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Figure 1: StreetNav is a system that explores the concept of repurposing existing street cameras to support precise outdoor

navigation for blind and low-vision (BLV) pedestrians. It comprises two components: (i) a computer vision (CV) pipeline, and

(ii) a companion smartphone app. The computer vision pipeline processes the street camera’s video feeds and delivers real-time

navigation feedback via the app. StreetNav o�ers precise turn-by-turn directions to destinations while also providing real-time,

scene-aware assistance to alert them of nearby obstacles and facilitate safe street crossings.

∗Work done during internship at Columbia University.
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ABSTRACT

Blind and low-vision (BLV) people rely on GPS-based systems for

outdoor navigation. GPS’s inaccuracy, however, causes them to

veer o� track, run into obstacles, and struggle to reach precise
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destinations. While prior work has made precise navigation pos-

sible indoors via hardware installations, enabling this outdoors

remains a challenge. Interestingly, many outdoor environments are

already instrumented with hardware such as street cameras. In this

work, we explore the idea of repurposing existing street cameras

for outdoor navigation. Our community-driven approach considers

both technical and sociotechnical concerns through engagements

with various stakeholders: BLV users, residents, business owners,

and Community Board leadership. The resulting system, StreetNav,

processes a camera’s video feed using computer vision and gives

BLV pedestrians real-time navigation assistance. Our evaluations

show that StreetNav guides users more precisely than GPS, but

its technical performance is sensitive to environmental occlusions

and distance from the camera. We discuss future implications for

deploying such systems at scale.

CCS CONCEPTS

• Human-centered computing→ Accessibility systems and

tools.
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1 INTRODUCTION

Outdoor navigation in unfamiliar environments is amajor challenge

for blind and low-vision (BLV) people. Among the many navigation

systems that have been developed to assist BLV people outdoors,

GPS-based systems are the most popular [30, 33, 44, 63, 68]. These

systems, such as BlindSquare [44] and Microsoft Soundscape [30],

guide users to a destination and notify them of surrounding points

of interest (POIs). Despite GPS’s undeniable impact in making out-

door environments navigable, its imprecision is a major limita-

tion [61]. GPS precision can range from 5 meters at best to over

tens of meters in urban areas with buildings and trees [23, 46, 69].

This imprecision causes BLV people to veer o� track [53], run

into unexpected obstacles [8, 54, 56], and struggle to reach precise

destinations [61] when navigating outdoors.

Prior work on indoor navigation, on the contrary, has made pre-

cise navigation assistance possible for BLV people [2, 21, 36, 48, 62].

Most approaches do so by installing a dense network of Blue-

tooth [2] or WiFi [21] beacons. However, extending this approach

for outdoor navigation is not feasible due to the vast scale and

complex nature of outdoor spaces. Interestingly, many outdoor

environments of interest, such as urban districts and downtown ar-

eas, are already instrumented with hardware that has the potential

to help, including street cameras, tra�c sensors, and other urban

infrastructure components.

Street cameras, in particular, have the potential to support BLV

pedestrians’ outdoor navigation. The video feed from these cameras

could be processed using computer vision to track BLV pedestrians

and perceive their visual environment with greater precision and

�delity compared to GPS-based systems. The profound potential of

street cameras for assistive technology is accompanied by signi�-

cant challenges and concerns — both technical and sociotechnical.

On the technical front, there is a lack of understanding regarding

the precise capabilities of street cameras to track BLV pedestri-

ans and how camera-based systems should be designed to e�ec-

tively support BLV people’s outdoor navigation. Sociotechnically,

a major concern revolves around privacy due to cameras’ capa-

bility to collect pervasive data, not only a�ecting BLV users but

also other pedestrians and vehicles in the vicinity [17]. Moreover,

street cameras are often deployed by governments to force surveil-

lance [4, 12, 20, 38, 42], which exacerbates people’s privacy con-

cerns. Limited work has been done to explore how camera-based

technologies can respect people’s privacy concerns and directly

serve their interests, rather than solely serving government-de�ned

purposes [17, 28, 41, 74].

In this work, we take a community-driven approach to explore

the concept of leveraging street cameras to support outdoor navi-

gation for blind pedestrians.To this end, we engage with various

stakeholders including BLV users, local residents, local business

owners, and Community Board leadership. We aim to address both

the technical and sociotechnical aspects of this concept through

the following research questions:

RQ1. What are stakeholders’ privacy concerns toward camera-

based assistive technology, and howmight they be respected?

RQ2. How might a street camera-based navigation assistance sys-

tem be designed?

RQ3. To what extent do street camera-based systems support BLV

people’s outdoor navigation?

To answer RQ1, we interviewed various stakeholders, including

two BLV users, two local residents, a local business owner, and a

Community Board leader. We discovered stakeholders’ di�ering

perspectives on privacy concerns towards camera-based assistive

technology. All stakeholders expressed that repurposing existing

cameras to help BLV people, rather than installing new cameras, sig-

ni�cantly alleviates their privacy concerns. Participants also shared

that regulating data storage, anonymization, and access policies

could further enhance their sense of comfort around privacy.

To answer RQ2, we developed StreetNav, a system that lever-

ages a street camera to support precise outdoor navigation for BLV

pedestrians. StreetNav’s design is informed by BLV people’s out-

door navigation challenges (Section 3) and by various stakeholders’

privacy concerns toward camera-based assistive technology (Sec-

tion 4). As Figure 1 illustrates, StreetNav comprises two components:

(i) a computer vision pipeline, and (ii) a companion smartphone app.

