minimizing a Lipschitz convex function.
Each method obtains a dimension versus accuracy trade-off which is provably
unachievable classically and we prove that one method is asymptotically optimal
in low-dimensional settings. Additionally, we provide quantum algorithms for
computing a critical point of a smooth non-convex function at rates not known
to be achievable classically. To obtain these results we build upon the quantum
multivariate mean estimation result of Cornelissen et al. [25] and provide a general
quantum variance reduction technique of independent interest.

1 Introduction

Stochastic optimization is central to modern machine learning. Stochastic gradient descent (SGD),
and its many variants, are used broadly for solving challenges in data science and learning theory.
In theory, SGD and stochastic optimization, have been the subject of decades of extensive study.
[19, 68, 27] established that SGD achieves optimal rates for minimizing Lipschitz convex functions'
(even in one dimension) and stochastic optimization methods have been established for a range of
problems [72, 70, 73, 74]. More recently, the complexity of stochastic gradient methods for smooth
non-convex optimization, e.g., critical point computation, were established [3, 29, 30, 49, 50].

Given the foundational nature of stochastic optimization and the potential promise and increased
study of quantum algorithms, it is natural to ask whether quantum computation could enable
improved rates for solving these problems. There has been work studying whether access to
quantum counterparts of classic optimization oracle can yield faster rates for semidefinite pro-
grams [13, 12, 43, 75, 76, 54], convex optimization [21, 5, 20], and non-convex optimiza-
tion [23, 63, 80]. Notably, [52] showed that with just access to the quantum analog of an zeroth-order
oracle, i.e., an oracle that when queried at a point outputs the value of the function at that point, it
is possible to simulate access to a classic gradient oracle with a single query. This tool immediately
yields improved rates for, e.g., convex function minimization, with a zeroth-order oracle.

Unfortunately, despite this progress and the established power of quantum evaluation oracles, ob-
taining further improvements has been challenging. A line of work established a variety of striking
lower bounds ruling out quantum speedups for fundamental optimization problems [31, 32, 82]. For
example, [31] showed that when given access to the quantum analog of a first-order oracle, i.e.,
an oracle that when queried at a point outputs the value of the function as well as the gradient at
that point, quantum algorithms have no improved rates for non-smooth convex optimization over
GD and SGD when the dimension is large. [82] extended this result to the non-convex setting and

"'We assume all objective functions are differentiable. Similar to related work, see e.g., [15], our results can
be generalized to non-differentiable settings since convex functions are almost everywhere differentiable and
our algorithms and corresponding convergence analysis are robust to polynomially small numerical errors.
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showed that given access to the quantum analog of a stochastic gradient oracle, quantum algorithms
have no improved rates for finding critical points over SGD when the dimension is large.

In spite of these negative results, we nevertheless ask, for stochastic optimization are quantum-
speedups obtainable? Our main result is an answer to this question in the affirmative for dimension-
dependent algorithms. We provide two different quantum algorithms for stochastic convex opti-
mization (SCO) which provably outperform optimal classic algorithms. Furthermore, we provide a
quantum algorithm for computing the critical point of a smooth non-convex function which improves
upon the state-of-the-art. We obtain these results through a new general quantum-variance reduction
technique built upon the quantum multivariate mean estimation result of Cornelissen et al. [25] and
the multilevel Monte Carlo (MLMC) technique [41, 10, 7]. We complement these results with lower
bounds showing that one of them is asymptotically optimal in low-dimensional settings.

General notation. We use || - || to denote the Euclidean norm and let Br(x) := {y € R¢: |ly —
x|| < R} and [T] := {1,...,T}. We use bold letters, e.g., X, y, to denote vectors and capital letters,
e.g., A, B, to denote matrices. For a d-dimensional random variable X, we refer to the trace of the
covariance matrix of X as its variance, denoted by Var[X]. For f: RY — R, we let f* := infy f(x)
and call x € R? e-(sub)optimal if f(x) < f* + € and e-critical if |V f(x)| < e. Moreover, we
call a random point x € R? expected e-(sub)optimal if Ef (x) < f* + € and expected e-critical if
E|Vf(x)|| < e f:R? — Ris L-Lipschitz if f(x) — f(y) < L|x — y]|| for all x,y € R? and
-smooth if |V f(x) — Vf(y)| < ¢||x — y| for all x,y € R% For two matrices 4, B € R¥*4,
A < B denotes that xT Ax < xTBx for all x € R?. We use O to denote the big-O notation
omitting poly-logarithmic factors in €, €', d, o, 5, R, and L. When applicable, we use |garbage(-))
to denote possible garbage states” that arise during the implementation of a quantum oracle (e.g., in
Definitions (1) and (2)).

1.1 Quantum stochastic optimization oracles

Here we formally define quantum stochastic optimization oracles that we study in this work.

Qubit notation. We use |-) to represent input or output registers made of qubits that could be in
superpositions. In particular, given m points X1, ...,%,, € R? and a coefficient vector c € C™
with 7, lc;]> = 1, the quantum register could be in the quantum state |)) = 2 ie(m) Ci Xi)s
which is superposition over all these m points at the same time. If we measure this state, we will
get each x; with probability |c;|2. Furthermore, to model a classical probability distribution p over
R? quantumly, we can prepare the quantum state . cRrd \./p(x)d).( |x). If we measure this state, the
measurement outcome would follow the probability density function p.

Quantum random variable access. We say that we have quantum access to a d-dimensional
random variable X if we can query the following quantum sampling oracle of X that returns a
quantum superposition over the probability distribution of X defined as follows.?

Definition 1 (Quantum sampling oracle). For a d-dimensional random variable X, its quantum
sampling oracle Ox is defined as

Ox|0) = | Vpx(x)dx|x) @ |garbage(x)), (1)
xeR
where px () represents the probability density function of X.

The garbage state in Definition 1 is a quantum analogue of classical garbage information that arises
when preparing the classical sampling oracle of X. When implementing the quantum sampling

The garbage state is a quantum analogue of classical garbage information that arises when preparing the
classical stochastic gradient oracle which cannot be erased or uncomputed in general. In this work, we consider
a general model where we make no assumption on the garbage state. See e.g., [42] for a similar discussion of
this standard use of garbage quantum states.

3Throughout this paper, whenever we have access to a quantum oracle O, we assume that it is a unitary
operation and that we also have access to its corresponding inverse operation, denoted as O™ *, that satisfies
O7'0 = OO™! = I. These are a standard assumption, either explicitly or implicitly, in prior work on
quantum algorithms, see e.g., [14, 44, 25].



oracle in quantum superpositions however, this garbage information will appear in a quantum state
and cannot be erased or uncomputed in general. In this work, we consider a general model where
we make no assumption on the garbage state. See e.g., [42] for a similar discussion of this standard
use of garbage quantum states.

Observe that if we directly measure the output of O x, it will collapse to a classical sampling access
to X that returns random vectors with respect to the probability distribution px .

Quantum stochastic gradient oracle. When considering the problem of optimizing a function
f: RY — R, we are often given access to a stochastic gradient oracle that returns a random vector
from the probability distribution of the stochastic gradient.

Definition 2 (Stochastic gradient oracle (SGO)). For f: R? — R, its stochastic gradient oracle
(SGO) Cg is defined as a random function that when queried at x, samples a vector g(x) from a
probability distribution p x(-) over R? that satisfies

E g(x)=Vf(x), VvxecR™.

g(x)~prx
We say the oracle is L-bounded if

E [g®)|?<L? vxeR?
g(xX)~pr,x

and we say the oracle has variance o2 if

lg(x) = Vf(®)|* <o?, vxeR”

g(x)~pr,x

In this paper, we further assume quantum access to a stochastic gradient oracle, or access to a
quantum stochastic gradient oracle for brevity, that upon query returns a quantum superposition
over the probability distribution py (V).

Definition 3 (Quantum stochastic gradient oracle (QSGO)). For f: R — R, its quantum stochastic
gradient oracle (QSGO) is defined as

Og %) ®10) = |x) ® / s ) © fgarbage(v). @)
veRE

where py «(-) is as defined in Definition 2.
Observe that if we directly measure the output of Og, it will collapse to a classical stochastic gradient
oracle that randomly returns a stochastic gradient at x.

Another standard assumption in previous works [1, 29, 30, 50] that the stochastic gradient can be
queried simultaneously, which means that the algorithm can choose the random seed w that is being
queried. We assume that in such setting there is an explicit probability distribution w such that
Elg(x,w)] = Vf(x). Similarly, we define the quantum access to stochastic gradients allowing
w

simultaneous queries, or access to a quantum stochastic gradient oracle with simultaneous queries
for brevity, that upon query returns g(x,w) in a quantum state.

