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Synopsis: Adopting Artificial Intelligence (Al) in electric utilities signifies
vast, yet largely untapped potential for accelerating a clean energy transition. This
requires tackling complex challenges such as trustworthiness, explainability, pri-
vacy, cybersecurity, and governance, balancing these against AI’s benefits. This
article aims to facilitate dialogue among regulators, policymakers, utilities, and
other stakeholders on navigating these complex issues, fostering a shared under-
standing and approach to leveraging AI’s transformative power responsibly. The
complex interplay of state and federal regulations necessitates careful coordina-
tion, particularly as Al impacts energy markets and national security. Promoting
data sharing with privacy and cybersecurity in mind is critical. The article advo-
cates for ‘realistic open benchmarks’ to foster innovation without compromising
confidentiality. Trustworthiness (the system’s ability to ensure reliability and per-
formance, and to inspire confidence and transparency) and explainability (ensur-
ing that Al decisions are understandable and accessible to a large diversity of par-
ticipants) are fundamental for AI acceptance, necessitating transparent,
accountable, and reliable systems. Al must be deployed in a way that helps keep
the lights on. As Al becomes more involved in decision-making, we need to think
about who’s responsible and what’s ethical. With the current state of the art, using
generative Al for critical, near real-time decision-making should be approached
carefully. While Al is advancing rapidly both in terms of technology and regula-
tion, within and beyond the scope of energy specific applications, this article aims
to provide timely insights and a common understanding of Al, its opportunities
and challenges for electric utility use cases, and ultimately help advance its adop-
tion in the power system sector, to accelerate the equitable clean energy transition.
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I. INTRODUCTION

In the rapidly evolving landscape of energy systems, the integration of artifi-
cial intelligence (Al) stands at the forefront of technological innovation and effi-
ciency. As the world increasingly prioritizes decarbonization and digitalization,
Al emerges not just as a tool of convenience, but as a pivotal enabler of these
critical transformations. This article delves into the current state of Al adoption
within the electric utility sector, exploring a range of practical use cases where Al
is already reshaping critical operations, and touches on issues associated with fur-
ther deployment of Al in the sector. While we focus on electric utilities, much of
our discussion has applications to other utilities more generally.

The journey towards widespread Al integration is not without its challenges.
While technical complexities and substantial investment requirements are hurdles
that utilities face, some of the most significant barriers are regulatory in nature.
Al, as a field, continues to evolve rapidly, with regulations being debated and en-
acted in domains extending beyond energy systems. Although this broader context
is pertinent to Al applications in energy systems, our discussion will focus on as-
pects specific to the energy sector. The technical, operational, economic, and po-
litical intricacies of energy systems are often complex, interwoven, and unique in
nature. Constructive and informed dialogue among various stakeholders — includ-
ing regulators, policymakers, operators, and solution providers — is essential for
devising relevant solutions.

Our objective with this article is to provide regulators and policymakers with
a better and broader understanding of the present issues and challenges related to
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Al adoption in the energy sector. We begin with a technical perspective, examin-
ing potential applications under investigation and the current state of adoption in
utilities. From there, we delve into the common legal and regulatory aspects
emerging in discussions among experts. Through this analysis, we aim to stimu-
late an informed and forward-looking policy debate, one that can pave the way for
Al to fully realize its potential in revolutionizing utility operations, supporting de-
carbonization efforts, and leading the charge towards a more efficient, sustainable,
and resilient energy future.

II. CURRENT LANDSCAPE OF Al ADOPTION BY UTILITIES

John McCarthy, considered a founding father of Al, defines it as “the science
and engineering of making intelligent machines, especially intelligent computer
programs.”' Loosely speaking, Al is defined as how machines can imitate human
intelligence, such as learning from experience. So, very often used interchangea-
bly with AI, machine learning (ML) is the study of data-driven computer algo-
rithms that improve automatically through experience. Deep learning, natural lan-
guage processing, and neural networks are among the many approaches to
machine learning. Definitions for machine learning focus more on data, learning,
making predictions and decisions. In this section, we discuss AI/ML as a toolbox
of approaches and algorithms that use data to solve interesting electric utility prob-
lems.

