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ABSTRACT

The trajectory planning problem (TPP) for Connected and Autonomous Vehicles (CAVs) holds
increasing significance in the research of next-generation transportation systems, yet it poses two
major challenges that significantly limit its practical applicability. The first one is low computa-
tional efficiency, especially under specific cases within TPP, such as the Eco-trajectory Planning
Problem (EPP), due to the non-linear nature of formulations. Another one concerns the inability
to account for signal information and leading vehicles’ movements, either a Human driven vehicle
or another CAV. To tackle these concerns, this paper proposes a heuristic explicit predictive model
control (heMPC) framework containing two modules: offline and online. The offline module con-
structs an optimal eco-trajectory batch by solving a sequence of simplified optimization problems
for minimizing fuel consumption, considering various initial and terminal system states. Each can-
didate trajectory in the batch yields the lowest fuel consumption subject to a specific travel time
from the vehicle entry to the departure from the network. The online module contains a heuris-
tic trajectory planning algorithm that selects the trajectories that can ensure the CAV would not
violate signals or follow to closely to the leading vehicles. This batch-based selection method
significantly enhances computational efficiency attributed to the small-sized solution set for the
optimization procedures. The case study with a wide range of MPRs demonstrates significantly
reduced computation time without a noticeable loss of optimality. The proposed framework can
effectively enhance the applicability of TPP in real-world mixed traffic scenarios and possesses
substantial potential for incorporating more complicated interrelations between vehicles.

Keywords: Heuristic explicit model predictive control (heMPC), Connected and automated vehi-
cles (CAV), Eco-driving, offline computing, heuristic trajectory planning
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INTRODUCTION

The rapid advancement of technology in vehicle detection, short-range communication, and com-
puting has paved the way for the development and implementation of connected and autonomous
vehicles (CAVs). These vehicles have the potential to revolutionize transportation by offering
increased safety, efficiency, and convenience. Among all studies contributing to the application
of CAYV, developing algorithms controlling the motion (acceleration, speed, lane change, etc.) of
CAVs to achieve various objectives is one of the fundamental yet challenging tasks in the opera-
tion of CAVs. For example, emission minimization is often treated as part of the control objectives,
which inevitably increases computational complexity due to the non-linear relations between the
kinematic variables and fuel consumption. Under a mixed traffic environment with both human-
driven vehicles (HDVs) and CAVs, avoiding crashes is often more complicated because of the need
to account for the driving behavior of HDVss and the interactions between those two vehicle types.
Naturally, a control problem considering various such practical concerns, the trajectory planning
problem (TPP), forms a well-established research direction recently receiving considerable atten-
tion.

In recent decades, various families of solutions have been investigated, starting from adopt-
ing nonlinear programming models (NLP) and moving toward optimal control (OC) methods. For
example, Yang et al., (/) developed a heuristic discrete feedback control algorithm to compute the
advisory speed limit based on Newell’s car-following model. They evaluated the effectiveness of
fuel consumption savings under various Minimum Performance Requirements (MPRs) while ac-
counting for the Vehicle-to-Vehicle (V2V) communication delays. Building upon V2I (Vehicle-to-
Infrastructure) communication, Ubiergo et al., (2) proposed an advisory speed limit method based
on Gipp’s car-following model, which formulated the impact of queue length and quantified the ef-
fectiveness on emission reduction, fuel consumption savings, and travel delays through simulation
experiments. Yang et al., (3) developed the eco-cooperative adaptive cruise control (Eco-CACC)
problem as an optimal control problem, which is also a heuristic trajectory planning problem. In
this study, the influence of queues has been considered, which is equivalent to the safe distance
constraints in other studies to some extent. This developed algorithm is essentially a direct-solving
approach considering the queue and traffic signal information, while its computational efficiency
has not been specifically discussed. Similar to (3), (4) formulated a two-stage optimal control
model for minimizing fuel consumption applicable to both isolated intersections and arterial roads.
A pseudospectral solution method (PM) is used to solve the two-stage model, and it takes 1.6s to
get an optimal eco-trajectory for a vehicle in a real case example. Despite the achievement of these
methods in hypothetical traffic networks, most NLP-based TPP solutions suffer from insufficient
computational efficiency that limits their applicability to real-world scenarios, even with the help
of some heuristic paramours shooting algorithms ((5), (6),(7), (8), (9), (10), (11), (12)) which com-
pressed the computation time to less than 5 seconds per vehicle. Recognizing such a limitation of
NLP-based methods, some Model Predictive Control solutions ((13),(14),(15),(16),(17),(158),(19))
adopted algorithms and techniques from control theory and significantly improved computational
efficiency. Nevertheless, the computing time would greatly increase with the number of input ve-
hicles in the network. Such a deficiency limited those TPP solutions at a theoretical level, or at
most, the planning stage without the feasibility of a real-time application.