The computer vision pipeline processes the street camera’s video

feed and delivers real-time navigation assistance to BLV pedestrians

via the smartphone app. StreetNav o�ers precise turn-by-turn di-

rections to destinations while also providing real-time, scene-aware

assistance to prevent users from veering o� course, alert them of

nearby obstacles, and facilitate safe street crossings.
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StreetNav supports BLV pedestrians’ outdoor navigation by re-

purposing an existing street camera. Through StreetNav, we explore

the feasibility of street camera-based systems at a single street inter-

section as a �rst step. We chose to use a camera from the NSF PAWR

COSMOS testbed [60, 72] because it is available to researchers after

an approval process and IRB review. We considered other publicly

available testbeds, such as Mobintel [45] and DataCity SMTG [14],

but chose COSMOS due to its location in a major city (New York)

with high pedestrian and vehicle tra�c. Anonymized video samples

from the COSMOS cameras, including the one used in this work,

can be found online [13].

To answer RQ3, we conducted both a user evaluation and a

technical evaluation of StreetNav. Our user evaluation involved

eight BLV pedestrians who navigated routes with both StreetNav

and BlindSquare [44], a popular GPS-based navigation app specially

designed for BLV people. Our �ndings reveal that StreetNav o�ers

signi�cantly greater precision in guiding pedestrians compared to

BlindSquare. Speci�cally, StreetNav guided participants to within

an average of 2.9 times closer to their destination and reduced

veering o� course by over 53% when compared to BlindSquare. This

substantial improvement was re�ected in a forced ranking, where

all participants unanimously preferred StreetNav over BlindSquare.

Despite an improved user experience, StreetNav’s technical eval-

uation exposes certain limitations. We found that although Street-

Nav tracks pedestrians with an 82% precision and 65% recall at 0.5

IOU threshold, the accuracy drops signi�cantly as the pedestrian’s

distance from the camera increases. The false negative rates goes

up from 1% at a distance of 5 meters to 74% at a distance of 40

meters from the camera. Additionally, StreetNav’s performance is

sensitive to occlusions and distance from camera. We discuss fu-

ture implications of our �ndings in the context of deploying street

camera-based navigation systems at scale.

In summary, we contribute (1) a study of various stakeholders’

privacy concerns toward camera-based assistive technology, (2)

the StreetNav system through which we explore the concept of

repurposing existing street cameras for precise outdoor navigation

assistance, and (3) both a user and technical evaluation of StreetNav.

2 RELATED WORK

Our work builds on the following three main research threads: (i)

outdoor navigation approaches, (ii) overhead camera-based robot

navigation, and (iii) indoor navigation approaches.

Outdoor Navigation Approaches. Existing approaches for out-

door navigation primarily rely on GPS-based navigation systems for

guiding users to the destination and providing information about

nearby POIs [30, 33, 44, 63, 68]. BlindSquare[44], for instance, uti-

lizes the smartphone’s GPS signal to determine the user’s location

and then provides the direction and distance to the destination,

gathered from Foursquare and Open Street Map. The GPS signal,

however, o�ers poor precision with localization errors as big as tens

of meters [2, 23, 46, 73]. The accuracy is lower in densely populated

cities [70], which is even more concerning given that a dispropor-

tionately high percentage of BLV people live in cities [27]. Despite

GPS-based systems’ undeniable impact on helping BLV people in

outdoor navigation, their low precision and inability to provide

real-time support for avoiding obstacles and veering o� the path

limits their usability as a standalone navigation solution. Our work

attempts to investigate street cameras’ potential as an alternative

solution for providing precise and real-time navigation assistance.

Another approach for outdoor navigation has explored devel-

oping personalized, purpose-built, assistive devices that support

BLV people with scene-aware aspects of outdoor navigation, such

as crossing streets [26, 39, 66], recording routes [73], and avoid-

ing obstacles [16, 18, 34, 40, 59, 71]. While these solutions address

some of the precise and real-time aspects of BLV people’s outdoor

navigation, support for point-to-point navigation is missing. Conse-

quently, they do not o�er a comprehensive, all-in-one solution for

outdoor navigation. Furthermore, these systems place the burden

of purchasing devices onto the BLV users. Our work, by contrast,

explores the possibility of using existing street cameras to provide

a comprehensive solution for outdoor navigation. We investigate

repurposing existing hardware in outdoor environments to support

accessibility applications, thus directly imbuing accessibility within

the city infrastructure at no additional cost to the BLV user.

OverheadCamera-basedRobotNavigation. Aparallel research

space to street cameras for blind navigation is robot navigation

using overhead cameras. One common subspace within this �eld is

sensor fusion for improved mapping. Research in this space focuses

on fusing information between sighted “guide” robots and overhead

cameras [11], fusing multiple camera views for improved track-

ing [11, 52, 55], and improving homography for robust mapping,

independent of camera viewing angle [64, 65]. Another challenge

tackled within this space is robot path planning. Research in this

space aims to improve path planning algorithms [11, 52, 65], assign

navigational tasks to robot assistants [11, 52], and address the bal-

ance between obstacle avoidance and path following [11, 65]. While

prior work on robot navigation using �xed cameras explores the

research space of automating “blind” robot navigation, our work

explores how �xed cameras, speci�cally street cameras, could be

repurposed to support navigation for blind pedestrians. Our prelim-

inary work [31] explores an initial system concept that considers

street cameras for blind navigation. This concept was not evalu-

ated, however, nor were community issues considered. In this work,

we perform both a technical and user evaluation to holistically

explore the concept of leveraging street cameras for blind naviga-

tion. Moreover, we take a community-driven approach to consider

both technical and sociotechnical challenges in developing street

camera-based navigation systems, engaging with not only BLV

users but also various stakeholders.

Indoor Navigation Approaches. Prior work in indoor naviga-

tion assistance has made signi�cant progress through the utiliza-

tion of various localization technologies, which usually relies on

hardware like WiFi or Bluetooth beacons [2, 21, 36, 48, 62]. These

solutions have proven highly e�ective within indoor environments.

