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ABSTRACT1

The trajectory planning problem (TPP) for Connected and Autonomous Vehicles (CAVs) holds2

increasing significance in the research of next-generation transportation systems, yet it poses two3

major challenges that significantly limit its practical applicability. The first one is low computa-4

tional efficiency, especially under specific cases within TPP, such as the Eco-trajectory Planning5

Problem (EPP), due to the non-linear nature of formulations. Another one concerns the inability6

to account for signal information and leading vehicles’ movements, either a Human driven vehicle7

or another CAV. To tackle these concerns, this paper proposes a heuristic explicit predictive model8

control (heMPC) framework containing two modules: offline and online. The offline module con-9

structs an optimal eco-trajectory batch by solving a sequence of simplified optimization problems10

for minimizing fuel consumption, considering various initial and terminal system states. Each can-11

didate trajectory in the batch yields the lowest fuel consumption subject to a specific travel time12

from the vehicle entry to the departure from the network. The online module contains a heuris-13

tic trajectory planning algorithm that selects the trajectories that can ensure the CAV would not14

violate signals or follow to closely to the leading vehicles. This batch-based selection method15

significantly enhances computational efficiency attributed to the small-sized solution set for the16

optimization procedures. The case study with a wide range of MPRs demonstrates significantly17

reduced computation time without a noticeable loss of optimality. The proposed framework can18

effectively enhance the applicability of TPP in real-world mixed traffic scenarios and possesses19

substantial potential for incorporating more complicated interrelations between vehicles.20

21

Keywords: Heuristic explicit model predictive control (heMPC), Connected and automated vehi-22

cles (CAV), Eco-driving, offline computing, heuristic trajectory planning23
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INTRODUCTION1

The rapid advancement of technology in vehicle detection, short-range communication, and com-2

puting has paved the way for the development and implementation of connected and autonomous3

vehicles (CAVs). These vehicles have the potential to revolutionize transportation by offering4

increased safety, efficiency, and convenience. Among all studies contributing to the application5

of CAV, developing algorithms controlling the motion (acceleration, speed, lane change, etc.) of6

CAVs to achieve various objectives is one of the fundamental yet challenging tasks in the opera-7

tion of CAVs. For example, emission minimization is often treated as part of the control objectives,8

which inevitably increases computational complexity due to the non-linear relations between the9

kinematic variables and fuel consumption. Under a mixed traffic environment with both human-10

driven vehicles (HDVs) and CAVs, avoiding crashes is often more complicated because of the need11

to account for the driving behavior of HDVs and the interactions between those two vehicle types.12

Naturally, a control problem considering various such practical concerns, the trajectory planning13

problem (TPP), forms a well-established research direction recently receiving considerable atten-14

tion.15

In recent decades, various families of solutions have been investigated, starting from adopt-16

ing nonlinear programming models (NLP) and moving toward optimal control (OC) methods. For17

example, Yang et al., (1) developed a heuristic discrete feedback control algorithm to compute the18

advisory speed limit based on Newell’s car-following model. They evaluated the effectiveness of19

fuel consumption savings under various Minimum Performance Requirements (MPRs) while ac-20

counting for the Vehicle-to-Vehicle (V2V) communication delays. Building upon V2I (Vehicle-to-21

Infrastructure) communication, Ubiergo et al., (2) proposed an advisory speed limit method based22

on Gipp’s car-following model, which formulated the impact of queue length and quantified the ef-23

fectiveness on emission reduction, fuel consumption savings, and travel delays through simulation24

experiments. Yang et al., (3) developed the eco-cooperative adaptive cruise control (Eco-CACC)25

problem as an optimal control problem, which is also a heuristic trajectory planning problem. In26

this study, the influence of queues has been considered, which is equivalent to the safe distance27

constraints in other studies to some extent. This developed algorithm is essentially a direct-solving28

approach considering the queue and traffic signal information, while its computational efficiency29

has not been specifically discussed. Similar to (3), (4) formulated a two-stage optimal control30

model for minimizing fuel consumption applicable to both isolated intersections and arterial roads.31

A pseudospectral solution method (PM) is used to solve the two-stage model, and it takes 1.6s to32

get an optimal eco-trajectory for a vehicle in a real case example. Despite the achievement of these33

methods in hypothetical traffic networks, most NLP-based TPP solutions suffer from insufficient34

computational efficiency that limits their applicability to real-world scenarios, even with the help35

of some heuristic paramours shooting algorithms ((5), (6),(7), (8), (9), (10), (11), (12)) which com-36

pressed the computation time to less than 5 seconds per vehicle. Recognizing such a limitation of37