Another constraint of applying the existing methods to practical use is the common neg-
ligence of the diverse driving behaviors and signal information under a mixed-flow environment.
Not accounting such real-time information in TPP would incur crash risks when a front vehicle
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is relatively slower. An ideal solution to TPP should allow CAVs to respond to a leading HDV
differently based on the perceived driving behavior and be capable of taking advantage of the ad-
vanced signal phase and timing information to guide the entire mixed traffic flow to achieve various
pre-specified objectives.

To enhance the applicability of TPP in real-world scenarios by addressing both computa-
tional efficiency issues and potential concerns in mixed-flow traffic, this study develops a new TPP
solution to minimize emission by applying the idea of explicit model predictive control (eMPC)
that can avoid time-consuming online optimization processes through pre-computing processes
(20). Innovatively, the developed method contains an offline module, which builds an optimal eco-
trajectory batch that serves as a lookup table in traditional eMPC, and an online module to select
an optimal trajectory from a very limited set of candidate trajectories. The proposed model with
such a two-stage design will have the following features:

* replacing the time-consuming optimization process with a straightforward trajectory se-

lection process;

* possessing significantly higher computational efficiency despite the highly nonlinear na-

ture of the emission minimization;

* yielding trajectories customized for each CAV based on the real-time observed driving

behavior of the front vehicle to avoid crashes effectively;

* being responsive to perceived traffic signal phase and timing information; and

* resulting in low emission impact.

Ultimately, these advancements can contribute to the widespread adoption of autonomous
vehicles, paving the way for a safer and more sustainable future of transportation.

STRUCTURE AND ASSUMPTION OF EXPLICIT PREDICTIVE CONTROL FRAME-
WORK

Structure of explicit predictive control framework

Figure 1 depicts the structure of the proposed model where the offline module generates an optimal
eco-trajectory batch comprising several sets of most fuel-efficient trajectory solutions, each set
corresponding to a pair of initial and terminal states defined by the vehicle speeds, location and time
upon its entry and departure from the study intersection. Those candidate trajectory solutions will
be produced from an optimization problem to minimize fuel consumption and subject to various
fundamental constraints on vehicle dynamics. These candidate trajectories will form an optimal
eco-trajectory batch and serve as the solution set of the online module, which assigns each CAV
one trajectory that satisfies all real-time constraints, including its entry time, initial speed, received
traffic signal information and safe following distance with the leading vehicle.

To achieve the desired computational efficiency and aforementioned objectives, below in-

novative designs are integrated into the model:

* Compared to the conventional trajectory planning optimization, the optimization prob-
lem in the offline module is simplified by ignoring the traffic signal and safe following
distance constraints yet only including fuel-consumption-related formulations and basic
kinematic constraints so that a set of fuel-efficient trajectories can be generated without
considering any time-varying conditions (i.e., signal information and behavior of other
vehicles). Such a design relaxes the need to generate duplicate trajectories that share the
same travel time, acceleration, and deceleration patterns but differ only on the starting
times.
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* In the online module, the most fuel-efficient trajectory will be first translated to match

the entry time of a subject vehicle. Note that this step does not change the resulting
fuel consumption of a trajectory and allows the model to examine the feasibility of the
trajectory with respect to time-sensitive constraints.

The translated trajectory will then be examined by the traffic signal and safe following
distance constraints, which ensure that all vehicles will only pass the stop line within an
effective green time and that the crashes can be avoided.

If either constraint denies a trajectory, it will be temporarily removed from the solution
set for the subject vehicle, the most fuel-efficient trajectory from the remaining batch will
be then translated and examined until a trajectory is found to satisfy both constraints and
assigned to the subject CAV.

The safe following distance will be maintained between the subject and the front vehicles,
referring to either a predicted or planned trajectory of the front vehicles depending on
whether it is an HDV or a CAV.