NavCog3 [2], for example, excels in indoor navigation by employ-

ing Bluetooth beacons for precise turn-by-turn guidance. Nakajima

and Haruyama [48] exploit the use of visible lights communica-

tion technology, utilizing LED lights and a geomagnetic correction

method to localize BLV users. However, extending these approaches

to support outdoor navigation is not feasible. This is particularly

evident when considering the substantial e�ort in hardware setup

that these systems typically require, making them ill-suited for the
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larger, unstructured outdoor environment. Furthermore, most of

these methods lack the capability to assist with obstacle avoidance

and to prevent users from veering o� course — both of which are

less severe issues indoors compared to outdoors [53]. Our explo-

ration of using existing street cameras is better suited to address

the largely unaddressed challenges of outdoor navigation. This

approach has the potential to o�er precise localization without re-

quiring dense hardware installations. It can harness existing street

cameras for locating a pedestrian’s position. Additionally, it holds

the potential to tackle the distinctive challenges posed by the un-

structured nature of outdoor environments, including real-time

obstacle avoidance and safe street crossing.

3 BLV PEOPLE’S CHALLENGES IN OUTDOOR
NAVIGATION USING GPS-BASED SYSTEMS

We conducted semi-structured interviews with six BLV partici-

pants to identify challenges that they face when navigating out-

doors using GPS-based systems. Our interviews found three major

challenges, C1: following routing instructions through complex en-

vironment layouts, C2: avoiding unexpected obstacles while using

GPS-based systems, and C3: crossing streets safely. While these

challenges are well-documented within existing literature [8, 53,

54, 56, 61], our �ndings highlight areas that could be prioritized for

resolution through the implementation of a street camera-based

navigation system. Appendix A provides additional detail on partic-

ipant demographics, interview procedure, and interview �ndings.

4 STAKEHOLDERS’ PRIVACY CONCERNS
TOWARD CAMERA-BASED SYSTEMS

We conducted �ve semi-structured interviews with various stake-

holders from Harlem, New York City, where the COSMOS testbed

is located. Harlem is a diverse community within a major city that

has become sensitive to government surveillance and overreach.

The interviews were with two BLV users (B1, B2), two local resi-

dents (R1, R2), a local business owner (O1), and a Community Board

leader (CB1). Our objective was to understand stakeholders’ privacy

concerns regarding camera-based assistive technology and explore

ways to address these concerns (RQ1).

4.1 Methods

Participants. Table 3 (Appendix B) reports participant demograph-

ics. Each interview lasted for about 45-60 minutes, except for the

interview with the Community Board leader that lasted for 15 min-

utes. Three interviews (B1, B2, R1) were conducted online over

Zoom, two (O1, R1) were conducted in person, and one (CB1) was

conducted over phone. All participants, except for CB1, were com-

pensated $50 for their participation in this IRB-approved study. CB1

refused to accept the compensation.

Procedure. We began by giving participants a short presentation

describing an initial system concept. The presentation illustrated

how street cameras could capture street intersections, use computer

vision to track pedestrians and vehicles, and deliver navigation in-

structions to BLV users via smartphones. We verbally described

visuals to BLV participants during the study. We then asked par-

ticipants questions about their perceived bene�ts and concerns,

preferences around data collection and use scenarios that may raise

privacy concerns: e.g., Does it matter to you who has access to the

camera feed? During interview with the Community Board leader,

we inquired about the feasibility of such a system: e.g., How feasible

would it be to use street cameras for assistive technology purposes?

We concluded interviews by discussing strategies for how such

systems might respect their privacy concerns.

Interview Analysis. We used thematic analysis [10] to analyze

the interviews, similar to our methodology described in Section 3.

This analysis involved three researchers independently generating

initial sets of codes, which were then collaboratively iterated to

identify emerging themes.

4.2 Findings: Privacy Concerns

Our participants, irrespective of their stakeholder category, held

di�ering perspectives on privacy concerns toward camera-based

assistive technology. While some had no privacy concerns what-

soever, others felt uncomfortable with the concept of a camera

monitoring them. When asked if there was anything that could sat-

isfy their concerns, concerned participants identi�ed two strategies:

(i) regulating data storage, anonymization, and access policies; and

(ii) repurposing existing cameras rather than installing new cameras

to assist BLV people. The following sections detail our �ndings on

stakeholders’ di�ering viewpoints on privacy and strategies that

this assistive technology could employ to respect those viewpoints.

Stakeholders’ di�ering perspectives on privacy concerns.

Nearly half of the participants (B1, R2, O1) expressed no concerns

about being recorded by the camera. In fact, they highlighted the

added bene�ts of street cameras in enhancing public safety, partic-

ularly aiding in crime investigation. These participants expressed

the willingness to sacri�ce some privacy in exchange for societal

bene�ts such as accessibility and public safety. This �nding aligns

with earlier �ndings by Pro�ta et al. [57]. Additionally, B1 pointed

out that complete privacy should not be expected in public spaces:

“If you’re on a public street, you pretty much could expect for anyone

to see you at any time. So it’s no more invasive than anything else on

a public street. A public street is pretty much fair game for anybody.”

In contrast, other participants (B2, R1) expressed discomfort with

cameras’ capability not only to track people’s movements but also

to “know what [they] look like” (B2). R1 compared a camera’s pres-

ence to an “overarching shadow that’s always looking over [and]

monitoring their everyday moves.” These participants voiced con-

cerns against the use of such cameras for public safety purposes.