NLP-based methods, some Model Predictive Control solutions ((13),(14),(15),(16),(17),(18),(19))38

adopted algorithms and techniques from control theory and significantly improved computational39

efficiency. Nevertheless, the computing time would greatly increase with the number of input ve-40

hicles in the network. Such a deficiency limited those TPP solutions at a theoretical level, or at41

most, the planning stage without the feasibility of a real-time application.42

Another constraint of applying the existing methods to practical use is the common neg-43

ligence of the diverse driving behaviors and signal information under a mixed-flow environment.44

Not accounting such real-time information in TPP would incur crash risks when a front vehicle45
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is relatively slower. An ideal solution to TPP should allow CAVs to respond to a leading HDV1

differently based on the perceived driving behavior and be capable of taking advantage of the ad-2

vanced signal phase and timing information to guide the entire mixed traffic flow to achieve various3

pre-specified objectives.4

To enhance the applicability of TPP in real-world scenarios by addressing both computa-5

tional efficiency issues and potential concerns in mixed-flow traffic, this study develops a new TPP6

solution to minimize emission by applying the idea of explicit model predictive control (eMPC)7

that can avoid time-consuming online optimization processes through pre-computing processes8

(20). Innovatively, the developed method contains an offline module, which builds an optimal eco-9

trajectory batch that serves as a lookup table in traditional eMPC, and an online module to select10

an optimal trajectory from a very limited set of candidate trajectories. The proposed model with11

such a two-stage design will have the following features:12

• replacing the time-consuming optimization process with a straightforward trajectory se-13

lection process;14

• possessing significantly higher computational efficiency despite the highly nonlinear na-15

ture of the emission minimization;16

• yielding trajectories customized for each CAV based on the real-time observed driving17

behavior of the front vehicle to avoid crashes effectively;18

• being responsive to perceived traffic signal phase and timing information; and19

• resulting in low emission impact.20

Ultimately, these advancements can contribute to the widespread adoption of autonomous21

vehicles, paving the way for a safer and more sustainable future of transportation.22

STRUCTURE AND ASSUMPTION OF EXPLICIT PREDICTIVE CONTROL FRAME-23

WORK24

Structure of explicit predictive control framework25

Figure 1 depicts the structure of the proposed model where the offline module generates an optimal26

eco-trajectory batch comprising several sets of most fuel-efficient trajectory solutions, each set27

corresponding to a pair of initial and terminal states defined by the vehicle speeds, location and time28

upon its entry and departure from the study intersection. Those candidate trajectory solutions will29

be produced from an optimization problem to minimize fuel consumption and subject to various30

fundamental constraints on vehicle dynamics. These candidate trajectories will form an optimal31

eco-trajectory batch and serve as the solution set of the online module, which assigns each CAV32

one trajectory that satisfies all real-time constraints, including its entry time, initial speed, received33

traffic signal information and safe following distance with the leading vehicle.34

To achieve the desired computational efficiency and aforementioned objectives, below in-35

novative designs are integrated into the model:36

• Compared to the conventional trajectory planning optimization, the optimization prob-37

lem in the offline module is simplified by ignoring the traffic signal and safe following38

distance constraints yet only including fuel-consumption-related formulations and basic39

kinematic constraints so that a set of fuel-efficient trajectories can be generated without40

considering any time-varying conditions (i.e., signal information and behavior of other41

vehicles). Such a design relaxes the need to generate duplicate trajectories that share the42

same travel time, acceleration, and deceleration patterns but differ only on the starting43

times.44
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• In the online module, the most fuel-efficient trajectory will be first translated to match1

the entry time of a subject vehicle. Note that this step does not change the resulting2

fuel consumption of a trajectory and allows the model to examine the feasibility of the3

trajectory with respect to time-sensitive constraints.4

• The translated trajectory will then be examined by the traffic signal and safe following5

distance constraints, which ensure that all vehicles will only pass the stop line within an6

effective green time and that the crashes can be avoided.7

• If either constraint denies a trajectory, it will be temporarily removed from the solution8

set for the subject vehicle, the most fuel-efficient trajectory from the remaining batch will9

be then translated and examined until a trajectory is found to satisfy both constraints and10

assigned to the subject CAV.11

• The safe following distance will be maintained between the subject and the front vehicles,12

referring to either a predicted or planned trajectory of the front vehicles depending on13

whether it is an HDV or a CAV.14

Followed by a brief review of the traditional formulation for the eco-trajectory planning15

problem, all formulations and algorithms utilized in the offline and online modules of the proposed16

heMPC framework will be discussed in detail.

Car-following 
model

V2V Comunicat ion

HDV CAV

Generated trajectory predict ion 
for  the front vehicle Input: Enter ing t ime, 

init ial speed and traffic 
signal

Select the most fuel-efficient 
trajectory from the 
eco-trajectory batch 

Satisfy 
traffic signal constraints?

satisfy 
safe distance  constraints?

YES

Output

NO

NO

Optimal trajectory

YES

Fuel consumption modelObjective function

Constraints

Bound constraints

Kinematic constraints

Input:System state combination set (Init ial speed 
& posit ion, terminal speed & posit ion)

Other constraints

State combination i Optimal trajectory i

State combination i+1 Optimal trajectory i+1

... ...

