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Abstract—Large Language Models (LLMs) have recently
shown promise in streamlining hardware design processes by
encapsulating vast amounts of domain-specific data. In addition,
they allow users to interact with the design processes through
natural language instructions, thus making hardware design
more accessible to developers. However, effectively leveraging
LLMs in hardware design necessitates providing domain-specific
data during inference (e.g., through in-context learning), fine-
tuning, or pre-training. Unfortunately, existing publicly available
hardware datasets are often limited in size, complexity, or detail,
which hinders the effectiveness of LLMs in hardware design
tasks. To address this issue, we first propose a set of criteria
for creating high-quality hardware datasets that can effectively
enhance LLM-assisted hardware design. Based on these criteria,
we propose a Multi-Grained-Verilog (MG-Verilog) dataset, which
encompasses descriptions at various levels of detail and corre-
sponding code samples. To benefit the broader hardware design
community, we have developed an open-source infrastructure
that facilitates easy access, integration, and extension of the
dataset to meet specific project needs. Furthermore, to fully
exploit the potential of the MG-Verilog dataset, which varies
in complexity and detail, we introduce a balanced fine-tuning
scheme. This scheme serves as a unique use case to leverage
the diverse levels of detail provided by the dataset. Extensive
experiments demonstrate that the proposed dataset and fine-
tuning scheme consistently improve the performance of LLMs
in hardware design tasks.

I. INTRODUCTION

Large Language Models (LLMs) have recently emerged
as a promising approach to streamline hardware design pro-
cesses [1], [4], [5], [8], [16], [17]. By encapsulating vast
amounts of domain-specific data and enabling users to interact
with the design processes through natural language prompts,
LLMs have the potential to make hardware design more
accessible to a broader range of developers. This increased
accessibility can foster innovation and accelerate the develop-
ment of new hardware solutions, as it allows developers with
varying levels of expertise to contribute to design processes.

Despite the great potential of LLMs, existing state-of-the-
art (SOTA) general LLMs, e.g., OpenAI’s GPT-4 [11], are still
limited in their ability to generate practical hardware designs.
For example, they might generate non-synthesizable or non-
functional hardware source code [4]. To address this limitation,
recent studies suggest that incorporating additional domain-
specific data is crucial for enhancing LLMs’ performance in
hardware design tasks, using techniques across the scopes
of LLM inference, fine-tuning, or pre-training. Specifically,
one approach to improve LLMs’ hardware design capabilities

is to provide them with additional relevant design examples
during inference-only generation, e.g., GPT4AIGChip [4]. It
has been shown that this method can significantly enhance the
quality of generated High-Level Synthesis (HLS) hardware
code. Another approach is to fine-tune LLMs on carefully
curated hardware design datasets, e.g., VerilogEval [8], which
has been shown to improve LLMs’ performance in generating
Verilog code. Alternatively, LLMs can also be pre-trained on
diverse datasets from various hardware design domains to
specialize in general hardware design concepts, as exemplified
by ChipNemo [7], leading to improved general performance
across a range of hardware design tasks.

Although the aforementioned approaches show promise in
enhancing LLMs’ performance in hardware design tasks, their
progress can be hindered by the limitations of current publicly
available hardware design datasets. As we will later analyze,
the size, complexity, and detail granularity of datasets are
essential factors for improving LLMs’ performance. However,
existing datasets often fall short in one or more of these
aspects. Some datasets, e.g., those used in [1], [9], [15],
contain only a small number of data points (e.g., under
2e2), which are only suitable for benchmarking the LLMs’
task performance but is insufficient for effectively fine-tuning
LLMs. Other datasets, like those employed in [8], [16], can
be simplistic, either lacking important features (e.g., code
samples containing multiple module instantiations and aligned
descriptions) or providing only high-level descriptions for
each code piece. This simplicity can limit the fine-tuned
LLMs’ generalization performance when faced with diverse
user instructions, thus reducing their effectiveness.