They feared that the ability to determine individuals’ identities from

the video feed could result in the targeting of marginalized groups

such as people of color (R1) and BLV individuals (B2). As B2 stated:

“The fact that I’m being surveilled even more as a blind person, and

knowing that police disproportionately target the disabled whenever

things are going wrong, that just makes me feel even less safe.”

Regulating data storage, anonymization, and access policies.

We inquired about participants’ preferences regarding the collec-

tion and storage of the video feed. Those without privacy concerns

(B1, R2, O1) expressed indi�erence regarding the duration and form

(e.g., anonymized vs. raw footage) of video footage storage, assert-

ing they had “nothing to hide” (O1). B1 elaborated: “It really doesn’t
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Figure 8: The StreetNav App’s user interface. It provides routing instructions to their destination via (a) a path overview and (c,

e) real-time feedback that updates their current instruction based on their location. Upon reaching a sidewalk, (b) the app

informs the user about when it is safe to cross and (d) how much remains for them to cross over. It also (d) noti�es the user of a

nearby obstacle’s category and relative location to help them avoid it. The app (f) con�rms the user’s arrival at the destination.

Throughout the journey, the app provides (g) continuous audiohaptic feedback to prevent users from veering o� track.

the direction and extent of veering. We initially used the Kalman

�lter to predict the user’s heading based on their trajectory, but this

proved inaccurate due to noisy tracking data. Instead, we used the

smartphone’s compass, o�set by a �xed value to align its zero with

the map’s horizontal direction, allowing us to perform all heading

computations relative to the map’s frame of reference.

For directional guidance, we used stereo sound: beeping from

the right speaker when users veer left (Figure 7a) and from the left

speaker when users veer right (Figure 7c). The frequency of beeps

increases with the extent of veering, allowing users to navigate

e�ectively without headphones. To prevent overwhelming users

with continuous audio feedback, a tolerance angle (\ ) of 50 degrees

was introduced. Within this angle, subtle haptic vibrations guide

users in the correct direction, while beeping sounds indicate veering,

balancing audio as negative reinforcement and haptic feedback as

positive reinforcement.

Notifying about nearby obstacles. Figure 8d shows how Street-

Nav alerts the user of obstacles nearby. The app announces the

obstacle’s category, distance, and relative location. For example,

when a car approaches the user, the app announces: “Caution! Car,

4 ft. to the left.” Similar to veering feedback, the relative location is

computed using both the computer vision pipeline’s outputs and

the smartphone’s compass reading.

We tried feedback formats with varying granularity to convey

the obstacle’s relative location. First, we experimented with clock-

faced directions: “Car, 4 ft. at 1 o’clock.” Clock-faced directions are

commonly used in many GPS-based systems such as BlindSquare to

convey directions. We learned from pilot evaluations with our BLV

co-author that this feedback format was too �ne-grained, as it took

them a few seconds to decode the obstacle’s location. This does not

fare well with moving obstacles, such as pedestrians, that may have

already passed the user before they are able to decode the location.

Moreover, StreetNav’s goal with obstacle awareness is to give users

a quick idea that something is nearby them, which they can then

use to circumnavigate via their mobility skills. To address this, we

tried the more coarse format with just four directions: left, right,

front, and back. This was found to give users a quick intimation,

compared to the clock-faced directions.
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positive rate and a 10% false negative rate. For pedestrian feet posi-

tion estimation, the root mean squared error (± std.) is 0.41 (± 1.49)

meters. Although StreetNav detects pedestrians with 82% precision

and 65% recall at a 0.5 IOU (intersection over union) threshold,

accuracy decreases as the pedestrian’s distance from the camera in-

creases, with the false negative rate rising from 1% at 5meters to 74%

at 40 meters. The root mean squared error (± std.) for transforming

points from camera view to map view is 0.65 (± 0.26) meters.

Appendix E elaborates on the evaluation procedure and provides

additional detail on factors that impact performance for each step.

8 DISCUSSION

Our goal with StreetNav was to explore the idea of repurposing

existing street cameras to support precise outdoor navigation for

BLV pedestrians. We re�ect upon our �ndings to discuss how street

camera-based systems might be deployed at scale, privacy concerns

with camera-based assistive technology, implications of a street

camera-based navigation approach for existing GPS-based navi-

gation systems, and the a�ordances enabled by precise, real-time

outdoor navigation assistance.

Deploying street camera-based navigation systems at scale.

StreetNav demonstrates that street cameras have the potential to

be repurposed for supporting precise outdoor navigation for BLV

pedestrians. Our study results show that street camera-based navi-

gation systems can guide users to their destination more precisely

and prevent them from veering o� course (Figure 11). Our results

also show that street camera-based systems can support real-time,

scene-aware assistance by notifying users of nearby obstacles (Fig-

ure 12) and giving information about when to cross streets (Fig-

ure 13). These bene�ts of a street camera-based approach over

existing GPS-based systems underscore the need for deploying

such systems at scale. Although StreetNav was deployed at a single

intersection, we learned insights on potential challenges and con-

siderations that must be addressed to deploy street camera-based

systems at scale.

Several internal and external factors need to be considered be-

fore street cameras can be e�ectively leveraged to support blind

navigation at scale. External factors, including lighting conditions

and occlusions on the street, may a�ect system performance. For in-

stance, we noticed that StreetNav’s ability to track pedestrians was

a�ected severely in low-light conditions (e.g., at night) and by occlu-

sions due to the presence of large vehicles (e.g., trucks, buses) and

the installation of sca�olding for construction (Figure 17d). Such

challenges a�ect the reliability of street camera-based systems and

may limit its operational hours. Internal factors, including the posi-

tioning of cameras, their �eld of view, and variability in resolution,

may a�ect the extent to which such systems can promise precise

navigation assistance. For instance, the visibility of the pedestrian

signals from the camera feed could a�ect how much such systems

can assist users with crossing streets. With StreetNav, we observed

a drop in tracking accuracy as pedestrians moved further away

from the camera.