Definition 4 (0-SQ-QSGO). For f: R? — R with its stochastic gradient g(x,w) indexed by ran-
dom seed w that satisfies

Eg(x,w)=Vf(x) , Elgxw)—-Vfx)|*<o? VxecRY and

Elg(x,w) — gy, w)I” < £x —y[*, ¥x,y €R (3)

its simultaneously queriable, oc-mean-squared smooth quantum stochastic gradient oracle (o-SQ-
QSGO) is defined as

0z %) ® |w) ® |0) = [x) ® |w) ® |g(x,w)) @ |garbage(x,w)) )



1.2 Results

Here we present our main results on new quantum algorithms for stochastic optimization. Our
results and the prior state-of-the-art are summarized in Table 1. Further, we discuss new quantum
lower bounds that we establish for quantum variance reduction and stochastic convex optimization.
Our algorithmic results leverage a common technique for quantum variance reduction introduced in
the next Section 2. This technique uses a combination of the quantum multivariate mean estimation
result of Cornelissen et al. [25] and multilevel Monte Carlo (MLMC) [41, 10, 7].

Setting Queries Output Method
Convex e 2 e-optimal SGD
Convex d®/3¢=3/2 e-optimal  Our Result (Q-AC-SA, Algorithm 2)
Convex d3/?2¢=1 e-optimal Our Result (Q-SCP, Section 4)
(BouNr?cile-c‘izOVI;:;nce) et e-critical Randomized SGD [40]
(BouNr?(;lf;s?/I;\;f;nce) d'/2¢=3  e-critical Our Result (Q-SGD, Algorithm 6)
Non-convex _3 .
(Mean-squared smoothness) e-critical SPIDER [29]
Non-convex d'/2e=5/2  ecritical  Our Result (Q-SPIDER, Algorithm 7)

(Mean-squared smoothness)

Table 1: Comparison between our quantum algorithms and state-of-the-art classical algorithms for Problem 1
(the convex setting) and Problem 2 (the non-convex setting) where, for simplicity, we assume R = L = 1 for

Problem 1 and £ = ¢ = § = 1 for Problem 2. The O symbol was omitted in the “Queries” column.

Stochastic convex optimization. In this work we consider the quantum analog of the standard
stochastic convex optimization (SCO) problem defined as follows.

Problem 1 (Quantum stochastic convex optimization (QSCO)). In the quantum stochastic convex
optimization (QSCO) problem we are given query access to an L-bounded QSGO Og (see Defini-
tion 3) for a convex function f: R — R whose minimum is achieved at x* with ||x*|| < R and
must output an expected e-optimal point.

Classically, it is known that simple stochastic gradient descent, e.g. x;11 = x4 — 1gs, can solve
QSCO with (9(6_2) queries. Further, this bound is known to be optimal in the worst case [69, 77].

Nevertheless, we develop two quantum algorithms for Problem 1 in Section 3 and Section 4, respec-
tively. The query complexities of these algorithms are summarized in the following Theorem 1. In
comparison to the optimal classical query complexity of O(e~2) queries, our algorithms obtain an
improved dependence in terms of ¢ at the cost of a worse dependence on the dimension, d; Theo-
rem 1 shows that a quadratic speedup is achievable when d is constant.

Theorem 1 (Informal version of Theorem 5 and Corollary 1). Problem I can be solved using an
expected O(min{d®/8(LR/¢)*/? d*/2LR/e}) queries.

We complement Theorem 1 with the following lower bound on the query complexity for QSCO.

Theorem 2 (Informal version of Theorem 8). For any ¢ < O(d~/?), any quantum algorithm that
solve Problem 1 with probability at least 2/3 makes at least Q(d*/?e~1) queries in the worst case.

For any Q(d~"/ %) < e < 1, any quantum algorithm that solves Problem 1 with success probability
at least 2 /3 must make at least )(e=2) queries in the worst case.

Theorem 2 shows that the O(d3/2LR/e) rate that we obtain is asymptotically optimal for d = O(1).
A key open problem is whether the dimension dependence in either our upper bounds (Theorem 5
and Corollary 1) or our lower bound (Theorem 8) can be improved.

Stochastic critical point computation. We also develop quantum algorithms for finding critical
points, i.e., points with small gradients, of (possibly) non-convex functions.



Problem 2 (Quantum stochastic critical point computation (QSCP)). In the quantum stochastic
critical point computation (QSCP) problem, for an {-smooth (posssibly) non-convex f: R? — R
satisfying f(0) — infyx f(x) < A we are given query access to one of the following two oracles

1. (Bounded variance setting). A QSGO Og with variance o2 (see Definition 3), or
2. (Mean-squared smoothness setting). A 0-SQ-QSGO Og (see Definition 4),
and must output an expected e-critical point.

Leveraging [40] and [29] we develop two quantum algorithms that solve Problem 2 in the bounded
variance setting and the mean-squared smoothness setting, and obtain the following result.

Theorem 3 (Informal version of Theorem 6 and Theorem 7). In the bounded variance setting, Prob-
lem 2 can be solved using an expected O (Aéadl/ 26*3) queries. In the mean-squared smoothness

setting, Problem 2 can be solved using an expected 9] (éA(dJ)l/zefs/z) queries.

In the bounded variance setting, Problem 2 can be solved using O(e~*) queries to a classical SGO
with variance o2 (Definition 2) [40], which is known to be optimal [6]. In comparison, our algorithm
improves in terms of € and achieves a quantum speedup when d < O(e2). In the mean-squared
smoothness setting, Problem 2 can be solved using O(e~?) queries to a classical stochastic gradient
oracle with variance o2 that satisfies if it satisfies (3) (Definition 2) [29], which is known to be
optimal [6]. In comparison, our algorithm improves in terms of € and achieves a quantum speedup
when d < O(e71).

Quantum zeroth-order oracles. Throughout the paper, we focus on stochastic gradient oracles
in correspondence with classical work on stochastic optimization. However, it is worth noting that
in certain cases our results extend gracefully to quantum stochastic zeroth order oracles. For exam-
ple, when the objective function exhibits a finite-sum structure and we have access each component
function individually through a quantum zeroth-order oracle, we can achieve an SQ-QSGO (Defini-
tion 4) with just a single query, utilizing quantum gradient estimation [52]. However, in other cases,
the correspondence is less clear. For instance, if we are given a quantum stochastic zeroth-order ora-
cle where the function value is obfuscated by some external noise, quantum gradient estimation [52]
is not directly applicable. Further study could be an interesting direction for future work.

Practicality. Regarding the utility of our algorithm in practical situations, note that our quantum
oracles in Definition 3 and Definition 4 are defined as direct, natural generalizations of the corre-
sponding classical oracles. Considering such quantum generalizations of classical oracles is standard
in the literature, see e.g., [21, 81]. There are standard techniques for implementing such quantum
analogs of classical oracles (in theory for now given the current state-of-the-art in implementing
quantum algorithms in practice). In particular, if there is a classical circuit for the classical oracle,
there is a standard technique to obtain a quantum circuit of the same size which implement the cor-
responding quantum oracle and its inverse. Hence, our quantum algorithms have the potential to
surpass blackbox classical algorithms in low dimensional settings where the oracle is given as an
explicit circuit.

Dimension dependence. Regarding potential concerns regarding the dependence of our quantum
algorithms on the problem dimension, below we provide several supplementary points of context.

* As discussed, in the classical setting, prior research [27] demonstrated that when opti-
mizing an 1-Lipschitz convex function, SGD has a query complexity of O(e~2) which is
optimal, even in the one-dimensional case. In the quantum setting, we showed that, theo-
retically, quantum speedups which offer a different tradeoff between e and d dependencies
are possible. Additionally, from our lower bound presented in Theorem 2 we know that
some dimension dependence is inherent in obtaining an improvement.

* Classically, the complexity of dimension dependent optimization methods is well studied.
In particular, there are parallel and private stochastic convex settings where the dimension
dependencies are discussed, see e.g., [15, 18], and there exists works on critical point com-
putation in low dimension settings, see e.g., [22].



* Even for high-dimensional problems, our algorithms can potentially be used as a subrou-
tines for low-dimensional subproblems. For instance, in this paper we apply these method
to the approximately best point problem (Problem 5), wherein we utilize our algorithm
repeatedly within a one-dimensional setting.

1.3 Paper organization

In the next Section 2 we propose and develop a new algorithm for a new problem quantum variance
reduction; this algorithm is the basis of our quantum speedups for stochastic optimization problems.
We then discuss the application of quantum variance reduction for stochastic convex optimization
by presenting two quantum algorithms in Section 3 and Section 4, respectively. Technically, it is
possible to obtain our result in Section 4 just using the quantum mean estimation routine of [25]
rather then quantum variance reduction, however our use of quantum variance reduction facilitates
our presentation. Furthermore, we present quantum algorithms for non-convex optimization based
on quantum variance reduction in Section 5. Finally, in Section 6 we prove quantum lower bounds
for quantum variance reduction and quantum stochastic convex optimization that establish the opti-
mality of our algorithms, and conclude the paper in Section 7.

2 Quantum variance reduction

We obtain our quantum speedups for stochastic optimization problems by proposing and developing
new algorithms for a new problem which we call the quantum variance reduction problem.