To address the limitations of existing datasets and unlock
the full potential of LLM fine-tuning and in-context learn-
ing for hardware design tasks, we propose a Multi-Grained-
Verilog (MG-Verilog) dataset. This dataset includes hardware
descriptions at different levels of detail and their corresponding
Verilog code samples with varying design complexity. These
features make it suitable for both inference and fine-tuning
stages of LLMs to enhance their performance in hardware
design tasks. Our main contributions can be summarized as
follows:

• We introduce a set of essential criteria for high-quality
hardware datasets that can be effectively utilized by
LLM-assisted hardware design techniques. These criteria
can serve as a guide for the development of future datasets
in this domain.979-8-3503-7608-1/24$31.00 ©2024 IEEE



• We present an open-source MG-Verilog dataset1, which
meets the aforementioned criteria. Additionally, we pro-
vide the necessary infrastructure for users to access,
integrate, and extend the dataset for their specific project
needs, promoting collaboration and facilitating further
research in this area.

• We demonstrate a unique use case of the MG-Verilog
dataset by proposing a balanced fine-tuning scheme that
leverages the diverse levels of detail provided by the
dataset. This scheme validates and showcases the poten-
tial of the dataset to enable novel approaches in LLM-
assisted hardware design.

• Extensive experiments show that LLMs fine-tuned with
our MG-Verilog dataset outperform those trained on
datasets from other sources in terms of both code imple-
mentation accuracy and the sophistication of generated
hardware designs. These results highlight the effective-
ness of our dataset in enhancing LLMs’ performance for
hardware design tasks.

II. CRITERIA FOR DATASETS IN LLM-ASSISTED
HARDWARE DESIGN

To create a high-quality dataset for LLM-assisted hardware
design, we first establish design criteria to guide the develop-
ment of the MG-Verilog dataset.

Sufficient dataset size. This is crucial for both training
(i.e., domain-specific pre-training or fine-tuning) and inference
(i.e., in-context learning) of LLMs. A larger dataset provides
diverse examples for improved generalization performance
during training [7], [8] and enables effective techniques such
as Retrieval-Augmented-Generation (RAG) for enhanced gen-
eration quality during inference [4].

Accurate code-description pairs. Each code sample needs
to be correct, functional, and associated with a precise descrip-
tion of its functionality. Inaccuracies or ambiguity can mislead
LLMs during fine-tuning or pre-training and lead to erroneous
code generation during inference.

Varied description detail levels. They are necessary to
address two challenges. Datasets with only high-level de-
scriptions may not provide sufficient detail for accurate code
generation or effective LLM training (i.e., fine-tuning or pre-
training), especially for complex designs. Conversely, datasets
dominated by detailed descriptions may limit practical utility,
as LLMs trained on such datasets might require users to
provide elaborated prompts, which can be as labor-intensive as
coding from scratch. Hence, an effective dataset should incor-
porate both high-level and detailed descriptions in a proper
balance. In particular, high-level descriptions can facilitate
user-friendly LLM interactions, while detailed descriptions are
crucial for enabling LLMs to create complex designs, offering
in-depth guidance for LLMs during training, or serving as a
comprehensive reference during inference.

Extensibility and integrability for future development.
A high-quality hardware dataset should be designed with the

1https://github.com/luke-avionics/mg-verilog

The Verilog module "cordic" is a hardware
implementation of the CORDIC algorithm, which is used
for computing trigonometric functions and vector
rotations. It takes input signals xI, yI, and angle,
and outputs the calculated xO and yO.

High-level Global Summary

Detailed Global Summary

Code Name: cordic.v

Block Summary
Block_0 sets parameters for the width, ..., and input clock signal.

Block_1 declares input ports for x and y, ... It also declares ...

Block_2 declares an internal register for the atan lookup table with ...

Block_3 declares a wire for quadrant selection based on the angle, ...

...

Block_8 calculates ... After the for loop, it assigns ...

Block_9 code marks the end of the module "cordic".

Line-by-line Commented Code

The Verilog module "cordic" is designed to ... It has
clock input "clk", and signed input ports for x, y, and
angle. The width of these input signals is ...
The module has internal registers for x, y, and atan,
along with an atan lookup table. It selects a quadrant
based on ... Finally, the rotated xO and yO are
assigned to the output ports xO and yO, respectively.