Therefore, deploying street camera-based systems at scale would

require future work to investigate the extent to which both external

factors (e.g., lighting, occlusions) and internal factors (e.g., camera

resolution) a�ect system performance and reliability. To address

some of the technical limitations around tracking performance and

�eld of view limitations, future research could explore integrating

multiple cameras at various elevations and viewing angles. Prior

work on robot navigation has explored the fusion of multiple cam-

eras to improve tracking performance [11, 52, 55]. Future work

could also explore an ecosystem of accessible street cameras that

can share information to automatically manage hand-o�s across

street intersections, providing users with a seamless experience

beyond a single street intersection. Such ecosystems, which span

beyond one intersection to a whole district or city, could enable

new a�ordances, such as automatically sensing pedestrian tra�c

to inform tra�c signals and vice versa [37].

Privacy concerns with camera-based assistive technology.

Privacy is a signi�cant consideration for the practical deployment

of street camera-based assistive technology. Our study with various

stakeholders (Section 4) revealed di�ering perspectives on privacy

and identi�ed strategies for respecting those perspectives. Recall

from Section 4 the two strategies that our stakeholders identi�ed:

(i) regulating data storage, anonymization, and access policies; and

(ii) repurposing existing cameras rather than installing new ones.

Concerning the �rst strategy, StreetNav’s implementation does

not necessitate any data storage for facilitating outdoor naviga-

tion assistance. The video feed is processed in real-time on a local

server, and only navigation instructions are shared with the BLV

user’s smartphone. Furthermore, StreetNav employs a map view

representation—as depicted in Figure 3d—for computing routes

and identifying obstacles, inherently enabling data anonymization.

The questions regarding who should have access to these cameras

and for what other purposes, including public safety, they might

be used for, still require further investigation. As for the second

strategy, although StreetNav repurposes a camera from an exist-

ing publicly available testbed, the feasibility of securing camera

access and resources of already existing street cameras at scale re-

mains an open question. From our interview with the Community

Board leader (Section 4), collaboration among di�erent government

entities emerged as a potential next step. Future research could

investigate the roles of di�erent government entities and the im-

plementation of policies that ensure responsible and transparent

use of street cameras.

Implications for GPS-based navigation systems. When cam-

eras are available, and conditions align favorably, street camera-

based systems o�er BLV individuals a valuable source of �ne-

grained, high-precision information, signi�cantly enhancing their

navigational experience and environmental awareness. These capa-

bilities are currently beyond the reach of conventional GPS-based

systems. All eight study participants unanimously chose StreetNav

over BlindSquare as their preferred navigation system due to its

precise, scene-aware navigation assistance (Section D.2). However,

it’s important to acknowledge that street camera-based systems

have their own set of limitations. The widespread availability of

street cameras is not yet a reality, and ideal conditions may not

always be met for their e�ective use. In contrast, GPS-based sys-

tems, while lacking in precision and environmental awareness, are

universally accessible and resilient in varying conditions, includ-

ing low light. A harmonious integration of these two approaches
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is a promising solution. Users can tap into street-camera infor-

mation when conditions permit, seamlessly transitioning to GPS

data when necessary. This can be facilitated through sensor fu-

sion or information hand-o�s, creating a synergy that ensures a

smooth and reliable navigational experience. Future approaches

could explore how these two systems can e�ectively complement

each other, addressing their respective limitations and enhancing

overall performance.

A�ordances of precise outdoor navigation assistance for BLV

people. Previous research in indoor navigation has demonstrated

the advantages of accurately pinpointing users’ locations [2, 36,

62] and providing scene-aware navigational information [25, 35].

However, achieving such precision has remained a challenge in

outdoor environments, primarily due to the limited accuracy of GPS

technology [23]. StreetNav’s approach of leveraging existing street

cameras demonstrates that precise outdoor navigation support for

BLV pedestrians is possible. Our study reveals the advantages of

precise, �ne-grained navigation for BLV individuals. These bene�ts

include a substantial reduction in instances of veering and routing

errors, such as deviation from the shortest path or missing intended

destinations, as well as augmented environmental awareness.

StreetNav o�ered our participants a glimpse into the potential

of precise outdoor navigation. Several participants desired even

greater precision, including the ability to discern the exact num-

ber of steps remaining before reaching a crosswalk’s curb. Future

research could delve into exploring how to best deliver such granu-

lar feedback to BLV users, alongside the necessary technological

advancements needed to achieve this level of precision. These ad-

vantages, as our �ndings suggest, extend beyond merely improv-

ing navigation performance. Participants shared insights into how

precise navigation could enhance their independence when navi-

gating outdoors. It could empower BLV people to venture outdoors

more frequently, unlocking new travel opportunities, as exempli-

�ed by P3’s newfound con�dence in using public transportation

with StreetNav-like systems:

“I don’t really use the city buses, except if I’m with

somebody, but [StreetNav] would make me want to get

up, go outside, and walk to the bus stop.” –P3

This newfound con�dence is particularly noteworthy, considering

the unpredictable nature of outdoor environments. Future research

could explore new a�ordances that street camera-based systems

can enable for people, in general.

9 LIMITATIONS

Our work revealed valuable insights into the bene�ts and e�ec-

tiveness of a new approach that uses existing street cameras for

outdoor navigation assistance. At the same time, we acknowledge

that our work has several limitations.