The utility sector is undergoing a swift digital transformation, leveraging ad-
vanced sensors, and deploying advanced computing technologies. While Al tech-
niques, widely successful in various industries, are undergoing pilot programs in
the utility sector, the industry’s high-reliability standards and rigorous regulations
contribute to a conservative and deliberate approach to adopting AI/ML technolo-
gies.

EPRI and Stanford University co-hosted a series of meetings in 2021, bring-
ing together over 100 different utilities, universities, national labs, and Al organi-
zations to bring the two industries together and identify opportunities. Through
these public events, common themes between challenges and opportunities were
identified and pulled together through a set of grand challenges for the Al and
electric power industries,” which will be discussed in the following sections.

A. Grid-Interactive Smart Communities

Recent research from the Brattle Group estimates the potential of “load flex-
ibility” from many distributed technologies in smart communities — including elec-
tric heat pump, electric vehicle managed charging, and demand response — to pro-
vide additional services beyond peak capacity reductions, which could total

1. John McCarthy, What is AI? / Basic Questions, STAN. UNIV., http://jmc.stanford.edu/artificial-intelli-
gence/what-is-ai/ (last visited Apr. 5, 2024).

2. ELEC. POWER RSCH. INST., FIVE ARTIFICIAL INTELLIGENCE GRAND CHALLENGES FOR THE ELECTRIC
POWER INDUSTRY (Sep. 2021), https://www.epri.com/research/products/000000003002022804.
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approximately 200 GW by 2030.* In communities, customers rarely think about
when and how they utilize energy and are unlikely to take advantage of optimiza-
tion opportunities unless they are simple and easy to use. AI/ML algorithms can
assist with many complex optimizations required for seamless implementation and
simplification of these tasks to increase the likelihood of success of these initia-
tives. In addition, Al technologies can support networking communities that in-
teract with the power grid to optimize energy efficiency, load shifting, and usage
of low or zero-carbon generation sources for economy-wide decarbonization in a
way that is equitable for the entire community.

The energy systems of the future will connect and coordinate operators of
communities (homes, buildings, or communities) and power grids sharing the ben-
efits from the advances in Al that could improve community-to-grid-operator
communication, optimize cost, improve energy utilization and energy equity for
both producers and consumers. For example, NextEra Energy’s ControlComm,
powered by Autogrid’s intelligent demand response optimization system, provides
business customers with “opportunities to lower their energy bills by adjusting
their energy consumption” “with an automated solution, during times of peak en-
ergy demand or high wholesale electricity prices.”™

B. Energy System Resiliency

Catastrophic events such as the 2021 Texas winter storm event severely dis-
rupt the normal functioning of critical electrical grid infrastructure for significant
durations. In 2022, the National Oceanic and Atmospheric Administration identi-
fied eighteen separate billion-dollar weather-related disasters in the United States,
see Figure 1.

3. Ryan Hledik et al., The National Potential for Load Flexibility, BRATTLE GRP. 1, 2, 13 (June 2019),
https://www .brattle.com/wp-content/uploads/2021/05/16639 national_potential for load flexibility - fi-
nal.pdf.

4.  AUTOGRID, NEXTERA ENERGY SERVICES TEAMS UP WITH AUTOGRID TO OFFER NEW DEMAND
RESPONSE PROGRAMS IN PJM (June 21, 2016), https://www.auto-grid.com/news/nextera-energy-services-teams-
up-with-autogrid-to-offer-new-demand-response-programs-in-pjm/.
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“From enhancing accuracy in weather forecasts to reducing disaster risks, Al
is already helping,” according to the World Meteorological Organization (WMO),
“which operates a disaster risk reduction program and multi-hazard early warning
system that serves countries, communities, and humanitarian agencies.”® Extreme
events can have substantial impacts on the operation of the electrical grid. Al
algorithms can help predict anomalies, equipment failure, and potentially damag-
ing events, such as wildfires, before they occur.” This would maximize the life-
time of critical generation, transmission, and distribution assets, boosting effi-
ciency, reducing costs, and increasing public safety and customer satisfaction.
Another potential application for Al is predicting outages in underrepresented
communities by integrating grid, climate, calamity, and social science data. For
example, Buzz Solution’s PowerAl, deployed at several New York utilities, auto-
mates the process of electricity infrastructure inspection using data collection from
autonomous drones as well as fault detection using a software platform with pre-
dictive analytics.®

5. NAT’L CTR. ENV’T INFO., U.S. 2022 BILLION-DOLLAR WEATHER AND CLIMATE DISASTERS (Jan.
2023), https://www.climate.gov/sites/default/files/2023-01/2022-billion-dollar-disaster-map.png.