Problem 3 (Variance reduction). For a d-dimensional random variable X with Var[X] < L? and
some & > 0, suppose we are given access to its quantum sampling oracle O x defined in Definition 1.
The goal is to output an unbiased estimate [i of u = E[X] satisfying E||ji — p||*> < 62

Classically, Problem 3 can be solved by averaging O(L?/52) samples of X; this query complexity
is optimal among classical algorithms [64]. However, if we have access to the quantum sampling
oracle defined in Definition 1, [25] showed that a (possibly) biased estimate i with error || — p|| <

& can be computed using (’3(L\/(§&_1) queries.
Lemma 1 ([25, Theorem 3.5]). Given access to the quantum sampling oracle Ox, for any ¢, 0>0
there is a procedure QuantumMeanEstimation (X, 4,0) that uses O(L\/dlog(1/8)/5) queries

and outputs an estimate [i of the expectation . of any d-dimensional random variable X satisfying
Var[X] < L? with error ||t — p|| < & < L and success probability 1 — 6.

QuantumMeanEstimation [25] proceeds by introducing a directional mean function that reduces
a multivariate mean estimation problem to a series of univariate mean estimation problem through
quantum Fourier transform, which in the bounded norm case can be solved by quantum algorithms
with a quadratic speedup using phase estimation. In terms of error rate, QuantumMeanEstimation
in Lemma | improves over any classical sub-Gaussian estimator when % > ﬁ. However, its

bias hinders its combination with various optimization algorithms assuming unbiased inputs, see
e.g., [57, 2, 29, 30]. In this work we show how to carefully combine their algorithm with a classic
multi-level Monte-Carlo (MLMC) technique from [10, 7] to obtain an unbiased estimate fi and
success probability 1 with the same rate as [25] and prove the following theorem.

Theorem 4. Algorithm 1 solves Problem 3 using an expected (5(Ld1/ 261 queries.

In the following Table 2 we provide a comparison between our result and previous works and in
Section 6 we prove that our algorithm is optimal up to a poly-logarithmic factor. Notably, our
algorithm does not depend on the detailed implementation of QuantumMeanEstimation but only
its query complexity. Hence, we believe that our approach may also be useful in removing the bias
of other quantum mean estimation algorithms with similar expressions of query complexities, e.g.,
quantum phase estimation [55, 24] and quantum amplitude estimation [14].

Our algorithm consists of two components. First, we show that we can obtain a variant of the quan-
tum mean estimation algorithm, denoted as QuantumMeanEstimation™ (X, 6), that outputs a low
variance estimate with probability 1. This procedure compares the outcomes of the quantum esti-
mator and a classical estimate, and in the event of significant disparity, generates a new independent
classical estimate.
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Queries Bias Variance Method

572 0 &2 Classical Variance Reduction
dt2g—1 & &2 Quantum Multivariate Mean estimation [25]
log? (1/7) 6~ 1~ 52 One-dimensional Quantum Mean estimation [24]
d'/26—1 0 62 Our Result (Theorem 4)

Table 2: Comparison between different methods for variance reduction in the case of L = 1 and 6 € (0, 1).
The O symbol was omitted in the “Queries” column.

Second, we use the MLMC technique [41], specifically a variant of the methods described in [10, 7],
to carefully invoke the biased subroutine QuantumMeanEstimation™ and compute the unbiased
estimate. The algorithm, Algorithm 1, simply invokes QuantumMeanEstimation™ for three ran-
domly chosen accuracies and combines them to obtain the result. Though there are an infinite
number of possible accuuracies chosen, we show that the expectation, the variance, and expected
number of queries are all suitable to prove Theorem 4, whose proof is deferred to Appendix B.

Algorithm 1: Quantum variance reduction

Input: Random variable X, target variance &2
Output: An unbiased estimate /i of E[X] with variance at most 52

Set jip +QuantumMeanEstimation™ (X, 5/10)
Randomly sample j ~ Geom (3) € N

fi; +QuantumMeanEstimation® (X,27%/45/10)

fij—1 +QuantumMeanEstimation™ (X,2730U~1/45/10)
fu 4= fio + 27 (fi; — fij—1)

return /i

3 Quantum accelerated stochastic approximation

In this section, we present our O(d®/3¢~3/2) query quantum algorithm for Problem 1. Our approach
builds upon the framework proposed by Duchi et al. [28, 15], which involves performing a Gaussian
convolution on the objective function f and then optimizing the resulting smooth convoluted func-
tion. Compared to their algorithm, our algorithm differs by replacing the variance reduction step by
our quantum variance reduction technique (Algorithm 1).

As with a variety of prior work on parallel and private SCO [28, 33, 15], we consider the smooth
function F;. that is the Gaussian convolution of the objective function f:

IQ(X)¢==/gdWTQOJKX-—dey7 where () = (2;r)dexp(-—§ﬂl)- 5)

As shown in Lemma 4, when the radius r of the convolution is sufficiently small, F;. closely approx-
imates f pointwise. Consequently, to find an e-optimal point of f it suffices to find an ¢/4-optimal
point of F,. for r = — R Moreover, Lemma 4 shows that the stochastic gradient gz of F). can be

defined and obtained based on the stochastic gradient g of f as follows:

gr(x)=gx-y), ¥y~ (6)
which satisfies

JE gr(®)=VE(x) and [gr(®)]| <L, vx.

Hence,
WE&WS/ lgr(x)|dy < L
Yy~

indicating that F;. is also L-Lipschitz.
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To optimize this smooth convex function F)., we leverage the accelerated stochastic approximation
(AC-SA) algorithm introduced in [57], which applys an accelerated proximal descent method on the
objective function using unbiased estimates of gradients. Our algorithm given in Algorithm 2 is a
specialization of the AC-SA algorithm, where we implement those unbiased estimates of gradients
using quantum variance reduction (Algorithm 1). In the classical setting, one query to the stochastic
gradient g (x) of F' can be implemented by a random sampling a vector y € R from the Gaussian
v followed by a query to the SGO Cg (Definition 2) at x — y. Similarly, we can show that one
query to a QSGO of F,. (Definition 3) can also be implemented by one query to the QSGO of f. The
subsequent theorem presents the query complexity of Algorithm 2.

Algorithm 2: Quantum accelerated stochastic approximation (Q-AC-SA)

Input: Function f: RY — R, precision ¢
. . . . 1/4 .
Parameters: Domain Size R, total iteration budget 7 = MfLR, target variance

N d1/8 Le . . _ € _ Rv6lp
o= 7 » convolution radius 7 = i V= 71297

Output: an e-optimal point of F'
Denote F.(x) = [ 7 (y)f(x — y)dy as in (5)
Setx; + 0,77 + x;
fort=1,2,...,7 do
Be 4= 55h e = Sy
i = B+ (1= By )xq?
Call Algorithm 1 for an unbiased estimate g; of V F,.(x/*?) with variance at most 62
X1 = argmin {7y, (&, 2 — x{"%) + L|x}"* — z||/(2r)}
z€BR(0)
| Xty =B ke + (1= B )X

ag
return X, ;

Theorem 5 (Formal version of Theorem 1, Part 1). Algorithm 2 solves Problem I using an expected
O(d°/3(LR/€)3/?) queries.

The proof of Theorem 5 is deferred to Appendix C.

4 Quantum stochastic cutting plane method (Q-SCP)

In this section, we develop our O(d®/2LR/€) query algorithm for Problem 1 which is based on a
stochastic version of the cutting plane method. We introduce the key properties and related concepts
of cutting plane methods, and then provide a procedure for efficiently post-processing the outcomes
obtained from the stochastic cutting plane method using quantum variance reduction (Algorithm 1).
Then, we analyze the overall query complexity for solving Problem 1. Technically, it is possible
to obtain the results of this section using the quantum mean estimation routine of [25], rather then
quantum variance reduction, however using quantum variance reduction facilitates our presentation.

We begin by introducing some notation and concepts on cutting plane methods. Cutting plane
methods solve the feasibility problem defined as follows. Note that this problem is slightly easier to
solve then the one in, e.g., [48], however it is simple suffices for our purposes.

Problem 4 (Feasibility Problem). We are given query access to a separation oracle for a set K C
R such that on query x € R? the oracle outputs a vector ¢ and either ¢ = 0, in which case x € K,
orc # 0, inwhich case H = {z: c'z < c' x} D K. The goal is to query a point x € K.

[48] showed that Problem 4 can be solved by cutting plane method using O(dlog(dR/r)) queries
to a separation oracle where R and r denote bounds on K.

Lemma 2 ([48, Theorem 1.1]). There is a cutting plane method which solves Problem 4 using at
most C - dlog(dR/r) queries for some constant C, given that the set K is contained in the ball of
radius R centered at the origin and it contains a ball of radius .



[67, 58] demonstrated that, running cutting plane method on a convex function f with the separation
oracle being its gradient yields a sequence of points where at least one of them is an e-optimal point
of f. This follows from the fact that there exists a ball of radius O(e) around x* such that every point
in this ball is e-optimal. In the stochastic setting, although we cannot access the precise gradient,
we show that it suffices to use an O(e/R)-approximate gradient oracle of f (formally defined in
Appendix D.1) as the separation oracle. Specifically, we prove the following result.