Optimal eco-trajectory batch

Offline Module: Generat ing 
the eco-trajectory batch 

Online Module:Batch-based select ion

Simplified eco-trajectory planning problem

 Calculat ion of opt imal eco-trajectory batch

Trajectory Translat ion

Temporar ily remove the 
trajectory from the  
eco-trajectory batch

FIGURE 1: Heuristic explicit model predictive control framework

17

Assumption of explicit predictive control framework18

The assumptions for the proposed heMPC framework are presented below, and other specific as-19

sumptions used in certain comparison experiments or algorithms will be clarified in relevant sec-20

tions.21



Lei, Cheng, and Yang 6

1. Every vehicle will travel through the intersection within ϕ cycles, where ϕ is an integer.1

2. The fuel consumption model used in the proposed system should be a continuous or2

piecewise continuous function.3

3. All HDVs strictly follow a car-following model so that their trajectory is fully pre-4

dictable.5

4. The communication delays between vehicles are ignored.6

HEURISTIC ECO-TRAJECTORY PLANNING7

This section introduces the logic and formulations of each function or algorithm in the heMPC8

framework shown in Figure 1. The general form of the Eco-trajectory planning problem (EPP)9

closely related to the generation of the optimal eco-trajectory batch is modeled in detail first, fol-10

lowed by an introduction of the simplified version exclusively for the proposed heMPC. The gen-11

eration of candidate trajectory batch, translation processes and heuristic eco-trajectory planning12

will then be presented. At last, the optimality analysis is conducted to verify the worst case of the13

solution of the proposed heMPC framework. The critical notations adopted in the proposed study14

are shown in Table 1.

TABLE 1: Sets, variables, and parameters

Symbols Descriptions

B Set of vehicles, B ={ b0, b1, b2, b3, ..., bn }

tb
e ,tb

d
Entry and departure time of vehicle b

BHDV ,BCAV Set of HDV and CAV
lv Length of vehicle

Ls Distance from entry point to the stop line

SCAV ,SHDV Minimum safe distance of CAV and HDV
vI

b Initial speed of vehicles

vb
t Speed of vehicle b at time t

ab
t Acceleration or deceleration of vehicle b at time t

vmax,vmin Maximum and minimum speed of vehicles

dE Emergency braking deceleration of vehicles

amax,dmax Maximum acceleration and deceleration of vehicles
θ Length of time intervals

C Cycle lengths

Gi,Yi,Ri Duration of ith green phase, yellow phase, red phase

xb
t Traveling distance of vehicle b at time t

xpb
t Predicted traveling distance of vehicle b at discrete time t

vpb
t Predicted speed of vehicle of vehicle b at discrete time t

Πb The trajectory of vehicle b, Πb is a sequence, Πb = {xb
t : t ∈ τ }

Π optimal trajectory batch, index by i

15

Review of a traditional solution to Eco-trajectory planning problem16

The offline module of the proposed heMPC aims to generate candidate trajectories for CAVs en-17

tering an intersection, as shown in Figure 1. Considering the high non-linearity of the fuel con-18
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sumption functions, this study, enlightened by (21), adopts a discrete-time modeling approach to1

optimize the motion of CAVs. Specifically, the modeling time horizon will be divided into a set of2

sufficiently short equal-length time intervals expressed as τ = {t0, t1,..., T}. The decision variable3

xb
t , as shown in Figure 2, is to represent the cumulative traveling distance of vehicle b until time4

interval t (t ∈ τ) from the origin. By assuming that CAV will make a uniform motion within each5

time interval, the generated time-space curve can be regarded as a feasible trajectory. To facilitate6

the formulations embedded in the proposed heMPC, this section will elaborate on the general con-7

cept and formulations of solutions to traditional Eco-trajectory planning problems (TEPP) using8

such a discrete-time modeling approach. Generally, a TEPP will have border, kinematic, traffic9

signal, and safe distance constraints.

FIGURE 2: An example of discrete-time-based modeling

10
For a given CAV b, its entry time tb

e and departure time td
e must fall within the set τ , which

is ensured with border constraints, as expressed below.

xb
tb
e
= 0 , t ∈ τ,b ∈ B (1)

xb
T g Ls ,b ∈ B (2)

xb
t −Ls f M×ωb

t , t ∈ τ,b ∈ B (3)

xb
t −Ls g M× (ωb

t −1) , t ∈ τ,b ∈ B (4)

If ωb
t == 0 Then tb

d g t +θ , t ∈ τ,b ∈ B (5)

If ωb
t == 1 Then tb

d f t , t ∈ τ,b ∈ B (6)

xb
tb
e+θ

− xb
tb
e
g vD

b ×θ ,b ∈ B (7)
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xtb
d
= Ls,b ∈ B (8)