6. UNITED NATIONS, EXPLAINER: HOW AI HELPS COMBAT CLIMATE CHANGE (Nov. 3, 2023),
https://news.un.org/en/story/2023/11/1143187#:~:text=As%20extreme%20weather%20events%20unfold,lo-
cal%20and%?20national%20response%20plans.

7. Jonah Feigleson, AI'’s Role in the Fight Against Wildfires, CTR. FOR GROWTH & OPPORTUNITY AT
UTAH STATE UNIV. 2 (MAY 23, 2023), https://www.thecgo.org/benchmark/ais-role-in-the-fight-against-wild-
fires/.

8. BuUZzZ SOLUTIONS, POWER Al SOFTWARE PLATFORM 5, https://buzzsolutions.co/powerai/ (last visited
Apr. 4,2024).
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C. Environmental Impacts

While AT holds the potential to contribute to a more sustainable world, it also
raises concerns about emissions that could contribute to global warming. The
training process alone for OpenAI’s GPT-3 LLM is estimated to have consumed
1.3 gigawatt-hours of energy, equivalent to the yearly consumption of 120 average
U.S. households, and resulted in 552 tons of carbon emissions, matching the an-
nual emissions of 120 U.S. cars.” OpenAl’s latest model, GPT-4, could be ten
times larger.

Leading IT companies are actively procuring renewable energy sources to
power their data centers, with Google, for instance, committing to 100% renewa-
ble energy for all its cloud regions.'” However, a significant portion of these data
centers remains connected to the grid. The current grid infrastructure faces chal-
lenges, evidenced by a prolonged interconnection queue in the United States. The
increasing demand for data centers may force utilities to defer the retirement of
fossil fuel generation.'!

Simultaneously, efforts are underway to enhance the energy efficiency of Al
tools. In April 2020, MIT introduced a system designed to reduce the energy re-
quired for training and running neural networks.'? Additionally, in July 2020, re-
searchers from Stanford University unveiled the ‘experiment impact tracker’ and
provided recommendations for developers aiming to minimize their carbon foot-
print.”® These initiatives reflect a growing awareness of the environmental impact
of Al and a commitment to finding sustainable solutions.

D. Intelligent & Autonomous Operations and Maintenance

Automating tasks enables plant operational and grid integration efficiency
improvements. It also preserves energy system assets and equipment while ena-
bling energy system operators to focus on the most valuable maintenance, asset
management and integration tasks. Al applications such as digital twins, machine
learning/reinforcement learning, machine vision, and automatic diagnostics opti-
mize inspection, monitoring, and utilization. For example, research shows the
current gearbox cumulative failure rate during twenty years of operation is in the
range of 30% (best case scenario) to 70% (worst case scenario). When a compo-
nent like a gearbox prematurely fails, operation and maintenance (O&M) costs
increase, and production revenue is lost. A full gearbox replacement may cost
more than $350,000. Researchers are testing a physics-based machine-learning

9. Alex de Vries, The growing energy footprint of artificial intelligence, JOULE (Oct. 10, 2023),
https://www.cell.com/joule/abstract/S2542-4351(23)00365-3.

10.  GOOGLE DATA CTRS., 24/7 CARBON-FREE ENERGY BY 2030 1, https://www.google.com/about/data-
centers/cleanenergy/ (last visited Apr. 4, 2024).

11.  Daniel Geiger & Ellen Thomas, Data Centers are booming. Their need for power is causing utilities
to retreat on green energy., BUS. INSIDER 4-5 (OCT. 9, 2023), https://www.businessinsider.com/data-centers-en-
ergy-demand-utilities-green-renewable-2023-10.

12.  Rob Matheson, Reducing the carbon footprint of artificial intelligence, MIT NEWS 2 (Apr. 23, 2020),
https://news.mit.edu/2020/artificial-intelligence-ai-carbon-footprint-0423.