Followed by a brief review of the traditional formulation for the eco-trajectory planning

16 problem, all formulations and algorithms utilized in the offline and online modules of the proposed
heMPC framework will be discussed in detail.
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FIGURE 1: Heuristic explicit model predictive control framework

Assumption of explicit predictive control framework
The assumptions for the proposed heMPC framework are presented below, and other specific as-
sumptions used in certain comparison experiments or algorithms will be clarified in relevant sec-

tions.
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. Every vehicle will travel through the intersection within ¢ cycles, where ¢ is an integer.

2. The fuel consumption model used in the proposed system should be a continuous or
piecewise continuous function.

3. All HDVs strictly follow a car-following model so that their trajectory is fully pre-
dictable.

4. The communication delays between vehicles are ignored.

HEURISTIC ECO-TRAJECTORY PLANNING

This section introduces the logic and formulations of each function or algorithm in the heMPC
framework shown in Figure 1. The general form of the Eco-trajectory planning problem (EPP)
closely related to the generation of the optimal eco-trajectory batch is modeled in detail first, fol-
lowed by an introduction of the simplified version exclusively for the proposed heMPC. The gen-
eration of candidate trajectory batch, translation processes and heuristic eco-trajectory planning
will then be presented. At last, the optimality analysis is conducted to verify the worst case of the
solution of the proposed heMPC framework. The critical notations adopted in the proposed study
are shown in Table 1.

TABLE 1: Sets, variables, and parameters

Symbols Descriptions

B Set of vehicles, B ={ by, by, by, b3, ..., b, }

té’,ts Entry and departure time of vehicle b

Bupy,Bcav  Set of HDV and CAV

Ly Length of vehicle

Ly Distance from entry point to the stop line

Scav,Sgpy  Minimum safe distance of CAV and HDV

vi Initial speed of vehicles

VY Speed of vehicle b at time ¢

af Acceleration or deceleration of vehicle b at time ¢

Vinax Vimin Maximum and minimum speed of vehicles

dg Emergency braking deceleration of vehicles

Amax,dmax ~ Maximum acceleration and deceleration of vehicles

0 Length of time intervals

C Cycle lengths

Gi,Y,R; Duration of ith green phase, yellow phase, red phase

xb Traveling distance of vehicle b at time ¢

xp? Predicted traveling distance of vehicle b at discrete time ¢
vpf Predicted speed of vehicle of vehicle b at discrete time ¢
I’ The trajectory of vehicle b, I’ is a sequence, IT? = {)cf7 tet}
IT optimal trajectory batch, index by i

Review of a traditional solution to Eco-trajectory planning problem
The offline module of the proposed heMPC aims to generate candidate trajectories for CAVs en-
tering an intersection, as shown in Figure 1. Considering the high non-linearity of the fuel con-
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sumption functions, this study, enlightened by (27), adopts a discrete-time modeling approach to
optimize the motion of CAVs. Specifically, the modeling time horizon will be divided into a set of
sufficiently short equal-length time intervals expressed as T = {tg, 1,..., T}. The decision variable
x”, as shown in Figure 2, is to represent the cumulative traveling distance of vehicle b until time
interval t (t € 7) from the origin. By assuming that CAV will make a uniform motion within each
time interval, the generated time-space curve can be regarded as a feasible trajectory. To facilitate
the formulations embedded in the proposed heMPC, this section will elaborate on the general con-
cept and formulations of solutions to traditional Eco-trajectory planning problems (TEPP) using
such a discrete-time modeling approach. Generally, a TEPP will have border, kinematic, traffic
signal, and safe distance constraints.

FIGURE 2: An example of discrete-time-based modeling

For a given CAV b, its entry time t‘lj and departure time tg must fall within the set 7, which
is ensured with border constraints, as expressed below.

xfé,:O,ter,bEB (1)
xb.>L; beB ()
b —L<Mxal tetbeB (3)
b —L>Mx (@ —1) ,ret,beB 4)
If o'==0 Then >r+6 ,rct,hcB (5)
If o’==1 Then /<t ret,bcB (6)

b b D
xté,+9—xt£,2vb ><9,b€B (7)
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b =Ls,bEB (8)
Equation 1 illustrates that at the entry time xfb, the CAV b has just entered the intersection,

resulting in a zero traveling distance within the intersection. Equation 2 denotes that CAV b must
depart the intersection before the final second of the modeling time horizon to ensure valid model-
ing. Equations 3 through 6 illustrate whether the vehicle b has departed the study network at time
t. If not, i.e., a),b = 0, the CAV b can depart no earlier than time 7 + 6. Additionally, as depicted in
Equations 7 and 8, when CAV b exits the intersection, its speed at time tg should be greater than
or equal to a specified speed threshold vp, and it must precisely cross the stop line at the departure
time tg , represented by Xpp = L;.

