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ABSTRACT

We released open-source software Hadoop-GIS in 2011, and pre-
sented and published the work in VLDB 2013. This work initiated
the development of a new spatial data analytical ecosystem char-
acterized by its large-scale capacity in both computing and data
storage, high scalability, compatibility with low-cost commodity
processors in clusters and open-source software. After more than a
decade of research and development, this ecosystem has matured
and is now serving many applications across various fields. In this
paper, we provide the background on why we started this project
and give an overview of the original Hadoop-GIS software archi-
tecture, along with its unique technical contributions and legacy.
We present the evolution of the ecosystem and its current state-of-
the-art, which has been influenced by the Hadoop-GIS project. We
also describe the ongoing efforts to further enhance this ecosystem
with hardware accelerations to meet the increasing demands for
low latency and high throughput in various spatial data analysis
tasks. Finally, we will summarize the insights gained and lessons
learned over more than a decade in pursuing high-performance
spatial data analytics.
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1 INTRODUCTION

At the beginning of the twenty-first century, "the big data" be-
came a serious reality following years of rapid advancements of
the Internet and extensive development in computer architecture
and storage systems. The volume of data generated by various ap-
plications began to grow at an unprecedented rate, challenging
traditional data analytics methodologies and limited scalability of
commercial databases that could not be maintained at affordable
costs for most users. For many years, mainstream R&D of computer
systems development focused on scale-up, or vertical scaling, which
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involves increasing the capacity of a powerful and centralized com-
puter system by adding more hardware and software resources.
While the scale-up development results in high-end computers, it
comes at a high cost. This approach has the merit of simple system
management. However, there are physical and technological limits
to how much a high-end computer system can be scaled up.

The big data applications, facing these limitations, desperately
sought for much more effective solutions. In 2004, Google pub-
lished its MapReduce algorithm [31], which enabled the parallel
and distributed processing of large data sets across clusters of many
commodity processors. This was a turning point in managing big
data. Following this, in 2006, the release of Hadoop [15], an open-
source implementation of MapReduce, provided a foundational
technology for big data processing. In contrast to the scale-up ap-
proach, MapReduce and Hadoop utilize the scale-out, or horizontal
scaling method. This approach increases system capacity by adding
more commodity computers or nodes for parallel and distributed
computing across many nodes. While the scale-out approach intro-
duces challenges due to increased system complexity of managing
and coordinating a large number of computer nodes, it is much
more cost-effective compared to scale-up systems. Moreover, its
scalability effectively addresses the needs of big data applications,
as there is virtually no limit to the number of nodes that can be
added. We have analyzed the scale-out approach using a matrix
model called DOT to demonstrate its scalability [40].

On top of Hadoop, various big data management systems for
major applications could be developed, and Apache Hive [2] is one
of the early and successful systems. Hive is a large-scale SQL re-
lational database and its execution engine runs on Hadoop across
clusters of computers. Our contributions to Hive include two critical
components. (1) The creation of RCFile [38] and its optimized ver-
sion ORCFile [41] has enhanced the efficiency of data storage and
retrieval in large cluster systems. (2) YSmart [45], is an optimiza-
tion tool designed to improve the efficiency of SQL queries in Hive.
YSmart optimizes query plans, identifies common sub-expressions
to minimize the number of MapReduce jobs, and automatically
translates SQL queries into optimized MapReduce jobs. For detailed
development of Hive, readers may refer to [39].

Meanwhile, the proliferation of mobile phones, Internet of Things
(IoT), collaborative data collection projects, ubiquitous sensory mea-
surement technologies and scientific instruments have contributed
to generating multidimensional spatial data at unprecedented rate
and scale. The need for low-latency data intensive spatial frame-
works has become increasingly important to businesses, daily users
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as well as scientific applications ranging from geo-marketing and
social engineering to biomedical research and clinical diagnosis.
Spatial big data presents unique challenges due to its multidimen-
sional complexity, geometric computations, and sheer volume.

Our group had been active in development of spatial data data-
base methods since the late 1990s [28]; our initial work was moti-
vated by earth science and digital pathology applications. Over the
ensuing years, we went on to develop application-agnostic spatial
database systems to optimize spatial data subsetting, aggregation,
and query execution in parallel and distributed environments [25],
[44], [43], [26]. These frameworks, called the Active Data Reposi-
tory (ADR) and Data Cutter, used Hilbert curves to organize spatial
data to optimize the efficiency of subsetting and aggregation op-
erations and to efficiently index multidimensional datasets. This
first generation of parallel spatial database systems were developed
using the High Performance Computing community MPI message
passing interface [37]. The ADR framework provided a SQL-like
interface for executing range queries and aggregation operations
on large datasets. Several years later, a number of the methods de-
veloped in this earlier work were extended and adapted to Hadoop
in the early days of the big data era, and this work motivated us
to develop the spatial data analytical system called Hadoop-GIS
[19]. The contributions and impact of the Hadoop-GIS project have
been recognized by the 2024 VLDB Test of Time Award [18]. In this
paper, we provide background information, overview its software
architecture, and discuss its unique technical contributions, evolu-
tion, and lasting legacy. Today, big data challenges are evolving due
to the advancements of various hardware devices and the increas-
ing demand for low-latency data processing. We will present our
solutions to address these new challenges for spatial data analytics
in the paper.

1.1 The Hadoop-GIS Project

The Hadoop-GIS Project has been pivotal in transforming spatial
data analytics from traditional commercial parallel database sys-
tems to large-scale clusters of commodity processors using open-
source software. As one of the earliest Hadoop-based spatial data
analytical systems, it has inspired and influenced numerous subse-
quent projects and systems in both academia and industries.

The work was motivated by extreme-scale spatial data derived
from whole slide images in digital pathology [30]. High resolution
digital pathology images (up to 100,000x100,000 pixels per slide)
provide rich information at micro-anatomic levels, such as cells,
fats, ducts and blood vessels. These spatially centric objects can be
extracted with image segmentation algorithms [32, 54], to enable
novel and more effective ways of screening for disease, classifying
disease states, understanding disease progression, and evaluating
the efficacy of therapeutic strategies. Much of digital pathology
image analysis is GIS-like, such as point-in-polygon, containment,
nearest neighbor, and spatial join.