Proposition 1. For any 0 < ¢ < LR, with success probability at least 5/6 we can obtain
T = O(dlog(dLR/¢€)) points x1,...,x7 € Br(0) such that one of the x; is e-optimal using
O (d3/2LR/e) queries to the QSGO Oy defined in Definition 3.

The proof of Proposition 1 is deferred to Appendix D.1. After applying Proposition 1, it is not clear
which query x; is an O(¢)-optimal point. This difficulty arises because we lack access to the function
value of f, which sets our problem apart from the feasibility problem discussed in [48], where there
is a clear indication when a query successfully lies within the feasible region. Consequently, we next
focus on identifying the optimal solution within the finite set I' of points using access to the QSGO.
We conceptualize this task as the approximately best point problem, formulated as follows.
Problem 5 (Approximately best point). For a L-Lipschitz convex function f: R¢ — R and T points
X1,...,XT € Bg(0), find a convex combination X € R? of the points satisfying

fx) < Itréi7r_1f(x1:) + €.

In this work, we develop an algorithm that solves Problem 5 by making pairwise comparisons in
a hierarchical order, where each pairwise comparison is computed by running binary search on the
segment along the segment between the two points. Formally, we prove the following result.

Proposition 2. For any accuracy parameter € > 0, with success probability at least 5 /6 Algorithm 5

solves Problem 5 using O (RLT [€) queries to an L-bounded QSGO Oy defined in Definition 3.

The proof of Proposition 2 and the corresponding quantum algorithm can be found in Appendix D.2.
Next, we present the main result of this section, which describes the query complexity of solving
Problem 1 using quantum stochastic cutting plane method.

Corollary 1 (Formal version of Theorem 1, Part 2). With success probability at least 2/3, Problem 1

can be solved using an expected O (dg/ LR/ e) queries.
The proof of Corollary 1 is deferred to Appendix D.3.

S Quantum stochastic non-convex optimization

In this section, we present our quantum algorithms for Problem 2 in the bounded-variance setting and
the mean-squared smoothness setting, respectively, using our quantum variance reduction technique.

To solve Problem 2 in the bounded variance setting, we leverage the randomized SGD method in-
troduced in [40], which is a variant of SGD where the number of iterations is randomized. Our
algorithm is a specialization of the randomized stochastic gradient algorithm, where we replace the
classical variance reduction step by quantum variance reduction (Algorithm 1). The query complex-
ity of our quantum algorithm is given in the following theorem.

Theorem 6 (Formal version of Theorem 3, bounded variance setting). For any € > 0, Algorithm 6
solves Problem 2 in the bounded variance setting using an expected O (AEU\/&E_?’ ) queries.

The proof of Theorem 6 and the corresponding quantum algorithm can be found in Appendix E.

To solve Problem 2 in the mean-squared smoothness setting, we leverage the SPIDER algorithm
introduced in [29], which is a variance reduction technique that allows us to estimate the gradient
of a function with lower cost by utilizing the smoothness structure and reuse the stochastic gradient
samples at nearby points. Our algorithm is a specialization of the SPIDER algorithm, where we
replace the classical variance reduction step by quantum variance reduction (Algorithm 1). The
query complexity of our quantum algorithm is given in the following theorem.

Theorem 7 (Formal version of Theorem 3, mean-squared smoothness setting). For any 0 <
€ < g, Algorithm 7 solves Problem 2 in the mean-squared smoothness setting using an expected

o (EA d0'€72'5) number of queries.



The proof of Theorem 7 and the corresponding quantum algorithm can be found in Appendix F.

6 Lower bounds

In this section we present two quantum lower bounds for solving quantum variance reduction (Prob-
lem 3) and stochastic convex optimization (Problem 1), respectively.

We first establish the following quantum lower bound for the variance reduction problem (Prob-
lem 3) which shows that our Algorithm 1 is optimal up to a poly-logarithmic factor when 6 =
@) (d_l/ 2). By Markov’s inequality, Proposition 3 equivalently states that any quantum algorithm

that solves Problem 3 must make an expected Q(L\/&(ffil) queries. This matches our algorithmic
result provided in Theorem 4, up to a poly-logarithmic factor.
avd’
Problem 3 with success probability at least 2/3 must make at least Q(L\/d6—") queries in the worst
case.

Proposition 3. There is a constant o such that for any & < any quantum algorithm that solves

The proof of Proposition 3 is deferred to Appendix G.1

Next, we establish the following quantum lower bounds for stochastic convex optimization (Prob-
lem 1) in the low-dimension regime and the high-dimension regime, respectively, which show that
our quantum stochastic cutting plane method in Section 4 is optimal up to a poly-logarithmic factor
when the dimension d is a constant, and there is no quantum speedup over SGD when d > 2 (672).
RL
100Vd’
bility at least 2/3 must make at least Q(v/dRL/€) queries in the worst case. Forany —2E- < ¢ <1,

any quantum algorithm that solves Problem 1 with success probability at least 2/3 must make at
least Q(R%L?/€%) queries in the worst case.

Theorem 8. For any e < any quantum algorithm that solves Problem I with success proba-

The proof of Theorem 8 is deferred to Appendix G.2.

7 Conclusion

We presented improved quantum algorithms for stochastic optimization. We developed a new tech-
nical tool which we call quantum variance reduction and show how to use it to improve upon the
query complexity for stochastic convex optimization and for critical point computation in smooth,
stochastic, non-convex functions. Further, we provided lower bounds which establish both the opti-
mality of our quantum variance reduction technique and of one of our stochastic convex optimiza-
tion algorithms in low dimensions. A natural open problem suggested by our work is to establish
the optimal complexity of the problems we study, e.g., stochastic convex optimization and stochas-
tic non-convex optimization with quantum oracle access, in higher dimensions. We hope this paper
fuels further study of these problems.
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A AW N =

A Additional related work

Stochastic convex optimization. Stochastic convex optimization is a broad, well-studied area of
research. Beyond the works mentioned in the introduction, for additional references and discussion
of research in the area, see [11, 47, 68] for detailed overviews of stochastic convex optimization
methods and [19] for a presentation of convex optimization in the online learning setting. Addition-
ally, see [26, 51] for a discussion of the closely related problem of finite-sum optimization.

Non-convex optimization. Non-convex optimization is a rapidly advancing research area in op-
timization theory. These advances are motivated in part by the fact that the landscapes of various
modern machine learning problems are typically non-convex, including deep neural networks, prin-
cipal component analysis, tensor decomposition, etc. In general, finding a global optimum of a
non-convex function is NP-hard [66, 69]. Hence, many theoretical works instead focus on finding
local minima rather than a global one, given existing empirical and theoretical evidence that local
minima can be as good as global minima in certain machine learning problems [8, 34, 36, 37, 39, 46].
The first step of finding local minima would be to find stationary points, which has been discussed
in many previous works [1, 9, 17, 16, 70, 71]. An important line of work focuses on first-order,
(stochastic) gradient-based algorithms for finding critical points and local minima since higher-order
derivatives are often not accessible in practical scenarios [3, 17, 29, 30, 34, 49, 50, 62, 78, 81]. There
are also results on non-convex optimization that study different settings [38, 61, 79, 85, 35, 83, 84].

Quantum Monte Carlo methods. Since [65], quantum Monte Carlo methods have been broadly
investigated. In particular, [59] discussed quantum Monte-Carlo methods for entropy estimation,
and [45] initiated the study of quantum mean estimation problem with multiplicative error, which
is followed by [44, 25, 24, 56]. Multilevel Monte Carlo methods are also widely used in quantum
algorithms, see e.g., [4, 60]. Specifically, the particular multilevel Monte Carlo strategies we use for
quantum variance reduction have roots in the classic computation work of [10, 7].

B Proof of Theorem 4

Algorithm 3: QuantumMeanEstimation™ (X, &)

Input: Random variable X, target variance 62 <12
Parameters: § = 6%/(4L)%, D = 2 + 16L°

62
Output: An estimate i of u = E[X] satisfying E|| 4 — p* < 62
Set X; <—QuantumMeanEstimation(X,5/4,0)
Randomly draw one classical sample X5 of X
if | X1 — X2|| < D then return X;
else

L Randomly draw one classical sample X5 of X

return X3

We begin by presenting a lemma showing how two unbiased, bounded variance random variables
(X2 and X3 in the lemma) can be used to control the expected /5 error of a random variable (X
in the lemma) that is close to the expectation of X5 and X3 with some probability. In Algorithm 3
X corresponds to the output of QuantumMeanEstimation and then X5 and X3 are obtained by
classic sampling.