13.  Edmund L. Andrews, AI’s Carbon Footprint Problem, STAN. UNIV. 2 (Jul. 2, 2020), https://hai.stan-
ford.edu/news/ais-carbon-footprint-problem.
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hybrid model that can identify gearbox damage in its early stages and extend its
life. If a damaged bearing within a gearbox is identified early, the repair may only
cost around $45,000, a savings of nearly 90%.'* Another example is Palantir
Foundry’s predictive maintenance & prognostics application, which allows oper-
ators to make informed, proactive, and cost-effective maintenance decisions, re-
ducing downtime, improving availability, and optimizing maintenance schedul-
ing. Pacific Gas and Electric uses it to model transformer health and conduct
predictive maintenance across 25,000 miles of grid wire."?

III. NAVIGATING THE REGULATORY LANDSCAPE

We now turn to regulatory and legal issues associated with the deployment
of Al in the electric utility sector. The introduction of Al in power system opera-
tions involves profound transformations. Although some of the issues we will
mention are not new, they are intensified by Al applications. This in turn requires
that we revisit some old questions in light of the value Al may bring and new ways
to approach and optimize utility processes. As current regulatory frameworks and
associated legal precedents reflect tradeoffs and compromises before this new age
of Al, it is only natural there will be changes and evolutions to accompany this
transformation, and sometimes on profoundly fundamental aspects.

Later sections will delve into three such issues that warrant revisiting in light
of Al applications: data sharing and access, trustworthiness and ethical considera-
tions. Before discussing these issues, however, it is useful to survey the landscape
of regulations and regulatory responsibility in this area; the discussion below will
focus on the United States and briefly touch on Europe as well.

A. Traditional Energy Regulators and Al

Several factors exist that drive developments in energy law, including
changes in the operation and structure of energy markets, entanglement with other
areas of law such as environmental law, as well as the development and diffusion
of new technology.'® The latter concerns us here, as artificial intelligence systems
are already changing interactions between utilities and regulators and will likely
change what regulators decide is reasonable to demand from utilities. At the same
time, Al may stretch the capacity of current administrative law to accommodate
its features and thus may drive innovations in the law itself."’

In the United States, regulators split responsibility for utility regulation be-
tween the federal and state levels. The Federal Power Act (FPA) of 1935 is the

14. Raja V. Pulikollu & Jeremy Renshaw, EPRI Develops AI Model to Reduce Wind Turbine Operations
Cost, T&’kDWORLD 5 (Sept. 8, 2021), https://www.tdworld.com/renewables/article/21174662/epri-develops-ai-
model-to-reduce-wind-turbine-operations-costs-utilities-see-significant-benefits.

15.  PALANTIR, PALANTIR FOR UTILITIES 2, https://www.palantir.com/offerings/utilities/ (last visited Apr.
5,2024).

16. Joseph T. Kelliher & Maria Farinella, The Changing Landscape of Federal Energy Law, 61 ADMIN.
L.REV. 611, 613-24 (2009).

17.  See Alicia Solow-Niederman, Administering Artificial Intelligence, 93 S. CAL. L. REV. 633, 694-95
(2020).
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authorizing statute that defines the jurisdiction of the Federal Energy Regulatory
Commission (FERC).'"® Under the law, the states retain jurisdiction over their in-
ternal energy markets (typically regulated by state utility commissions) while the
U.S. Congress empowered FERC to regulate interstate energy commerce — in
particular, FERC is authorized to regulate the transmission and wholesale selling
of electric energy in interstate commerce.”” FERC assesses whether “any rule,
regulation, practice, or contract” that is “affecting” a “rate, charge, or classifica-
tion” in use by a public utility subject to its jurisdiction is “unjust, unreasonable,
unduly discriminatory or preferential.”*® The U.S. Supreme Court has explained
that while “FERC has the authority—and indeed the duty—to ensure that rules or
practices ‘affecting’ wholesale rates are just and reasonable,”?! FERC’s jurisdic-
tion is limited to those “rules and practices that directly affect the [wholesale]
rate.”” The Court stated this legal rule when it found that demand response pro-
grams were a practice meant to reduce wholesale rates, reduce pressure on the
grid, and avoid service problems.? It is readily foreseeable that deploying Al sys-
tems can be adjudged a similar “practice” that will “directly affect” wholesale
electricity prices.