In the beginning of the project, we used a commercial parallel
database system, called DBMS-X, to manage and query spatial ob-
jects from pathology images with 30 partitions [63, 64]. We encoun-
tered four significant challenges during the process. First, setting up
and programming on the DBMS-X system was extremely complex,
requiring specialized support from the vendor’s development team.
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Second, spatial data loading was a major bottleneck, and it took
days to load spatial data from about 500 images. Third, making it
scalable to a large number of partitions is very difficult, and there
is lack of effective spatial partitioning methods for load balancing.
Finally, licensing costs further constrained the system’s scalability
and affordability for broader use.

Faced with these challenges, we decided to develop a new spa-
tial data warehousing system based on open-source software. This
system aimed to be low-cost while offering high performance, high
throughput, and high scalability through massive parallel process-
ing across a cluster of commodity processors. By employing this
disruptive approach, we were concerned about whether we could
achieve acceptable performance, given the potential latency issues
with parallel task scheduling, network communication, and syn-
chronization on clusters of computers. With our consistent effort,
we were pleased with the performance achieved with the initial
release of Hadoop-GIS in 2011 [1].

Following the release of the Hadoop-GIS open-source software
and its publication in VLDB in 2013, we have observed numerous
academic research projects and open-source software developments
that have refined the design, algorithms, and implementations of
Hadoop-GIS. In addition to having received a high number of re-
search citations, the Hadoop-GIS paper has also been cited by more
than 20 industry patents for their technical inventions in spatial
data analytical systems. Notably, some of these follow-up open-
source software applications have matured to the point of being
widely adopted and used as production systems. Apache Sedona
[16] is a prime example of such a system.

1.2 Hadoop-GIS’s Impact

Hadoop-GIS has influenced the design and implementation of both
spatial data management and system development in large cluster
systems. We will provide an overview of its impact on these two
aspects.

1.2.1  Impact on Spatial Data Management. From its inception,
the Hadoop-GIS project was designed to efficiently support high-
performance queries on large volumes of spatial data using a shared-
nothing architecture. One of its key innovations is an on-demand
spatial query engine approach, which enables the execution of spa-
tial queries across as many partitions as needed. This marked a
paradigm shift from traditional spatial data management systems.
Through dynamic on-demand indexing and effective boundary
handling, Hadoop-GIS achieves highly scalable spatial queries at
extreme scales.

Additionally, Hadoop-GIS was the first system to implement a
declarative spatial query language on top of MapReduce through in-
tegration with Apache Hive, inspiring various implementations in
subsequent years, e.g. [16]. Essentially, Hadoop-GIS demonstrated
the potential of combining spatial data analysis with scalable dis-
tributed computing frameworks. It demonstrated that high perfor-
mance and scalability in managing and querying massive spatial
data could be achieved without specialized hardware, marking a
significant milestone in the evolution of spatial data warehous-
ing systems. The Hadoop-GIS project set a new direction for the
development of a new ecosystem in spatial computing and GIS
fields.



1.2.2  Impact on System Development. The methodologies, design,
and implementation of Hadoop-GIS in its open-source formats of
programs and the VLDB 2013 paper have influenced the develop-
ment of many follow-up open-source systems that are widely used
in spatial data processing operations now. Commercial GIS software
vendors such as Pitney Bowes have either migrated Hadoop-GIS
into their own software packages or developed commercial tools
that shared similar methodologies.

Two spatial join algorithms (point-in-polygon and point-to-polyline

distance join) were implemented in SpatialSpark [70] with a simi-
lar methodology as Hadoop-GIS. SpatialSpark is based on Apache
Spark and Apache Impala with a contribution of additional spatial
partitioning methods. GeoSpark [71] extended Spark for a general-
ized set of spatial data types (Spatial RDDs) and utilized the same
idea of the Hadoop-GIS’s on-demand indexing for accelerating spa-
tial queries for parallel processing in Spark. Magellan [17] is a Spark
based open-source library for geospatial analytics, which also pro-
vides a SQL interface for spatial queries by extending Spark SQL. It
takes the same on-demand indexing approach as in Hadoop-GIS.

Pitney Bowes, known for its MapInfo GIS software and location
analytics products, has closely collaborated with Stony Brook Uni-
versity to transfer technologies from Hadoop-GIS and its follow-up
system, SparkGIS. This collaboration was facilitated through two
industry gifts, summer internships, and the recruitment of one of
the original developers of Hadoop-GIS to join the company for con-
tinued development. MapInfo Pro location analytics [3] used the
same processing engine in updating routing. The Spectrum Spatial
software [4] provides location intelligence solution, which manages
and queries spatial data in a similar data warehousing and querying
architecture as that of Hadoop-GIS, with additional nearest neigh-
bor search methods. Pitney Bowes’ presorting business processes
over 17 billion mail pieces per year, utilizing matching techniques
that employ similar partitioning and parallelization methods as
those used in Hadoop-GIS. The dynamic weather services [5] was
implemented by extending Hadoop-GIS and our consequent work
SparkGIS [22] for spatial-temporal support.

Apache Sedona [16] is an Apache Top Level project evolved
from GeoSpark. Apache Sedona is currently the most downloaded
open-source software for large scale geospatial data processing.
Wherobots, a startup company providing end-to-end geospatial
data analytics solutions, is among the major contributors to Apache
Sedona. Heavily influenced by Hadoop-GIS, Sedona has been down-
loaded over 12 million times, and is used by major companies world-
wide for their busy spatial data analytical tasks, including Amazon,
Apple, Databricks, Meta Platforms, Mercedes-Benz, T-Mobile, Twit-
ter, Uber, and many others.

Esri, known for its widely used GIS software ArcGIS, devel-
ops the GeoAnalytics Server [67], which implements spatial and
spatial-temporal queries on Apache Spark and is part of the ArcGIS
Enterprise platform. It employs the same on-demand local indexing
approach as Hadoop-GIS, using an in-memory quadtree instead of
an R*-Tree, with additional support for spatial-temporal data.
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1.3 On the Role and Structure of This Paper

This paper aims to present the evolution of spatial data analytical
ecosystems, and provide a comprehensive overview of our contri-
butions to high-performance spatial data analytics, addressing the
following key aspects:

(1) A summary of our high-performance spatial analytics
research beyond the Hadoop-GIS project: Over the past decade,
our collaborative team has driven advancements in high-performance
spatial data analytics. Our project focused on developing scalable
solutions that leverage both scale-out and scale-up techniques to
handle vast amounts of spatial data efficiently. We introduced ef-
ficient algorithms and optimized system frameworks that signifi-
cantly improved data processing performance and accuracy. We will
summarize major milestones, including key publications, software
releases, and practical implementations.