Kinematic constraints are used to ensure the basic kinematic rules, which generally incor-
porate velocity limitation (as expressed in Equation 9,10), deceleration and acceleration limitation

(as expressed in Equation 11,12), and primary kinematic constraints (as expressed in Equation
13,14).

V> Vit €T,bEB 9)
V <y t€T,bEB (10
a’ > dpac 1 €T,DEB (11)
@’ < apac 1 €T, EB (12)
Vo=V +alx0 tett#T,beB (13)
t+0 t t ’ ) )

L=+ Vx0 . tet,t£T,beEB (14)
t+6 t t ’ ) )

Traffic signal constraints ensure all vehicles travel through the stop line during the effective
green time, which can be expressed as below.
If (V¢ —1) x v+ <L; Thenx? s <L; t €Y:,b € Beay (15)

If x’ <L, Thenx’ . <L, t€R;i,b < Bcay (16)
Equation 15 ensures that vehicles not able to reach the stop line by the end of the yellow phase will
take the following green phase, and Equation 16 applies to those arriving during the red phase.

Safe distance constraint is to be applied between each pair of adjacent vehicles traveling on
the same path, whose distance should always be greater then or equal to Scay + [,,, where Scay is
the minimum car-following gap, /, is the vehicle’s length, as expressed below

b; . b; X
X xP Sy =1, >0 bi_y,bi € Beay, 1o <tPiret (17)

Offline module: generating optimal eco-trajectory batch
As shown in Figure 1, the core purpose of the offline module is to generate an optimal eco-
trajectory batch that contains the most fuel-efficient trajectory for each possible length of the CAV
travel time through the study network. The feasibility and effect of such a task are verified below:
* Assuming that all studied vehicles will finish their trip in the studies network by the end
of @th cycle, the travel time of any vehicle would not exceed ¢C - Ry. By adopting
the discrete-time framework, the number of possible values for travel times from vehicle
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entry to the stop line is finite. Therefore, a finite number of optimization problems will
be solved, each corresponding to a travel time value. The optimal solution, indicating a
trajectory with the highest fuel efficiency, will be added to the batch

* The fuel consumption does not vary with the vehicle entry time and solely depends on
the vehicle travel time. Therefore, generating duplicate trajectories that differ only on the
vehicle entry time is unnecessary. All candidate trajectories generated in this module are
assumed to start from #=0.

* Those real-time constraints, i.e., traffic signal and safe following distance constraints,
are not required in the offline module since they can be addressed in the online module
simply by specifying a proper travel time.

To achieve the objective of the off-line module, Algorithm 1 is developed, where each
iteration is to generate a trajectory yielding the optimal fuel-efficient eco-trajectory with a specific
traveling time . The fuel consumption function, F(v,a), shall be dependent on instantaneous
speed and acceleration, and the VT-micro emission model ((22)) is adopted in this study. It is

worth noting that for this optlmlzatlon problem p{®(0,),x)),P(&, vg ,xf)} where ®(0,),x)) is
£

the initial state and CI>(§,vb ,X7 ) is the terminal state, Theorem 1 holds.
Theorem 1 : If fuel consumption function F(v,a) is continues. Then for any generating

optimization problem p{®(0,v),x9),®(&, vg,xg)} which is feasible, then it must have at least
one optimal solution. Proof can be found in (23).

Because there is a minimum time required for a CAV to travel through the intersection, the
feasibility of the generated trajectory will be examined, as shown in Row 7 of Algorithm 1. Note
that the energy consumption of the optimal eco-trajectory with a relatively shorter travel time is
not necessarily low than that of a longer one. Therefore, Row 11 is added to sort IT in ascending
order of energy consumption. Figure 3 illustrates an optimal trajectory batch obtained from the
offline module, where each line indicates the most fuel-efficient trajectory with a specific travel
time, where the blue line denotes the trajectory with the lowest fuel consumption.

