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Abstract
We develop a new parallel algorithm for minimizing Lipschitz, convex functions with a stochastic
subgradient oracle. The total number of queries made and the query depth, i.e., the number of par-
allel rounds of queries, match the prior state-of-the-art, Carmon et al. (2023), while improving upon
the computational depth by a polynomial factor for sufficiently small accuracy. When combined
with previous state-of-the-art methods our result closes a gap between the best-known query depth
and the best-known computational depth of parallel algorithms.

Our method starts with a ball acceleration framework of previous parallel methods, i.e., Car-
mon et al. (2020); Asi et al. (2021), which reduce the problem to minimizing a regularized Gaussian
convolution of the function constrained to Euclidean balls. By developing and leveraging new sta-
bility properties of the Hessian of this induced function, we depart from prior parallel algorithms
and reduce these ball-constrained optimization problems to stochastic unconstrained quadratic min-
imization problems. Although we are unable to prove concentration of the asymmetric matrices that
we use to approximate this Hessian, we nevertheless develop an efficient parallel method for solv-
ing these quadratics. Interestingly, our algorithms can be improved using fast matrix multiplication
and use nearly-linear work if the matrix multiplication exponent is 2.

The arXiv version of this paper can be found at https://arxiv.org/abs/2406.07373.
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1. Introduction

Consider the classic problem of Lipschitz convex optimization. In this problem, there is a convex
f : Rd

! R that is 1-Lipschitz, i.e., |f(x) � f(y)|  kx� yk for all x, y 2 Rd, that is guaranteed
to have a minimizer x? 2 Rd with kx?k  1. The goal of the problem is to compute an (expected)
✏-approximate minimizer to f , i.e., x 2 Rd with Ef(x)  f(x?) + ✏ given access to f only though
a subgradient oracle g that when queried at x 2 Rd outputs a vector g(x) 2 @f(x), where @f is the
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set of subgradients of f at x. We focus on this standard setting in the introduction for simplicity,
however our results extend to the more general case of bounded stochastic gradient oracles and
further relaxations of the bounds on Lipschitz continuity and the minimizer (see Problem 1).

Lipschitz convex optimization is foundational in optimization theory, and its study has moti-
vated well-known optimization algorithms. Simple, classic subgradient descent solves the problem
with O(✏�2) oracle queries Nemirovski and Yudin (1983), and cutting plane methods solve the
problem with O(d log ✏�1) oracle queries Khachiyan et al. (1988a). Consequently, the query com-
plexity of the problem, i.e., the number of queries needed to solve the problem in the worst case,
is O(min{✏�2

, d log(✏�1)}. Furthermore, this bound is known to be optimal among deterministic
algorithms for all settings of ✏ and d Nemirovski and Yudin (1983), and is optimal even among
randomized and quantum algorithms in certain settings Agarwal et al. (2012); Garg et al. (2021).

Due to the massive growth in dataset sizes and use of parallel computing resources, a line of
work has studied parallel variants of Lipschitz convex optimization Nemirovski (1994); Duchi et al.
(2012); Balkanski and Singer (2018); Bubeck et al. (2019); Carmon et al. (2023) and non-Euclidean
generalizations Diakonikolas and Guzmán (2019); Chakrabarty et al. (2023). Study of this problem
dates to at least Nemirovski (1994) which proposed the parallel oracle access model, in which the
algorithm proceeds in T rounds and in round t 2 [T ], the algorithm queries the oracle with nt

points xt,1, . . . , xt,nt 2 Rd and receives the output of the oracle on each point. In round t, the nt

queried points can depend only on the queries in the previous rounds and the output of the oracle in
those rounds (and additional randomness used by the algorithm). We call such an algorithm highly

parallel Bubeck et al. (2019) if the number of queries in each round is bounded by a polynomial in
d and a natural condition number for the problem, e.g., nt = poly(d, ✏�1) for all t 2 [T ]. The total
number of rounds of the algorithm, T , is called the query depth of the algorithm, and is a natural
measure of its parallel performance.

Perhaps surprisingly, nontrivial parallel speedups, i.e., parallel algorithms whose query depth
is better than the best-known query complexity, are only known for certain ✏ ranges. In fact, the
O(✏�2) complexity of simple subgradient descent is optimal among highly parallel algorithms for
sufficiently large ✏. The associated lower bound was shown for all ✏ & d

�1/6 by Nemirovski
(1994); Balkanski and Singer (2018) and for all ✏ & d

�1/4 by Bubeck et al. (2019).1 Additionally,
when ✏ . d

�1, the current state-of-the-art query depth is achieved by applying classical cutting
plane methods, e.g., Vaidya (1996). However, in the regime where d

�1/4 & ✏ & d
�1, which we

term the intermediate regime of ✏, nontrivial parallel speedups are known and there are algorithms
which improve upon both subgradient descent and cutting plane methods. Namely, Lipschitz convex
optimization was first shown to be solvable with query depth eO(d1/4✏�1) by Duchi et al. (2012),
and then eO(d1/3✏�2/3) by Bubeck et al. (2019), the current state-of-the-art query depth.

However, beyond query depth, there are other natural ways to parameterize the complexity of a
highly parallel algorithm. Specifically, we measure the complexity of parallel algorithms as follows.

Definition 1 (Parallel complexity) We define the following four properties of an algorithm solving

an optimization problem, e.g., Problem 1, with parallel access to an oracle g.

1. Query depth: number of sequential rounds of interaction with g (queries submitted in batch).

2. Query complexity: total number of queries to g.

1. We use ., &, and eO to hide polylogarithmic factors in d and ✏
�1 in the introduction, and more broadly we use this

notation to hide polylogarithmic factors in d and LR
✏ throughout the paper in the context of Problem 1.
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3. Computational depth: number of sequential rounds of computation, outside of querying g.

4. Computational complexity: amount of computational work performed, outside of querying g.

If g can be implemented with O(Tquery) work and O(Dquery) depth, we write that an algorithm can

be implemented with O(a · Dquery + b) depth and O(c · Tquery + d) work when its query depth

is O(a), query complexity is O(c), computational depth is O(b), and computational complexity is

O(d).

Recently, Carmon et al. (2023) designed an algorithm which matched the eO(d1/3✏�2/3) query
depth of Bubeck et al. (2019), while simultaneously achieving a query complexity of eO(d1/3✏�2/3+
✏
�2). This query complexity improved upon the eO(d4/3✏�8/3) query complexity of Bubeck et al.

(2019) and, when ✏ . d
�1/4, matched that of subgradient descent, which is optimal for ✏ & d

�1/2

(as discussed earlier). Unfortunately, the computational depth of Carmon et al. (2023) is eO(d1/4✏�1)
(matching that of Duchi et al. (2012)). This computational depth scales polynomially worse than
the query depth of Carmon et al. (2023) for ✏ . d

�1/4, and is larger than the computational depth
of state-of-the-art cutting plane methods, e.g., Vaidya (1996), when ✏ . d

�3/4.
The key question motivating our work is whether this gap between the computational and query

depths of state-of-the-art parallel algorithms in the intermediate regime is inherent. Specifically we
address an open problem left by Carmon et al. (2023) as to whether there is an algorithm which,
in the intermediate regime of ✏, obtains the best-known query depth and query complexity, while
simultaneously obtaining a computational depth no worse than its query depth (ideally at low over-
head to the algorithm’s computational complexity). Closing this gap is a natural problem that would
expand the theory for parallel stochastic convex optimization, and potentially be of broader utility.

Our results. Our main result is a new algorithm which closes this gap for Lipschitz convex opti-
mization and, more broadly, for stochastic convex optimization, as stated in Problem 1. The most
general form of our result, Theorem 4, is stated in Section B. For simplicity in the introduction, we
state the specialization of Theorem 4 to Lipschitz convex optimization here.

Theorem 2 If queries to a subgradient oracle are implementable with O(Dquery) depth and O(Tquery)
time, then there is a randomized algorithm which solves Lipschitz convex optimization with

eO(d
1
3 ✏

� 2
3 ·Dquery+d

1
3 ✏

� 2
3 ) depth and eO

⇣
(d

1
3 ✏

� 2
3 + ✏

�2) · Tquery + d
4
3 ✏

� 2
3 + d

5�!
3 ✏

� 4!�2
3

⌘
work,

where ! < 2.372 Alman et al. (2024) is such that multiplying d⇥ d matrices requires O(d!) work.

Theorem 2 matches the query depth and query complexity of the state-of-the-art algorithm Car-
mon et al. (2023) (in terms of query depth) in the intermediate regime and attains a computational
depth matching its query depth up to logarithmic factors (see Table 1 for a more complete compar-
ison to prior work). Interestingly, the method uses fast matrix multiplication, a technique used to
obtain state-of-the-art work and depth complexities for linear system solving; however, if ! = 2,
assuming vector operations using a stochastic gradient oracle require ⌦(d) work, then its computa-
tional complexity is no worse than the work to query the oracle. Moreover, if Tquery is moderately
larger than d (e.g., Tquery = ⌦(d ·✏�

1
2 ) for the current value of ! 6= 2), the overhead of d

5�!
3 ✏

� 4!�2
3

is a low-order term compared to ✏
�2

· Tquery. In the more general Corollary 12 later in the paper, we
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Method Query depth Query complexity Computational depth

SGD Nemirovski and Yudin (1983) ✏
�2

✏
�2

✏
�2

Duchi et al. (2012) d
1
4 ✏

�1
d

1
4 ✏

�1 + ✏
�2

d
1
4 ✏

�1

Bubeck et al. (2019) d
1
3 ✏

� 2
3 d

4
3 ✏

� 8
3 d

4
3 ✏

� 8
3

Carmon et al. (2023) d
1
3 ✏

� 2
3 d

1
3 ✏

� 2
3 + ✏

�2
d

1
3 ✏

� 2
3 + d

1
4 ✏

�1

CPM* Vaidya (1996) d d d

Theorem 2 d
1
3 ✏

� 2
3 d

1
3 ✏

� 2
3 + ✏

�2
d

1
3 ✏

� 2
3

Table 1: Highly parallel Lipschitz convex optimization algorithms. The table depicts the history
of improvements for solving Lipschitz convex optimization algorithms hiding polyloga-
rithmic factors in d and ✏

�1. CPM* refers to “cutting plane methods” and to the best of the
authors knowledge Vaidya (1996) is the first paper to achieve the state-of-the-art complex-
ity stated in the table; there are additional CPM results discussed in Theorem 3. The table
applies to Problem 1 if each occurrence of ✏�1 is replaced with  := LR

✏ and the CPM*
line is changed (again, see Theorem 3).

show that it is possible obtain different tradeoffs between computational complexity and computa-
tional depth.

Beyond these quantitative improvements to parallel Lipschitz and stochastic convex optimiza-
tion, to obtain our results, we provide several insights on related tools of potential independent
interest (all outlined in Section 2). First, we provide a structural result (Lemma 9) about Gaussian
convolutions of convex functions, a central tool in stochastic optimization. When combined with
prior parallel optimization machinery, Lemma 9 reduces our problem to solving certain structured
stochastic quadratic optimization problems in parallel. We then provide a new parallel algorithm
for solving these quadratic optimization problems, which circumvents the need for concentration
bounds. Along the way, we provide tools for boosting expected optimality bounds into high proba-
bility and handling hard constraints. We hope these tools may find broader use in optimization and
learning theory and facilitate reaping the rewards of parallelism while mitigating the computational
costs.