StreetNav was developed using a camera from an existing cloud-

networked testbed that is publicly available to the researchers [13,

60, 72], situated at a speci�c street intersection. It is important to

note that our development process may not have encountered all

potential technical challenges and design considerations, given the

constraints of this setup. Additionally, StreetNav’s use of the testbed

camera instead of a regular security cameramay yield slightly di�er-

ent performance due to factors like camera perspective, resolution,

availability, and even the layout of the intersection. Future research

could expand upon our design and investigate how street camera-

based systems can be adapted to di�erent environments.

Furthermore, to ensure the safety of participants and to �t the

user study within a 120-minute timeframe, we designed the study

routes to be less complex and dangerous. Real-world outdoor en-

vironments can vary signi�cantly across regions, and our study

location may not fully capture the diversity of scenarios BLV people

encounter when navigating outdoors.

Lastly, it is important to note that our design of StreetNav was

guided by interviews with six BLV individuals, six stakeholders

from New York City, and was evaluated in a study with only eight

BLV individuals. While our participants’ insights are valuable, their

preferencesmay not represent the general population’s perspectives

on BLV people’s navigation challenges and various stakeholders’

privacy concerns. There could be additional challenges and design

possibilities that we did not explore because of the cultural and

regional context. Future research should consider a more exten-

sive and diverse participant pool to gain a more comprehensive

understanding of BLV people’s challenges and privacy preferences

of various stakeholders.

10 CONCLUSION

We explored the idea of leveraging existing street cameras to sup-

port precise outdoor navigation for BLV pedestrians. Our resulting

system, StreetNav, investigates both technical and sociotechnical

concerns with a street camera-based navigation system. Our eval-

uations revealed StreetNav’s potential to guide users more pre-

cisely to destinations compared to existing GPS-based systems. It

also demonstrated camera-based system’s ability to o�er real-time,

context-aware navigation assistance, aiding in obstacle avoidance

and safe street crossings. However, we also identi�ed challenges

and opportunities for deploying street camera-based navigation

systems at scale. These challenges suggest areas for future research

to enhance system robustness and reliability while addressing pri-

vacy concerns. Our work highlights the potential of embedding

accessibility into urban infrastructure using existing resources like

street cameras. We envision a future where these systems seam-

lessly integrate into urban environments, providing BLV people

with safe, precise navigation capabilities and empowering them to

navigate their surroundings con�dently.
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APPENDIX

A FORMATIVE INTERVIEWS WITH BLV
PEOPLE

We provide details on the semi-structured interviews with BLV

participants that we conducted to identify challenges that they face

when navigating outdoors using GPS-based systems.

A.1 Methods

Participants. We recruited six BLV participants (three males, three

females; aged 29–66) by posting on social media platforms and snow-

ball sampling [22]. Table 1 summarises the participants’ informa-

tion. All interviews were conducted over Zoom and lasted about 60

minutes. Participants were compensated $25 for this IRB-approved

study. We obtained informed consent from all study participants.

Procedure. To identify the speci�c challenges that BLV people

face when navigating outdoors, we used a recent critical incident

technique (CIT) [19], in which we asked participants to recall and

describe a recent time when they navigated outdoor environments

using GPS-based assistive technology (AT). For example, we �rst

asked participants to name the AT they commonly use and then

asked them to elaborate on their recent experience of using it: “So,

you mentioned using BlindSquare a lot. When was the last time you

used it?” Then, we initiated a discussion by establishing the scenario

for them: “Now, let’s walk through your visit from the o�ce to this

restaurant. Suppose, I spotted you at your o�ce.What would I observe?

Let’s start with you getting out of your o�ce building.” We asked

follow-up questions to gain insights into what made the aspects of

outdoor navigation challenging and what additional information

could help address them.

InterviewAnalysis. To analyze the interviews, we �rst transcribed

the study sessions in full and then performed thematic analysis [10]

involving three members of our research team. Each researcher �rst

independently went through the interview transcripts and used

NVivo [50] to create an initial set of codes. Then, all three iterated

on the codes together to identify emerging themes.
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Table 1: Self-reported demographics of our participants. Gender information was collected as a free response; our participants

identi�ed themselves as female (F) or male (M). Participants rated their assistive technology (AT) familiarity on a scale of 1–5.

PID Age Gender Race Occupation Vision ability Onset Mobility aid AT familiarity (1–5)

F1 29 Female White Claims expert Totally blind At birth White cane 3: Moderately familiar

F2 61 Female White Retired Light perception only Age 6 Guide dog 1: Not at all familiar

F3 66 Female White Retired Totally blind Age 58 Guide dog 2: Slightly familiar

F4 48 Male Black Unemployed Light perception only Age 32 White cane 3: Moderately familiar

F5 27 Male Mixed Unemployed Totally blind At birth White cane 3: Moderately familiar

F6 38 Male White AT instructor Totally blind At birth White cane 5: Extremely familiar

A.2 Findings

We found three major themes around challenges that BLV pedes-

trians face when navigating outdoors using GPS-based systems.

C1: Routing through complex environment layouts. Partic-

ipants reported di�culties in following routing instructions pro-

vided by GPS-based systems. These instructions, as explained by the

participants, often did not match their current location. Many partic-

ipants cited problems such as making wrong turns into unexpected

“alleyways” (F1, F2, F4) that landed them in dangerous situations

with “cars coming through” (F2). Participants cited examples of how

these instructions caused them to veer o� course—a common issue

for BLV individuals in open, outdoor spaces [53]—and end up in the

middle of the streets. This problem was particularly pronounced

in complex environment layouts, as F3 recalled: “I didn’t know if

crosswalks were straight or curved or if they were angled. [It was

hard] to �gure out which way you needed to be to be in the crosswalk.”

Since "not everything is organized in the ideal grid-like way” (F1),

participants were hesitant to act on the navigation instructions

without a clear understanding of the layout.