Algorithm 1: Generating optimal trajectory batch
Input: Input: Set IT = &, arbitrary vehicle b, integer parameter ¢, p
1 for § in range [0, C - Ry] do

2 Generating optimization problem p{®(0,v),x)), ®(&,v; ,xf)}
3 Objective function : Min: Zb Zg’ F(r,ab)e
4 Add border constraints : Equation 1 - 8
5 Add kinematic constraints : Equation 9 - 14
6 Add traveling time constraints : x’é =L
if p is infeasible then
8 ‘ Continue
9 else
10 L Add optimal eco-trajectory of p to I1

11 Sort IT in ascending order of energy consumption
Output: I1
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Online module

Upon the entry of a vehicle into the studied network, ideally, the time-varying speed and acceler-
ations of the blue trajectory in Figure 3 can be applied to that vehicle for it to travel through the
stop line with the lowest fuel consumption. However, it might not be feasible because it would
violate the signal or follow the leading vehicle too closely. Such infeasibility can be examined in
two steps:

1. translates the selected trajectory in a way such that it starts at the vehicle entry time (See

Trajectory translation in Figure 1);
2. check whether the signal constraint and safety following distance constraints are vio-
lated
If a translated trajectory violates any of the constraints, the next trajectory in the batch, with slightly
higher fuel consumption, will be selected and examined until one trajectory is deemed feasible.
Those two steps are detailed below, followed by a summary of the entire procedure.

Figure 4a presents an example of an infeasible translated trajectory, whereas Figure 4b il-
lustrates a feasible example. It is evident that the translated trajectory in Figure 4a adheres to the
safe distance constraints but violates the traffic signal constraints. Consequently, an alternative
trajectory with a different travel time (i.e., a different arrival time at the stop line) should be chosen
from the optimal trajectory batch II and translated to commence at the entry time of the subject
vehicle. As depicted in Figure 4b, a new trajectory selected and translated from IT satisfies both
the safe distance constraints and traffic signal constraints, indicating that the iteration can be ter-
minated, as the current translated trajectory is the most energy-efficient and feasible among all in
the batch.

The heMPC framework operates within a heuristic trajectory planning scenario where all
HDVs (Human-Driven Vehicles) are interconnected and strictly adhere to specific car-following
models ((24) is adopted in this study), while all CAVs strictly follow predefined trajectories. Ad-
ditionally, roadside devices have the capability to detect the entry times and speeds of all vehicles.
Hence, when planning an eco-trajectory for a particular vehicle, complete knowledge of its front
vehicle’s trajectory is possessed, represented as the known sequence xf : t € 7. Given that only
the front vehicle’s movement needs consideration when planning an eco-trajectory for a given ve-
hicle, this heuristic eco-trajectory planning algorithm is decentralized. Consequently, the model
plans eco-trajectories vehicle by vehicle without requiring a computation process involving all ve-
hicles simultaneously, resulting in remarkable computational efficiency. Once a CAV enters the
intersection, its entire trajectory is immediately planned and remains fixed, impervious to external
influences, ensuring smooth traffic flow and optimizing trajectory optimization.

The above procedure can be summarized by algorithm 2 where the indicator variable 1
denotes whether the selected trajectory from the optimal trajectory batch IT satisfies both the safe
distance and traffic signal constraints. In the first loop, algorithm 2 will select trajectory from
the optimal trajectory batch IT one by one. In the second loop, algorithm 2 will translate the
selected trajectory to the entry time of the current vehicle b; and check the safe distance and traffic
signal constraints. Because all generated trajectories in I start from discrete-time 0, therefore,
the algorithm needs to translate trajectory for t2 unit based on the time scale. From the 4th to
the 7th row, the algorithm will determine when the current vehicle will leave the intersection if
it follows the selected trajectory. And suppose this departure time does not lie in the green or
yellow phases, which means the selected trajectory will violate signal constraints. We will set the
indicator variable 1 to false and select the next trajectory from the sorted optimal trajectory batch
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FIGURE 4: Translation process in trajectory planning

I1. The 8th row to the 9th row indicates that if the current vehicle is the first vehicle, it will never
violate the safe distance constraints because it does not even have a leading vehicle; otherwise,
the safe distance constraint will be checked in the 10th row whatever its front vehicle is a CAV or
HDV. The 13th row to the 16th row in algorithm 2 ensures the deceleration of CAV will not exceed
emergency braking deceleration. From the 17th to the 27th row, algorithm 2 will apply the selected
trajectory to the subject vehicle.