Equation 1 illustrates that at the entry time xb
tb
e
, the CAV b has just entered the intersection,1

resulting in a zero traveling distance within the intersection. Equation 2 denotes that CAV b must2

depart the intersection before the final second of the modeling time horizon to ensure valid model-3

ing. Equations 3 through 6 illustrate whether the vehicle b has departed the study network at time4

t. If not, i.e., ωb
t = 0, the CAV b can depart no earlier than time t + θ . Additionally, as depicted in5

Equations 7 and 8, when CAV b exits the intersection, its speed at time tb
d should be greater than6

or equal to a specified speed threshold vD, and it must precisely cross the stop line at the departure7

time tb
d , represented by xtb

d
= Ls.8

Kinematic constraints are used to ensure the basic kinematic rules, which generally incor-

porate velocity limitation (as expressed in Equation 9,10), deceleration and acceleration limitation

(as expressed in Equation 11,12), and primary kinematic constraints (as expressed in Equation

13,14).

vb
t g vmin , t ∈ τ,b ∈ B (9)

vb
t f vmax , t ∈ τ,b ∈ B (10)

ab
t g dmax , t ∈ τ,b ∈ B (11)

ab
t f amax , t ∈ τ,b ∈ B (12)

vb
t+θ = vb

t +ab
t ×θ , t ∈ τ, t ̸= T,b ∈ B (13)

xb
t+θ = xb

t + vb
t ×θ , t ∈ τ, t ̸= T,b ∈ B (14)

Traffic signal constraints ensure all vehicles travel through the stop line during the effective

green time, which can be expressed as below.

If (Y e
i − t)× vb

t + xb
t f Ls Then xb

t+0.5C f Ls t ∈ Yi,b ∈ BCAV (15)

If xb
t f Ls Then xb

i×C f Ls t ∈ Ri,b ∈ BCAV (16)

Equation 15 ensures that vehicles not able to reach the stop line by the end of the yellow phase will9

take the following green phase, and Equation 16 applies to those arriving during the red phase.10

Safe distance constraint is to be applied between each pair of adjacent vehicles traveling on

the same path, whose distance should always be greater then or equal to SCAV + lv, where SCAV is

the minimum car-following gap, lv is the vehicle’s length, as expressed below

x
bi−1
t − x

bi
t −SCAV − lv g 0 bi−1,bi ∈ BCAV , t

bi−1
e f tbi

e , t ∈ τ (17)

Offline module: generating optimal eco-trajectory batch11

As shown in Figure 1, the core purpose of the offline module is to generate an optimal eco-12

trajectory batch that contains the most fuel-efficient trajectory for each possible length of the CAV13

travel time through the study network. The feasibility and effect of such a task are verified below:14

• Assuming that all studied vehicles will finish their trip in the studies network by the end15

of ϕth cycle, the travel time of any vehicle would not exceed ϕC - Rϕ . By adopting16

the discrete-time framework, the number of possible values for travel times from vehicle17
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entry to the stop line is finite. Therefore, a finite number of optimization problems will1

be solved, each corresponding to a travel time value. The optimal solution, indicating a2

trajectory with the highest fuel efficiency, will be added to the batch3

• The fuel consumption does not vary with the vehicle entry time and solely depends on4

the vehicle travel time. Therefore, generating duplicate trajectories that differ only on the5

vehicle entry time is unnecessary. All candidate trajectories generated in this module are6

assumed to start from t=0.7

• Those real-time constraints, i.e., traffic signal and safe following distance constraints,8

are not required in the offline module since they can be addressed in the online module9

simply by specifying a proper travel time.10

To achieve the objective of the off-line module, Algorithm 1 is developed, where each11

iteration is to generate a trajectory yielding the optimal fuel-efficient eco-trajectory with a specific12

traveling time ξ . The fuel consumption function, F(v,a), shall be dependent on instantaneous13

speed and acceleration, and the VT-micro emission model ((22)) is adopted in this study. It is14

worth noting that for this optimization problem ρ{Φ(0,v0
b,x

0
b),Φ(ξ ,v

ξ
b ,x

ξ
b )}, where Φ(0,v0

b,x
0
b) is15

the initial state and Φ(ξ ,v
ξ
b ,x

ξ
b ) is the terminal state, Theorem 1 holds.16

Theorem 1 : If fuel consumption function F(v,a) is continues. Then for any generating17

optimization problem ρ{Φ(0,v0
b,x

0
b),Φ(ξ ,v

ξ
b ,x

ξ
b )}, which is feasible, then it must have at least18

one optimal solution. Proof can be found in (23).19

Because there is a minimum time required for a CAV to travel through the intersection, the20

feasibility of the generated trajectory will be examined, as shown in Row 7 of Algorithm 1. Note21

that the energy consumption of the optimal eco-trajectory with a relatively shorter travel time is22

not necessarily low than that of a longer one. Therefore, Row 11 is added to sort Π in ascending23

order of energy consumption. Figure 3 illustrates an optimal trajectory batch obtained from the24

offline module, where each line indicates the most fuel-efficient trajectory with a specific travel25

time, where the blue line denotes the trajectory with the lowest fuel consumption.