C2: Avoiding unexpected obstacles while using GPS-based

systems. BLV people’s challenges relating to obstacles during nav-

igation are well researched [54, 56]. However, we found speci�c

nuances in their di�culties, particularly when they rely on their

conventional mobility aids in conjunction with GPS-based naviga-

tion systems. Participants commonly reported the use of mobility

aids like white canes alongside GPS systems for guidance. During

this combined navigation process, they encountered di�culties in

maintaining their focus on avoiding obstacles, often resulting in

collisions with objects that they would have otherwise detected

using their white canes. For instance, F2 shared an incident where

they remarked, “there were tra�c cones [and] I tripped over those”

while following directions from BlindSquare [44]. Notably, mov-

ing obstacles such as pedestrians and cars, as well as temporarily

positioned stationary obstacles like triangle sandwich board signs,

posed signi�cant challenges for navigation. F4 expressed this senti-

ment, stating, “You know how many times I’ve walked into the sides

of cars even though I have the right of way. Drivers have gotten angry,

accusing me of scratching their vehicles. It can spoil your day [and

make] you feel insecure.”

C3: Crossing street intersections safely. Consistent with prior

research [3, 26, 43], our study participants highlighted that crossing

streets remained a signi�cant challenge for them. Since GPS-based

systems do not help with street-crossing, most participants relied

on their auditory senses and apps like Oko [9]. Regarding the use

of auditory senses, they mentioned the practice of listening to ve-

hicular sounds to gauge tra�c �ow on streets running parallel and

perpendicular to their position. This auditory technique helped

them assess when it was safe to cross streets. However, participants

also reported instances where this method proved inadequate due to

external factors: “yeah, it can be tricky, because [there may be] really

loud construction nearby that can de�nitely throw me o� because I’m

trying to listen to the tra�c” (F1). Furthermore, their con�dence in

street-crossing decisions was a�ected by their inability to ascertain

the duration of pedestrian signals and the length of the crosswalk.

This uncertainty led to apprehension, as they expressed a fear of be-

coming stranded mid-crossing, as exempli�ed by one participant’s

comment: “I don’t want to be caught in the middle [of the street]” (F4).

Regarding the use of Oko [9], participants found it cumbersome

to point their phone’s camera toward a pedestrian signal and to

switch between this app and others during navigation.

B PARTICIPANT DEMOGRAPHICS

Table 3 summarizes demographics of various stakeholders we in-

terviewed (Section 4), and Table 2 summarizes our user study par-

ticipant demographics (Section 6).

C STREETNAV: TECHNICAL SETUP

Figure 2 shows the street camera we used for developing and eval-

uating StreetNav. The camera is part of the NSF PAWR COSMOS

wireless edge-cloud testbed [60, 72], and is available to researchers

after an approval process and IRB review. We considered other

publicly available testbeds such as Mobintel [45] and DataCity

SMTG [14], but chose COSMOS due to its location in a major city

(New York) with high pedestrian and vehicle tra�c. Anonymized

video samples from the COSMOS cameras, including the one used

in this work, can be found online [13]. StreetNav’s computer vi-

sion pipeline takes the real-time video feed from the camera as

input. For this purpose, we deployed the computer vision pipeline

on one of the testbed servers, which captures the camera’s video

feed in real time. This server runs Ubuntu 20.04 with an Intel Xeon

CPU@2.60GHz and an Nvidia V100 GPU.

StreetNav’s two components—the computer vision pipeline and

the app—interact with each other via a cloud server, sharing infor-

mation using the MQTT messaging protocol [47]. Since MQTT is
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Table 2: Self-reported demographics of our user study participants. Gender information was collected as a free response.

Participants rated their familiarity with assistive technology (AT) on a scale of 1–5.

PID Age Gender Occupation Race Vision ability Onset Mobility aid AT familiarity (1–5)

P1 24 Male App developer Asian Low vision Age 19 White cane 2: Slightly familiar

P2 28 Male Data manager White Low vision At birth None 3: Moderately familiar

P3 48 Male Not employed Black Totally blind Age 32 White cane 3: Moderately familiar

P4 46 Female Social worker Latino Totally blind Age 40 White cane 4: Very familiar

P5 43 Female Not employed Asian Totally blind At birth White cane 4: Very familiar

P6 52 Male Mgmt. analyst Mixed Light perception only Age 9 White cane 5: Extremely familiar

P7 26 Female Writer Mixed Low vision At birth White cane 2: Slightly familiar

P8 51 Male Not employed Black Light perception only Age 26 Guide dog 3: Moderately familiar

Table 3: Self-reported demographics of our formative interviews with various stakeholders.

PID Stakeholder Category Gender Age Notes

B1 BLV individual Female 62 Light perception only

B2 BLV individual Gender Neutral 41 Limited vision in only left eye

R1 Local resident Female 29 Lived in Harlem for 12+ years

R2 Local resident Female 35 Lived in Harlem for 13+ years

O1 Local business owner Male 58 Running for 7+ years

CB1 Community Board leader Male 53 Serving as leader in Harlem

a lightweight messaging protocol, it runs e�ciently even in low-

bandwidth environments. The computer vision pipeline only sends

processed navigation information (e.g., routing instructions, ob-

stacle’s category and location) to the app, rather than sending

video data. This alleviates the privacy concerns around streaming

the video feed to the users and avoids any computational bottle-

necks that may happen due to smartphones’ limited processing

capabilities. The StreetNav app’s primary purpose is to act as an

interface between the user and the computer vision pipeline. We de-

veloped StreetNav’s iOS App using Swift [6], enabling us to leverage

VoiceOver [7] and other built-in accessibility features.