Depending on their effect on the wholesale market and whether they may be
deemed to increase wholesale competition, even utilities’ Al applications that are
local or state-situated may also be subject to federal regulation.”* For example,
FERC issued Order No. 881 on December 16, 2021.2 With this rule, FERC re-
quired that utility transmission providers implement ambient-adjusted ratings
when calculating the maximum transfer capability of their transmission lines, and
also make possible dynamic line rating, giving the transmission providers three
years to effect the change. FERC justified this rule in part as fulfilling its own
legal requirement under the Federal Power Act to ensure customers are paying
rates that are “just and reasonable.””® For energy transmission, Al promises to
enable adjustments to line ratings in real time, whether ambient-adjusted ratings
or dynamic line ratings, through automated processing of temperature and weather

18.  Federal Power Act, 41 Stat. 1063 (codified as amended at 16 U.S.C. §791a et seq.).

19. 16 U.S.C. § 824(b)(1).

20. 16 U.S.C. § 824e(a).

21.  FERCv. Elec. Power Supply Ass’n, 577 U.S. 260, 277 (2016).

22.  Id. at 278 (citing Cal. Indep. Sys. Operator Corp. v. FERC, 372 F.3d 395, 403 (2004)) (internal quota-
tion marks omitted); 16 U.S.C. §§ 824d—824f (2018); see FERC Rule to Improve Transmission Line Ratings Will
Help Lower Transmission Costs, Docket No. RM20-16 (Dec. 16, 2021), https://www.ferc.gov/news-
events/news/ferc-rule-improve-transmission-line-ratings-will-help-lower-transmission-costs. For a detailed dis-
cussion of the meaning of “just and reasonable” as glossed by the courts, see Steve Isser, Just and Reasonable:
The Cornerstone of Energy Regulation, (Energy Law and Economics Working Paper 2015-1, 2015); see also
Sotheby Shedeck, Note A4 Clarification on FERC's Discretion in Finding Just and Reasonable Rates in the Elec-
tricity Market: Public Citizen, Inc. v. FERC, 44 Energy L.J. 119 (2023).

23.  Elec. Power Supply Ass’n, 577 U.S. at 279.

24.  See Nat’l Ass’n of Regul. Util. Comm’rs v. FERC, 964 F.3d 1177, 1186 (D.C. Cir. 2020).

25.  Managing Transmission Line Ratings, 177 FERC § 61,179 (2021).

26. 16 U.S.C. §§ 824d-824f (just and reasonable rates), see FERC Rule to Improve Transmission Line
Ratings, supra note 22; For a detailed discussion of the meaning of “just and reasonable” as glossed by the courts,
see Isser, supra note 22; Shedeck, supra note 22.



2024] ADOPTION OF AI BY ELECTRIC UTILITIES 9

data and changing conditions on the grid. Transmission providers can thus use Al
systems to better meet their regulatory requirements; at the same time, these Al
uses will likely be themselves subject to further scrutiny from regulators.

Additionally, to ensure the applicability of the Mobile-Sierra doctrine’s pre-
sumption that contracted rates are “just and reasonable” under the Federal Power
Act, regulators should monitor whether Al is ever being used to engage in illegal
market manipulation. As the Supreme Court has said, “Like fraud and duress,
unlawful market activity that directly affects contract negotiations eliminates the
premise on which the Mobile—Sierra presumption rests: that the contract rates are
the product of fair, arms-length negotiations.””” If any given entity in the energy
industry gained market power through its adoption of Al, this presumption would
no longer hold true.