Lemma 3. Let X1, X5, X3 € R? be independent random variables where EX,; = EX3 = p,
Var[Xs] < L?, and Var[X3] < L?, and || X1 — p|| < 6 with probability at least 1 — §. Further, let
Z be the random variable that is X1 if || X1 — Xz|| < D and X3 otherwise where D > &. Then,

L? — 52

E||Z —pl?<6?+ L (-
1Z —pll” <67+ (D_&

> +6(2D* +3L%) .
Consequently, E||Z — ,u||2 <1302 when D = 6 + L*/6% and § < 65/ LS.
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Proof. Let S denote the event that || X; — ul, < ¢ and let T' denote the event that || X; — X»], <
D. Then by the law of total expectation

E|lZ  ull* = Pr[SIE |12 — ul} | S| + Prinot SIE [|Z — ]} | not 5]
<E[IZ-ul*| S| +6-E[IZ - ul | not |

Where we used that Pr[S] < 1 and Pr[not S] < 4. We will prove the lemma by leveraging this
inequality and upper bounding both E {HZ —l S} and E {HZ — )3 | not S}.

First, we upper bound E [|| Z — MH; | S} . Again by the law of total expectation and the definition of
Z we have that

E[IZ = ul31 S| = Pr(T| SIE [1Z ~ ul} | T and ] @)
+PrinotT | S|E [||z_u||§ | T and not s}
<Pr[T|S]-6*+PrnotT|S]L>. 8)

Here we use that if T"and .S both hold then Z = X and || X; — || < 6 and that if S holds and not
T then Z = X3 and X3 is independent of S and T with variance L2. Now, if || X — pll, < D — &
then when S holds by triangle inequality

[X1 = Xo| < [ X2 —pl +[[Xo —pl < D
Applying this bound and Chebyshev inequality to X5 (and using that X5 is independent of S) we
have that
L

— 0

Pr(T | ) > Prl|[Xa — pll, <D — & | S] = Prll[Xa — ull, <D — 6] 2 1 -

Since ¢ < L, combined with (7) this implies that

L\ ., L} L2 - 82
E[||qu||§|S} < (1D_&)02+D_&—02+L<D_&>

Next, we upper bound E {HZ — u||§ | not S} . Note that if 7" holds then

1Z = ul* < 212 = X2||” + 2/|X2 — pll* < 2D% + 2| X2 — |
Since Z = X3 if T' does note hold, we then see that in either case

1Z = pl* < 2D* + 2| Xz — p|* + || X5 — pl?
Since, X2 and X3 are independent of .S with variance L this therefore implies that
E (12 = ull3 | not S| < E[2D% +2|X; — ull* + | X5 — ul]*] = 2D% + 3L
which leads to
E|IZ =l <E[IZ - ul* | 8] +5-E[I1Z - ul* | not 5]

L? — 52
D—-o

<&2+L< )+5(2D2+3L2).

O

Corollary 2. Given access to the quantum sampling oracle Ox of a d-dimensional random
variable X, for any 6,5 > 0, the procedure QuantumMeanEstimation™ (X,06) (Algorithm 3)
uses O(L\/E&_l) queries and outputs an estimate fi of the expectation = E[X| satisfying
Ellfi -l < 62

*At Line 2 and Line 5 of Algorithm 3, we can further refine our approach to obtain X5 and X4 by taking the
same number of classical samples as we would have used in the QuantumMeanEstimation procedure, which
can reduce the poly-logarithmic factor in the overall query complexity.
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Proof. By Lemma 3, the output i of QuantumMeanEstimation™ (X, ) (Algorithm 3) satisfies
El| — ul* < 6°. ©)

As for the number of queries to Ox, note that it uses

o (LMD o (Lug (45)) -0 (L1)

queries to prepare X;. Moreover, we can prepare the classical samples X5 and X3 by measuring
the quantum state Ox |0) in the computational basis, which takes 1 query to Ox. Hence, the overall

query complexity equals O(Lv/d6—1). O
Equipped with Corollary 2, we are ready to prove Theorem 4.

Proof of Theorem 4. The structure of our proof is similar to the proof of [7, Proposition 1]. Observe
that the output /i of Algorithm 1 can be expressed as

N - 5 1
i=fio+2"(fis = i), T~ Geom(5) €. (10)

Then we have
B[] = Bljto] + > Pr{J = j}2/ (B[] — Elfij1]) = Elficc] = 1

given that Pr{.J = j} = 277. As for the variance, we have
Ellje = pl* < 2B|lfo = fiol|* + 2El| i — ],

where
Ellji— fioll* = Y Pr(J = )2%E||jy; — i1l = > 2E|ft; — iy 1%,
Jj=1 j=1
and for each j we have
Ellft; — fij—1l* < 2B — pll* + 2E || fij—1 — pl|*.
By Corollary 2,
6.2

El|fz; — p])* <
which leads to

o? o2 &2

50 .923(—1)/2 + 50 - 237/2 = 10 - 23i/2°

Ellf; — fj—1]? <

and
N~ 277 - 7/\2

Hence,
H 1 ”2 <7 ” 1 [t ”2 ”~ ”2 <7 5°
E/J—/L 2E/1,—,U() +2E,U(]—p, g,

given that E||jig — u||?> < 62/100 by Corollary 2. Moreover, the expected number of queries is

~ ( LVdlogd — o 35/4 L 93G-1/4) | — A LVd
(')(&). 1+;PY{J—]}-(2 42 >_O vay .

g
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C Proof of Theorem 5

We first state a result from [15] which bounds properties of F' defined in (5). The lemma states that,
provided the radius r of the convolution is sufficiently small, F' is pointwise close to f and hence
finding an O(€)-minimum of f is equivalent to finding an e-minimum of F. Further the lemma
shows that F' is Lipschitz and smooth.

Lemma 4 ([15, Lemma 8]). For any L-Lipschitz convex function f: RY — R, its Gaussian convo-
lution g defined in Eq. (5) is convex, L-Lipschitz, and satisfies

F) —gx)| < Vd-Lr and  V2g(x) < (L/r)-1a, Vx € RY,
where 1 is the d-dimensional identity matrix.

Prior to proving Theorem 5, we show that one query to a QSGO Og,. (Definition 3) of F). satisfying

Og [x) ®0) @[0) = |x) ®/ Prx(V)dv |v) @ [garbage(v)), (1n

veRd
can be implemented by one query to Og of f defined in Definition 3.

Lemma 5. The QSGO Og,. of F, defined in (11) can be implemented with one query to the QSGO
Og of f.

Proof. We first prepare the following quantum state

V) =[x)® ( - Ve (y)dy |x — y>) ®|0), VxeR%

Applying Oy to the last two registers yields
Vrr)dy [x—y) ® / Pfx-y(V)dv IV>>
vERD

) [ ey (dvavx -y V). (12)
y,vEe d

(100g)[0) = %) @ (

yERd

Given that
Pr(v) = / Dby (Wdy, Vv € RY
y€eRd

if we measure the last register, the probability density function of the outcome would be exactly
prx. Hence, the quantum state (I ® Og) |¢) in (12) can also be written as

(I®0g)¢) = x)® / , VPrx(v)dv|garbage(v)) @ |v) .
veR
By swapping the last two quantum registers, we can obtain the desired output state of Og,,. O

The following result from [57] bounds the rate at which Algorithm 2 decreases the function error
of F,.. Note that validity of this result relies solely on the fact that, at Line 6, the variance of the
unbiased gradient estimate g; does not exceed &2, irrespective of its implementation.

Lemma 6. The output X577, | of Algorithm 2 satisfies

ALR? 4R&
Xag _ F* + ,
( T+1) T]— TT(T+2) ﬁ

where F,. is the convoluted function defined in Line 1 of Algorithm 2 and F is its minimum.

E[F,

Proof. This lemma follows from [57, Corollary 1], which shows that

MUpR? 4R6
E[F,.(x9%,,) — F'] < + )
[ (X7HJ) 1J = 717-+>2) Vﬁf
where (- is the Lipschitz parameter of F,., which equals L/r by Lemma 4. O
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Equipped with above results, we are now ready to present the proof of Theorem 5.
Proof of Theorem 5. By Lemma 6, the output x,,,; of Algorithm 2 satisfies

AMpR? ARG
]E F out) 7 F* S
[FCou) = Fl = Tmamoy + 7

< 13)

€
5"
Moreover, by Lemma 4 we can derive that

E[f(xout) - f*] < E[f(xout) - F(Xout>] + (f* - F*) + E[F(Xout) - F*] =€

Finally we bound the expected number of queries to Og used in the algorithm. Since ||gr(x)|| < L
for any x € RY, by Theorem 4 we know that Algorithm 1 can output an estimate gp(x"¢) of

V F(x!"%) with variance at most 62 using O(L+/d/&) queries to the oracle O, and hence the same
number of queries to Og by Lemma 5. Then, the total number of queries to Og equals

~(Lvd\ d/*LR ~(Lvd [R\ (.5 (LR\*?

D Proof of quantum stochastic cutting plane method

D.1 Proof of Proposition 1

Definition 5 (§-approximate gradient oracle (5-AGO)). For f: R¢ — R, its §-approximate gradient
oracle, 6-AGO, is defined as a random function that when queried at X, returns a vector g(x) that
satisfies ||g(x) — V f(x)[| < 4.