Algorithm 1: Generating optimal trajectory batch

Input: Input: Set Π = ∅, arbitrary vehicle b, integer parameter ϕ , p

1 for ξ in range [0, ϕC - Rϕ] do

2 Generating optimization problem ρ{Φ(0,v0
b,x

0
b),Φ(ξ ,v

ξ
b ,x

ξ
b )}:

3 Objective function : Min:∑
B
b ∑

ξ
0 F(vb

t ,a
b
t )θ

4 Add border constraints : Equation 1 - 8

5 Add kinematic constraints : Equation 9 - 14

6 Add traveling time constraints : xb
ξ
= Ls

7 if ρ is infeasible then

8 Continue

9 else

10 Add optimal eco-trajectory of ρ to Π

11 Sort Π in ascending order of energy consumption

Output: Π

26
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FIGURE 3: An example of optimal trajectory batch
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Online module1

Upon the entry of a vehicle into the studied network, ideally, the time-varying speed and acceler-2

ations of the blue trajectory in Figure 3 can be applied to that vehicle for it to travel through the3

stop line with the lowest fuel consumption. However, it might not be feasible because it would4

violate the signal or follow the leading vehicle too closely. Such infeasibility can be examined in5

two steps:6

1. translates the selected trajectory in a way such that it starts at the vehicle entry time (See7

Trajectory translation in Figure 1);8

2. check whether the signal constraint and safety following distance constraints are vio-9

lated10

If a translated trajectory violates any of the constraints, the next trajectory in the batch, with slightly11

higher fuel consumption, will be selected and examined until one trajectory is deemed feasible.12

Those two steps are detailed below, followed by a summary of the entire procedure.13

Figure 4a presents an example of an infeasible translated trajectory, whereas Figure 4b il-14

lustrates a feasible example. It is evident that the translated trajectory in Figure 4a adheres to the15

safe distance constraints but violates the traffic signal constraints. Consequently, an alternative16

trajectory with a different travel time (i.e., a different arrival time at the stop line) should be chosen17

from the optimal trajectory batch Π and translated to commence at the entry time of the subject18

vehicle. As depicted in Figure 4b, a new trajectory selected and translated from Π satisfies both19

the safe distance constraints and traffic signal constraints, indicating that the iteration can be ter-20

minated, as the current translated trajectory is the most energy-efficient and feasible among all in21

the batch.22

The heMPC framework operates within a heuristic trajectory planning scenario where all23

HDVs (Human-Driven Vehicles) are interconnected and strictly adhere to specific car-following24

models ((24) is adopted in this study), while all CAVs strictly follow predefined trajectories. Ad-25

ditionally, roadside devices have the capability to detect the entry times and speeds of all vehicles.26

Hence, when planning an eco-trajectory for a particular vehicle, complete knowledge of its front27

vehicle’s trajectory is possessed, represented as the known sequence xb
t : t ∈ τ . Given that only28

the front vehicle’s movement needs consideration when planning an eco-trajectory for a given ve-29

hicle, this heuristic eco-trajectory planning algorithm is decentralized. Consequently, the model30

plans eco-trajectories vehicle by vehicle without requiring a computation process involving all ve-31

hicles simultaneously, resulting in remarkable computational efficiency. Once a CAV enters the32

intersection, its entire trajectory is immediately planned and remains fixed, impervious to external33

influences, ensuring smooth traffic flow and optimizing trajectory optimization.34

The above procedure can be summarized by algorithm 2 where the indicator variable ι35

denotes whether the selected trajectory from the optimal trajectory batch Π satisfies both the safe36

distance and traffic signal constraints. In the first loop, algorithm 2 will select trajectory from37

the optimal trajectory batch Π one by one. In the second loop, algorithm 2 will translate the38

selected trajectory to the entry time of the current vehicle bi and check the safe distance and traffic39

signal constraints. Because all generated trajectories in Π start from discrete-time 0, therefore,40

the algorithm needs to translate trajectory for t
bi
e unit based on the time scale. From the 4th to41

the 7th row, the algorithm will determine when the current vehicle will leave the intersection if42

it follows the selected trajectory. And suppose this departure time does not lie in the green or43

yellow phases, which means the selected trajectory will violate signal constraints. We will set the44

indicator variable ι to false and select the next trajectory from the sorted optimal trajectory batch45
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(a) An example of infeasible translating trajectory
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(b) An example of feasible translating trajectory

FIGURE 4: Translation process in trajectory planning

Π. The 8th row to the 9th row indicates that if the current vehicle is the first vehicle, it will never1

violate the safe distance constraints because it does not even have a leading vehicle; otherwise,2

the safe distance constraint will be checked in the 10th row whatever its front vehicle is a CAV or3