Under the Energy Policy Act of 2005, FERC also certifies and reviews En-
ergy Reliability Organizations “to establish and enforce reliability standards for
the bulk-power system,” giving regulators broad jurisdiction over electricity reli-
ability standards.”® These include requirements for electricity system stability and
cybersecurity protection.”” National security and intelligence professionals have
opined that AI can help detect and respond in real time to cybersecurity threats.*’
Cyber-attacks and electronic disruptions have been consistently on the rise for
years, and longstanding suggestions to disconnect electrical infrastructure from
the open internet appear even less feasible than before; to the degree that utilities
increasingly deploy Al they typically become more dependent on broader net-
work connections for access to relevant data sources.?' Additionally, in an execu-
tive order issued October 31, 2023 on “Safe, Secure, and Trustworthy Develop-
ment and Use of Artificial Intelligence,” the White House directed the Department
of Energy, alongside many other executive agencies, to assess Al threats to critical
infrastructure.’ The president also directed the Department of Energy to produce
and publish a report on “the potential for Al to improve planning, permitting, in-
vestment, and operations for electric grid infrastructure and to enable the provision
of clean, affordable, reliable, resilient, and secure electric power to all Ameri-
cans.”® While its implications and implementing rulemaking are still evolving,
the executive order sets rapid deadlines for many of its instructions and can be
expected to shape public and private decisions about Al development and deploy-
ment in the near future, including in the energy sector.

27.  Morgan Stanley Cap. Grp. Inc. v. Pub. Util. Dist. No. 1 of Snohomish Cnty., Wash., 554 U.S. 527, 554
(2008).

28.  16U.S.C. § 8240(a(2)-b).

29. Id.at § 8240(a)(3-8).

30. Diego Laje, Securing Critical Infrastructure in the Age of Artificial Intelligence, AFCEA SIGNAL
(Nov. 17, 2023), https://www.afcea.org/signal-media/securing-critical-infrastructure-age-artificial-intelligence.

31. See Amy L. Stein, Regulating Reliability, 54 HOUSTON L. REV. 1191, 1229-31 (2017),
https://houstonlawreview.org/article/3936-regulating-reliability.

32.  Exec. Order No. 14,110, 88 Fed. Reg. 75191, 75196, 75199 (§4.1(b), §4.3) (Nov. 1, 2023),
https://www.govinfo.gov/content/pkg/FR-2023-11-01/pdf/2023-24283.pdf.

33, Id. at 75208 (§5.2(g)(i)).
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The judiciary has emphasized, however, that even after the Supreme Court’s
broad reading of federal jurisdiction, “States retain their authority to impose safety
and reliability requirements” without federal interference.’® State utility commis-
sions are already relying on that authority to surface and regulate utilities’ use of
Al. Here, public utility commissions are engaged in a familiar regulatory role in
which they have long assessed, approved, or denied utilities’ adoption of new tech-
nology.* Utilities report their Al use cases to the commissions, such as intelligent
image processing and machine learning to handle millions of images collected by
drones deployed to inspect energy systems for issues.*® AI deployments can help
utilities and providers assess the ground truth of their systems and prepare regula-
tory compliance documents, such as natural disaster mitigation plans.’” Commis-
sions already assess and adjudicate proposed Al use cases, whether initiated by
the utility or suggested by an intervenor prior to the conclusions of an administra-
tive law judge or the final decision of the commission.”® State utility commissions
also already assess whether utilities’ algorithmic systems conform to the relevant
legal standards in their state.** Additionally, regulators and the courts may also
find reason to mandate the deployment of artificial intelligence if the safety bene-
fits are such as to create an affirmative duty of care.*’ State energy planning com-
missions and independent system operators also expect to use new Al systems to
improve interconnection queues and to support energy efficiency and demand
forecasting efforts, for which they have historically used previous generations of
advanced data analysis technologies including neural networks.*!

At the same time, regulators and legislators around the world face important
choices about how exactly to categorize and type artificial intelligence systems:
which concepts they apply “for constructing the meaning of Al systems in the law”

34.  Nat’l Ass’n of Regul. Util. Comm’rs, 964 F.3d at 1188.

35.  See Jonas J. Monast & Sarah K. Adair, Completing the Energy Innovation Cycle: The View from the
Public Utility Commission, 65 HASTINGS L. J. 1345, 1347 (2014).

36. See, e.g., Application of San Diego Gas & Electric Company (U 902 M) to Submit its 2021 Risk
Assessment and Mitigation Phase Report SDG&E 1-55-56 (Cal. P.U.C. 2021); see also Catherine J. K. Sandoval,
Net Neutrality Powers Energy and Forestalls Climate Change, 9 SAN DIEGO J. CLIMATE & ENERGY L. 1, 19
(2018) (“Paired with software analytics and artificial intelligence, live video can be a powerful tool to detect grid
threats or conditions”) (anticipating a similar use case).