(2) Current progress and new challenges in the field: The
field of spatial data analytics has evolved rapidly, with significant
progress in various areas such as machine learning integration,
real-time processing, and cloud-based solutions. However, new
challenges have emerged, including handling larger and more com-
plicated datasets, ensuring data privacy and security, and integrat-
ing heterogeneous data sources. Computing hardware devices are
increasingly customized to best fit different classes of applications,
moving away from the general-purpose and one-size-fits-all ap-
proach. Therefore, the gap between algorithms design at a logical
level and their implementations on complex hardware devices at a
physical level increases rapidly. Narrowing this gap is also a critical
task in the R&D of high-performance spatial data analytics. We
will outline the current state of the domain, highlighting recent
advancements and the pressing challenges that researchers and
practitioners are facing today.

(3) Lessons learned and experiences to share: Reflecting on
our extensive research and development journey, we have gained
valuable insights and learned critical lessons. These include the
importance of interdisciplinary collaboration, the need for flexible
and adaptable frameworks, and the benefits of fostering a strong
user community for feedback and improvement. We will share these
lessons and experiences to provide guidance and inspiration for
future researchers and developers in the field of high-performance
spatial data analytics.

By addressing these points, this paper not only commemorates
our past achievements but also contributes to the ongoing discourse
in the field, offering practical insights and fostering further inno-
vation. The rest of this paper is organized as follows. In Section
2, we discuss the initial motivations behind the development of
Hadoop-GIS. Section 3 provides a brief introduction to the Hadoop-
GIS software and its performance. In Section 4, we present key
advancements that optimize Hadoop-GIS from both systems and
algorithms perspectives. Section 5 shifts the focus from scale-out to
scale-up studies, detailing two accelerator-based scale-up solutions.
Section 6 summarizes the major lessons and experiences gained
from developing Hadoop-GIS and related projects. We conclude the
paper in Section 7 and offer acknowledgments to our collaborators
in Section 8.
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Figure 1: Unit sales of the Apple iPhone worldwide
from 2007 to 2015 (in millions) [6]

2 WHY DID WE DEVELOP HADOOP-GIS?

In this section, we will provide an archived summary to explain why
we needed to develop a MapReduce-based spatial data analytical
solution over a decade ago. The key insight is that this project
originated from user requirements in digital pathology and clinical
applications. Our solution was developed because no existing tools
could meet our unique requirements at the time.

2.1 Explosion of Big Spatial Data

The Hadoop-GIS project was created around 2010, during an un-
precedented era in human history when vast amounts of spatial
data were being generated at an accelerating pace each year. This
explosion of big spatial data presented new challenges to existing
database solutions, which struggled to even conduct normal oper-
ations, such as to store, query, index, and mining these complex
spatial datasets.

One of the primary factors contributing to the surge in big spatial
data, as well as big data in other areas, is the rise of mobile internet,
driven by the invention and widespread adoption of smartphones.
This technological advancement has brought billions of users on-
line, each smartphone equipped with GPS, transforming them into
continuous geo-rich data generators, producing geo-tagged tweets,
mobile trajectories, and more. Consequently, we have entered an
unprecedented era of big spatial data. Additionally, the prolifera-
tion of location-oriented services has exponentially increased the
volume of spatial data, far beyond what could have been imagined
20 years ago. According to an Esri report, location information is in-
cluded in 80% of all data in the world [24]. Figures 1 and 2 illustrate
the annual growth curves of iPhone sales and Uber trips during a
period of rapid expansion, highlighting the challenges of managing
the flood of big data and underscoring the critical need for scalable,
cost-effective and high-performance infrastructure. Furthermore,
GIS data such as remote sensing and satellite imaging, along with
tissue imaging data (digital pathology and multiplexed imaging)
have contributed significantly to the spatial data deluge. Hadoop-
GIS was developed in response to these challenges, embodying a
scalability-oriented approach to support the demands of big spatial
data applications.

The initial application targeted by Hadoop-GIS is pathology
imaging data management, which presents far more challenging
tasks than conventional spatial data management systems typically
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Figure 2: Number of Annual Trips on Uber (2016 -
2023) (in millions) [7]

handle. The main reason is that pathology imaging data can be
significantly larger than geographic data. To illustrate this size com-
parison, consider the following example quoted from [33]. A real
dataset extracted from OpenStreetMap representing map data from
the whole world contains 164 million polygons. In contrast, high-
resolution microscopy images from digital slide scanners provide
extensive information about spatial objects and their features. For
instance, whole-slide images (WSI) produced by scanning micro-
scope slides at diagnostic resolution can be immense, often contain-
ing 100,000 x 100,000 pixels. Each image can encompass millions of
objects, with hundreds of features extractable per object. Studies
often involve hundreds to thousands of such images collected from
large groups of subjects. For large-scale interconnected analyses,
numerous algorithms with various parameters may produce many
different result sets that need to be compared and integrated. Con-
sequently, data derived from a single study’s images can reach tens
of terabytes. A moderately sized hospital might generate thousands
of WSIs daily, resulting in several terabytes of derived analytical re-
sults per day and potentially accumulating petabytes of data within
a year.

2.2 Why Did Parallel Database Solutions Fail

In our original Hadoop-GIS paper, we documented our experiences
with the failure of using a commercial parallel database system
(DBMS-X) for managing pathology data. We briefly summarize and
highlight the two primary and determining reasons why we aban-
doned the parallel database solution in favor of a MapReduce-based
approach. Our intention is not to reignite the long-standing debate
between the database and MapReduce paradigms, a topic exten-
sively covered in numerous papers over the past decades [53][55].
Instead, we aim to share our first-hand and practical insights into
why MapReduce was necessary for our needs.

Excessively long data loading times. Our experiences have
shown that loading the results from a single whole slide image
into a Spatial DBMS can range from a few minutes to several tens
of minutes. In a medical and clinical research environment, we
utilize a broad spectrum of software and algorithms to process an
image in various ways. For large-scale, interconnected analyses,
numerous algorithms with different parameters can produce a mul-
titude of result sets that need to be compared and integrated. All
these results, represented as spatial data (i.e., polygons), must be



loaded into a database system. During the algorithm development
stage, various parameter tuning experiments can generate a sub-
stantial amount of temporary data requiring analysis. This data
deluge ultimately made the data loading time an intolerable factor,
hindering our continued use of that database system.