In this paper, the predicted HDVs’ trajectory is generated by Gipps® car-following model!,
and readers can replace it with any other car-following model.

Optimality analysis of heuristic trajectory planning algorithm

In this section, some potential non-optimal scenarios will be shown and discussed. It is worth
noting that discrete modeling itself is bound to cause some optimality losses. The non-optimal
scenarios analyzed in this section ignore this optimality loss caused by the framework itself.

In the optimal trajectory batch I1, only the optimal eco-trajectory of specific discrete trav-
eling times has been computed, which means that for every possible traveling time, there is only
one candidate trajectory in the batch, and this trajectory is optimal. Suppose that a trajectory II; is
selected from the optimal trajectory batch IT with a traveling time #;. After the translation process,
if the translated trajectory violets safe distance or traffic signal constraints, then another trajectory
must be selected. However, a non-optimal trajectory with the same traveling time #; may not violet
safe distance or traffic signal constraints. As shown in Figure 5, CAV b and its front vehicle &/,
a trajectory is planned for vehicle b, the front vehicle’s trajectory are know for vehicle b through
V2V communication, therefore, tf,’/ and tfl/ are known, so does 77 té’/ = 20s, tfj/ =70s and t? = 25s.
The light purple dash trajectory is the safe distance boundary of the front vehicle 4’. By feasibility
examination, the optimal eco-trajectories with traveling time from discrete times interval [0, 54]

Ithe detailed algorithms used to predict the HDVs’ trajectory can be found in (23)
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Algorithm 2: Online module of the proposed heMPC framework: selection of the
most fuel-efficient feasible trajectory upon the entry of each CAV

Input: b;,b; € B; ty, tg € T;I1

1 1 =True

2 for win Il do

3 for i in range(t% size(r)) do

4 if T b > Ls then

5 if i notin GUY then

6 1 = False

7 break

8 if b; == by then

9 | break

10 if T b > xp?"’l — (I, + Sgpy ) then
11 1 = False

12 break
13 if 1 /= 0 then

14 if T bi —xpf’il > vpfil +dg x 6 then
15 1 = False

16 break
17 if 1 is True then
18 if 7o == 0 then

b;

19 xp;' =0
20 vpfi = vii
21 for ¢ in range(to+ 0,7 — 6) do
2 xpfi = xpfie —|—vpfi9 x 6

b; b;

23 VPr =T biy g~ XPi
24 else
25 for ¢ in range(ty,T — 0) do
26 xpﬁ’i = xpfle +vpfi9 x 6

b,’ bi

27 VP = ”i_tfi Lo Pt
28 else

29 L 1 = True
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are all infeasible because they violate the safe distance constraints. Moreover, the light green tra-
jectory with a traveling time of 55s is finally selected after planning. However, a red trajectory that
does not violate the safe distance constraints may exist, and its traveling time is 50s. Because this
is not the optimal eco-trajectory” with traveling time 50s, which means it is not from IT. Therefore,
the energy consumption of the red trajectory must be larger than the golden trajectory. However, it
may still be better than the light green one because they have different traveling times. Therefore,
considering this potential non-optimal scenario, theorem 3 is expressed as follows.

200 |- —

£ T B B e S EEEmese e e
Trajectory and safe distance boundary
of the following vehicle

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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FIGURE 5: An example of the potential non-optimal case under heuristic trajectory planning

Theorem 3 : Under heuristic trajectory planning, for current CAV b and its front vehicle b
(b € Bcay or Bupy), they trajectory are IT? and I1?, respectively. I1” is obtained by the heuristic
‘Enh 7EH* ‘