Remark 3 (Parallel complexity of cutting plane methods) Cutting plane methods have a longer

history than that conveyed in the CPM* line of Table 1. Levin (1965); Newman (1965) showed

that it is possible to obtain query complexity eO(d) and since then a line of work has established

different tradeoffs between query complexity and computational complexity Shor (1977); Yudin and

Nemirovskii (1976); Khachiyan (1980); Khachiyan et al. (1988b); Nesterov (1989); Vaidya (1996);

Bertsimas and Vempala (2004); Lee et al. (2015); Jiang et al. (2020). Though computational depth

was not necessarily highlighted in these works, we believe the first method with eO(d) query com-

plexity that could be implemented in depth eO(d) is due to Vaidya (1996); subsequent papers may
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or may not have the same property. For stochastic convex optimization (Problem 1), though not

explicitly stated, we believe the state-of-the-art is to leverage Vaidya (1996) within the framework

of Sidford and Zhang (2023) to obtain an algorithm query and computational depth eO(d) and query

complexity eO(d · poly()) for  := LR
✏ .

Paper organization. We assemble the pieces to prove Theorem 2 and its generalization Theo-
rem 4 throughout the rest of the paper. In Section 2, we overview our approach, by first reviewing
facts about Gaussian convolutions and a ball acceleration result from Carmon et al. (2023), which
constitutes our main framework. Additionally, we prove a result about the stability of Hessians of
Gaussian convolutions of convex functions, which is the main structural insight enabling our new
algorithms. We put together the pieces to prove our main result in Section 3.

Due to space constraints, we defer the formal statements and correctness proofs of various
components of our algorithm to the appendices. In Appendix A, we first give an efficient parallel
algorithm for optimizing (suitably regularized) local quadratic approximations to a Gaussian con-
volution. Finally, in Appendix B, we show how to obtain a key parallel ball optimization oracle
implementation used in Theorem 4 by using this quadratic solver to implement the constrained ball
oracles required by the acceleration framework by performing a binary search over our subroutine
in Appendix A.

General notation. For d 2 N, we let 0d and d denote the all-zeroes and all-ones vectors in Rd, Id
denote the identity matrix in Rd⇥d, and [d] := {i 2 N | 1  i  d}. We let k·k denote the Euclidean
norm of a vector. For x 2 Rd we let Bx(r) := {x

0
2 Rd

| kx
0
� xk  r} and B(r) := B0d(r) when

d is clear from context. We use � to denote the Loewner partial ordering over d ⇥ d symmetric
matrices, i.e., A � B if and only if x>Ax  x

>
Bx for all x, and define ⌫ analogously. For a

positive semidefinite (PSD) A 2 Rd⇥d, we let kvk
A
:= (v>Av)1/2 be the induced seminorm.

Parallel computation model. We assume a parallel computation model where all vector opera-
tions in Rd (e.g., addition and scalar multiplication) require O(d) work and O(1) depth, and that
all matrix-vector multiplications (including computing dot products) require O(log d) depth. We let
! < 2.372 Alman et al. (2024) be defined such that two d⇥ d matrices can be multiplied with work
O(d!). By a known reduction (Pan (1987); see also discussion in Pan and Reif (1985)), under this
definition of !, matrix multiplication can be performed in work O(d!) and depth O(log d). Under
different parallel models, some of these bounds may incur polylogarithmic factor overheads.

2. Technical overview

In this remainder of the paper we consider the following stochastic convex optimization problem.

Problem 1 (Stochastic convex optimization) In the stochastic convex optimization problem we

are given ✏, L,R > 0 and access to a stochastic gradient oracle g : Rd
! Rd

satisfying, for all x 2

Rd
, Eg(x) 2 @f(x) and Ekg(x)k2  L

2
for convex f : Rd

! R. The goal is to output an expected
✏-approximate minimizer of f over B(R), i.e., xout 2 Rd

such that Ef(xout)  minx2B(R) f(x)+✏.

We assume g can be implemented with O(Tquery) work and O(Dquery) depth.

Note that stochastic convex optimization (Problem 1) generalizes the Lipschitz convex optimiza-
tion problem defined in Section 1. By Jensen’s inequality and the convexity of k·k2, Ekg(x)k2  L

2

implies that kEg(x)k  L and consequently in Problem 1 at every point x there is a subgradient of
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norm at most L. This implies that f is L-Lipschitz and thus Lipschitz convex optimization is the
special case of Problem 1 when L = R = 1, each output of the stochastic subgradient oracle is
deterministic, and f has a minimizer x? 2 Rd with kx?k  1.

Our main result is the following efficient parallel algorithm for solving Problem 1. This theorem
immediately implies Theorem 2 in the special case of Lipschitz convex optimization.

Theorem 4 There is an algorithm (BallAccel in Proposition 7, using Proposition 11 as a ball

optimization oracle) which solves Problem 1 using:

O

⇣
d

1
3

2
3 log

13
3 (d) log log (d) · Dquery + d

1
3

2
3 log

28
3 (d)

⌘
depth, and

O

⇣⇣
d

1
3

2
3 log

10
3 (d) + 

2 log
19
3 (d)

⌘
· Tquery + d

4
3

2
3 log

10
3 (d) + d

5�!
3 

4!�2
3 log

19
3 (d)

⌘
work,

where ! < 2.372 Alman et al. (2024) is the matrix multiplication exponent, and  := LR
✏ .

In the remainder of this technical overview we cover the main steps in proving Theorem 4,
and discuss key insights and tools developed along the way, of possible broader utility. First, in
Section 2.1 we provide an overview of the general framework used by both our parallel algorithm
and prior work. In Section 2.2 we then discuss the key structural insight about this framework that
we make and leverage to depart and improve upon prior work. In Section 2.3 we then discuss our
main subroutine that we develop to leverage this structural insight and then in Section 2.4 we discuss
implementing the subroutine in low computational depth to obtain our result.

2.1. Framework: convolutions and acceleration

All prior parallel improvements over subgradient descent for Problem 1 in the intermediate regime
follow a similar broad framework Duchi et al. (2012); Bubeck et al. (2019); Carmon et al. (2023).
Each of these works considers a process for smoothing f , i.e., working with a smooth approxima-
tion, and each uses accelerated optimization methods, i.e., some form of momentum, for optimizing
the smoothing of f . Where the methods differ is in what smoothing is used, what accelerated method
is applied, and how the accelerated method is implemented. Our method follows the approach of
Carmon et al. (2023) which applies ball acceleration frameworks to optimize the Gaussian convo-
lution of f . We begin by reviewing these techniques and highlighting their implication for parallel
stochastic convex optimization.

Gaussian convolution. To solve Problem 1 rather than directly optimizing f , following the ap-
proach of Duchi et al. (2012); Bubeck et al. (2019); Carmon et al. (2023), we instead apply methods
that optimize the Gaussian convolution of f , i.e., the function resulting from convolving f with a
Gaussian, as defined below.

Definition 5 (Gaussian convolution) For f : Rd
! R and ⇢ � 0, we let f⇢ denote the convolution

of f with N (0d, ⇢
2
Id), the normal distribution on Rd

with covariance ⇢
2
Id and mean 0d. We use ⇤

to denote convolution and �p to denote the density function of N (0d, ⇢
2
Id), so that f⇢ = f ⇤ �⇢ and

f⇢(x) := E⇠⇠N (0d,⇢2Id) [f(x� ⇠)] =

Z

Rd
f(x� ⇠)�⇢(⇠)d⇠ for all x 2 Rd

.
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Working with f⇢ offers a number of advantages: it is smooth, twice differentiable, and stochastic
approximations to its gradient and Hessian can be computed by querying the stochastic gradient
oracle at appropriately chosen random points. Additionally, it satisfies a new structural property we
develop in Section 2.2. Formally, we recall the following facts from prior work Duchi et al. (2012);
Bubeck et al. (2019), where by the Alexandrov theorem, the first and second derivatives are almost-
everywhere defined in the third item. The fourth item in Fact 1 is shown in the proof of Lemma 8
in Bubeck et al. (2019).

Fact 1 (Lemma 8, Bubeck et al. (2019)) For all convex, L-Lipschitz f : Rd
! R, ⇢ � 0, and

x 2 Rd
:

1. f⇢ is convex, L-Lipschitz, twice-differentiable, and satisfiesr
2
f⇢(x) �

L
⇢ Id,

2. f(x)  f⇢(x)  f(x) + L⇢
p
d,

3. rf⇢(x) =
R

Rd rf(x� ⇠)�⇢(⇠)d⇠, and

4. r
2
f⇢(x) =

R
Rd r

2
f(x� ⇠)�⇢(⇠)d⇠ = 1

⇢2
R

Rd rf(x+ ⇠)⇠>�⇢(⇠)d⇠.

In light of Fact 1, we make the following observation.

Observation 1 In the context of Problem 1, let ⇢ := ✏
2L

p
d

. If a point xout solves an instance of

Problem 1 with f  f⇢ and ✏ 
✏
2 , then xout also solves Problem 1 with f  f and ✏ ✏.

Proof By the first item in Fact 1, it is valid to let f be f⇢ in an instance of Problem 1. By the second
item in Fact 1, letting x

? achieve minx2B(R) f(x),

Ef(xout)  Ef⇢(xout)  f⇢(x
?) +

✏

2
 f(x?) + ✏.

In the rest of the paper, we consider a fixed instance of Problem 1; our approach is to optimize f by
instead designing an algorithm for optimizing its Gaussian convolution f⇢. In light of Observation 1,
unless specified otherwise, we fix ⇢ := ✏

2L
p
d

throughout the rest of the paper.

Ball acceleration. To optimize the Gaussian convolution f⇢, we leverage recent advances in ac-
celerated proximal point algorithms, specifically a recent framework termed ball acceleration Car-
mon et al. (2020); Asi et al. (2021). Similar strategies were employed by Bubeck et al. (2019) and
Carmon et al. (2023), which reduce solving Problem 1 to a smaller number of carefully-designed
subproblems; in the case of Carmon et al. (2023), the subproblem is to minimize a regularized ap-
proximation to f⇢ over a small Euclidean ball (a ball optimization oracle). We specifically use the
following variant of ball acceleration from Carmon et al. (2023).

Definition 6 (Ball optimization oracle) We say Obo is a (�,�, r)-ball optimization oracle for F :
Rd
! R if given x̄ 2 Rd

, Obo returns x 2 Bx̄(r) with

E

F (x) +

�

2
kx� x̄k

2
�
 min

x02Bx̄(r)

⇢
F (x) +

�

2

��x0 � x̄
��2
�
+ �.
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Proposition 7 (Proposition 2, Carmon et al. (2023)) Let F : Rd
! R be L-Lipschitz and convex,

let R > 0, and let x
?
2 B(R). There is an algorithm BallAccel which takes parameters r 2 (0, R]

and ✏ 2 (0, LR] with the following guarantee. Define

 :=
LR

✏
, K :=

✓
R

r

◆ 2
3

, and �? :=
✏K

2

R2
log2(K).

For a universal constant Cba > 0, BallAccel produces x 2 Rd
such that EF (x)  F (x?) + ✏.

Letting T (�,�, r) � d and D(�,�, r) � log(d) denote the work and depth used by a (�,�, r)-ball

optimization oracle, the computational complexity of BallAccel is:

CbaK log3
✓
R

r

◆
T

✓
�?r

2

Cba
,
�?

Cba
, r

◆

+
X

j2[dlog2 K+Cbae]

Cba2
�j

K log

✓
R

r

◆
T

✓
�?r

2

Cba2j
log�2

✓
R

r

◆
,
�?

Cba
, r

◆
,

and the depth of BallAccel is:

CbaK log3
✓
R

r

◆
D

✓
�?r

2

Cba
,
�?

Cba
, r

◆

+
X

j2[dlog2 K+Cbae]

Cba2
�j

K log

✓
R

r

◆
D

✓
�?r

2

Cba2j
log�2

✓
R

r

◆
,
�?

Cba
, r

◆
.