Complex usage and high licensing costs. Using DBMS-X in
our environment was challenging due to its complexity in config-
uration, tuning, and optimization, despite having vendor support
and professional customer service engineers. One issue stemmed
from the difficulties in configuring various parameters. Addition-
ally, spatial partitioning across nodes in a cluster requires specific
techniques and optimizations, such as boundary handling, making
performance tuning a tedious task. This is especially problematic
given the experimental and research-oriented nature of our pathol-
ogy applications. Furthermore, the high licensing costs also deterred
us from adopting this commercial solution.

Although these two reasons have been summarized in other
comparative studies, such as [53], our spatial data-focused scenarios
prompted us to reconsider whether the combination of spatial data
and a parallel database system is the optimal choice for large-scale
spatial analytics. Given these challenges, we turned to MapReduce
as the underlying engine to implement a simple-to-extend, simple-
to-manage, high-performance spatial solution: Hadoop-GIS.

3 INSIDE HADOOP-GIS

With the goal of building an easy-to-use, highly scalable, and high-
performance spatial analytical system, we carefully examined and
evaluated various design principles and optimization techniques in
the Hadoop-GIS system. In this section, we first provide an overview
of the most important aspects of Hadoop-GIS, followed by a brief
performance summary. Detailed implementation and evaluation
results can be found in the original paper [19].

3.1 A Trinity of Architecture, Engine, and
Interface

Architecture. Figure 3 illustrates the overall architecture of Hadoop-
GIS. In essence, SQL-based spatial queries are executed by the

MapReduce-based execution engines on partitioned datasets stored

in the Hadoop Distributed File System (HDFS). The engine, named

RESQUE (Real-time Spatial Query Engine), is implemented in C++

as a shared library to ensure high performance. We extended Hive

with spatial functionalities to parse and optimize user SQL queries,

which then invoke the MapReduce framework and the RESQUE

engine.

Engine. The RESQUE engine is designed to achieve high perfor-
mance in both data loading and query execution. Unlike conven-
tional relational data, mapping spatial data processing onto the

MapReduce framework presents unique challenges due to the com-
plexities of geometric objects. We highlight three key techniques

in the engine:

e On-Demand In-Memory Indexing and Engine Exe-
cution A critical contribution of Hadoop-GIS is the on-
demand based RESQUE query engine. Instead of loading
data and creating indexes at the data loading stage, Hadoop-
GIS “eliminates” this step by proposing an on-demand based
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method with the observation that the indexing time is neg-
ligible with fast growing computer power for complex spa-
tial queries. What Hadoop-GIS does is to keep only “global
indexing” at the region level; and at the object level, no
indexing will be created at the data loading stage. Original
spatial data are stored in HDFS as they are after loading.
When a query is submitted, the RESQUE engine will be
launched to query datasets of interest through preliminary
spatial filtering based on data partitioning, and on-demand
in-memory indexing for objects in the same partition. This
significantly reduces the data loading time, and makes it
possible for scaling out spatial query processing through
executing as many instances of RESQUE engine as needed.

e Recursive Spatial Data Partitioning. To address data
skew, where same-sized tiles can contain different amounts
of spatial objects, Hadoop-GIS recursively splits tiles into
smaller ones by selecting an optimal direction based on a
threshold Cpyqx, which represents the maximum number
of objects allowed in a tile. As effective partitioning can di-
rectly impact the queries, we have developed and evaluated
partitioning methods systematically [60], as discussed later
in Section 4.2.

e Multi-assignment Boundary Handling. Due to parti-
tioning, spatial objects often intersect tile boundaries, which
creates a challenge for all parallel spatial processing appli-
cations. Hadoop-GIS takes a simple yet elegant approach
by replicating these boundary-intersected objects into ad-
jacent tiles and uses a post-normalization step to remove
duplicates. This technique ensures the correctness of query
results with minimal overhead.

Interface. The spatial SQL interface of Hadoop-GIS is a key feature
that allows it to be used like a relational database, rather than a
programmable MapReduce framework. This interface incorporates
major operators and functions from ISO SQL/MM Spatial, ensuring
familiarity and ease of use for users. We enriched Hive with an
extensive set of spatial features, extending the query language,
query optimizer, and query engine to support a wide range of
spatial data types, spatial functions, and spatial query operators
(e.g., spatial relationship comparisons including intersects, touches,
overlaps, contains, within, disjoint). Additionally, we implemented
several spatial data accessing methods for efficient query processing,
such as R*-Tree [23], Hilbert R-Tree [42], and Voronoi Diagram [20].

3.2 Performance Overview

We re-report Hadoop-GIS’s performance evaluation results under
two setups, as presented in the original paper. Our aim in presenting
these results again is to provide convincing evidence that Hadoop-
GIS effectively addressed our pathology application challenges at
tha

Figure 4 shows the performance of the Hadoop-GIS RESQUE
engine in executing single-node data loading, indexing, and spa-
tial join query execution, compared to PostGIS and DBMS-X. Data
loading is inherently parallelizable, meaning each node can inde-
pendently load its assigned datasets. Therefore, the performance of
single-node loading can accurately represent the overall loading
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performance. As shown in Figure 4, RESQUE’s loading time is mini-
mal compared to the other database solutions. The dataset in Figure
4 represents a single image. Given the long loading times of the two
database solutions, loading multiple images could easily become
a multi-hour or even multi-day task, causing significant delays in
the entire application pipeline due to unfinished data loading.

Figure 5 shows the query execution performance of Hadoop-GIS
and DBMS-X when executing the same spatial join query, with the
number of parallel units increasing from 5 to 30. It is evident that
Hadoop-GIS demonstrates a performance advantage over the par-
allel database solution for this complex query. Our original paper
also indicated that for other simpler queries, Hadoop-GIS exhibited
similar or even lower performance compared to the database solu-
tion. However, the performance gap and absolute query execution
times for these simpler queries were not very critical. Nonetheless,
for join-heavy queries, which are crucial for our pathology applica-
tions, Hadoop-GIS clearly outperformed the traditional database
solution.

Our conclusion from the performance results is that Hadoop-GIS
met our application requirements by (1) significantly reducing data
loading times and complex query execution to manageable levels,
and (2) ensuring that any performance loss in simpler queries is
tolerable and outweighed by the benefits in other critical aspects.
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While Hadoop-GIS can be seen as a specially optimized system for
aspects crucial to our pathology application, the general philoso-
phy holds true: properly curated data enables rapid analysis. This
approach has proven effective in real-world applications.

4 CONTINUED ADVANCEMENT

In this section, we will provide an overview of our further de-
velopment and ongoing progress in Hadoop-GIS. This includes
upgrading the system to an in-memory computing infrastructure,
utilizing RDMA for low-latency remote memory access, advanced
spatial data partitioning, improved methods for handling complex
polygons, and transitioning spatial data processing from 2D to 3D.