» B =

. Enh
argming, {Ep,: I €I,i € (t5—10+0,t5—12—6],i ¢ [0, Tuin) U{[R, — 12, RS —12), [R5 — 12, RS —
..., [le’. —1tb RS — 13}, Mg, is the mixed integer programming gap of Eyy» between the current

planning algorithm, tfj’ and ¢} are known. Inf{Mg_,} = 0 and sup{M_,} =

2From theorem 1, the optimal solution must exist but may not be unique. Therefore, this trajectory can also be the
optimal eco-trajectory. However, we only add one optimal eco-trajectory of specific traveling time to I1. Therefore,
this trajectory is not from IT even in this situation.
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solution and the upper bound of the optimal solution value. T,,;, is the minimal traveling time to
travel through the intersection. R? and R; are the beginning and ending time of the jth red phase.
Proof. Only an optimal eco-trajectory with a certain discrete time ¢ will be planned by
trajectory eco-planning algorithm, ¢ € 7. Therefore, it is possible for a non-optimal eco-trajectory
or another optimal eco-trajectory with a certain discrete time ¢ that does not violate the safe distance
constraints but an optimal eco-trajectory with a certain discrete time ¢ does. Suppose we do not
select a trajectory with a certain discrete time for vehicle b from the optimal eco-trajectory batch
I1. In that case, it is possible to find one more trajectory with a traveling time between [ts —th+
O,tg — 12 — 0] that satisfies safe distance constraints and traffic signal constraints. It is also worth
noting that CAV cannot travel through the intersection with a traveling time within [0, 7;,,;,) due to
speed and acceleration limits and {[R} — 2, RS — 2], (RS — 2, RS — 1], ..., [R? —1tb RS — 211} due
to traffic signal constraint. And energy consumption of this trajectory can be infinitely close or
equal to Erp- = argming,, {En,: T, €TLi€ [th—12 40,15 —12 — 0],i ¢ [0, Tpin) U {[RE — 12, R —

e
12), [RS — 10, R —10), ... [R: — 10 R —1{]} }.

NUMERICAL STUDY
This section will test the computational efficiency, energy consumption, and optimality of heuris-
tic trajectory planning under randomly mixed traffic flow with different market penetration rates
(MPR). All key parameters used for experiments on an isolated intersection shown in Figure 2 are
listed in Table 2, where d;;,4x and d,,,, refer to the maximum acceleration and deceleration during
normal driving, dg is the emergency braking deceleration. Each cycle’s phase order and time are
fixed, 25 seconds, 5 seconds, and 30 seconds for the green, yellow, and red phases. Six levels
of MPR ranging between 50% and 100% with 10% intervals are applied. Also, for each MPR,
five-group experiments are conducted to eliminate occasionality.

All experiments are conducted on a Thinkpad PC running Windows 11 Pro with a 12th
Gen Intel(R) Core(TM) 17-12800H 2.40 GHz processor and 32GB of RAM. All models are im-
plemented using Python, and the simplified EPPs in building the optimal eco-trajectory batch are
solved by Gurobi.

Testing computational quality and efficiency for heuristic trajectory planning

Figure 6 demonstrated the optimal trajectory batch with an initial speed of vehicles equal to 6 m/s.
In Figure 7, the energy consumption of different trajectories is demonstrated from this batch. The
trajectory with a traveling time of 15 seconds is the most energy-efficient in batch I, which is also
the leftmost one in Figure 6.

TABLE 2: Experiment parameters

Parameters Value Parameters Value
Vinin 0 m/s Vinax 16 /s
Amax 2 m/s? dax -2 m/s?
i 6 m/s Ly 200 m
lv 4 m S HDV 1m

dg - 6 m/s? C 60 s
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FIGURE 6: optimal trajectory batch with an initial speed of vehicles equal to 6 m/s
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FIGURE 7: Fuel consumption pattern of optimal trajectory batch with an initial speed of vehicles

equal to 6 m/s
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In Figures 8 to 11, the trajectories obtained through heuristic trajectory planning under
different MPRs have been depicted. For comparative analysis, the benchmark assumes strict ad-
herence to the classic Gipps car-following model by all HDVs and CAVs. Additionally, Figures 12
to 15 display the benchmark trajectories under varying MPRs.

Upon examining Figures 8 to 15, it becomes evident that the first vehicle unable to travel
through the intersection within the current effective green phase tends to decelerate in advance.
They maintain a slower but steady speed to navigate the intersection, thereby avoiding any stop
during the red phase in heuristic trajectory planning. Conversely, in the benchmark, the vehicle
prefers to maintain its original speed and suddenly decelerate just before the stop line. Consid-
ering the car-following behavior, as a result, the benchmark exhibits a relatively larger average
deceleration and acceleration for all vehicles that are unable to cross the intersection within the
current effective green phase. This, in turn, leads to higher fuel consumption and less smooth
trajectories.