Implication and approach. Proposition 7 allows us to focus on designing ball optimization or-
acles for f⇢ in the remainder of the paper. Concretely, in our algorithm each oracle approximately
solves a problem of the form

min
x2Bx̄(r)

f⇢,�,x̄(x) := f⇢(x) +
�

2
kx� x̄k

2
, (1)

where f⇢ is the convolution of the density function of N (0, ⇢2Id) and the function of interest f ,
and � > 0 is a regularization parameter. The key challenge we address is how to implement a ball
oracle for the Gaussian convolution efficiently in parallel. Since pioneering work of Duchi et al.
(2012) it has been observed that stability of the Gaussian convolution can be useful in this endeavor,
because higher moments of the Gaussian convolution can be efficiently approximated via parallel
queries. Duchi et al. (2012) leveraged smoothness (stability of the gradient) in accelerated gradient
descent, Bubeck et al. (2019) leveraged higher-order smoothness and concentration to approximate
the Gaussian convolution over a large regions, and Carmon et al. (2023) leveraged how it is possible
to obtain stochastic gradients for the Gaussian convolution at one point by sampling the stochastic
gradient oracle a nearby point.

Our work exploits a new stability property of Gaussian convolutions (Lemma 9) that we intro-
duce in the next Section 2.2. We leverage this property to essentially reduce implementing a ball
oracle to solving a linear system induced by the Hessian of the Gaussian convolution, which we dis-
cuss how to do efficiently in parallel in Sections 2.3 and 2.4. Along the way, we introduce several
tools which may be of broader interest to the stochastic optimization theory community.
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2.2. Hessian stability of the Gaussian convolution

Our starting point for designing our ball optimization oracle is the observation that the Hessian of
the convolved objective f⇢ is stable, in a precise sense, over balls of small radii r ⌧ ⇢. To explain,
note that for any x, y 2 Rd,

r
2
f⇢(x) =

Z

Rd
r

2
f(x� ⇠)�⇢(⇠)d⇠ =

Z

Rd
r

2
f(y � ⇠)�⇢(x� y + ⇠)d⇠.

So, if �⇢(x� y + ⇠) ⇡ �⇢(⇠) multiplicatively for all ⇠, then similarlyr2
f⇢(x) ⇡ r2

f⇢(y). Unfor-
tunately, this is not true: directly expanding shows

�⇢(x� y + ⇠)

�⇢(⇠)
= exp

✓
1

2⇢2

⇣
h2⇠, y � xi � kx� yk

2
⌘◆

.

If ⇠ is large in the direction y � x, then the first term in the exponential dominates. Standard
Gaussian tail bounds show the measure of such poorly-behaved ⇠ is small, but we do not have an
a priori upper bound on r2

f at the corresponding points (as f is possibly nonsmooth). Hence,
it is unclear how to quantify the effect of these points. We leverage the simple observation that
f⇢ = f ⇤ �⇢ is the convolution of �⇢/2 and that f⇢/2 is a smooth function with a bounded Hessian.
Consequently,r2

f⇢(x) ⇡ r2
f⇢(y) does hold for x and y in a ball of small radii r ⌧ ⇢ up to a small

additive factor (which we can control by choosing the radii). To formalize this, we use the following
notation for comparing deviations between a pair of PSD matrices in the following Theorem 8. We
then bound the stability of Hessians of the Gaussian convolution in Theorem 9.

Definition 8 (Matrix approximation) We say that PSD A 2 Rd⇥d
is an (✏add, ✏mul)-approximation

to PSD B 2 Rd⇥d
if A � exp(✏mul)B+ ✏addId and B � exp(✏mul)A+ ✏addId.

We choose this Definition 8 because it is symmetric: A is an (✏add, ✏mul)-approximation of B if
and only if B is an (✏add, ✏mul)-approximation of A. This symmetry reflects our setting of comparing
Hessians of the Gaussian convolution for pairs of points. It is straightforward that Definition 8
implies other notions of additive-multiplicative approximation, e.g., the less-symmetric alternative
exp(�✏mul)B� ✏addId � A � exp(✏mul)B+ ✏addId.

Lemma 9 Let f : Rd
! R be convex and L-Lipschitz, and ⇢ > 0. Then for x, y 2 Rd

, � 2 (0, 1),
r

2
f⇢(x) is an (✏add, ✏mul)-approximation to r

2
f⇢(y), following Definition 8, for

✏mul :=
kx� yk

2

⇢2
+

2 kx� yk

q
log 1

�

⇢
, ✏add :=

p
2L�

⇢
.

Proof Without loss of generality (as shifting by a constant vector does not affect the problem as-
sumptions), let y = 0d. Furthermore, let g := f⇢ and h := f⇢/

p
2, so that g = h ⇤ �⇢/

p
2. Note that

by Fact 1, r2
h is bounded by

p
2L
⇢ Id pointwise, and for all ⇠ 2 Kr := {⇠ 2 Rd

| hx, ⇠i � �r
2
},

�⇢/
p
2 (⇠) = exp

 
kxk

2
� 2 hx, ⇠i

⇢2

!
�⇢/

p
2(⇠ � x)  exp

 
kxk

2 + 2r2

⇢2

!
�⇢/

p
2(⇠ � x). (2)

9
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We hence have, by Fact 1 applied to h and g,

r
2
g(x) =

Z

Kr

r
2
h(x� ⇠)�⇢/

p
2(⇠)d⇠ +

Z

Rd\Kr

r
2
h(x� ⇠)�⇢/

p
2(⇠)d⇠

� exp

 
kxk

2 + 2r2

⇢2

!Z

Kr

r
2
h(x� ⇠)�⇢/

p
2(⇠ � x)d⇠

+

p
2L

⇢

 
Pr

⇠⇠N (0, ⇢
2

2 Id)

[⇠ 2 Kr]

!
Id

� exp

 
kxk

2 + 2r2

⇢2

!
r

2
g(0d) +

p
2L

⇢
exp

✓
�

r
4

⇢2 kxk
2

◆
Id.

In the second line, we used (2) and that r2
h �

p
2L
⇢ Id, and in the last line, we used standard tail

bounds on the Gaussian error function (DLMF, Eq. 7.8.3). The conclusion follows by substituting
the specific value r =

p
⇢ kxk · log

1
4 (1� ), and using symmetry of Theorem 8 in x and y.

Our ball optimization oracle objective f⇢,�,x̄ in (1) is regularized, so when the additive term is
dominated by the regularizer’s Hessian, we can show f⇢,�,x̄ is multiplicatively second-order stable.
This is the key fact that we use to facilitate the implementation of our ball optimization oracles.

Corollary 10 Let � > 0 and suppose that y 2 Bx(r) for 0 < r 
⇢
6 ·log

� 1
2 (2L�⇢ ). Then,r

2
f⇢,�,x̄(x)

is a (0, log 2)-approximation tor
2
f⇢,�,x̄(y), following Definition 8.

Proof Note that x 2 By(r) if and only if y 2 Bx(r), so by symmetry it suffices to showr2
f⇢,�,x̄(x) �

2r2
f⇢,�,x̄(y). Also, r2

f⇢,�,x̄(x) = r2
f⇢(x) + �Id, and by Lemma 9 and our parameter settings,

r
2
f⇢(x)�

p
2L�

⇢
Id � 2r2

f⇢(y) and �Id +

p
2L�

⇢
Id � 2�Id,

for � := �⇢p
2L

. Adding the above two inequalities yields the conclusion.

2.3. Hessian optimization without Hessian approximation

Multiplicative Hessian stability in small balls was a key building block of algorithms in Carmon
et al. (2020), which introduced ball acceleration. Specifically, Carmon et al. (2020) considered
problems such as logistic and `p regression, where the objective’s Hessian is both explicit and locally
multiplicatively stable. This stability allows for efficient ball optimization via variants of Newton’s
method (e.g., gradient descent preconditioned by the objective’s Hessian at the ball center).

In our setting, the use of such Newton’s methods for ball optimization is complicated by two
factors: our parallel implementation requirement, and the fact that we only have implicit access to
r

2
f⇢,�,x̄, as it involves evaluating an integral. One useful characterization is that2

r
2
f⇢(x̄) =

1

⇢2

Z

Rd
rf(x+ ⇠)⇠>| {z }

:=M⇠

�⇢(⇠)d⇠,

2. The �Id component of r2
f⇢,�,x̄ is explicit, so it suffices to evaluate r2

f⇢.

10
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so a natural way to proceed is to estimate r2
f⇢(x̄) as the average of a small number of randomly-

sampled M⇠. Unfortunately, matrix concentration bounds such as the matrix Bernstein inequality
(which are tight in the worst case Tropp (2015)) yield sample complexities which depend on

max

8
>>><

>>>:

���E
h
M⇠M

>
⇠

i���
op| {z }

:=V1

,

���E
h
M

>
⇠ M⇠

i���
op| {z }

:=V2

9
>>>=

>>>;
, (3)

for measuring convergence of random averages to r2
f⇢(x̄). In our case, V2 can be significantly

smaller than V1: the former can be upper bounded by L
2 (as E⇠⇠> = ⇢

2
Id), but the latter grows as

L
2
d (as E⇠>⇠ = ⇢

2
d). A similar issue arises if one replaces the use of M⇠ with its symmetrized

counterpart S⇠ := 1
2(M⇠ +M

>
⇠ ). This results in requiring at least d samples for Hessian approxi-

mation which is too many for our purposes (note that, e.g., the entire query complexity of Carmon
et al. (2023) is o(d) for moderate ✏), and appears to be an obstacle for use of Newton’s method.

We circumvent this obstacle by treating the implementation of each Newton step as a stochastic
optimization problem, which breaks the symmetry between the dependence on V1 and V2. Specifi-
cally, each Newton iteration requires approximately solving a problem

min
x2Bx̄(r)

hg, xi+ x
>
r

2
f⇢(x̄)x+

�

2
kx� x̄k

2
, (4)

for some vector g. We can therefore design a stochastic estimate g + 2M⇠x of the gradient of
the objective in (4), whose second moment only depends on V2 = EM>

⇠ M⇠ and not V1. Interest-
ingly, using S⇠ to estimate the gradient of (4) would run into the same issue as before (where the
convergence rate also depends on V1 ⇡ L

2
d), so using asymmetric estimates is crucial.

2.4. Parallel maintenance of rank-one updates

An additional challenge is implementing our strategy for solving (4) efficiently in parallel. We show
in Section B.2 how to remove the constraint in (4) via a binary search procedure for an appropriate
Lagrange multiplier, so it suffices to optimize over Rd, subject to additional regularization. To
facilitate this reduction, in Appendix A.3, we provide a technique for improving our expected error
bounds to high probability bounds (similar to a recent technique in Sidford and Zhang (2023)).

With these reductions in place it suffices to solve unconstrained variants of (4) in parallel. In
Appendix A.1, we provide a general stochastic composite gradient descent algorithm compatible
with the stochastic oracles discussed in Section 2.3. It then turns out, as intended, that the resulting
iterates of this stochastic composite gradient descent algorithm are highly-structured (as each M⇠ is
rank-one). This structure is captured by the following linear algebraic maintenance problem, which
we solve in Appendix A, allowing for the parallel implementation of our stochastic gradient method.

Problem 2 Let T 2 N. For inputs {x0, {ut, vt, wt}t2[T ]} ⇢ Rd
and {ct}t2[T ] ⇢ R, we wish to

compute all {xt}t2[T ] defined by the recurrence relation

xt := ct

⇣⇣
Id � utv

>
t

⌘
xt�1

⌘
+ wt.

11
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In our setting, ct arises due to the regularization component, wt captures the first-order part of
(4), and ut, vt capture the (rank-one) estimate of the second-order part of (4). Note that if the term
wt did not exist, solving Problem 2 would amount to computing the product of T rank-one matrices
in parallel, which can be done using a divide-and-conquer technique (see Lemma 16). By using a
relatively lightweight combination of divide-and-conquer and fast matrix multiplication, we show
that Problem 2 can similarly be solved in polylogarithmic depth and O(dT!�1) work.