4.1 Further Scale-Out by In-memory Computing

Building on the foundation laid by Hadoop-GIS, our subsequent
research efforts have continued to advance the scale-out paradigm
by leveraging new system advancements in underlying systems. We
have focused on enhancing distributed spatial data processing by
in-memory computing and high-performance networking technolo-
gies. By integrating systems like Apache Spark and RDMA, we have
developed solutions that significantly improve the efficiency, scala-
bility, and performance of spatial queries, addressing the limitations
of earlier systems and keeping pace with the evolving landscape of
big data processing.
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Hadoop-GIS and DBMS-X while increasing the number of
parallel units
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Our project SparkGIS [22] focuses on the need for in-memory
processing due to the high inter-job data movement costs associ-
ated with disk I/O in traditional Hadoop-based systems, which is
inefficient for iterative spatial data processing. Apache Spark is cho-
sen for its documented 10x to 100x performance gains over Hadoop
due to in-memory processing capabilities and efficient handling of
iterative tasks. The major design of SparkGIS includes resource-
aware query rewriting, customizable spatial data partitioning, and
multilevel in-memory indexing to ensure efficient query process-
ing and optimal memory usage. In particular, SparGIS proposes
dynamic query rewriting to mitigate the memory shortage prob-
lem for resource-intensive query pipelines. SparkGIS significantly
outperforms existing Spark-based spatial frameworks in handling
large datasets and memory-intensive workflows, providing higher
throughput and lower latency, especially under limited resource
settings.

Another spatial data analytics project is Catfish [68, 69], an
RDMA-enabled R-tree platform designed to optimize spatial data
processing in distributed systems. It addresses performance bot-
tlenecks in R-tree processing caused by imbalanced workloads
between server and client CPUs and network bandwidth. Catfish
employs two RDMA mechanisms: fast messaging for low-latency
queries and RDMA offloading to distribute tree traversal workloads
to clients. An adaptive scheme dynamically switches between these
methods to balance server load and network usage. Experimental
results demonstrate that Catfish significantly outperforms con-
ventional R-tree implementations using TCP/IP and other RDMA
methods in both latency and throughput, especially in scenarios
with high query volumes and diverse workload distributions.

4.2 Statistical- and Cost-Model based Spatial
Partitioning Optimization

I\D FS
\

Figure 7: The SATO framework for partitioning optimization

Spatial partitioning determines how spatial objects are clustered
for local processing, playing a crucial role in query efficiency in
distributed spatial data processing. In [61], we proposed the SATO
framework to optimize spatial data partitioning. With SATO, par-
titioning a large spatial dataset is executed in four phases. In the
sampling phase, a subset of objects is sampled for subsequent opti-
mizations. During the analysis phase, the statistics of the sampled
subset are analyzed, and a global partitioning schema is generated.
In the tear phase, the global partition is further refined, and the
entire dataset is partitioned for local processing. Finally, in the op-
timization phase, the statistics collected during the previous phase
are used to map the tiles in the partitioning schema to the files

stored in distributed file systems such as HDFS. As shown in Figure
7, a global spatial index can be built after one round of processing.

4.3 Improved Methods for Complex Polygons
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Figure 8: The data structure of the IDEAL hybrid model

number of nodes

A critical issue in processing real-world polygons is the signif-
icant variation in complexity, measured by the number of edges.
For example, the edge count of polygons in the OpenStreetMap
(OSM) dataset ranges from 3 to over 400,000 [35] The time com-
plexity for determining spatial relationships between objects can
be O(N), O(NlogN), or even O(N?), where N is the number of
edges. The presence of complex objects not only increases the over-
all geometric computation but also causes a long-tail issue across
processing units, as tiles with more complex objects require signif-
icantly more time to process. To address this issue, we proposed
IDEAL, a Hybrid Vector Raster Model to represent spatial objects
[56, 57]. As illustrated in Figure 8, in IDEAL, each vector-based
polygon is indexed with the corresponding raster model. With as
low as a 10% storage overhead, the IDEAL representation reduces
the time complexity from O(N) to O(C) for ray casting and from
O(N?) to O(N) for line segment pair evaluations. This significantly
enhances the efficiency of Hadoop-GIS and SparkGIS in evaluating
spatial datasets with complex objects. As shown in Figure 9, replac-
ing the GEOS library in Hadoop-GIS with IDEAL in the refinement
phase significantly reduces overall latency across all processing
units, effectively solving the long-tail issue.
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Figure 9: The efficiency of IDEAL in supporting distributed
spatial data processing



4.4 Moving from 2D to 3D

With the development of 3D data modeling techniques and massive
3D data generated from human tissues and 3D GIS, the manage-
ment of 3D spatial data has become increasingly important [29].
3D data is further challenged by the increased complexity from
complex 3D structures such as bifurcation. To support large-scale
3D spatial data management, we proposed iSPEED, an efficient
and scalable spatial query processing system for large-scale 3D
data [48, 59, 62]. Figure 10 provides an overview of its software
system. iSPEED inherits the MapReduce-based distributed spatial
data processing paradigm from Hadoop-GIS. It facilitates spatial
partitioning by distributing spatial objects in different regions into
various processing units and duplicating boundary objects to en-
sure query correctness. Furthermore, iSPEED addresses the unique
challenges of processing 3D spatial data, particularly the complexity
of spatial object representation models, through multi-level spatial
indexing including inter-object indexing and intra-object indexing
- structural indexing, in-memory spatial query engine, and 3D data
compression.
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Distributed File System
[ ]

Data Pre-processing
[3D Data Compression] [3D Spatial Partitinning] [3D Global lndexing]

In-memory Storage
3

3D Spatial Query Engine

| I

Distributed Computing Platform

On-demand
Spatial Indexing

3D Spatial
Query Processing

Boundary
Objects Handling

)

Figure 10: An overview of the iSPEED system

Polyhedrons are used to represent spatial objects in 3D space.
Compared to polygons used in 2D space, polyhedrons better cap-
ture the details of spatial objects in 3D space with much more
complex representations. As a result, processing polyhedrons re-
quires more computationally intensive geometric operations. iS-
PEED addresses this issue by balancing query efficiency and ac-
curacy through two approaches: skeleton-based approximation to
build structural indexes and geometry simplification-based approx-
imation. The skeleton-based approach approximates spatial objects
with complex shapes using skeleton points to estimate distances
between spatial objects, which are then used to determine spatial re-
lationships. iSPEED adapts the Mean Curvature skeleton algorithm
to extract the skeleton points [27]. The geometry simplification-
based approach exploits simplification algorithms to reduce the
complexity of spatial objects into polyhedrons with multiple res-
olutions, known as levels of detail (LOD). As shown in Figure 11,
low-LOD polyhedrons represent the same spatial objects with sig-
nificantly fewer surface elements, thereby reducing the geometric
computations required for processing. This method is particularly
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Figure 11: The storage of multi-LOD polyhedrons in a single
compacted format

useful for querying scenarios where a tradeoff of accuracy for speed
is necessary.