These findings highlight three key aspects. Firstly, heuristic trajectory planning signifi-
cantly smoothens the trajectory under different MPRs. Moreover, as shown in Figure 17, fuel
consumption decreases by 42.25%, 45.31%, 48.58%, and 46.68% under different MPRs ranging
from 50% to 100%, respectively. Notably, heuristic trajectory planning yields greater energy sav-
ings at higher MPRs.
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FIGURE 8: PMR = 50% FIGURE 9: PMR = 60%
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FIGURE 10: PMR = 80% FIGURE 11: PMR = 100%

Secondly, Figure 16 demonstrates that the average processing time for heuristic planning
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to generate a trajectory for a single CAV remains below 1 ms across all MPRs. This level of
computational efficiency is exceptionally high compared to almost all current methods. The effi-
ciency stems from the fact that heuristic planning in our heuristic framework does not require the
repeated calculation of eco-trajectories for multiple CAVs. Instead, heuristic planning identifies
the best feasible solution from a solution set, with most of the optimization and calculation pro-
cesses performed during the pre-computing phase. The remarkably high computational efficiency
of heuristic trajectory planning provides robust support for dynamic trajectory planning.

ol Ll )}Mﬁ o _4 JH" ///, N /
= =

2. Y e

< L < L

LU - LU .
FIGURE 12: Benchmark:M PR = 50% FIGURE 13: Benchmark:M PR = 60%
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FIGURE 14: Benchmark:M PR = 80% FIGURE 15: Benchmark:MPR = 100%

Thirdly, Figure 17 demonstrates that the difference upper bound between the final solutions
and theoretical optimal solutions is remarkably small. Here, the difference upper bound represents
the absolute value of the fuel consumption discrepancy between the final solutions and theoretical
optimal solutions. This difference upper bound is calculated based on Theorem 3, and it is impor-
tant to note that exact theoretical optimal solutions are not obtained in our paper. Instead, a lower
bound of optimal solutions is proven and provided. Consequently, the actual difference between the
final and theoretical optimal solutions is even smaller than our experimental results suggest. The
difference upper bound percentages under different MPRs are 5.10%, 3.00%, 1.42%, and 3.12%,
respectively. Therefore, based on the findings, it can be concluded that the heMPC framework
achieves both good computational quality and extremely high computational efficiency.
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FIGURE 17: Energy consumption analysis
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CONCLUSION

TPP is a critical aspect of the trajectory planning problem and holds significant importance in
the context of the development and operation of CAVs. Nevertheless, computational efficiency
issues under the objective of highly non-linear functions like minimizing fuel consumption and the
insufficient capability of responding to signal control and diverse driving behavior in a mixed traffic
flow remain major challenges that prevent relevant algorithms from being practically used. This
paper proposes a heuristic explicit model predictive control (heMPC) framework that integrates
heuristic trajectory planning techniques to tackle these challenges effectively.

The heMPC framework consists of both offline and online modules for expediting the opti-
mization process. In the offline module, an optimal eco-trajectory batch is constructed by solving
a sequence of optimization problems, considering various initial and terminal system states. Each
candidate trajectory in the batch yields the lowest fuel consumption subject to a specific travel time
from the vehicle entry to the departure from the network. Unlike existing TPP studies that rely on
an online optimization process from an infinite solution set, the online module of the proposed
framework investigates prespecified trajectories in the batch and selects the ones that can ensure
the CAV would not violate signals or follow to closely to the leading vehicles. This batch-based
selection method significantly enhances computational efficiency.

The case study with a wide range of MRP shows that. in heuristic trajectory planning,
computational times for different MPR scenarios consistently remain below 1 ms. This approach
yields significant fuel savings of over 40% compared to the benchmark, with a difference upper
bound of less than 5.10% compared to theoretically optimal solutions.

The heMPC framework presented in this paper is designed for isolated intersection sce-
narios with the primary focus of enhancing computational efficiency and can be extended with
respect to many aspects. For example, including lane-changing behavior introduces complexi-
ties in constructing the eco-trajectory batch and deserves careful investigation. Investigating the
integration of deep learning and nonlinear programming (physics-informed neural network) and
exploring the combination of reinforcement learning and optimal control techniques would also be
beneficial. These approaches hold promise for further enhancing the capabilities and effectiveness
of the heMPC framework in addressing challenges associated with lane-changing behavior.
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