Applying this parallel implementation of our stochastic composite gradient descent algorithm,
though our “in expectation-to-high probability” and binary search reductions, yields our ball opti-
mization oracle implementation. When applied in the ball optimization framework to the Gaussian
convolution, this then yields our main result, Theorem 4. While there are a few steps of indirection,
we believe that reducing parallel optimization to stochastic quadratic optimization is an interest-
ing and key contribution by itself. We hope the structural facts that enable this reduction and the
algorithmic techniques that make it yield an efficient algorithm may have broader utility.

3. Proof of Theorem 4

We now give a short proof of Theorem 4, relying on the following parallel implementation of a ball
optimization oracle proven in Appendix B, by combining the various ideas discussed in Section 2.

Proposition 11 Define f⇢ as in Definition 5, where f is in the setting of Problem 1. Let �, r 2 R>0

satisfy r 
⇢
6 · log�

1
2 (2L�⇢ ) and ⇢ 

L
� . For any � 2 (0, �r

2

100 ], we can implement a (�,�, r)-ball

optimization oracle (Definition 6) for f⇢ with

O

✓
log

✓
Lr

�

◆
log log

✓
Lr

�

◆
· Dquery +

�r
2

�
log4

✓
L
2

��

◆
log

✓
dL

2

��

◆◆
depth,

and O

 
L
2

��
log5

✓
L
2

��

◆
· Tquery + d log5

✓
L
2

��

◆
·
�r

2

�
·

✓
L
2

�2r2

◆!�1
!

work.

We can now prove our main result, Theorem 4, by combining the ball acceleration framework
in Proposition 7 with our parallel ball optimization oracle in Proposition 11.

Theorem 4 There is an algorithm (BallAccel in Proposition 7, using Proposition 11 as a ball

optimization oracle) which solves Problem 1 using:

O

⇣
d

1
3

2
3 log

13
3 (d) log log (d) · Dquery + d

1
3

2
3 log

28
3 (d)

⌘
depth, and

O

⇣⇣
d

1
3

2
3 log

10
3 (d) + 

2 log
19
3 (d)

⌘
· Tquery + d

4
3

2
3 log

10
3 (d) + d

5�!
3 

4!�2
3 log

19
3 (d)

⌘
work,

where ! < 2.372 Alman et al. (2024) is the matrix multiplication exponent, and  := LR
✏ .

Proof Throughout, let ⇢ := ✏
2L

p
d

, and let x? minimize f over B(R). We optimize f⇢ to expected

error ✏
2 , yielding the conclusion via Observation 1. Let K = ⇥(d

1
3

2
3 log

1
3 (d)), and choose

�? = ⇥

 
✏

4
3d

2
3

R2
log2(d)

!
, r = ⇥

 
⇢p

log (d)

!
, (5)
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to be compatible with the parameters in Proposition 7, such that r  ⇢
6 · log�

1
2 (2CbaL

�?⇢
), following

the notation in Proposition 7. This implies that Corollary 10 holds for every choice of � � �?
Cba

used in ball optimization oracles by Proposition 7. Therefore, assuming Cba � 100 without loss of
generality, we can use Proposition 11 to implement every ball optimization oracle.

To bound the query depth, we apply Proposition 11 for each of the O(K log3(d)) ball opti-
mization oracles required. To bound the query complexity, we have the claim from

O

✓
K log3(d) ·

L
2

�2
?r

2
log5(d)

◆
= O

⇣

2 log

16
3 (d)

⌘
,

X

j2[dlog2 K+Cbae]

O

✓
2�j

K log (d) ·
2jL2

�2
?r

2
log7 (d)

◆
= O

✓
KL

2

�2
?r

2
log9 (d)

◆

= O

⇣

2 log

19
3 (d)

⌘
.

We also require one query per ball optimization oracle, so there is an additive K log3(d) term. To
bound the computational depth, we perform a similar calculation using Proposition 11:

O
�
K log3(d) · log5(d)

�
= O

⇣
d

1
3

2
3 log

25
3 (d)

⌘
,

X

j2[dlog2 K+Cbae]

O
�
2�j

K log (d) · 2j log7 (d)
�
= O

�
K log9(d)

�
= O

⇣
d

1
3

2
3 log

28
3 (d)

⌘
.

Finally, for the computational complexity, we have (using the bound ! � 2)

O

 
K log3(d) · d log5(d) ·

✓
L
2

�2
?r

2

◆!�1
!

= O

0

@d
4
3

2
3 log

34
3 �3!(d) ·

 


4
3

d
1
3

!!�1
1

A

= O

⇣
d

5�!
3 

4!�2
3 log

16
3 (d)

⌘
,

and

X

j2[dlog2 K+Cbae]

O

 
2�j

K log (d) · 2j · d log7(d)

✓
L
2

�2
?r

2

◆!�1
!

= O

⇣
d

5�!
3 

4!�2
3 log

19
3 (d)

⌘
.

Again, we must perform at least one step per ball optimization oracle, so there is an additive
dK log3(d) term. Combining these bounds yields the conclusion.

Finally, we mention that the complexities in Proposition 11 admit a range of tradeoffs parame-
terized by a quantity C 2 [1, L2

�2r2 ], which governs the number of consecutive iterations T we pass
into our parallel solution to Problem 2, summarized in Corollary 32. By instead using a different
parameter C as in Corollary 32, we obtain the following corollary, which interpolates between the
two extremes of standard stochastic gradient descent and Theorem 4.

13
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Corollary 12 In the context of Theorem 4, for any C 2 [1, L2

�2
?r

2 ] where �?, r are as defined in (5),
there is an algorithm which solves Problem 1 using:

O

⇣
d

1
3

2
3 log

13
3 (d) log log (d) · Dquery + Cd

1
3

2
3 log

28
3 (d)

⌘
depth,

and O

⇣⇣
d

1
3

2
3 log

10
3 (d) + 

2 log
19
3 (d)

⌘
· Tquery

⌘

+O

⇣
C

2�!
⇣
d

4
3

2
3 log

10
3 (d) + d

5�!
3 

4!�2
3 log

19
3 (d)

⌘⌘
time.

where ! < 2.372 Williams et al. (2023) is the matrix multiplication exponent, and  := LR
✏ .
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Appendix A. Parallel optimization of quadratic subproblems

In this section, we develop an efficient parallel optimization method for solving structured uncon-
strained quadratics of the following form:

min
x2Rd

hg + v, xi+ kx� zk
2
H
+

⇤

2
kxk

2
, for g, v 2 Rd

, H 2 Rd⇥d
, ⇤ 2 R�0. (6)

In particular, we consider a stochastic setting where instead of explicit access to g or H we assume
sample access to random variables g̃ 2 Rd and eH 2 Rd⇥d (not necessarily symmetric), such that

Eg̃ = g and E eH = H. (7)

Our consideration of this setting is motivated by the special case when

g = rf⇢(z) and H = r2
f⇢(0d). (8)

Objectives of the form (6), (8) arise in Newton’s method for implementing a ball optimization
oracle for f⇢,�,x̄ as defined in (1), where x̄ 0d without loss of generality by shifting the problem
domain. The additional quadratic hv, xi + ⇤ kxk2 arises due to regularization and a binary search
on a Lagrange multiplier to enforce the domain constraint in (1). The two parts of this reduction
(Newton’s method and binary search) are respectively derived in Sections B.1 and B.2.

In Section A.1, we give an initial solver for the problem (6) that has an expected error guarantee
and we show how to implement this solver in parallel in Section A.2. We then show how to boost
this guarantee to hold with high probability using a reduction we develop in Section A.3. Finally,
we assemble these components to give the main exports of this section in Section A.4.

A.1. Composite stochastic optimization

In this section, we fix ⇤ 2 R�0 and v, z 2 Rd throughout, and decompose (6) into two parts:

h(x) := h1(x) + h2(x) where h1(x) := hg, xi+ kx� zk
2
H

and h2(x) := hv, xi+
⇤

2
kxk

2
. (9)

We treat the objective in (6) as a composite objective h1 + h2, where we can exactly optimize over
h2, and we have stochastic access to h1. Specifically, we use that g1(x) := g̃ + 2 eH(x � z) is an
unbiased estimate ofrh1(x). More broadly, we design an algorithm for minimizing h1 + h2 under
the assumption that for some L1, L2 2 R�0,

E
h
kg1(x)k

2
i
 L

2
1 + L

2
2 kx� zk

2 for all x 2 Rd
. (10)

To motivate (10), Fact 1 shows that in the setting of Problem 1, when g,H are as in (8), we can use

g1(x) = g(z � ⇠) +
2

⇢2
h⇠, x� zi g(⇠) for ⇠ ⇠ N (0d, ⇢

2
Id) (11)

as our unbiased estimator. We give a second moment bound on the estimator in (11).

Lemma 13 In the setting of Problem 1, for x, z 2 Rd
, where E is taken over ⇠ ⇠ N (0d, ⇢

2
Id) and

the randomness of querying g at z � ⇠ and ⇠,

E

"����g(z � ⇠) +
2

⇢2
h⇠, x� zi g(⇠)

����
2
#
 2L2 +

8L2

⇢2
kx� zk

2
.
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Proof Let a := g(z�⇠) and b := 2
⇢2 h⇠, x� zi g(⇠), and note that E ka+ bk

2
 2E kak2+2E kbk2.

Further, by definition E kak2  L
2, so it suffices to bound E kbk2. We conclude by computing:

E
h
kh⇠, x� zi g(⇠)k2

i
= E⇠⇠N (0d,⇢2Id)

h
E
h
kg(⇠)k2 | ⇠

i
h⇠, x� zi

2
i

 L
2E⇠⇠N (0d,⇢2Id)

h
h⇠, x� zi

2
i
= L

2
⇢
2
kx� zk

2
.

In other words, in the setting of Problem 1, the assumption (10) holds with L
2
1 = 2L2 and L

2
2 =

8L2

⇢2 . We now move to the abstraction of (9), (10), and design a general-purpose algorithm for this
optimization problem. At the end of the section, we specialize our method to Problem 1.

Due to the unconstrained nature of our problem and the dependence (10) on movement from
z, we take care to ensure that the iterates of our algorithm do not drift by too much. This is the
primary challenge faced in this setting. We give an algorithm (Algorithm 1) and analysis based on
Lacoste-Julien et al. (2012), using a “warm-started” step size schedule to ensure sufficient expected
norm bounds on iterates.

Algorithm 1: UnconstrainedSGD(h2, z, g1)
Input: h2 : Rd

! R, a ⇤-strongly convex function, z 2 Rd, and g1 : Rd
! Rd, an unbiased

estimator forrh1 where h1 : Rd
! R is convex, and for all x 2 Rd, (10) holds.

x0  argminx2Rdh2(x)

T0  
8L2

2
⇤2

for 0  t < T do
⌘t  

2
⇤(t+T0)

xt+1  argminx2Rd{⌘t hg1(xt), xi+ ⌘th2(x) +
1
2 kx� xtk

2
}

end
Return: xavg := 1

T

P
0t<T xt

Lemma 14 Let h1 : Rd
! R, h2 : Rd

! R, g1 : Rd
! Rd

, and z 2 Rd
satisfy the assumptions of

Algorithm 1 for L2 � ⇤, and let x
?

minimize h := h1 + h2. Following notation of Algorithm 1,

E
⇥
h(xavg)

⇤
� h(x?) 

✓
2L2

2

⇤T
+

⇤

4T

◆
kx0 � x

?
k
2 +

log(T + T0)

⇤T

⇣
L
2
1 + 2L2

2 kz � x
?
k
2
⌘
.