// Declaration of Cordic module
module cordic(clk,xI,yI,angle,xO,yO);  
// Width of input signals
parameter WIDTH = 16;
...
// Input clock signal
input clk;
...
// Output ports for x and y
output signed[WIDTH-1:0] xO, yO;
// Internal registers for x and y
reg signed[WIDTH-1:0] x_pl[WIDTH:0]; 
...
// Initialization of atan lookup table
initial begin
// $readmemh function to read ...
    $readmemh(ATAN_INITIAL_FILE, atan_lut);
end
// Quadrant selection based on angle
wire[1:0] quadrant;
...
// Assignment of xO
assign xO = x_pl[WIDTH-1];
// Assignment of yO
assign yO = y_pl[WIDTH-1];
// End of module
endmodule

Fig. 1: Illustrating the proposed MG-Verilog dataset structure
and examples of varying levels of detail.

research community in mind, allowing for easy extension and
integration into various projects. The rapidly evolving nature
of hardware design necessitates a dataset that can adapt to
the latest trends and requirements. Moreover, the vast scope
of hardware design means that different developers may have
specific focused areas, making it challenging for a single
organization to cover all possible scenarios in a one-time
effort. To address this issue, the dataset should be structured in
a way that encourages researchers to contribute to its growth
and adapt it to their specific needs, fostering collaboration
within the research community and ensuring its relevance and
utility. This approach not only benefits individual projects but
also contributes to the overall advancement of LLM-assisted
hardware design methodologies.

III. THE PROPOSED MG-VERILOG DATASET

A. Dataset Overview
The MG-Verilog dataset consists of over 11,000 Verilog

code samples and their corresponding natural language de-
scriptions, serving as the desired outputs and test inputs for
various LLM-assisted hardware design tasks, such as Verilog
code generation.

B. Dataset Construction
The construction of the MG-Verilog dataset involves several

steps to ensure the quality and usability of the data.
1) Data Collection and Preprocessing: Raw source code

from open-source repositories is collected and preprocessed
to ensure correctness. Adapting from VerilogEval [8], we use
Pyverilog [14] to parse the raw Verilog code and exclude code
samples containing syntax errors. Deduplication techniques
are applied to remove redundant code samples. Additionally,
dependencies of the code samples are extracted, i.e., sub-
modules of multi-module code samples are identified and
recorded as metadata to facilitate research on techniques such
as few-shot learning and RAG for generating multi-module
Verilog code.

2) Description Generation: Natural language descriptions
are appended to the code samples using an approach similar
to VerilogEval [8], leveraging LLMs’ superior natural lan-
guage generation capabilities. In addition to simple high-level

https://github.com/luke-avionics/mg-verilog


Total # of Code
Tokens

Total # of High
Level

Descriptions
Tokens

Total # of
Detailed

Description
Tokens

Total # of Block
Summary

Tokens

Total # of Line-by-
line Comments

Tokens
Single Module

Percentage
Multi-module
Percentage

5.3e6 2.6e6 3.8e6 3.9e6 2.7e6 64% 36%

Fig. 2: The detailed statistics of the MG-Verilog dataset, using
the tokenizer from the GPT-3.5-Turbo model [10].

descriptions for each code piece, varying levels of detailed
descriptions aligned with the code complexity are provided,
as detailed in Sec. III-C.

C. Multi-grained Dataset Structure
To strike a balance between design generation accuracy

and user-friendliness, we adopt a multi-grained data structure,
which encompasses descriptions at various levels of detail in
order to satisfy the third criterion in Sec. II. As depicted in
Fig. 1, this structure organizes hardware code descriptions,
ranging from high-level summaries to detailed, line-by-line
comments. The multi-grained structure is designed to mimic
the learning and design processes of human designers. The
objective is to simplify the learning curve for using the dataset
and, as demonstrated later, to better leverage the strengths of
LLMs for enhanced description generation accuracy. Specifi-
cally, the multi-grained structure mirrors the typical two phases
experienced by human designers. In the learning phase, a hard-
ware designer starts with the basic syntax and semantics of the
design language, gradually advancing to apply this knowledge
to design higher-level hardware modules. Conversely, in the
design phase, the process begins with high-level architectural
planning for the entire design, followed by a detailed, step-
by-step implementation.