HDV. The 13th row to the 16th row in algorithm 2 ensures the deceleration of CAV will not exceed4

emergency braking deceleration. From the 17th to the 27th row, algorithm 2 will apply the selected5

trajectory to the subject vehicle.6

In this paper, the predicted HDVs’ trajectory is generated by Gipps’ car-following model1,7

and readers can replace it with any other car-following model.8

Optimality analysis of heuristic trajectory planning algorithm9

In this section, some potential non-optimal scenarios will be shown and discussed. It is worth10

noting that discrete modeling itself is bound to cause some optimality losses. The non-optimal11

scenarios analyzed in this section ignore this optimality loss caused by the framework itself.12

In the optimal trajectory batch Π, only the optimal eco-trajectory of specific discrete trav-13

eling times has been computed, which means that for every possible traveling time, there is only14

one candidate trajectory in the batch, and this trajectory is optimal. Suppose that a trajectory Πti is15

selected from the optimal trajectory batch Π with a traveling time ti. After the translation process,16

if the translated trajectory violets safe distance or traffic signal constraints, then another trajectory17

must be selected. However, a non-optimal trajectory with the same traveling time ti may not violet18

safe distance or traffic signal constraints. As shown in Figure 5, CAV b and its front vehicle b′,19

a trajectory is planned for vehicle b, the front vehicle’s trajectory are know for vehicle b through20

V2V communication, therefore, tb′

e and tb′

d are known, so does tb
e . tb′

e = 20s, tb′

d = 70s and tb
e = 25s.21

The light purple dash trajectory is the safe distance boundary of the front vehicle b′. By feasibility22

examination, the optimal eco-trajectories with traveling time from discrete times interval [0, 54]23

1the detailed algorithms used to predict the HDVs’ trajectory can be found in (23)
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Algorithm 2: Online module of the proposed heMPC framework: selection of the

most fuel-efficient feasible trajectory upon the entry of each CAV

Input: bi,bi ∈ B; t0, t0 ∈ τ;Π

1 ι = True

2 for π in Π do

3 for i in range(tbi
e ,size(π)) do

4 if π
i−t

bi
e
> Ls then

5 if i not in G∪Y then

6 ι = False

7 break

8 if bi == b0 then

9 break

10 if π
i−t

bi
e
> xp

bi−1

i − (lv +SHDV ) then

11 ι = False

12 break

13 if t != 0 then

14 if π
t−t

bi
e
− xp

bi

t−1 > vp
bi

t−1 +dE ×θ then

15 ι = False

16 break

17 if ι is True then

18 if t0 == 0 then

19 xp
bi
t = 0

20 vp
bi
t = vI

bi

21 for t in range(t0 +θ ,T −θ) do

22 xp
bi
t = xp

bi

t−θ + vp
bi

t−θ ×θ

23 vp
bi
t = π

i−t
bi
e +θ

− xp
bi
t

24 else

25 for t in range(t0,T −θ) do

26 xp
bi
t = xp

bi

t−θ + vp
bi

t−θ ×θ

27 vp
bi
t = π

i−t
bi
e +θ

− xp
bi
t

28 else

29 ι = True
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are all infeasible because they violate the safe distance constraints. Moreover, the light green tra-1

jectory with a traveling time of 55s is finally selected after planning. However, a red trajectory that2

does not violate the safe distance constraints may exist, and its traveling time is 50s. Because this3

is not the optimal eco-trajectory2 with traveling time 50s, which means it is not from Π. Therefore,4

the energy consumption of the red trajectory must be larger than the golden trajectory. However, it5

may still be better than the light green one because they have different traveling times. Therefore,6

considering this potential non-optimal scenario, theorem 3 is expressed as follows.

FIGURE 5: An example of the potential non-optimal case under heuristic trajectory planning

7
Theorem 3 : Under heuristic trajectory planning, for current CAV b and its front vehicle ḃ8

(ḃ ∈ BCAV or BHDV ), they trajectory are Πḃ and Πb, respectively. Πb is obtained by the heuristic9

planning algorithm, t ḃ
d and tb

d are known. Inf{ME
Πb
} = 0 and sup{ME

Πb
} =

|E
Πb−EΠ∗ |

E
Πb

, EΠ∗ =10

argminEΠi
{EΠi

: Πi ∈ Π, i ∈ [t ḃ
d − tb

e +θ , tb
d − tb

e −θ ], i /∈ [0,Tmin)∪{[Rb
1− tb

e ,R
e
1− tb

e ], [R
b
2− tb

e ,R
e
2−11

tb
e ], ..., [R

b
j − tb

e ,R
e
j − tb

e ]}}, ME
Πb

is the mixed integer programming gap of EΠb between the current12

2From theorem 1, the optimal solution must exist but may not be unique. Therefore, this trajectory can also be the