iSPEED relies on approximations to balance query accuracy
and efficiency, which may not be suitable in scenarios requiring
strict query accuracy. In response, we propose the 3DPro system,
designed for accurate querying using data with lower level of de-
tails (LOD) from from compressed spatial data [58]. It introduces
a customized geometric simplification algorithm called Progres-
sive Protruding-Vertex Pruning (PPVP), which selectively prunes
vertices during the decimation process to ensure that the simpli-
fied low-LOD representation covers a subset of the original spatial
objects. These low-LOD polyhedrons serve as progressive approx-
imations for filtering. Building upon the PPVP algorithm, 3DPro
proposes a filter-progressive-refine paradigm where polyhedrons
at increasing levels of detail are evaluated iteratively as needed,
guaranteeing correct results are returned while minimizing compu-
tation.

5 EMERGING SCALE-UP BY ACCELERATORS

The traditional scale-up method adheres to a fundamental principle
of multilevel abstraction in computer architecture and system devel-
opment. Each level of abstraction conceals the intricate operations
of the level below it, forming a hierarchical stack that facilitates
increasingly detailed operations from top to low levels. For exam-
ple, in a conventional data processing system, SQL is used at the
top of this stack to allow users without programming training to
make data processing requests. These requests traverse multiple
software levels, ultimately reaching the bottom level where they
are executed through detailed hardware operations by complex
processors and a deep memory hierarchy. Computer software and
hardware architects focus on improving their respective levels,
collectively creating a one-size-fits-all, application-independent
ecosystem where billions of users can easily run their application
programs.

However, this general-purpose computing ecosystem has faced
increasing challenges related to performance efficiency, power effi-
ciency, and scalability. The emerging scale-up approach involves



building specialized computing devices tailored to specific appli-
cations, such as GPUs, FPGAs, TPUs, and ray tracing (RT) cores.
Meanwhile, the demand for low-latency, real-time, and highly flexi-
ble data processing for various applications, including spatial data
analytics, is on the rise. In this section, we will present two case
studies highlighting our new scale-up efforts for spatial data pro-
cessing applications.

5.1 A GPU Scale-up Case: PixelBox

Although there is ongoing debate in the chip industry about whether
Moore’s Law is truly dead, advancements in semiconductor man-
ufacturing technologies over the past decades have enabled the
production of significantly smaller transistors. For instance, Ap-
ple’s A7 chip, launched in 2013, contained 1 billion transistors
manufactured using a 28nm process. In stark contrast, the Apple
A17 chip, launched in 2023, boasts 19 billion transistors produced
with a 3nm process [9]. This dramatic increase in transistor den-
sity exemplifies the progress in chip manufacturing. However, it
is an established fact that Dennard Scaling ceased to be effective
before the 2010s. This means that smaller transistors alone cannot
improve frequency and, thus, do not directly enhance single-thread
performance. Therefore, the only way to achieve proportional per-
formance improvements is by increasing parallelism, leading to the
development of many-core CPUs and massively parallel GPUs.
Figure 12 shows the maximum number of GPU shaders for AMD
and NVIDIA over the past two decades. A shader, akin to a NVIDIA
CUDA core, is a fundamental unit for GPU parallel computing.
Significant performance gains for applications running on such
parallel devices require maximizing the parallelism inherent in
the problems and algorithms supporting these applications. The
parallel hardware growth curve evidently illustrates the scale-up
opportunities available to applications that can perfectly align their
parallelism with the hardware capabilities. However, designing and
implementing GPU parallel algorithms remains a challenging task.
Our first scale-up effort is a GPU-based solution for the pathology
cross-matching problem. This project was conducted concurrently
with the Hadoop-GIS project for the same objective with a different
approach. We will briefly present the motivation, core algorithm
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Figure 12: Maximum Shader Count of AMD (ATI before 2006)
and NVIDIA GPUs (2003-2023) [8]
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ideas and major performance results, while leaving detailed expla-
nations to a VLDB 2012 paper [65].

5.1.1 Performance Profiling: Where Does Time Go? The core chal-
lenge was the development of efficient pathology imaging analysis
algorithms. Specifically, we need fast methods to cross-compare
millions of spatial boundaries of segmented micro-anatomic objects
using the Jaccard Similarity metric. This metric fundamentally re-
quires calculating the ratio of the intersection area to the union
area between two groups of polygons. The SQL can be written as
below.

SELECT AVG(ratio)

FROM (
SELECT
ST_Area(ST_Intersection(p.the_geom, q.the_geom)) /
ST_Area(ST_Union(p.the_geom, q.the_geom)) AS ratio
FROM
dataset1 AS p, dataset2 AS q
WHERE

ST_Intersects(p.the_geom, q.the_geom)) AS tmp
WHERE ratio > ©;

The above query can be accelerated and optimized by testing
MBR (Minimum Bounding Rectangle) intersections using indexes
and by indirectly calculating the union area. Consequently, one core
calculation is the combo operator ST_Area(ST_Intersection()),
which calculates the intersection area. Our performance profiling
results in PostGIS indicate that 90% of execution time is spent on
this operator, while the remaining 10% is used for index building,
search, and other area calculations. Therefore, our research focus
is on how to accelerate this combo operator using GPUs.

5.1.2  The PixelBox Algorithm. We chose not to parallelize the con-
ventional sweep line algorithm in computational geometry for cal-
culating polygon intersections due to its sequential nature and
branch-intensive complexity in handling various situations. Instead,
aiming to achieve optimal parallelism, we developed the PixelBox
algorithm for GPUs to calculate the intersection area. The core idea,
illustrated in Figure 13, is to independently test a point’s position
relative to a polygon. Intuitively, the intersection area correlates
with the number of points that fall within both polygons. More
importantly, the position testing for each point is independent of
other points. Using a ray casting approach, as illustrated in Figure
13, creates an execution pattern for numerous independent points,
enabling maximal parallelism. The accuracy of this design relies
on the rectilinear nature of polygons extracted from medical im-
ages, which have axis-aligned edges and integer-valued vertices.
As its name implies, PixelBox includes a major optimization that
uses sampling boxes covering multiple points (pixels) to eliminate
redundant point-in-polygon tests, switching to point tests only
on boundary boxes. The algorithm is ultimately integrated into
a CPU-GPU hybrid framework for the entire workflow of spatial
cross-comparison.