D. Detailed Statistics of the Dataset
Fig. 2 presents detailed statistics of the MG-Verilog dataset,

illustrating the distribution of token length for both the code
and varying levels of descriptions. The complexity of the code
samples is also reflected in the distribution of the number of
module instances. The dataset shows a wide range of natural
language description details and code complexities, making it
suitable for diverse LLM-assisted hardware design tasks.

E. Dataset Access and Extension Instructions
The MG-Verilog dataset is publicly available and packaged

in the standard HuggingFace Datasets format [6] for easy ac-
cess and integration. Each dataset entry contains the following
fields: code, high-level summaries, detailed summaries, block-
level summaries, line-by-line comments, and metadata. The
metadata field currently includes the module dependencies of

the code samples. The MG-Verilog dataset is open-sourced
from raw data collection to the final dataset construction in
a modular manner for straightforward extension. The demon-
strated balanced fine-tuning use case is also provided as a
reference.

IV. DATASET UNIQUE USE CASE: A BALANCED
FINE-TUNING SCHEME

In this section, we show a unique use case of our proposed
MG-Verilog dataset. Specifically, we introduce a balanced
fine-tuning scheme to fully harness the diverse levels of detail
provided by our MG-Verilog dataset.

The challenge to address. The ultimate goal of fine-tuning
is to generate hardware code solely from high-level design
descriptions. However, challenges arise when determining the
type of descriptions to be used for fine-tuning. On the one
hand, fine-tuning with only simple high-level descriptions may
not provide LLMs with sufficient information to generate code
for complex designs. On the other hand, exclusively relying
on detailed descriptions could hinder LLMs’ ability to respond
to more high-level user instructions.

Our balanced fine-tuning scheme. To tackle the aforemen-
tioned challenge, we present a balanced fine-tuning scheme
that randomly selects training samples with varying levels of
descriptions from the MG-Verilog dataset in each fine-tuning
iteration. The aim is to achieve a balance when imparting
knowledge of both global and local code semantics to LLMs.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

Dataset generation. The primary model for generating
descriptions is LLaMA2-70B-Chat. GPT-3.5-turbo serves as
an automated backup for scenarios where the maximum token
limit is exceeded. Based on empirical testing, we set the
temperature to 0.7 and top p to 0.95, maintaining other
hyperparameters at their default values for the best quality.

Fine-tuning and inference. CodeLLaMA-7B-Instruct is
chosen as the primary model for hardware code generation
due to its superior coding performance and small model size.
For fine-tuning it on our dataset, the fine-tuning approach is
based on QLoRA [3], using its default training settings to
demonstrate our delivered dataset’s effectiveness. The fine-
tuned model is evaluated using 143 Verilog coding questions
from the benchmark in [8], excluded from the training set.

Hardware evaluation and metrics. The validity of each
generated design is tested by compiling it and checking against
its RTL simulation results in pre-defined testbench cases.
We employ unbiased pass@1, pass@5, and pass@10 metrics,
calculated from 20 generation runs, as established in [8].
B. Ablation Study on Different Evaluation Settings

In this section, we explore the performance of fine-tuned
models using varying data formats in both the training and
evaluation phases. Although high-level global summaries are
the most user-friendly data format, their ambiguity often
results in a lack of detailed information necessary for precise



TABLE I: Comparison across fine-tuning and evaluation data
formats using the CodeLLaMA-7B-Instruct model. The table
columns indicate the data formats used for fine-tuning, while
the rows show the formats used during evaluation. Perfor-
mance is color-coded for clarity: warm colors (red and orange)
indicate high performance, while cool colors (light blue and
blue) denote lower performance. The color gradient from best
to worst performance is as follows: red (highest), orange,
light blue, and blue (lowest). A notation of H, MH, ML,
and L is used to indicate high, medium (high/low), and low
performance, respectively, for better visual clarity.