optimal eco-trajectory. However, we only add one optimal eco-trajectory of specific traveling time to Π. Therefore,

this trajectory is not from Π even in this situation.
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solution and the upper bound of the optimal solution value. Tmin is the minimal traveling time to1

travel through the intersection. Rb
j and Re

j are the beginning and ending time of the jth red phase.2

Proof. Only an optimal eco-trajectory with a certain discrete time t will be planned by3

trajectory eco-planning algorithm, t ∈ τ . Therefore, it is possible for a non-optimal eco-trajectory4

or another optimal eco-trajectory with a certain discrete time t that does not violate the safe distance5

constraints but an optimal eco-trajectory with a certain discrete time t does. Suppose we do not6

select a trajectory with a certain discrete time for vehicle b from the optimal eco-trajectory batch7

Π. In that case, it is possible to find one more trajectory with a traveling time between [t ḃ
d − tb

e +8

θ , tb
d − tb

e −θ ] that satisfies safe distance constraints and traffic signal constraints. It is also worth9

noting that CAV cannot travel through the intersection with a traveling time within [0,Tmin) due to10

speed and acceleration limits and {[Rb
1 − tb

e ,R
e
1 − tb

e ], [R
b
2 − tb

e ,R
e
2 − tb

e ], ..., [R
b
j − tb

e ,R
e
j − tb

e ]}} due11

to traffic signal constraint. And energy consumption of this trajectory can be infinitely close or12

equal to EΠ∗ = argminEΠi
{EΠi

: Πi ∈ Π, i ∈ [t ḃ
d − tb

e +θ , tb
d − tb

e −θ ], i /∈ [0,Tmin)∪{[Rb
1 − tb

e ,R
b
1 −13

tb
e ], [R

b
2 − tb

e ,R
b
2 − tb

e ], ..., [R
b
j − tb

e ,R
b
j − tb

e ]}}.14

NUMERICAL STUDY15

This section will test the computational efficiency, energy consumption, and optimality of heuris-16

tic trajectory planning under randomly mixed traffic flow with different market penetration rates17

(MPR). All key parameters used for experiments on an isolated intersection shown in Figure 2 are18

listed in Table 2, where amax and dmax refer to the maximum acceleration and deceleration during19

normal driving, dE is the emergency braking deceleration. Each cycle’s phase order and time are20

fixed, 25 seconds, 5 seconds, and 30 seconds for the green, yellow, and red phases. Six levels21

of MPR ranging between 50% and 100% with 10% intervals are applied. Also, for each MPR,22

five-group experiments are conducted to eliminate occasionality.23

All experiments are conducted on a Thinkpad PC running Windows 11 Pro with a 12th24

Gen Intel(R) Core(TM) i7-12800H 2.40 GHz processor and 32GB of RAM. All models are im-25

plemented using Python, and the simplified EPPs in building the optimal eco-trajectory batch are26

solved by Gurobi.27

Testing computational quality and efficiency for heuristic trajectory planning28

Figure 6 demonstrated the optimal trajectory batch with an initial speed of vehicles equal to 6 m/s.29

In Figure 7, the energy consumption of different trajectories is demonstrated from this batch. The30

trajectory with a traveling time of 15 seconds is the most energy-efficient in batch Π, which is also31

the leftmost one in Figure 6.

TABLE 2: Experiment parameters

Parameters Value Parameters Value

vmin 0 m/s vmax 16 /s

amax 2 m/s2 dmax - 2 m/s2

vI 6 m/s Ls 200 m

lv 4 m SHDV 1 m

dE - 6 m/s2 C 60 s

32



Lei, Cheng, and Yang 16

0 25 50 75 100 125 150 175

Times (s)
0

25

50

75

100

125

150

175

200

Lo
ca

tio
n 

(m
)

The eco-trajectory yielding the lowest fuel consumption among those with all travel times
The eco-trajectories with various travel times

FIGURE 6: optimal trajectory batch with an initial speed of vehicles equal to 6 m/s
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FIGURE 7: Fuel consumption pattern of optimal trajectory batch with an initial speed of vehicles

equal to 6 m/s



Lei, Cheng, and Yang 17

In Figures 8 to 11, the trajectories obtained through heuristic trajectory planning under1

different MPRs have been depicted. For comparative analysis, the benchmark assumes strict ad-2

herence to the classic Gipps car-following model by all HDVs and CAVs. Additionally, Figures 123

to 15 display the benchmark trajectories under varying MPRs.4

Upon examining Figures 8 to 15, it becomes evident that the first vehicle unable to travel5

through the intersection within the current effective green phase tends to decelerate in advance.6