We show that a §-AGO can be efficiently implemented using our quantum variance reduction al-
gorithm. To obtain this result we can also use [53, Claim 1] by changing some parameters. Nev-
ertheless, compared to their deterministic implementation, our approach has a lower expected time
complexity (though is randomized).

Lemma 7. Forany §,£ > 0, with success probability at least 1—&, the §-AGO of a Lipschitz function

f can be implemented using O(log(1/€)) calls to Algorithm 1 with in total O(L\/dlog(1/€)/6)
queries to the QSGO.

Proof. We implement the 5-AGO using the following procedure. First, we obtain k£ = log(1/£)+10
independent unbiased estimates g1, . . ., g of V f(x) with variance §2/16 by Algorithm 1, using

- LT‘@ — O(LVilog(1/€)/5)

queries in total to the QSGO Og, by Theorem 4. Note that any individual sample g; satisfies

0
Pl - V160l > 3] < 5.

Hence, if we let S denote the subset of [k] where each i € .S have {5 distance to V f(x) at most §/2,
then by Hoeffding’s inequality, |.S| > 2k /3 with probability at least

o (R

Observe that for any sample g; satisfying ||g; — g;|| < ¢/2 for at least 2k/3 of g;’s, there must
exist at least some g; € S such that ||g; — g;/|| < /2, and therefore ||g; — Vf(x)|| < ¢ by
triangle inequality. Consequently, we just need to find and output any such g; as an 5-AGO, which
is guaranteed to exist given that any sample in S satisfies this property. This can be done in expected
O(k) time by picking a random estimate and checking whether it is close to at least 2k /3 of other
estimates. O
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Next, we establish that we can query an e-optimal point by applying the cutting plane method with
the separation oracle being an O(e/R)-approximate gradient oracle, as provided by Lemma 7.

Proof of Proposition 1. Define K/, as the set of €/2-optimal points of the function f, and K as
the set of e-optimal points of f. We know that K/, contains a ball of radius at least 7 = ¢/(2L)
since for any x with || x — x*|| < rx we have

fx) = f(x") < Llx—x"|| < 5. (14)

NN e

We apply the cutting plane method, as described in Lemma 7, to query a point in Ko, which
is a subset of the ball Byr(0). To achieve this, we use an ¢/(10R)-approximate gradient oracle
(¢/(10R)-AGO) of f, implemented using Lemma 7, as the separation oracle for the cutting plane
method. Throughout this process, we assume each query to the ¢/(10R)-AGO is successfully exe-
cuted, and we will later discuss the error probability associated with this assumption. In this case,
we show that any query outside of K to the ¢/(10R)-AGO will be a valid separation oracle for
K /2. In particular, if we ever queried the ¢/(10R)-AGO at any x € B, (0) \ K. with output being
g, forany y € K./, we have

(8y—x) <(V/x),y—x)+ g - Vi) lly —xI
Sy - +lg= Vil ly —x|

€ €
<——4+—-4R<0
=TT r MY
where the second inequality is due to the convexity of f, indicating that g is a valid separation oracle
for the set K /5. Consequently, upon applying Lemma 2, we can deduce that after C'dlog(dR/7 k)
iterations, at least one of the queries must lie within K.

To ensure an overall success probability of at least 5/6, we employ the union bound, which neces-
sitates that each query to the €/(10R)-AGO be implemented with a failure probability of no more
than (6Cdlog(R/rk))~!, which by Lemma 7 requires

10L
0<0Rx/8
€

€

1og(60dlog(dR/rK))> =0 (LRﬁ>

queries to the QSGO O, and the overall query complexity equals

& (LRJ&

d3/2LR)

€ €

) -Cdlog(dR/rk) = O (

D.2 Proof of Proposition 2

We first present the following algorithm that makes pairwise comparison using queries to the
QSGO(Definition 3).

Note that in Line 7 of Algorithm 4 the estimation step is carried out in a projected space along the
vector é. This is motivated by the fact that we are specifically interested in the information of the
gradient V f within this projected space, which effectively reduces to a one-dimensional variable.
As a result, the mean estimation can be performed without introducing an additional factor of v/d in
the query complexity as given in Theorem 4.

Lemma 8. For any yi0,yr0 € Br(0) and any € > 0, with success probability at least 1/(6T)
Algorithm 4 returns a point y € R? satisfying

) < min f(\ 1-\y, '
f(Y)—AE}%ﬁ]f( yio + ( )¥r0) + €

using O (RL/€') queries to an L-bounded QSGO Og defined in Definition 3.
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Algorithm 4: StochasticLineSearch(y;o,¥yr0,€)

Input: Endpoints y;,y, € Br(0), accuracy ¢
Output: y such that f(y) < minycpo,1 f(Ay: + (1 — Ny,) + €.
Yi & Yio, Yr < Yro
if y; = y, then return y;
else
< Tyiowl
repeat

Ym < (yl + yr)/2

Obtain an estimate §s(y,) of Vf(y.,) & with error at most ¢’ /(4R)

if |ga(ym)| < €/(4R) then returny < y,,

else

| if ge(ym) > O then y, < y,, else y; < yn
until ||y, —y;|| <€/L
returny < y;

Proof. Observe that in each iteration the value ||y, — y;|| is decreased by at least 1/2. Hence, the
total number of iterations is at most

llyro — yuoll 2RL
——— < ).
log, ( 7L < log, "

Within each iteration, we need to estimate the value V f (ym)Té, which is the component of
V f(y.m) along é. Note that this is essentially a univariate mean estimation problem, given that € is

fixed in this iteration we can define an 1-dimensional random variable V f (y,,) ' & whose variance
is at most

Var[Vf(ym) " €] <E|Vf(ym) e? <E|Vfiym)|? < L.

Then by Lemma 7, with success probability at least

-1
1-— (GTlog2 (T)) , (15)

an estimate of V f(y,,) " & with error at most €’ /(4R) can be obtained using

e s (6T10g2 (2§L>) ~0 (}EL)

queries to the quantum stochastic gradient oracle Og, given that we can prepare the following quan-

tum oracle
Og7s %) ®10) — [x) ®/ , \/Drx(v)dv ’vTé> ® |garbage(v)),
veR

using one query to Og. Hence, Algorithm 4 uses O(RL/¢) queries to the quantum stochastic
gradient oracle Og, with failure probability at most

- 2RI\ " _ 1

by union bound. Next, we show that the output ¥ of Algorithm 4 has a relatively small function
value as desired. We denote

X = argminf (Ayio + (1 - Nyro)  and  y* := Ay + (1 — A)yro.
A€0,1]

If the algorithm terminates at a point y satisfying |gs(¥)| < €'/(4R), by convexity and the Cauchy
Schwarz inequality we have

!/

F3) = 167) < IVIE)Tel- Iy —y°ll < 57 2R < ¢
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Otherwise, by induction we can demonstrate that in each iteration of the algorithm, y* resides within
the segment bounded by y; and y,. Assume that this assertion holds true for the ¢-th iteration. If
Ge(ym) > € /(4R), we have

VEym):yi —ym) = —(VI(ym), &) - [y — ymll

. ¢
< (@) - 15 Iyt =3l <0,
indicating that the value of f will decrease along the direction y; — y,,. Hence, y* lies in the
segment between y; and y,, of the ¢-th iteration, or equivalently, the segment between y; and y .,
of the (¢ + 1)-th iteration, given that f is convex. A symmetric argument applies in the case of
Ja(¥ym) < €/(4R). Then, we have

ly: =yl < lly: =yl
for every iteration, which leads to

~

€
T
Iy yII_L

when the algorithm terminates. Hence,
f@)—f) =L lly-yll=¢
considering that f is L-Lipschitz. O

Using Algorithm 4 as a subroutine, we develop the following Algorithm 5 that solves Problem 5.

Algorithm 5: Stochastic Approximately best point among finite number of points

Input: A set of points {x1,...,x7} C Br(0) where T is a power of 2, accuracy e
Output: X such that f(x) < min; f(x;) + €.
Yo, < x; foralli € [T]
forr=1,...,log, T do
| forj=1,...,7/27 do y,; =StochasticLineSearch(y, 1,2j 1,¥r—1,2j,€/10ogy T)

return yjog 7,1

Proof of Proposition 2. We start by demonstrating that without loss of generality we can assume 7
to be a power of 2. If 7 is not already a power of 2, we can simply augment the set with at most 7
points, each being x;, without changing the algorithm’s output.

Next, we show that Algorithm 5 makes 7 — 1 calls to the StochasticLineSearch(-) subroutine
(Algorithm 4) with an accuracy of € = €/log, T to solve the Problem 5 problem. The algorithm
exhibits a hierarchical structure, as illustrated in Figure 1, where each non-leaf node invokes the
StochasticLineSearch(-) subroutine once. Consequently, the total number of calls is 7 — 1.