As an initially customized solution for pathology imaging, the
PixelBox algorithm needs to be extended for more complex geo-
graphic data due to its limitations in handling geospatial polygons
with floating-point coordinates and varying orientations. To ad-
dress these limitations and make PixelBox a general solution, our
subsequent research [21] introduces an adaptive scaling strategy



(a) A pixelized view of polygon intersection and union.

B

(b) Determining a pixel’s position relative to a polygon.

Figure 13: Illustrating the core idea of using ray casting to execute numerous independent point-in-polygon tests.

that converts floating point-valued vertices into integer-valued
vertices, making it suitable for GPU processing using a pixeliza-
tion method. The paper discusses a CPU-GPU hybrid platform,
Geo-PixelBox, designed to accelerate the spatial cross-matching of
general geospatial datasets using CUDA and OpenACC.

5.1.3  Performance and Impact. The PixelBox solution demonstrated
a strong performance advantage over PostGIS in our 2012 compari-
son using real-world pathology data. On a heterogeneous platform
featuring an Intel Core i7 860 CPU and an NVIDIA GTX580 GPU
(costing $820), PixelBox achieved a 13-44x speedup compared to
a manually-tuned, parallelized PostGIS solution running on two
Intel X5570 CPUs (costing over $2000).

Fixstars Solutions Inc. [10] has developed the Geometric Perfor-
mance Primitives (GPP) Library [11], a high speed computational
geometry engine that incorporated the PixelBox algorithm. The
GPP Library is a part of the NVIDIA Developer community [12],
and has been included in the NVIDIA’s suite of GPU-accelerated
libraries.

The PixelBox solution exemplifies a typical scale-up strategy,
enabling automatic performance improvements by upgrading to
faster hardware devices without modifying software or applica-
tions. As shown in Figure 12, between 2012, when the PixelBox
paper was published, and 2023, the number of cores in a single GPU
device increased from 2,688 cores (NVIDIA Tesla K20X) to 19,456
cores (AMD Radeon Instinct MI300X). This means GPU capacity
has automatically increased more than seven-fold for the same Pix-
elBox algorithm in GPP. Effective utilization of massive parallelism
is crucial for developing and implementing efficient scale-up solu-
tions for algorithms. Notably, the PixelBox effort ignited a series of
subsequent research projects aimed at mapping database queries to
advanced hardware. Our major publications on this topic include
[34, 46, 47, 66, 72, 73].

5.2 An RT Core Scale-up Case: RayJoin

In the domain-specific architecture era, GPUs have evolved into
heterogeneous devices containing multiple cores that serve differ-
ent applications. Exploiting these new hardware capabilities brings
both performance opportunities and technical challenges for appli-
cation and algorithm designers. Figure 14 illustrates an example
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Figure 14: Illustration of the NVIDIA Turing architecture,
showing the composition of a Streaming Multiprocessor (SM).

of the NVIDIA Turing architecture, showing the composition of a
Streaming Multiprocessor (SM). This architecture exemplifies how
modern GPUs integrate diverse cores, such as the RT Core, to ac-
celerate ray tracing and other specific tasks, offering substantial
performance gains while introducing new complexities in system
design and optimization.

Exploiting new hardware for spatial problems by re-purposing
its usage is both potentially beneficial and risky. In this section, we
will briefly introduce how ray-tracing hardware can be harnessed
to accelerate spatial join operations. For detailed explanations and
comprehensive results, please refer to our original paper [36].
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Figure 15: Ray Tracing Illustration.

5.2.1 What is Ray Tracing? Ray tracing is a technique primarily
used in gaming and rendering to simulate how light interacts with
geometric primitives, producing highly realistic images. It works
by tracing the paths of rays from the camera through pixels in an
image plane and simulating their interactions with the primitives
in a scene, as shown in Figure 15. The core operation involves com-
puting ray-primitive intersections, which can be computationally
expensive. To enhance performance, a Bounding Volume Hierarchy
(BVH) tree is used to accelerate the intersection finding by narrow-
ing down the search space. The RT core is crucial in this process,
executing the performance-critical task of BVH traversal and deter-
mining whether a ray intersects a primitive. The BVH on the RT
core, akin to a hardware R-tree, manages the relationships between
multiple shapes, allowing for quick filtering of unnecessary shapes
during traversal. This hierarchical organization significantly re-
duces the number of intersection tests, making ray tracing efficient
for real-time rendering and potentially beneficial for spatial data
processing tasks. Recent advancements have expanded the use of
ray tracing hardware to general-purpose applications, offering a
powerful environment for diverse computational tasks.

5.2.2  Rayjoin: The Algorithm and Implementation. RayJoin lever-
ages ray tracing hardware to perform spatial join operations. The
core idea involves re-purposing the ray-primitive intersection capa-
bilities of ray-tracing hardware to efficiently compute spatial joins
between geometries. The implementation of RayJoin incorporates
several core techniques:

Algorithms for Converting Spatial Join into Ray Tracing;:
RayJoin formulates spatial join problems as ray tracing tasks by
transforming key spatial join queries into RT-friendly algorithms.
Specifically, it focuses on two critical spatial join queries: line seg-
ment intersection (LSI) and point-in-polygon (PIP) tests. These
queries are converted into ray tracing operations using the AnyHit
and ClosestHit shaders supported by RT Cores. For instance, in
the case of LSI, rays are cast to detect intersections between line
segments from different datasets, leveraging the BVH structure for
efficient traversal and intersection testing.

Bridging the Precision Gap between Hardware Capabilities
and Application Demands: One of the significant challenges in
using RT Cores for spatial joins is the hardware’s limited precision,
typically supporting only single-precision floating-point (FP32).
However, GIS applications often require higher precision. RayJoin
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addresses this by employing a conservative representation method
that ensures exact query results. This method builds the BVH in low
precision Axis-Aligned Bounding Box (AABB) but applies adjust-
ments to maintain high precision in computations, thereby meeting
the stringent requirements of GIS applications.
System Optimization for Significant Overhead Reduction:
Ray]Join implements several optimizations to minimize computa-
tional and memory overhead. One key optimization is the introduc-
tion of an adaptive grouping technique that significantly reduces
the BVH construction cost. By grouping spatially close line seg-
ments into the same AABB, the system reduces the number of
primitives used in the BVH, thereby decreasing construction time
and memory consumption while maintaining high query perfor-
mance. Additionally, RayJoin combines the logic of intersection
testing and result collection into a single shader, eliminating the in-
vocation overhead associated with separate AnyHit and ClosestHit
shaders.