They maintain a slower but steady speed to navigate the intersection, thereby avoiding any stop7

during the red phase in heuristic trajectory planning. Conversely, in the benchmark, the vehicle8

prefers to maintain its original speed and suddenly decelerate just before the stop line. Consid-9

ering the car-following behavior, as a result, the benchmark exhibits a relatively larger average10

deceleration and acceleration for all vehicles that are unable to cross the intersection within the11

current effective green phase. This, in turn, leads to higher fuel consumption and less smooth12

trajectories.13

These findings highlight three key aspects. Firstly, heuristic trajectory planning signifi-14

cantly smoothens the trajectory under different MPRs. Moreover, as shown in Figure 17, fuel15

consumption decreases by 42.25%, 45.31%, 48.58%, and 46.68% under different MPRs ranging16

from 50% to 100%, respectively. Notably, heuristic trajectory planning yields greater energy sav-17

ings at higher MPRs.

0 25 50 75 100 125 150 175

Times (s)
0

50

100

150

200

Lo
ca

tio
n 

(m
)

CAV
HDV

FIGURE 8: PMR = 50%
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FIGURE 9: PMR = 60%
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FIGURE 10: PMR = 80%
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FIGURE 11: PMR = 100%

Secondly, Figure 16 demonstrates that the average processing time for heuristic planning19
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to generate a trajectory for a single CAV remains below 1 ms across all MPRs. This level of1

computational efficiency is exceptionally high compared to almost all current methods. The effi-2

ciency stems from the fact that heuristic planning in our heuristic framework does not require the3

repeated calculation of eco-trajectories for multiple CAVs. Instead, heuristic planning identifies4

the best feasible solution from a solution set, with most of the optimization and calculation pro-5

cesses performed during the pre-computing phase. The remarkably high computational efficiency6

of heuristic trajectory planning provides robust support for dynamic trajectory planning.
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FIGURE 12: Benchmark:MPR = 50%
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FIGURE 13: Benchmark:MPR = 60%
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FIGURE 14: Benchmark:MPR = 80%
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FIGURE 15: Benchmark:MPR = 100%

Thirdly, Figure 17 demonstrates that the difference upper bound between the final solutions8

and theoretical optimal solutions is remarkably small. Here, the difference upper bound represents9

the absolute value of the fuel consumption discrepancy between the final solutions and theoretical10

optimal solutions. This difference upper bound is calculated based on Theorem 3, and it is impor-11

tant to note that exact theoretical optimal solutions are not obtained in our paper. Instead, a lower12

bound of optimal solutions is proven and provided. Consequently, the actual difference between the13

final and theoretical optimal solutions is even smaller than our experimental results suggest. The14

difference upper bound percentages under different MPRs are 5.10%, 3.00%, 1.42%, and 3.12%,15

respectively. Therefore, based on the findings, it can be concluded that the heMPC framework16

achieves both good computational quality and extremely high computational efficiency.17
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FIGURE 16: Average processing time of heuristic trajectory planning
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CONCLUSION1

TPP is a critical aspect of the trajectory planning problem and holds significant importance in2

the context of the development and operation of CAVs. Nevertheless, computational efficiency3

issues under the objective of highly non-linear functions like minimizing fuel consumption and the4

insufficient capability of responding to signal control and diverse driving behavior in a mixed traffic5

flow remain major challenges that prevent relevant algorithms from being practically used. This6

paper proposes a heuristic explicit model predictive control (heMPC) framework that integrates7

heuristic trajectory planning techniques to tackle these challenges effectively.8

The heMPC framework consists of both offline and online modules for expediting the opti-9

mization process. In the offline module, an optimal eco-trajectory batch is constructed by solving10

a sequence of optimization problems, considering various initial and terminal system states. Each11

candidate trajectory in the batch yields the lowest fuel consumption subject to a specific travel time12

from the vehicle entry to the departure from the network. Unlike existing TPP studies that rely on13

an online optimization process from an infinite solution set, the online module of the proposed14

framework investigates prespecified trajectories in the batch and selects the ones that can ensure15

the CAV would not violate signals or follow to closely to the leading vehicles. This batch-based16

selection method significantly enhances computational efficiency.17

The case study with a wide range of MRP shows that. in heuristic trajectory planning,18

computational times for different MPR scenarios consistently remain below 1 ms. This approach19

yields significant fuel savings of over 40% compared to the benchmark, with a difference upper20

bound of less than 5.10% compared to theoretically optimal solutions.21

The heMPC framework presented in this paper is designed for isolated intersection sce-22

narios with the primary focus of enhancing computational efficiency and can be extended with23

respect to many aspects. For example, including lane-changing behavior introduces complexi-24

ties in constructing the eco-trajectory batch and deserves careful investigation. Investigating the25

integration of deep learning and nonlinear programming (physics-informed neural network) and26

exploring the combination of reinforcement learning and optimal control techniques would also be27

beneficial. These approaches hold promise for further enhancing the capabilities and effectiveness28

of the heMPC framework in addressing challenges associated with lane-changing behavior.29
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