By Lemma 8, each call to StochasticLineSearch(-) is executed successfully with probability
at least 1 — 1/(67). Then by union bound, we can deduce that the likelihood of all calls to
StochasticLineSearch(-) being successful is at least 5/6. In this case, for any node y. ; in
the tree with 7 € [log, 7] and j € [T /27], by convexity and the guarantee of Lemma 8 we have

f(yT,j) < /\Ien[énl] .f(>\y7'—172j—1 +(1 - )\)y‘f‘—l,zj) +¢€/logy T

< Hlin{f(nyl,Qj,l), f(YT71,2j)} + 6/ IOgQ T.

Therefore for any leaf node x; with j € [T, by summing over the path between the root y; ; and
x; we have

f(yea) < f(xg) +t- = f(x;) +¢,

€
log, T
which leads to

flyen) < jrg[i% f(x5) + e,
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Figure 1: The hierarchical structure of Algorithm 5.

indicating y,; is a valid solution of Problem 5. Note that there are in total 7 — 1 non-leaf
nodes in Figure 1, and the value of each non-leaf node is computed by one call to the subrou-
tine StochasticLineSearch(-). Hence, the total number of calls to StochasticLineSearch(-)

equals 7 — 1, and the overall failure probability of Algorithm 5 is at most
1 1
1)< 17
(T-1) =<2 a7
by union bound, as the failure probability of Algorithm 4 is at most 1/(67 ). Since each call to

Algorithm 4 takes
~ (RL ~ L
o <R> ~ 6 (R>
€ €

queries to the quantum stochastic gradient oracle Og defined in (2), the total number of queries to
the quantum stochastic gradient oracle Og is then O (RLT /e). O

D.3 Proof of Corollary 1

Proof of Corollary 1. We first run cutting plane method with the separation oracle being an {5z-

approximate gradient of f implemented by Algorithm 1, which by Proposition 1 outputs a set [' of
T = O(dlog(L/¢)) points containing at least one O(¢)-optimal point of f using O (d32LR/e)
queries to Og with success probability at least 5/6. Then by running Algorithm 5 on I, with success
probability at least 5/6 we can find a point X € R? satisfying

759 < min f(x) + ¢ < f(x") + O(e),

which takes O(RLT /¢) = O(dRL/¢) queries to Og by Proposition 2. Hence, the overall number
of queries to Og equals O(d*?LR/¢), and the overall success probability is at least 2/3. O

E Proof of Theorem 6

The proof of Theorem 6 is based on the following result from [40].

Theorem 9 ([40, Theorem 1]). Consider the bounded variance setting in Problem 2, the output X o+

of Algorithm 6 is an expected 2%‘/ + 62-critical point.

Proof of Theorem 6. By Theorem 9 and the associated parameter setting, the output x,,; of Algo-

rithm 6 satisfies
2A/0

E[|V f (%out)|I* < +62 <€,
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Algorithm 6: Quantum randomized SGD (Q-SGD)

Input: Function f: R? 5 R, precision ¢, variance o, smoothness ¢
Parameters: & = ¢/3, total iteration budget 7 = 12A/e 2
Output: e-critical point of f

Uniformly randomly select N from 1,...,7T
Setxg « 0
fort=0,1,2,...,N — 1do
L Call Algorithm 1 for an unbiased estimate g; of V f(x;) with variance at most 52
Xp1 ¢ Xp — 8/l
return Xy

implying that Algorithm 6 solves Problem 2 with probability at least 2/3 under the bounded variance
setting, and the remaining thing would be to analyze the number of queries it makes to Og. By
Theorem 4, at each iteration one can run Algorithm 1 to obtain an unbiased estimate g; of V f(x;)

with variance at most 52 using
o €

queries to Og. Then, the total number of queries to Og is at most

ro(e#)-o{9)

F Proof of Theorem 7

Algorithm 7: Q-SPIDER

Input: Function f: R - R, precision ¢, variance o, smoothness ¢

Parameters: ¢ = %, 0 = ﬁ, 09 = ﬁ\ /ﬁ, total iteration budget 7 = 16(()7#

Output: An e-critical point of f

Setxg < 0

fort=0,1,2,...,7 do

if mod (t,¢q) = 0 then
Call Algorithm 1 to obtain an unbiased estimate g; of V f(x;) with variance 6%
Vi < 8¢

else

Call Algorithm 1 to obtain an unbiased estimate g, of V f(x;) — V f(x;—1) with

variance 63

| Vi 8t Vi

if ||v¢|| < 2¢ then return x;;

else x; 41 < x; — 5+ H“j—:”

return x

The proof of Theorem 7 is based on the following result from [29].

Theorem 10 ([29, Theorem 1]). Consider the mean-squared smoothness setting in Problem 2, the
output Xqut of Algorithm 7 is an expected e-critical point.

Proof of Theorem 7. Theorem 10 shows that Algorithm 7 can solve Problem 2 under the mean-
squared smoothness setting and the remaining thing would be to analyze the number of queries it
makes to Og .
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For each iteration ¢ with mod(¢,¢) = 0 such that Line 5 is executed, note that we can prepare the
following quantum oracle

Os 1) 910) = ) [ /oo g(x.w)) © garbage(x, ).
where p(w) is the probability distribution of the random seed w, by first applying Og to the state
o ([ Vi) o)
w

and then uncompute the second register. This procedure uses one query to the o-SQ-QSGO O*gg
(Definition 4). By Theorem 4, one can run Algorithm 1 to obtain an unbiased estimate g; of V f(x;)

with variance at most 6% using
g1 €

queries to Og and thus the same number of queries to O*gg .
Similarly, for each iteration ¢ with mod(¢,q) = 0 such that Line 7 is executed, note that one can
prepare the following quantum oracle

OL |x¢) ® [x—1) ® |0) = [x¢) ® |x¢-1)
® / V@) |g(xe, ) — g(xe_1,w)) ® |garbage(xe, xe—1,w))

by first applying Og twice to obtain the state

)@ ) @ [ Vo)) o lgx.w) @ gx-1,0)

® |g(x,w) — g(x—1,w)) ® |garbage(xy, x¢—1,w))
and then uncompute the fourth and the fifth register. Observe that

]EHg(Xt,W) — g(xi—1,w)||> < P]x¢ — x¢—1|| < €2,

then by Theorem 4, one can run Algorithm 1 to obtain an unbiased estimate g; of V f(x;) —
V f(x;_1) with variance at most 6% using

o)

queries to Oé and thus twice the number of queries to Og . Then, the total number of queries to O*g'9
can be expressed as

ool -o ()

G Proof of lower bounds

G.1 Proof of Proposition 3

Note that Problem 3 is strictly harder than the multivariate mean estimation problem considered
in [25]. In the latter, the objective is to produce an estimate of the expected value within a bounded
¢4 error, without the requirement of unbiasedness. A query lower bound for solving quantum mean
estimation was established in [25].
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Lemma 9 ([25, Theorem 3.8]). Let 0 > 0 and denote P, to be the set of all d-dimensional quantum

random variables with covariance matrix ¥ such that Tr(X) = o2 Suppose every X € P, is

indexed by some random seeds w, i.e.,
X =Xw), w~pq,
where pq denotes the probability distribution of the random seed w. Then there exists a constant «

such that for any n > ad and any quantum algorithm that uses at most n queries to the following
two oracles

%@%/VWMMW> and By |w)[0) = |w) [X(w)),

there exists an instance X € P, such that the quantum algorithm returns a mean estimate [i of the

mean |1 of X that satisfies
- ovd
uuHZQ<>
n

By employing an oracle reduction argument, we obtain our lower bound result based on Lemma 9.

with probability at least 2/3.

Proof of Proposition 3. We first show that one query to the quantum sampling oracle O x defined in
Definition 1 can be implemented using one query to Og, and one query to Bx. In particular, observe
that

Bx0q [0) ©[0) = / Vra(@)dw |w) © | X ()).

By measuring the first register in the computational basis spanned by all the random seeds {|w)},
we can obtain the desired output of Ox. Hence, if there exists a quantum algorithm making at
most O(L+/d/&) queries to the oracle Ox that solves Problem 3 with success probability at least
2/3, there also exists a quantum mean estimation algorithm that uses at most O(L+/d/&) queries
to Oq and Bx and for any X € P, it outputs an estimate fi of the mean p of X that satisfies
||z — p|| < O(&) with probability at least 2/3, which contradicts to Lemma 9. O

G.2 Proof of Theorem 8

Our proof follow a similar approach to the previous proof of the quantum mean estimation lower
bound [25]. Specifically, our results are derived through a reduction to a specific multivariate mean
estimation problem. In this problem, all vectors are sampled from a set of orthonormal bases and
there might be duplicated vectors. We choose to reduce to this particular problem instead of directly
reducing to mean estimation problem because the construction of our hard instances require a tighter
control over the norm of the vectors as well as the norm of their expected value. This problem can
be equivalently represented as the following composition problem, as defined in [25].