Proof Throughout the proof, for all 0  t < T let

Dt := E

1

2
kxt � x

?
k
2
�

and �t := E [h(xt)]� h(x?).

By first-order optimality of xt+1,

hg1(xt), xt+1 � x
?
i+ hrh2(xt+1), xt+1 � x

?
i


1

2⌘t

⇣
kxt � x

?
k
2
� kxt+1 � x

?
k
2
� kxt � xt+1k

2
⌘
.
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By rearranging and taking an expectation (conditioned on the realization of xt),

h1(xt) + h2(xt+1)� h(x?) +
⇤

2
kxt+1 � x

?
k
2
 hrh1(xt), xt � x

?
i+ hrh2(xt+1), xt+1 � x

?
i


1

2⌘t

⇣
kxt � x

?
k
2
� E kxt+1 � x

?
k
2
⌘

+ E

hg1(xt), xt � xt+1i+

1

2⌘t
kxt � xt+1k

2
�


1

2⌘t

⇣
kxt � x

?
k
2
� E kxt+1 � x

?
k
2
⌘

+
⌘t

2
E
h
kg1(xt)k

2
i
.

In the first inequality, we used convexity of h1 and strong convexity of h2, and in the last line, we
applied the Cauchy-Schwarz and Young’s inequalities to bound the quantity in the third line. Hence,
iterating expectations, rearranging, and using the assumption (10),

�t + ⇤Dt+1  E [h2(xt)� h2(xt+1)] +
1

⌘t
(Dt �Dt+1) +

⌘t

2

⇣
L
2
1 + L

2
2E

h
kxt � zk

2
i⌘

 E [h2(xt)� h2(xt+1)] +
1

⌘t
(Dt �Dt+1) +

⌘t

2

⇣
L
2
1 + 2L2

2 kz � x
?
k
2 + 4L2

2Dt

⌘
.

Moreover, note that for the given choice of parameters, i.e., using T0 =
8L2

2
⇤2 ,

1

⌘t
+ 2⌘tL

2
2 

⇤(t+ T0)

2
+

4L2
2

⇤T0
=

⇤(t+ T0 + 1)

2
,

1

⌘t
+ ⇤ =

⇤(t+ T0)

2
+ ⇤ =

⇤(t+ T0 + 2)

2
.

Combining the above two displays, we have

�t  E [h2(xt)� h2(xt+1)] +
⇤(t+ T0 + 1)

2
Dt �

⇤(t+ T0 + 2)

2
Dt+1

+
⌘t

2

⇣
L
2
1 + 2L2

2 kz � x
?
k
2
⌘
.

Therefore, by telescoping over T iterations, and using minimality of x0 with respect to h2,

1

T

X

0t<T

�t 
⇤(T0 + 1)

4T
kx0 � x

?
k
2 +

0

@ 1

T

X

0t<T

⌘t

2

1

A
⇣
L
2
1 + 2L2

2 kz � x
?
k
2
⌘
.

Applying convexity of h and plugging in our parameter choices yields the claim, where we bound
the partial harmonic sequence

P
0t<T

1
t+T0


PT+T0

t=8
1
t  log(t+ T0).

We now state Algorithm 2, our specialization of Algorithm 1 to the problem (6), (8). In Line 2
of Algorithm 2, we used the definition of h2 from (9). We observe that the update in Line 2 can be
conveniently written in closed form as

xt+1  
1

1 + ⌘t⇤

✓
xt � ⌘tv � ⌘tg

0
t �

2⌘t
⇢2
h⇠t, xt � zi gt

◆
. (12)
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We demonstrate in Section A.2 how to support efficient parallel maintenance of weighted aver-
ages of iterates undergoing updates of the form (12). For now, we give an error bound following
Lemma 14.

Algorithm 2: UnconstrainedSGDConv(⇤, ⇢, z, v, T, f)
Input: ⇤, ⇢ � 0, z, v 2 Rd, T 2 N, f in the setting of Problem 1
x0  �

1
2⇤v

T0  
64L2

⇢2⇤2

for 0  t < T do
⇠t ⇠ N (0d, ⇢

2
Id)

gt  g(⇠t), g0t  g(z � ⇠t)

end
for 0  t < T do

⌘t  
2

⇤(t+T0)

xt+1  argminx2Rd{⌘thg
0
t +

2
⇢2 h⇠t, xt � zi gt, xi+ ⌘th2(x) +

1
2 kx� xtk

2
}

end
Return: xavg := 1

T

P
0t<T xt

Corollary 15 Following the notation in (9) and Algorithm 2, let x
?
⇤,z,v minimize (6) under the

setting (8), and suppose max(kzk , kx0k)  ⇢ and ⇢ 
L
⇤ . Then,

Eh(xavg)� h(x?⇤,z,v) 

✓
66L2 log(T + T0)

⇤T
+

⇤⇢2

2T

◆
0

B@1 +

���x?⇤,z,v
���
2

⇢2

1

CA .

Proof In light of Lemma 13 and the fact that the gradient estimator in (11) is unbiased for rh1
defined in (9), we can apply Lemma 14 with h1, h2 as in (9), and L

2
1 := 2L2 and L2 := 8L2

/⇢
2.

The conclusion follows from Lemma 13 once we simplify using max(kx0k , kzk)  ⇢.

To gain some intuition for Corollary 15, note that it shows if kx?⇤,z,vk ⌧ ⇢ and our target error is
⇥(⇤r2), we recover the standard L2

⇤T rate of strongly convex optimization under a bounded-variance
gradient oracle, up to a log factor. We show how to combine this guarantee with a binary search in
Section B to efficiently solve constrained optimization problems, as required by Proposition 7.

A.2. Parallel maintenance of rank-1 updates

In this section, we give our parallel solution to Problem 2, reproduced here for convenience.

Problem 2 Let T 2 N. For inputs {x0, {ut, vt, wt}t2[T ]} ⇢ Rd
and {ct}t2[T ] ⇢ R, we wish to

compute all {xt}t2[T ] defined by the recurrence relation

xt := ct

⇣⇣
Id � utv

>
t

⌘
xt�1

⌘
+ wt.
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Our updates in Algorithm 2, as stated in (12), are exactly of the form in Problem 2, with

ct  
1

1 + ⌘t�1⇤
, ut  

2⌘t�1

⇢2
gt�1, vt  ⇠t�1,

wt  �ct

✓
⌘t�1(v + g

0
t�1) +

2⌘t�1

⇢2
h⇠t�1, zi gt�1

◆
.

(13)

Moreover, all of the {ct, ut, vt, wt}t2[T ] can be queried and precomputed with eO(1) depth and
O(dT ) work. Accordingly, it suffices to solve Problem 2 to give a parallel implementation. As a
warmup to our overall solution, we first give our parallel solution to the following simpler Prob-
lem 3.

Problem 3 In the setting of Problem 2, we wish to compute xT .

We then modify our strategy to solve Problem 2, at a slightly larger parallel depth. Our solution
to Problem 3 follows straightforwardly from maintaining matrix products in a dyadic fashion, using
the following observation (Lemma 16) on maintaining low-rank updates of the identity. We combine
this with a variant of a parallel prefix sum maintenance strategy for recursive matrix-vector products.

Lemma 16 Let A0,B0,A1,B1 2 Rd⇥r
for r 2 [d]. In depth O(log d) and work O(dr!�1), we

can compute A,B 2 Rd⇥2r
such that Id �AB

> = (Id �A0B
>
0 )(Id �A1B

>
1 ).

Proof Note that it suffices to choose

A =
�
A0 A1 �A0B

>
0 A1

�
and B =

�
B0 B1

�
.

The bottleneck is evaluating A0B
>
0 A1 which takes work O(dr!�1) and depth O(log d).

Building upon Lemma 16, we next give a solution to Problem 3 when all ct = 1.

Lemma 17 If ct = 1 for all t 2 [T ], we can solve Problem 3 with depth O(log(d) log(T )) and

work O(dT!�1).

Proof Throughout this proof let ` := blog2 T c + 1, define w0 := x0, and for t > T let ut = vt =
wt := 0d. We also define for s  t, where all matrix products are evaluated right-to-left,

Mt:s :=
tY

r=s

⇣
Id � urv

>
r

⌘
,

so that MT :1 = (Id�uT v
>
T ) . . . (Id�u1v

>
1 ). As all iterates after T do not change, we observe that

xT = x2` =
2`�1X

t=0

M2`:t+1wt, (14)

since by definition, w2` = 0d. For notational convenience, we define

M(i,j) := M2ij:2i(j�1)+1 (15)
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for each 0  i  ` and j 2 [2`�i]. We observe that with O(dT!�1) work, we can explicitly
compute {A(i,j),B(i,j)}0i`,j2[2`�i] such that

M(i,j) = Id �A(i,j)B
>
(i,j), for A(i,j),B(i,j) 2 Rd⇥2i

.

To see this, we clearly can compute all {A(0,j),B(0,j)}j2[2`] with O(dT ) work and O(1) depth.
Further, for 0  i < `, assuming access to all {A(i,j),B(i,j)}j2[2`�i], we can apply Lemma 16 in
parallel to compute each required A(i+1,j),B(i+1,j) with O(d(2i)!�1) work, incurring a total work
of

2`�i
·O

�
d(2i)!�1

�
= O(dT ) · (2i)!�2

.

Summing over all 0  i  ` yields a geometric sequence with dominant term O(dT!�1) as desired.
This procedure can be implemented in depth O(log(T ) log(d)) by repeatedly applying Lemma 16.
Next, for each 0  i  ` and j 2 [2`�i], define

x(i,j) :=
X

k2[2i]

M2ij:2i(j�1)+kw2i(j�1)�1+k, (16)

such that by inspection, the following recursion holds for i 2 [`]:

x(i,j) = M2ij:2ij�2i�1+1x(i�1,2j�1) + x(i�1,2j). (17)

For example,

x(3,1) = M8:1w0 +M8:2w1 +M8:3w2 +M8:4w3 +M8:5w4 +M8:6w5 +M8:7w6 +M8:8w7

= M8:5 (M4:1w0 +M4:2w1 +M4:3w2 +M4:4w3)| {z }
x(2,1)

+M8:5w4 +M8:6w5 +M8:7w6 +M8:8w7| {z }
x(2,2)

.

Our goal is simply to compute x(`,1) = xT , where we recall (14). First, we clearly can compute
all x(0,j) for j 2 [2`] with O(dT ) work. Further, for 0  i < `, assuming access to all x(i,j) for
j 2 [2`�i] and all {A(i,j),B(i,j)}j2[2`�i], we claim we can compute all x(i+1,j) for j 2 [2`+1�i]
in parallel incurring a total work of O(dT ). To see this, to compute each x(i+1,j) via the recursion
(17), we require one vector addition, and one matrix-vector multiplication through

M2ij:2ij�2i�1+1 = Id �A(i�1,2j)B
>
(i�1,2j)

which can be performed in time O(d2i). Therefore, the total work required to compute all x(i+1,j)

is bounded by O(d2`) = O(dT ). Finally, summing over all 0  i  ` the total work of these
computations is bounded by O(dT log T ) which does not asymptotically dominate the work. The
depth of this recursive computation is again bounded by O(log(T ) log(d)).

We conclude with a simple extension of Lemma 17 to general {ct}t2[T ], giving our full solution.

Corollary 18 We can solve Problem 3 with depth O(log(T ) log(d)) and work O(dT!�1).
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Proof First, we may assume all {ct}t2[T ] are nonzero, else we can begin the recursion in Problem 3
starting from the index right after the last zero value. Under this assumption, by writing Ct :=Q

s2[t] cs and xt = Ctyt for all t � 0, we have the equivalent recurrence

yt = C
�1
t

⇣
ct

⇣
Id � utv

>
t

⌘
Ct�1yt�1 + wt

⌘
=
⇣
Id � utv

>
t

⌘
yt�1 + C

�1
t wt.