D ADDITIONAL USER STUDY RESULTS

D.1 Results for Veering Prevention

Figure 14 shows participants’ average rating for their perceived

ability to (1) maintain a straight walking path, i.e., prevent veer-

ing o� course, and (2) intuitiveness of the feedback they received

regarding direction to move in. The mean (± std. dev.) rating of

participants’ perceived ability to maintain a straight walking path

with StreetNav was 4.63 (±0.52) and with BlindSquare was 2.75

(±1.17). The condition had a signi�cant main e�ect (? = 0.001)

on participants’ perceived ability to prevent veering o� course.

The mean (± std. dev.) rating for intuitiveness of the feedback that

helped them know which direction to move in was 4.63 (±0.52) for

StreetNav and 3.00 (±0.76) for BlindSquare. The condition had a

signi�cant main e�ect (? = 0.006) on intuitiveness of feedback that

helped participants prevent veering o� path.

Our examination of the video recordings aligns closely with par-

ticipants’ ratings. It reveals that StreetNav minimized participants’

deviations from the shortest path to the destinations in comparison

to BlindSquare. Over the course of the three routes, participants

displayed an average deviation from shortest path, that was reduced

by 53% when using StreetNav as opposed to BlindSquare.

With BlindSquare, many participants reported di�culty main-

taining awareness of their surroundings, including both obstacles

and navigation direction, which frequently led to deviations from

their intended paths. For instance, P2 reported challenges in main-

taining their orientation with the need to avoid obstacles:

“[BlindSquare] basically demanded me to keep track of

my orientation as I was moving, which is pretty di�cult

to do when you’re also trying to keep other things in

mind, like not bumping into things.” –P6

In contrast, StreetNav e�ectively addressed this challenge by pro-

viding continuous audiohaptic feedback for maintaining a straight

walking path, instilling a sense of con�dence in participants. P3,

who tested StreetNav before BlindSquare, re�ected on their desire

for a similar continuous feedback mechanism within BlindSquare,

akin to the experience they had with StreetNav:

“[with BlindSquare] even though I couldn’t see the phone

screen, my eyes actually went towards where I’m hold-

ing the screen. It is almost as if on a subconscious level,

I was trying to get more feedback. With [StreetNav] I

had enough feedback.” –P3
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Figure 15: Illustration of StreetNav’s localization steps an-

alyzed in the technical evaluation: (a) CLIP-based gesture

recognition, (b) pedestrian feet position estimation, (c) cam-

era to map-view transformation.

Familiarity with assistive technology (AT). We noticed that

participants who commonly use AT for navigation quickly adapted

to StreetNav, while those with less experience hesitated in trusting

StreetNav’s feedback and had a slightly steeper learning curve. Still,

all participants mentioned feeling more comfortable with Street-

Nav as the study progressed. Both groups also expressed increased

con�dence in exploring new areas with StreetNav.

E TECHNICAL EVALUATION

We independently analyzed the technical performance of each of

the three steps that enable StreetNav’s computer vision pipeline to

localize the user. Figure 15 illustrates the three steps: (i) CLIP-based

gesture recognition (Figure 15a), (ii) pedestrian feet position esti-

mation (Figure 15b), and (iii) camera to map-view transformation

(Figure 15c). Recall from Section 5.2, StreetNav �rst distinguishes

the BLV pedestrians from other pedestrians by recognizing the

hand-waving gesture, then estimates their feet position as the mid-

point of bounding box’s bottom edge, and �nally transforms their

feet position from the camera view to the map.

E.1 Procedure

We recorded a 15-minute evaluation video (22500 frames) from the

camera feed to perform the technical evaluation. While recording

this video, researchers posed as users navigating through the street

intersection and played out di�erent scenarios, such as waving

hands and crossing streets. We also analyzed the errors for each of

the three steps, revealing factors that impact StreetNav’s ability to

precisely determine a user’s position.

E.2 Results

CLIP-based gesture recognition. To evaluate the �rst step, we

randomly sampled a balanced dataset of 140 image crops from the

evaluation video. Figure 15a highlights the pedestrian image crops

from each class. The CLIP-based gesture recognition module clas-

si�es each crop as waving or non-waving (i.e., walking, standing)

pedestrian.

Figure 16: Confusion matrix for StreetNav’s CLIP-based ges-

ture recognition module. StreetNav distinguishes waving

pedestrians from non-waving (i.e., walking, standing) ones

with an 83% accuracy.

Figure 17: Failure cases in StreetNav’s CLIP-based gesture

recognition module. False positives occur when other pedes-

trians perform actions similar to waving their hand, such

as (a) talking over phone or (b) casually resting their hand

on forehead. False negatives occur when (c) users are too

far from the camera and (d) due to foreground occlusions

and background overlaps with vehicles, sca�olding, or other

pedestrians.

Figure 16 shows the confusion matrix for CLIP-based gesture

recognition module’s performance. StreetNav achieves an 83% accu-

racy in recognizing the hand-waving gesture, with a false positive

rate of 24% and a false negative rate of 10%. We analyzed the failure

cases to identify speci�c scenarios that lead to the errors.

Figure 17 shows instances of the most common scenarios leading

to false positives and false negatives. The false positives occur when

other pedestrians perform actions similar to waving their hand,

such as talking over a phone (Figure 17a) or casually resting their

hand on their forehead (Figure 17b). The false negatives occur when

users are too far from the camera (Figure 17c) or due to foreground

occlusions and background overlaps such as vehicles, sca�olding,

and other pedestrians (Figure 17d). While false negatives may result

in users needing to wave their hands for a longer duration until

recognized, false positives can lead them to follow incorrect instruc-

tions based on another pedestrian’s location. StreetNav’s approach

to mitigating false positives is to announce the relative location of

the detected pedestrian (e.g., ‘southwest corner’), providing users
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