Problem 6 (Search™ o ParityM). Let N,M > 1 be two integers. Let An nr denote the set of
matrices A € {0, 1}N*M sych that | N /2| rows have Hamming weights | M /2], and the other rows
have Hamming weights | M /2] 4 1. Define the vector b\) such that,

(18)

A _ 0, ifthe i-th row of A has Hamming weight | M /2],
¢ |1, ifthei-th row of A has Hamming weight | M /2] + 1,

for each i € [N]. Then, the Search™ o ParityM problem consists of finding a vector b € RY that
minimizes |b — b ||| given a quantum oracle

Oalisj) = (=1)* ]i, 5) . (19)
[25] showed that (NN M) queries are needed to approximate the vector b(4) with small error.
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Lemma 10 ([25, Lemma 3.6]). There exists a constant « > 1 such that, for any quantum algorithm
for the Search™ o ParityM problem that uses at most N M /o queries there exists an A € An

such that this algorithm returns a vector b satisfying HE — b || >N /2 with probability at least
2/3.

We establish our quantum lower bounds for stochastic convex optimization by establishing a cor-
respondence between the Search™ o ParityM problem and Problem 1. Specifically, for any input
A € Ay to the Search™ o ParityM problem, we design the following convex function whose

optimal point corresponds to the solution of the Search? o ParityM problem under certain sets of
parameters,

fAx) = E[fi; ()] (20)
where
1 2L R
800 = o) + 3 max 0. Jx - 5 |

for some g; ; € R? satistying ||g; ;|| < L forall i € [N]and j € [M].
Lemma 11. Denote g .= E[g; ;]. Then, the function fA defined in (20) has the following properties
0]

if g is a non-zero vector.

1. f4 is convex.

2. fAis minimized at x* = & i

o

2

o

B
3. Every e-optimum x of f* satisfies

<R X *> Re
— . , X Z 1— —
2 [l 2|l

1 2L R X
G = —— g+ — - - =, C— 21
gi,j (X) 3 8ij + 3 maX{HXH D) 0} ||X|| 2D

4. For

it is the case that

Elgi;j(x)] € 0f*(x) and |gi;(x)[|<L,  ¥xeR"

0,J
Proof. Since f is the sum of a linear function and a maximum function, both of which are convex,
fA itself is convex.

Observe that the minimum of f# cannot be achieved when ||x|| > R/2 for otherwise the function
value can be further decreased when moving towards O given that

lgl = 2 i 8i < > il <1
& NM ||= T NM =
When |x| < R/2, f4 can be expressed as

_ 1 B

fA(X) = _g <X7g> )

which is minimized at

el vad
For any x that is an e-optimum of f*, we define

I E N S
g- ”1”, otherwise,

R g Rb(A)
2
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which satisfies f(x’) < f(x) and is thus also an e-optimum of f. Then we can derive that

1 1
_g <Xlag> + g <X*ag> S €
and
. .o el
(x/',x*) > (x*,x*) —e- =
lell
Z 1 - ifa
2|lgll

which leads to

<R XX*>>1_ Re
2 <" /7 2l

> ||x’||- As for the last entry, note that

L

R
given that 5 = =

1 2L R X
Elg; (x)] = —= - Bg; i + — . B G
Blass (0] = - Egy+ 5 max{ Il - 5 -

1 7+2L || || R X
=—c- — -max | ||x|]| — = ¢ —
38773 2 [ =l

which is the (sub-)gradient of f* at x. Moreover, for any i, j we have

) 2L
18 (3 < 2 IIguH +— <L

O

Equipped with Lemma 11, we first prove our quantum lower bound for Problem 1 in the low-
dimensional regime by encoding the Search o Parity problem into the task of finding an e-optimal
point of 4 defined in (20).

Proof of Theorem 8 when € < : OISf/E Our proof proceeds by contradiction. Denote n = %\O/E.
Assume for simplicity that d is even, and an is an even multiple of d (the other cases can be handled

by padding arguments). Then, we show that Search? o Paritya"/ < on this instance A can be solved
by finding an e-optimum of f# defined in (20). In particular, we define the set of vectors {g; ;} to
be

L
L (1)tHie, (22)
(2an)? — d?
where i € [d], j € [an/d], and e; € R? is the i-th indicator vector. Consider the function f*
defined in (20) with the set of vectors {g; ;} having the values in (22), we have

8ij =

an/d

Elgi ;] = 1)t+Ae

&= 0.3 «/ (2an)? — d? ¢ Z Z
d 2L "
\/(2om z_: (2an)? — d? &

where the vector b(4) is defined in (18). By Lemma 11, every e-optimal point x of f4 satisfies

R x Re

ST X ) 21— g

2 [|x|] 2||gll
by which we can derive that

A
<vab<A>> 5 1B (1_ Re )
2 x|l (|| 2|gll

>R\/E_3ane_R\/E
—2V2 L 47
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which leads to

d x d
,.77]3(14) >
<\[2 I > 22
d x d
2. 2| = A=,/
V3 2= 1ol = 5
\/3 x
2 x|

indicating that we can obtain an estimate b = \/g H%H of b(4) with £y-error at most v/d/2 by

Given that

we have

<

3

vd
2

obtaining an e-optimal point of f4.

Next, we show that we can implement a quantum stochastic gradient oracle of f“ using only one
query to the oracle O 4, given that one can use one query to O 4 to implement the following oracle

Og 1) 1) 10) = 1) 15 |gi.z)

and use one query to Oé to implement

OF %) [0} 15) 10) = |x) [2) 1) |&:.5(x)) »

where g; ;(x) is defined in (21). Then by applying O‘f1 to the state

x)> > 116 10)

i€[d] j€lan/d]

and uncompute the second and the third register, we construct the following stochastic gradient
oracle Og of f4.

Og x) ®[0) — \/7|x ®Z Z |8, (x

d] j€lan/d]

Hence, any quantum algorithm that can find an e- optimum of f4 using T queries to Og can be
transformed into a quantum algorithm for the Search? o Parltya”/ d problem that uses T queries

to the oracle O 4 defined in (19) and returns an estimate b with {5-error at most v/d d/2. Then by
Lemma 10, for any quantum algorithm making less than

%1 RL |d

.da260¢2

queries to the quantum stochastic gradient oracle Og, there exists an A € Ag o, /q and corresponding
f* such that the output of the algorithm is not an e-optimum of f* with probability at least 2/3. [

Similarly, we can obtain our quantum lower bound in the high-dimensional regime by encoding the
Search o Parity problem into the task of finding an e-optimal point of f4 defined in (20).

Proof of Theorem 8 when T00 f <€ < 1. Our proof proceeds by contradiction. Denote n =
27,2 . . 1
mlgow Consider an instance A € A, 1 of the Search®” o Parity! problem where d is a power

of 2 and « is even. Then, we show that Search? o Parityo‘"/ < on this instance A can be solved by

finding an e-optimum of 4 defined in (20). In particular, we define the set of vectors {g;, ;} where

j=1tobe
n
gi1 = aLA;1,/ SaTn — 208 (23)
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where i € [an] and e; € R? is the i-th indicator vector. Consider the function f# defined in (20)
with the set of vectors {g; 1} having the values in (23), we have

n
'3 A1 1 7b(A)
&= gl \/Qan—QOzZ 1€ \/Qan—Qa ’

where the vector b(4) is defined in (18). By Lemma 11, every e-optimal point x of f4 satisfies

R x Re

ST X ) 21— g

2 || 2|l
by which we can derive that

A
<Rx’b<A)> > 1P (1_ Re )
2 |||l x|l 2[|gll

S R an 6ane Ry/an

=92V 2 L 4

an X an
[on ,b(A>> 5 o
< 2 x|l 2v/2
an x| _ [b)] = /2
2 x|l 2’
H o Von
V 2 |X||

- 2
indicating that we can obtain an estimate b=, /%m of b(Y) with £y-error at most v/d/2 by
obtaining an e-optimal point of f4.

which leads to

Given that

we have

Next, we show that we can implement a quantum stochastic gradient oracle of f“ using only one
query to the oracle O 4, given that one can use one query to O 4 to implement the following oracle

Og i) [0) — 17) lgi1)
and use one query to Og‘ to implement

O 1) [i) 10) = |x) [d) |&i1 (%)) ,
where g; 1(x) is defined in (21). Then by applying O’f‘ to the state

F'X ) Y iy o)

i€lan]

and uncompute the second and the third register, we construct the following stochastic gradient
oracle Og of fA.

Og |x>®|0>ﬁ—|x > [&ialx
i€[an]

Hence, any quantum algorithm that can find an e-optimum of f4 using 7" queries to Og can be
transformed into a quantum algorithm for the Search®” o Parity" problem that uses 7 queries to the
oracle O 4 defined in (19) and returns an estimate b with {y-error at most v/d /2. Then by Lemma 10,
for any quantum algorithm making less than

R?L?

100¢2

queries to the quantum stochastic gradient oracle Og, there exists an A € A, 1 and corresponding
f* such that the output of the algorithm is not an e-optimum of f* with probability at least 2/3. [

an =
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