Further, computing all {Ct}t2[T ] in the same dyadic fashion used to compute the M(i,j) in Lemma 17
can be performed in O(log T ) depth and O(T log T ) work. Hence it suffices to apply Lemma 17 to
an instance of Problem 3 with all ct = 1 and inputs

{x0, {ut, vt, C
�1
t wt}t2[T ]}

and multiply the final output vector (corresponding to yT ) by CT . The scalings {C�1
t wt}t2[T ] can

be performed using O(1) depth and O(dT ) work by computing each in parallel.

We now show how modifying the strategy for Problem 3 also yields an efficient parallel solution
for the generalization in Problem 2. As before, we first handle the case where all ct = 1.

Lemma 19 If ct = 1 for all t 2 [T ], we can solve Problem 2 with depth O(log2(T ) log(d)) and

work O(dT!�1).

Proof We follow notation of Lemma 17, and assume that in depth O(log(T ) log(d)) and work
O(dT!�1), we have precomputed all M(i,j) and x(i,j) for 0  i  ` and j 2 [2`�i]. Define
zs := xs �ws for all s 2 [2`], and let T (`) be the total work it takes to compute all {zs}s2[2`] in an
instance of Problem 2, given access to all M(i,j) and x(i,j) defined in (15) and (16). In particular,
(14) holds with the left-hand side replaced with zs and the right-hand side’s summation ending at
s� 1. We claim

T (`) = 2T (`� 1) +O(dT log T ) =) T (`) = O(dT log2 T ), (18)

which gives the total work bound because adding ws to each zs can be done in constant depth and
O(dT ) work which does not dominate. Clearly, computing all {zs}s2[2`�1] can be done within work
T (`� 1). Moreover, for each 2`�1

< s  2`, note that

zs =
2`�1�1X

t=0

Ms:t+1wt

| {z }
:=us

+
s�1X

t=2`�1

Ms:t+1wt

| {z }
:=vs

.

Computing all {vs}2`�1<s2` can be done within work T (`�1), as these constitute an independent
copy of the problem over 2`�1 iterations. Finally, we complete the proof of (18) by showing we can
compute all {us}2`�1<s2` using O(dT log T ) work and O(log2(T ) log(d)) depth. Define u

? :=
P2`�1�1

t=0 M2`�1:t+1wt, and note that

us = Ms:2`�1+1u
? for all 2`�1

< s  2`.

Since we have access to all the M(i,j), we can compute the us in a dyadic fashion, i.e., we first
compute u2`�1+2`�2 and u2` using a single matrix multiplication each, and then u2`�1+2`�3 and
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u2`�1+3·2`�3 , and so on. The work cost of multiplying by a matrix M(i,j) is O(d2i), so the overall
work of computing all {us}2`�1<s2` is then indeed bounded by

O(d2`�1) +O(2 · d2`�2) +O(22 · d2`�3) + . . . = O(dT log T ),

as claimed. To see the depth bound, we can solve the two instances of T (` � 1) independently,
leading to a recursion depth of O(log T ). The sequential depth of each recursion layer (due to com-
puting the {us}2`�1<s2`) is bottlenecked by O(log(T ) log(d)) due to the use of O(log T ) matrix
multiplications, each of which takes depth O(log d). Thus, overall the depth is O(log2(T ) log(d)).

By using the same reduction as in Corollary 18, we extend our solution in Lemma 19 to the
general setting of Problem 2, giving our main result.

Proposition 20 We can solve Problem 2 with depth O(log2(T ) log(d)) and work O(dT!�1).

Proof We first consider the case where all {ct}t2[T ] are nonzero. Define the sequence {yt}t2[T ] as
in Corollary 18, which can be computed within the depth and work budgets given by Lemma 19.
Since

xt = Ctyt for all t 2 [T ],

it suffices to compute all {Ct}t2[T ] and perform the scalings Ctyt in parallel, which can be done
within the stated budgets by the arguments of Corollary 18. Finally, in the case where some ct = 0,
we can split the problem into independent contiguous blocks of nonzero ct values whose total sizes
sum to at most T and which can be solved in parallel. Since the claimed work is superlinear in T , it
remains correct after operating on each contiguous block separately.

As a consequence of Proposition 20, we have the following complexity bounds on Algorithm 2.

Corollary 21 Following the notation in (9) and Algorithm 2, let S 2 [T ] be arbitrary. We can

implement T iterations of Algorithm 2 using

O

✓
Dquery +

T

S
· log2(S) log(d)

◆
depth, and O

�
T · Tquery + dTS

!�2
�

work.

Proof Assume for simplicity that S divides T , else we can obtain the result by increasing T by a
constant factor. Recall from (12), (13) that implementing Algorithm 2 is an instance of Problem 2,
where we are required to compute the average iterate. Moreover we can compute all the inputs
to Problem 2 in parallel, which gives the query depth and query complexity. Our strategy is to
use Proposition 20 for every S consecutive iterations, which gives us all the iterates in the stated
computational depth and complexity by applying Proposition 20, T

S times. Given all the iterates we
can clearly output the average within the stated computational depth and complexity.
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A.3. High-probability error bound reduction

We now give a simple reduction from an algorithm which returns an approximate minimizer with
high probability, to one which returns an expected approximate minimizer. Our reduction assumes
access to a bounded-variance gradient estimator. We note that a similar procedure appears as Sec-
tion 4.2 of Sidford and Zhang (2023), but it does not quite suffice for our purposes due to the
composite nature of our objective. We provide a different proof for completeness, which also shows
a slightly stronger fact that the approximately-optimal point returned comes from the original set of
candidates.

Finally, we note that our reduction has implications on the query complexity of high-probability
stochastic convex optimization (i.e., Problem 1) in the non-parallel setting. In particular, it shows
that the expected error guarantee in Problem 1 can be boosted to have failure probability  � at a
polylog(1� ) overhead in the query complexity. Such a result is classical when g(x) satisfies stronger
tail bounds (such as a sub-Gaussian norm), but to our knowledge the corresponding result in the
bounded variance setting (as in Problem 1) was only obtained recently by Carmon and Hinder
(2024). We do note that Carmon and Hinder (2024)’s approach yields an improved polylogarithmic
overhead in 1

� , which they show is optimal; we find it interesting to explore if different tradeoffs in
Proposition 22 yield the same optimal result.

Proposition 22 Let h : Rd
! R be differentiable with minimizer x

?
, and assume h(x) = h1(x) +

h2(x) for all x 2 Rd
and we can evaluate h2(x) for any x 2 Rd

. Further, suppose S := {xi}i2[k]
has kxi � xjk  R for all i, j 2 [k], and mini2[k] h(xi) � h(x?)  ✏. Finally, suppose g1(x)

is an unbiased estimate for rh1(x) and E[kg1(x)k
2]  L

2
for all x in the convex hull of S. For

� 2 (0, 1), there is an algorithm which returns x 2 S with h(x) � h(x?)  2✏ with probability

� 1� �, using

O

✓
L
2
R

2

✏2
· k log

✓
log k

�

◆◆
queries to g1 and k evaluations of h2.

The query depth used is O(log(k)), and the computational depth used is O((log(d)+log log(k� )) log(k)).

Proof Fix any two i, j 2 [k] with i 6= j. Our first step is to build a high-probability approximation
subroutine for the value of h1(xi)� h1(xj). To this end, observe that for x(t)i,j := (1� t)xi + txj ,

h1(xj)� h1(xi) =

Z 1

0

D
rh1(x

(t)
i,j ), xj � xi

E
dt

| {z }
:=I(i,j)

= Et⇠unif.[0,1]

hD
rh1(x

(t)
i,j ), xj � xi

Ei
.

Next, consider the estimator

Z(i, j) :=
D
g1(x

(t)
i,j ), xj � xi

E
, for t ⇠unif. [0, 1].

From the given assumptions, it is clear that EZ(i, j) = I(i, j) and

EZ(i, j)2  E
���g1(x(t)i,j )

���
2
kxj � xik

2
�
 L

2
R

2
.
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Therefore, Chebyshev’s inequality shows that averaging 4L2R2

�2 independent copies of Z(i, j) pro-
duces a �-additive approximation of I(i, j) with probability 3

4 . A median of O(log( log k� )) such
independent averages then estimates I(i, j) to additive error � with probability at least 1� �

log k , by
a Chernoff bound. The total computation required to produce this estimate for a pair (i, j) 2 [k]⇥[k]
is

O

✓
L
2
R

2

�2
· log

✓
log k

�

◆◆
calls to g1.

Using two additional evaluations of h2, we can thus estimate h(xj)�h(xi) to additive error �, with
probability � 1 � �

log k . To obtain the claim, we run a tournament on the elements of S using our
subroutine as an approximate comparator. Suppose that k is a power of 2 without loss of generality
(otherwise we can duplicate x1 appropriately), and initialize a complete binary tree on 2k�1 nodes
(with depth log2(k)), placing elements of S at the leaf nodes. We define the i

th layer of the tree
to be all nodes which are distance exactly i from the leaf nodes (the leaf nodes themselves form
layer 0). Starting from layer 1 and working upwards, for a node in layer ` with children xi and
xj , we compute E(i, j), a �` = ✏

3(
4
3)

�`-approximation to h(xi) � h(xj), and promote the child
with smaller estimated h value (i.e., we promote xi if E(i, j)  0, and we promote xj otherwise).
Assume without loss of generality that x1 minimizes h(x) over S. Conditioned on all estimates on
x1’s root-to-leaf path succeeding (which happens with probability 1�� since there are log k nodes),
the minimum function value on level ` is at most h(x1)+

P
i2[`]

✏
3(

4
3)

�i, and so the algorithm returns
some node y with h(y)  mini2[k] h(xi) + ✏  h(x?) + 2✏. The complexity and correctness follow
by setting � ✏

log2(k)
. The total failure probability follows from a union bound, since there are at

most k � 1 comparisons (as each comparison eliminates an element).
We now control the number of gradients computed by the algorithm. Level ` of the tree calls

the estimation subroutine k2�` times with failure probability �
log k and error ✏

3(
4
3)

�`: summing over
all layers gives a total gradient bound of

O(1)
X

`2[log2 k]

L
2
R

2
k2�`

✏2(43)
�2`

log

✓
log k

�

◆
= O

✓
L
2
R

2

✏2
k log

✓
log k

�

◆◆ X

`2[log2 k]

✓
8

9

◆`

= O

✓
L
2
R

2

✏2
k log

✓
log k

�

◆◆
.

A.4. Putting it all together

In this section, we combine the tools given in the previous sections to develop two high-probability
optimization primitives, which will be used in Section B.2 in conjunction with a binary search to
give our overall ball optimization oracle implementation. We now formally define the two types of
oracles we require for implementing our binary search. Roughly speaking, the first type of oracle
(Definition 23) is used to find a range of regularization amounts ↵ such that the resulting regularized
minimizers lie in a ball of radius O(r). The second type of oracle (Definition 24) is then used to
obtain accurate minima for our original constrained function. In the following definitions, for a
fixed differentiable convex function F and ↵ > 0, we let

x
?
↵ := argminx2RdF (x) +

↵

2
kxk

2
. (19)
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Definition 23 We call O1 an (r,�)-phase-one oracle for F : Rd
! R if on input ↵ � �, following

notation (19), O1 returns x satisfying

kx� x
?
↵k 

r + kx?↵k

100
.

Definition 24 We call O2 a (�, r,�)-phase-two oracle for F : Rd
! R if on input ↵ � �,

following notation (19), O2 returns x satisfying

F (x) +
↵

2
kxk

2
 F (x?↵) +

↵

2
kx

?
↵k

2 +�.