RayJoin’s effective approach and optimizations ensure efficient
and high-performance spatial join processing, leveraging the ad-
vanced capabilities of modern ray tracing hardware.

5.2.3  Performance Analysis for the RT Scale-up. In [36], we have
reported the detailed performance advantages of RayJoin compared
to the best existing solutions utilizing different algorithms (plane-
sweep, tree-based, grid-based, and learned spatial index) and hard-
ware choices (CPU and GPU) for underlying PIP and LSI queries,
as well as complex polygon overlay computations. These compar-
isons were conducted using open and real-world datasets, such as
the spatial data of water areas in North America and worldwide
lakes/parks. The overall conclusions of the performance comparison
are twofold: (1) RayJoin achieves performance speedups ranging
from 2.1x to 22.2x over the best existing solutions. (2) RayJoin can
execute all queries at a sub-second level, enabling real-time spatial
join execution, a capability unattainable by previous solutions.

Table 1: RT Core Count Across Different NVIDIA GPU Gen-
erations. Note: The performance of each RT Core has also
increased with each generation, not just the core count.

Microarchitecture | Year | GPU Name | RT Core Count
Turing [49] 2018 TU102 72
Ampere [50] 2020 GA102 84

Ada Lovelace [51] | 2022 AD102 144

We highlight that RayJoin represents a new scale-up solution
for high-performance spatial analytics, fundamentally leveraging
the performance advantages provided by the number of RT Cores
equipped in a GPU. Table 1 shows the RT Core counts across three
generations of NVIDIA GPUs since the inception of hardware ray-
tracing solutions. This table also illustrates a trend of increasing
hardware-level parallelism over the years, similar to the evolution
of GPU cores. By utilizing RT Cores, RayJoin can achieve automatic
performance gains through hardware upgrades alone, without the
need for algorithm or software redevelopment.



6 LESSONS AND INSIGHTS

In this section, we summarize our major experiences in tackling
high-performance spatial data analytical problems since the in-
ception of the Hadoop-GIS project over a decade ago. We present
several key lessons learned, highlighting the insights and effective
strategies that have guided our efforts. The points are ordered by
the importance we have observed through our experiences.
Lesson 1: Targeting Real-World Problems. The Hadoop-GIS
project and its related research efforts were initially focused on
solving the pathology imaging data management task. A major
advantage of conducting basic research on actual problems is the
immediate recognition of the gap between existing academic efforts
and real-world requirements. Moreover, real-world requirements
provide a concrete goal, allowing for phase-by-phase verification
and validation of research results. This approach ensures that each
phase of research is both feasible and practical, leading to more
effective and impactful outcomes.

Lesson 2: Simplicity in Implementation vs. Interface. A long-
standing debate in computer software design is how simplicity
should be understood and enforced in both interface and implemen-
tation aspects. This debate has been framed historically as the New
Jersey style versus the MIT approach [13, 14]. Our experience in
building Hadoop-GIS taught us to quickly deliver a usable system
for users. Thus, the implementation simplicity should be prioritized.
Hadoop-GIS utilized SQL as the interface to widely attract users,
following the design principle of using C++ to integrate existing
spatial libraries. This approach allowed us to rapidly develop the
system to an operational state.

Lesson 3: Balancing Load, Index, and Query Execution. Dif-
ferent applications assign varying levels of value to the data loaded
into a database, ranging from highly valuable to one-time use or
somewhere in between. Traditional database solutions often invest
heavily in data loading processes, including extensive indexing,
which may not always be necessary. Hadoop-GIS addresses this
issue by implementing multiple design factors, such as its two-level
and on-demand tile indexing. This approach effectively balances the
conflicting goals of fast data loading and efficient query execution.
Lesson 4: Deep Customization before Generalization. The era
of one-size-fits-all system solutions is gradually coming to an end.
Regardless of our preference, achieving computing performance
gains today requires a deep integration of application requirements
and available hardware features. The Hadoop-GIS system, our Pix-
elBox solution, and the later RT solution of RayJoin were all built
on an insightful understanding of the specific application needs and
the capabilities of the underlying system. This deep customization
ensures that the solutions are finely tuned to leverage hardware
features effectively, resulting in superior performance. It is more
evident in this domain-specific architecture era that vertical cus-
tomization inspires new architecture designs based on application
needs, as many recent R&D results show.

Lesson 5: No Conflicts between Scale-out and Scale-up. Effec-
tive performance optimization requires leveraging both horizontal
(scale-out) and vertical (scale-up) scaling strategies. Hadoop-GIS
exemplifies this by combining distributed computing capabilities
with powerful hardware acceleration. Scale-out strategies, such
as distributed data processing across multiple nodes, ensure that
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the system can handle large datasets efficiently. Simultaneously,
the new scale-up approach that involves utilizing advanced GPUs
for intensive computations, enhances performance for complex
tasks. This two-dimensional scaling approach maximizes resource
utilization and ensures robust, high-performance solutions.

7 CONCLUSION

In this paper, we have presented over 10 years of research and
development efforts dedicated to building high-performance spa-
tial data analytical systems. Driven by the initial requirements of
clinical researchers and practitioners, we started the Hadoop-GIS
project to develop scale-out solutions and promptly began our
GPU-based acceleration studies to create scale-up solutions. Our
efforts have played critical roles in establishing a useful and effec-
tive ecosystem for both users and academic researchers, inspiring
subsequent research and development work. Our experience in
solving the pathology imaging problem exemplifies how a concrete
software and hardware solution must evolve in tandem with the
rapid development of IT infrastructures, seizing potential disruptive
opportunities to implement applications with each new generation.

At the end of the paper, we would like to quote a sentence
from Dr. Jim Gray who was a pioneer in the field of computer
systems. During an interview with Professor David Patterson on
the evolution of storage and databases [52], Dr. Jim Gray gave the
following simple rule for system development.

At a certain point, most people who bought the rela-
tional stuff; they bought it for the usability, not for
the price performance. They were getting new ap-
plications, and they wanted to get their applications
up quickly.
This quote aligns with the design and implementation principles
of the Hadoop-GIS project and our other data processing initiatives.
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