Pass@1
````````Evaluate

Fine-tune MG-Verilog
Balanced Fine-tune

High Level
Global Summaries

Detailed
Global Summaries Block Summaries

High Level
Global Summaries 45.2 H 42.4 ML 44.8 MH 40.3 L

Detailed
Global Summaries 52.7 MH 50.8 ML 54.5 H 46.3 L

Block Summaries 51.1 MH 41.8 ML 40.0 L 52 H

Pass@5
````````Evaluate

Fine-tune MG-Verilog
Balanced Fine-tune

High Level
Global Summaries

Detailed
Global Summaries Block Summaries

High Level
Global Summaries 52.2 H 48.1 ML 49.9 MH 44.0 L

Detailed
Global Summaries 58.5 MH 58.5 MH 59.7 H 52.2 L

Block Summaries 56.2 MH 52.5 ML 46.3 L 60 H

Pass@10
````````Evaluate

Fine-tune MG-Verilog
Balanced Fine-tune

High Level
Global Summaries

Detailed
Global Summaries Block Summaries

High Level
Global Summaries 55.2 H 49.7 ML 51.8 MH 45.6 L

Detailed
Global Summaries 60.9 MH 61.5 H 60.1 ML 53.1 L

Block Summaries 58.0 MH 54.5 ML 47.6 L 63 H

code generation. In some cases, detailed global summaries can
actually be more advantageous for expert users who have a
deep understanding of code structures. Consequently, an ideal
RTL code generation dataset would facilitate consistent model
performance across a range of input instruction complexities.

Observations and analysis. Tab. I provides insights into
these findings. Notably, we can observe: (1) Models fine-
tuned with the MG-Verilog dataset exhibit the most robust
performance in all tested evaluation settings. Specifically,
while different evaluation settings tend to bias the fine-tuning
setting that aligns with them, models fine-tuned with the MG-
Verilog dataset consistently rank in the top two positions
when compared to other baselines. In contrast, other baselines
may perform well only under their aligned evaluation settings
and notably under-perform in other evaluation settings. (2)
Training exclusively with either overly detailed or overly high-
level data can result in decreased performance, indicating
the importance of having balanced training data. Specifically,
Tab. I reveals that, apart from the MG-Verilog dataset, models
trained with detailed global summaries yield the highest pass
rates. These summaries strike a balance between the generality
of high-level global summaries and the specificity of block
summaries.
C. Ablations on the Number of Training Samples

We further examine how the quantity of training samples
affects the performance of models fine-tuned for RTL code
generation tasks. As illustrated in Fig. 3, there is a clear trend

Number of training samples included during fine-tuning

Pa
ss

 R
at

es

Fig. 3: Pass rates of the generated RTL code from fine-tuned
CodeLLaMA-7B-Instruct model using different numbers of
training samples. Here only detailed global summaries of the
code are used during the fine-tuning.

where the model’s performance improves with an increase in
the number of training samples. However, we also note a di-
minishing returns phenomenon. Specifically, the performance
gains from additional training samples decrease as the total
number of samples grows. This trend could be attributed to
either the limited diversity in the raw source code or the
potential need for more optimal hyperparameter tuning and
model configurations. These aspects, being orthogonal to the
dataset structure proposed, are left for future exploration.

VI. RELATED WORK

LLMs have been applied in various stages of the hardware
design process, including verification [13], security flaw de-
tection [12], and code generation [2], [4], [8], [16]. However,
their performance is still limited due to insufficient exposure
to hardware data during pretraining [2], [4]. Some studies [8],
[9], [16] have tried to rectify this by supplying more hardware
code samples and fine-tuning the LLMs. Yet, the datasets used
are still either too small [9] or overly simplistic [8], [16],
which hinder effective fine-tuning of LLMs. Our MG-Verilog
dataset addresses this issue by providing an open-sourced,
high-quality dataset, essential for optimizing LLM fine-tuning
and in-context learning.

VII. CONCLUSION

In this work, we aim to mitigate the limitations of exist-
ing datasets for LLM-assisted hardware design by proposing
the open-sourced Multi-Grained-Verilog (MG-Verilog) dataset.
The MG-Verilog dataset features hardware descriptions at
different levels of detail and their corresponding Verilog code
samples for more generic use cases. We have demonstrated
the effectiveness of the dataset through a balanced fine-tuning
scheme. Extensive experiments show that LLMs fine-tuned
with the MG-Verilog dataset outperform those trained on other
datasets in terms of Verilog code generation accuracy.
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