We specialize the following discussion to the specific context where F is of the form

argminx2B(r) hrf⇢,�(z), xi+ kx� zk
2
r2f⇢(0d)

+ � kx� zk
2

= argminx2B(r) hrf⇢(z)� �z, xi+ kx� zk
2
r2f⇢(0d)

+ � kxk
2
,

(20)

where kzk  r and ⇢ � r, � > 0. These constrained subproblems arise in an approximate Newton’s
method which we develop in Section B.1. Formally, we define

F (x) := hrf⇢(z)� �z, xi+ kx� zk
2
r2f⇢(0d)

. (21)

We use two tools to boost constant-accuracy bounds to high probability. The first is the reduction in
Proposition 22, and the second is the following standard geometric aggregation method.

Lemma 25 (Claim 1, Kelner et al. (2023)) Let � 2 (0, 1) and x 2 Rd
be unknown, and let A be

an algorithm which returns x
0
2 Rd

such that kx
0
� xk 

�
3 with probability �

2
3 in DA depth and

TA work. There is an algorithm which returns y such that ky � xk  � with probability � 1 � �,

using O(DA + log(d)) depth and O(TA · log(1� ) + d log2(1� )) work.

We now state our oracle implementations and their guarantees.

Lemma 26 Let F be defined as in (21), assume ⇢ 
L
� , and let � 2 (0, 1). We can implement an

(r, 2�)-phase-one oracle for F which succeeds with probability � 1� � with

O

✓
Dquery + log2

✓
L

�r

◆
log(d)

◆
depth,

and O

0

@
 
L
2 log

�
L
�r

�

�2r2

!
log

✓
1

�

◆
· Tquery + d

 
L
2 log

�
L
�r

�

�2r2

!!�1

log

✓
1

�

◆
+ d log2

✓
1

�

◆1

A work.

Proof We first show how to obtain x such that kx� x
?
↵k 

r+kx?
↵k

300 with probability � 2
3 . By

Markov’s inequality and ↵-strong convexity of F (x) + ↵
2 kxk

2, it is enough to produce x such that

E
⇣

F (x) +
↵

2
kxk

2
⌘
�

⇣
F (x?↵) +

↵

2
kx

?
↵k

⌘2�


↵

6
·
(r + kx?↵k

2)

3002
.

In the context of Corollary 15 (with ⇤ ↵), it suffices to take

T = O

 
⇢
2

r2
+

L
2 log

�
L
↵r

�

↵2r2

!
= O

 
L
2 log

�
L
↵r

�

↵2r2

!
.

The conclusion follows from Corollary 21 (with S  T ) and Lemma 25.
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Lemma 27 Let F be defined as in (21), assume ⇢ 2 [r, L� ], and let � 2 (0, 1). For �  �r2

100 , we can

implement a (�, r,max(↵3r, 2�))-phase-two oracle for f which succeeds with probability � 1� �

with

O

✓
log log

✓
1

�

◆
· Dquery +

�r
2

�
log

✓
L
2

��

◆
log2

✓
L

�r

◆
log

✓
d

�

◆◆
depth,

and O

0

@
L
2 log

⇣
L2

��

⌘

��
log3

✓
1

�

◆
· Tquery + d log4

✓
L
2

���

◆
·
�r

2

�
·

✓
L
2

�2r2

◆!�1
1

A work.

Proof Since ↵ � ↵3r, we can produce a point x with expected suboptimality �
6 to the function

F (x) + ↵
2 kxk

2 by calling Corollary 15 with

T = O

0

@↵⇢
2

�
+

L
2 log

⇣
L2

↵�

⌘

↵�

1

A = O

0

@
L
2 log

⇣
L2

↵�

⌘

↵�

1

A .

Therefore, by Markov’s inequality x has suboptimality �
2 with probability � 2

3 . Moreover, each x

which achieves this suboptimality has, by ↵-strong convexity,

kx� x
?
↵k 

r
�

↵


r

10
.

We run this algorithm k = O(log 1
� ) times, where the constant is large enough that Lemma 25

applies with probability� 1� �
3 , and also k � log3(

3
� ), so some run produces x with suboptimality

gap �
2 with probability � 1� �

3 . Call A = {xi}i2[k] the set of output points, and let xi? 2 S satisfy

F (xi?) +
↵

2
kxi?k

2
� F (x?↵)�

↵

2
kx

?
↵k

2


�

2
.

By Lemma 25, we obtain x̄ with kx̄� x
?
↵k  3

p
�/↵. Let B ✓ A be the elements of A with

kx̄� xk  4
p
�/↵, which contains xi? by definition. Then for any x, x

0
2 B, we have

��x� x
0��  8

r
�

↵
.

Moreover, since all points in B lie at distance  2r
5 from x

?
↵, their norms are all at most 4r. Since

kzk  r by assumption, Lemma 13 shows we can implement an unbiased estimator for the gradient
of the implicit part of (21), i.e.,rf⇢(z) + 2r2

f⇢(0d)(x� z), with second moment O(L2), for any
x in the convex hull of B. We therefore can apply Proposition 22 with ✏ 

�
2 to obtain an element

of B with suboptimality gap  � with probability � 1� �
3 , within the stated complexities. We can

check that all other steps also fall within the stated complexities, using Corollary 21 with S  
L2

↵�r2 .

29



JAMBULAPATI SIDFORD TIAN

Appendix B. Parallel stochastic convex optimization

In this section, we prove Theorem 2 by using the results of Section A to implement the ball opti-
mization oracles required by Proposition 7. Our reduction from (constrained) ball optimization to
the (unconstrained) quadratic problems considered by Section A proceeds in two steps.

1. In Section B.1, we show how to use Hessian stability of the ball optimization oracle sub-
problems (Corollary 10) to efficiently solve these problems using an approximate Newton’s
method.

2. The subproblems required by our method in Section B.1 are constrained optimization prob-
lems, which are almost compatible with our tools in Section A. In Section B.2, we develop a
simple binary search procedure, inspired by a procedure in Jambulapati et al. (2023), which
reduces each constrained optimization problem to a small number of unconstrained stochastic
optimization problems.

B.1. Approximate Newton’s method

In this section, we state and analyze an approximate variant of a constrained Newton’s method under
Hessian stability, patterned off classical analyses of gradient descent in a quadratic norm.

Algorithm 3: ConstrainedNewton(�, T, x0, f,�)
Input: Positive definite A 2 Rd⇥d, T 2 N, x0 2 X , differentiable f : X ! Rd, � > 0
for 0  t < T do

xt+1  any (randomized) point in X satisfying

E hrf(xt), xt+1i+ kxt+1 � xtk
2
A
 min

x2X

n
hrf(xt), xi+ kx� xtk

2
A

o
+

�

20

end
Return: xT

Lemma 28 Let � > 0, let f : X ! R be twice-differentiable for convex X ⇢ Rd
, and let x

? :=
argminx2X f(x). Assume that

1
2A � r

2
f(x) � 2A for all x 2 X , for positive definite A 2 Rd⇥d

.

Algorithm 3 with T  O(log f(x0)�f(x?)
� ) returns xT 2 X satisfying Ef(xT )  f(x?) + �.

Proof Throughout the proof, let �t := Ef(xt) � f(x?), so our goal is to show �T  �. We first
observe that, conditioning on xt, and letting x

(s) := (1� s)xt + sx
?,

Ef(xt+1)  E
h
f(xt) + hrf(xt), xt+1 � xti+ kxt+1 � xtk

2
A

i

 min
s2[0,1]

⇢
f(xt) +

D
rf(xt), x

(s)
� xt

E
+
���x(s) � xt

���
2

A

�
+

�

20

 min
s2[0,1]

n
f(x(s)) + s

2
kxt � x

?
k
2
A

o
+

�

20

 min
s2[0,1]

n
f(x(s)) + 4s2�t

o
+

�

20
.
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Above, the first line used a second-order Taylor expansion and our assumption r2
f(x) � 2A

pointwise, the second line used the definition of xt+1, the third used convexity, and the last used
first-order optimality of x? as well as our assumption 1

2A � r
2
f(x) pointwise which implies that

1

4
kxt � x

?
k
2
A
 hrf(x?), xt � x

?
i+

1

4
kxt � x

?
k
2
A
 �t.

Subtracting f(x?) from both sides and using convexity once more yields

E�t+1  min
s2[0,1]

�
(1� s)�t + 4s2�t

 
+

�

20
=

15

16
�t +

�

20
.

Recursively applying for T iterations, and using 1
20

P1
i=0(

15
16)

i
 1, yields the conclusion.

Lemma 28 and Corollary 10 show that to implement a ball optimization oracle for the function
f = f⇢,�,x̄ (defined in (1)) over sufficiently small radii, it suffices to implement Line 3 of Algo-
rithm 3 logarithmically many times. Concretely, when X = B(r) and f = f⇢,�,x̄, Line 3 requires
a ⇥(�)-approximate minimizer to a problem of the form in (20), for z 2 B(r) given by the algo-
rithm. These are exactly the problems which our tools in Section A can approximately solve, except
they are hard-constrained. We show how to lift the constraints via a regularized binary search in
Section B.2.

B.2. Ball optimization oracles via binary search

In this section, we provide a binary search strategy for approximately solving the constrained opti-
mization problem (20), by binary searching on a Lagrange multiplier for the constraint. To begin,
we require the following claims on the minima of regularized convex functions.

Lemma 29 Let F : Rd
! R be a twice-differentiable convex function satisfying krF (0d)k  L,

and for all ↵ 2 R�0, let x
?
↵ := argminx2RdF (x) + ↵

2 kxk
2
. We have the following claims.

1. For all 0 < ↵ < ↵
0
, kx

?
↵k >

��x?↵0
��.

2. For all 0 < ↵ < ↵
0
,

��x?↵ � x
?
↵0
��  kx?↵k log(↵

0

↵ ).

3. If ↵ �
4L
r , kx

?
↵k 

r
2 .

Proof The optimality conditions on x
?
↵ show that rF (x?↵) = �↵x

?
↵, so differentiating in ↵,

r
2
F (x?↵)

✓
d

d↵
x
?
↵

◆
= �x?↵ � ↵ ·

d
d↵

x
?
↵ =)

d
d↵

x
?
↵ = �

�
r

2
F (x?↵) + ↵Id

��1
x
?
↵.

Therefore, for any 0 < ↵ < ↵
0, we have Item 1, as convexity of F shows

1

2
kx

?
↵0k

2
�

1

2
kx

?
↵k

2 =

Z ↵0

↵

⇣
�kx

?
t k(r2F (x?

t )+tId)�1

⌘
dt  0.

Now, by using the triangle inequality and Item 1, Item 2 follows:

kx
?
↵ � x

?
↵0k 

Z ↵0

↵

��(r2
F (x?t ) + tId)

�1
x
?
t

�� dt 
Z ↵0

↵

1

t
kx

?
t k dt  kx?↵k log

✓
↵
0

↵

◆
.
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Finally, to see Item 3, note that for ↵ � 4L
r ,

F (0d) � F (x?↵) +
↵

2
kx

?
↵k

2
� F (0d) + hrF (0d), x

?
↵i+

↵

2
kx

?
↵k

2
� F (0d)� L kx

?
↵k+

↵

2
kx

?
↵k

2
.

Rearranging and applying our lower bound on ↵ yields kx?↵k 
r
2 as claimed.

In light of Lemma 29, in the remainder of the section we fix a differentiable convex function F ,
and develop a generic framework for approximately solving, for a parameter � > 0,

argminx2B(r)F (x) + � kxk
2
.

We follow the notation (19) throughout for brevity, so the above minimizer is denoted x
?
2�. For

convenience, for any t 2 [0, kx?2�k], we also use ↵t to denote the unique value of ↵ 2 [2�,1) such
that kx?↵t

k = t, where uniqueness and existence follows from Lemma 29 and x
?
1 = 0d.

At the end of Section A.4, we gave implementations of a phase-one oracle and a phase-two
oracle for F in (21) (see Lemmas 26 and 27). We now apply Definitions 23 and 24 to implement
our binary search, stated formally in the following and with pseudocode provided in Algorithm 4.

Proposition 30 Let F be a differentiable convex function satisfying krF (0d)k  L. Let �,�, r 2

R>0 with �  �r2

100 . Algorithm 4 computes x 2 B(r) satisfying

F (x) + � kxk
2
 min

kykr
F (y) + � kyk

2 +�.

Algorithm 4 makes at most O(log L
�r ) calls to O1, and O(log Lr+�r2

� ) calls to O2.

Proof We start with a correctness proof, and bound the number of oracle calls at the end. Because
the specifications of O1 and O2 do not preclude returning different answers on multiple calls with
the same ↵, throughout the proof to alleviate burdensome notation, we assume that if an oracle is
called twice with the same ↵, it gives the same result (e.g., the result of the first call).

We begin by analyzing the first phase of the algorithm, starting from Line 4 and ending before
Line 4. By the criterion in the while loop on algorithm 4, u satisfied kO1(u)k  2.5r, so

kO1(u)� x
?
uk 

1

100
(r + kx?uk),

which implies that for the value of u after the while loop ends,

kx
?
uk � 2.5r  kx?uk � kO1(u)k 

1

100
(r + kx?uk) =) kx

?
uk 

100

99
· (2.51r) < 3r.

Next, we claim that at the conclusion of phase one, either ↵0 = 2� and O1(2�)  2.5r, or ↵0 has

kx
?
↵0k 2 [2r, 3r] . (22)

The first case is obvious from Line 4. Otherwise, for the values of `, u on Line 4, we have ` � 2�
and kO1(u)k  2.5r < kO1(`)k. When the while loop breaks on Line 4, we have kO1(m)k 2
[2.1r, 2.9r], which yields (22) (since ↵

0 = m in this case) due to the following derivations:

kx
?
mk � 2.9r  kx?m �O1(m)k 

1

100
(r + kx?mk) =) kx

?
mk 

100

99
· (2.91r) < 3r,

2.1r � kx?mk  kx
?
m �O1(m)k 

1

100
(r + kx?mk) =) kx

?
mk �

100

101
· (2.09r) > 2r.
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Algorithm 4: BinarySearch(�, r,�, L,O1,O2)

Input: �, r,�, L 2 R>0, O1, an (r, 2�)-phase-one oracle (Definition 23) for differentiable
convex f : Rd

! R satisfying kf(0d)k  L, O2, a (�2 , r,max(↵3r, 2�))-phase-two oracle for
f

// Start phase one.
u 2�
while kO1(u)k > 2.5r do u 2u
if u = 2� then ↵

0
 2�

else
` 

u
2

while true do
m 

p
u`

if kO1(m)k 2 [2.1r, 2.9r] then ↵
0
 m and break

else if kO1(m)k > 2.9r then ` m

else u m

end
// Start phase two.
` ↵

0

u 
4L
r + 2�

while u
` > 1 + �

10(Lr+�r2) do
m 

p
u`

if kO2(m)k > r then ` m

else u m

end
x1  O1(`), x2  O2(u)
if ` = 2� then Return: x1
Return: xout  (1� t)x1 + tx2, where t 2 [0, 1] is chosen so kxoutk = r

Both bounds used the triangle inequality. This concludes our correctness analysis of Phase 1.
We now analyze correctness of phase two. By Item 3 of Lemma 29, we have kO2(u)k 

kx
?
uk+ kx

?
u �O2(u)k  r on Line 4, where we used strong convexity of F (x) + ↵

2 kxk
2 to bound

kx
?
u �O(u)k  r

2 . Thus, inspecting the while loop starting on Line 4, we preserve the invariants:

` < u, kO2(u)k  r, and either kO2(`)k > r, or ` = 2�.

In particular, if kO2(`)k  r, it must be that ↵0 = ` (i.e. ` never updated), but if ↵0
6= 2� then

this is impossible by (22). Hence, when the while loop on algorithm 4 terminates, the values `, u

associated with x1, x2 satisfy u 2 [`, (1 + �
10(Lr+�r2))`], kx2k  r, and we are in one of the

following cases.

1. ` = 2� and O2(u)  r.

2. x1 = O2(`) has kx1k > r.
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In Case 1, let y := argminy2B(r)F (y) + � kyk
2. Then by the guarantees of O2,

F (x1) + � kx1k
2
 F (x1) +

u

2
kx1k

2
 F (y) +

u

2
kyk

2 +
�

2

 F (y) + � kyk
2 +

⇣
u

2
� �

⌘
r
2 +

�

2
 F (y) + � kyk

2 +�,

where we used u
2 � � 

�
10�r2 ·

�
2 

�
2r2 . On the other hand, in Case 2, recalling kx?`k , kx

?
uk  3r

by the guarantees of phase one, and letting xout := (1� t)x1 + tx2 as in Line 4,

(1� t)F (x1) + tF (x2) +
(1� t)`

2
kx1k

2 +
tu

2
kx2k

2
 F (y) +

u

2
kyk

2 +
�

2
,

for every y 2 Rd, by the definition of O2. Now, letting y := argminy2B(r)F (y) + � kyk
2,

F (xout) +
`

2
kxoutk

2
 (1� t)F (x1) + tF (x2) +

(1� t)`

2
kx1k

2 +
tu

2
kx2k

2

 F (y) +
u

2
kyk

2 +
�

2
.

Additionally, note that if we are in Case 2, then kyk = r. To see this, suppose for contradiction
that kyk < r, which means kx?2�k < r. If ↵0

> 2�, then (22) and Item 1 of Lemma 29 give a
contradiction. Otherwise, ↵0 = 2�, but then kx?2�k < r contradicts the statement before (22) since
O1(2�)  2.5r cannot happen. Hence, kyk = kxoutk = r, and correctness in Case 2 follows from

F (xout) + � kxoutk
2 = F (xout) + � kyk

2

 F (y) + � kyk
2 +

(u� `)r2

2
+

�

2
 F (y) + � kyk

2 +�,

where u� ` 
�

10(Lr+�r2) · u 
�
r2 , since u 

4L
r + 2�. This completes the correctness proof.

We now bound the number of calls to O1,O2. By Item 3 of Lemma 29 and (22), it is clear
the number of times Line 4 occurs is O(log L

�r ). Next, consider the loop on Algorithm 4 until
Algorithm 4 is hit. We claim the loop must break if log u

` 
1

100 , which means the loop can only run
O(1) times, because log u

` halves each time the loop is run, and u
` = 2 initially. To see our claim,

for any ↵,

kO1(↵)k � kx
?
↵k 

r + kx?↵k

100
=)

100

101
kO1(↵)k �

r

101
 kx

?
↵k ,

kx
?
↵k � kO1(↵)k 

r + kx?↵k

100
=)

100

99
kO1(↵)k+

r

99
� kx

?
↵k ,

(23)

which follow from the definition of O1. Further, by Item 2 of Lemma 29, supposing log u
` 

1
100 ,

kx
?
u � x

?
`k 

kx
?
`k

100


1

100

✓
100

99
kO1(`)k+

r

99

◆
,

where we used the second bound in (23). Combining with (23), we have

1

100

✓
100

99
kO1(`)k+

r

99

◆
� kx

?
`k � kx

?
uk �

✓
100

101
kO1(`)k �

r

101

◆
�

✓
100

99
kO1(u)k+

r

99

◆

=)
100

99
kO1(u)k+

r

33
�

✓
100

101
�

1

99

◆
kO1(`)k ,
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which is a contradiction since kO1(u)k < 2.1r and kO1(`)k > 2.9r until termination.
Finally, consider the loop starting on Line 4. At the beginning, we have u

` = O( L
�r + 1), and

log u
` halves each time the loop is run. Therefore, O2 is called O(Lr+�r2

� ) times as claimed.

We now combine Proposition 30 with Lemmas 26 and 27 to give our parallel ball optimization
oracle.

Proposition 31 Define f⇢ as in Definition 5, where f is in the setting of Problem 1. Let �, r 2 R>0

satisfy r 
⇢
6 · log�

1
2 (2L�⇢ ) and ⇢ 

L
� . For any � 2 (0, �r

2

100 ], we can implement a (�,�, r)-ball

optimization oracle (Definition 6) for f⇢ with

O

✓
log

✓
Lr

�

◆
log log

✓
Lr

�

◆
· Dquery +

�r
2

�
log4

✓
L
2

��

◆
log

✓
dL

2

��

◆◆
depth,

and O

 
L
2

��
log5

✓
L
2

��

◆
· Tquery + d log5

✓
L
2

��

◆
·
�r

2

�
·

✓
L
2

�2r2

◆!�1
!

work.

Proof Throughout, assume x̄ = 0d in the definition of the ball optimization oracle, which is without
loss of generality because shifting by a constant vector does not affect the assumptions in Problem 1.
Also, define f⇢,�,x̄ as in (1), where x̄ = 0d. We give an algorithm which always returns a point x in
B(r), and such that x has suboptimality gap �

2 , except with probability � := �
2Lr+�r2 . Because f is

L-Lipschitz by Jensen’s inequality on the moment bound in Problem 1, so is f⇢ by Fact 1. Therefore
the range of f⇢,�,x̄ over B(r) is at most Lr + �r

2, and the expected suboptimality gap is

(1� �) ·
�

2
+ � ·

✓
Lr +

�r
2

2

◆
 �,

as required. To implement this algorithm, we first apply Lemma 28 and Corollary 10, which show
that it suffices to solve T = O(log Lr+�r2

� ) = O(log Lr
� ) problems of the form, for some z 2 B(r),

hrf⇢(z)� �z, xi+ kx� zk
2
r2f⇢(0d)| {z }

:=F (x)

+� kxk
2
,

each to error � := �
40 (see (20) for the derivation). Note that

krF (0d)k =
��rf⇢(z)� �z � 2r2

f⇢(0d)z
��  2L+ �r,

because f⇢ is L-Lipschitz and L
⇢ -smooth (Fact 1). Finally, let Z := O(log Lr

� ) be the total number of
oracle calls to O1 or O2 used by Proposition 30. We implement each oracle using either Lemma 26
or Lemma 27 appropriately, with failure probability set to �

Z , and the conclusion follows.

We also note that we can achieve a computational depth-complexity tradeoff in Proposition 11
by choosing different values of S in Corollary 21, than was used in Lemma 27. As stated, Lemma 27
uses Corollary 21 by applying our parallel implementation S iterations at a time, where S = L2

↵�r2 is
the number of iterations required to achieve ⇡ �r

2 error. By instead choosing a larger error C · �r
2

for a parameter C 2 [1, L2

�2r2 ], which induces S = L2

C↵�r2 , we can obtain improved total work
bounds at the cost of larger computational depth. In particular, Corollary 21 has a computational
depth scaling linearly in the parameter C, and a computational complexity scaling as C

2�!; all
logarithmic terms are unnaffected, since C  L2

�2r2 . We summarize this observation in the following.
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Corollary 32 In the context of Proposition 11, for any C 2 [1, L2

�2r2 ], we can implement a (�,�, r)-
ball optimization oracle (Definition 6) for f⇢ with

O

✓
log

✓
Lr

�

◆
log log

✓
Lr

�

◆
· Dquery +

C�r
2

�
log4

✓
L
2

��

◆
log

✓
dL

2

��

◆◆
depth,

and O

 
L
2

��
log5

✓
L
2

��

◆
· Tquery + d log5

✓
L
2

��

◆
·
�r

2

�
·

✓
L
2

�2r2

◆!�1

·

✓
1

C

◆!�2
!

work.
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