37. See, e.g., CAL. PUB. UTIL. CODE § 8386 (wildfire mitigation).

38.  See, e.g., Application of Pacific Gas & Electric Company for Approval of Its Mobile Application and
Supporting Systems Pilot. (U39¢)., 2020 Cal. P.U.C. Decision 20-10-003 (Cal. P.U.C. Oct. 8, 2020)

39. See, e.g., Pennsylvania Public Utility Commission Bureau of Investigation and Enforcement Office of
Consumer Advocate Office of Small Business Advocate Philadelphia Industrial and Commercial Gas User Group
Grays Ferry Cogeneration Partnership and Vicinity Energy Philadelphia, Inc. James M. Williford v. Philadelphia
Gas Works Grays Ferry Cogeneration Partnership and Vicinity Energy Philadelphia, Inc., 2023 WL 8714853
(Pa. P.U.C. 2023) (ratemaking case governed by the just and reasonable standard announced in state law, 66 Pa.
C.S. § 1301(a) and §2212(e) and 52 Pa. Code §§ 69.2701-2703, and defined by relevant U.S. Supreme Court
precedent; claim against PGW for delegating customer payment plans to an algorithm with claimants arguing
this violated 52 Pa. Code § 56).

40. See Amy L. Stein, Assuming the Risks of Artificial Intelligence, 102 B.U. L. REV. 979, 1028 n.275
(2022).

41.  Video Interviews with Anonymous Planning and System Operating Officials (Jan. 10, 2024, and Jan-
uary 12, 2024).
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carry significant and divergent consequences.** For instance, commissioners and
administrative law judges will need to assess whether expenditures for Al technol-
ogies are capital investments or operating expenses, decisions with substantial im-
plications for rate-making cases.* Such decisions will send important signals,
given how, under the traditional rate-making formula, utilities’ ability to recover
capital expenses can be a powerful incentive. Along similar lines, while Al soft-
ware plausibly fits regulators’ past experience with utilities’ efforts to modernize
and deploy new technology, regulators should take note if utilities are proposing
to build their own in-house Al-specific data centers — clearly a capital investment,
but a questionable one in light of the traditional least cost standard, given prevail-
ing business best practices argue for contracting out for commercially available
cloud and data center services. Regulatory commissions may nonetheless also
need to attend to the advantages new technologies offer to early adopters (when
costs are typically higher), especially in what appears at present to be the early
stages of an artificial intelligence boom.

Regulators themselves often use Al systems to conduct their statutorily-
required oversight and we expect this trend to grow. In California, as one scholar
has observed, “The regulatory body tasked with ensuring that private utilities meet
renewable generation, grid reliability, and emissions reduction goals relies on a
mathematical model to identify gaps in energy generation buildout.”*> An addi-
tional regulatory Al use case is to detect where compliance may be difficult under
the current regulatory scheme and identify or suggest where and when a new rule-
making may be needed.*® Public utility commissioners, administrative law judges,
and case intervenors have expressed interest in increasing their use of artificial
intelligence to support their oversight work, from drawing on past regulatory de-
cisions to scrutinizing utilities’ proposals and models as well as the underlying
data that must support them.*’

Regulators can expect to receive more filings from industry that have been
written or at least co-authored by generative AI. Tech companies seeking to en-

42.  Video Interviews with Anonymous Former and Current Regulatory Officials (Dec. 7, 2023, Jan. 10,
2024); see also Margot Kaminski, Regulating the Risks of AI, 103 B.U. L. REV. 1347, 1347 (2023).

43.  This point emerged in conversations with several current and former regulators we interviewed. See
Monast & Adair, supra note 35, at 1356-57.

44.  See id. at 1359-60. At the same time, a point that emerged in several of our interviews with former
and current regulators is a sense of the history of data technologies, whether denominated under the names of
predictive analytics, big data, advanced analytics, machine learning, or artificial intelligence. Officials are wary
of hype, fads, and over-promising while also interested in leveraging the real-world gains new technology is
capable of delivering.

45. Sonya Ziaja, How Algorithm-Assisted Decision Making Is Influencing Environmental Law and Cli-
mate Adaptation, 48 ECOLOGY L.Q. 899, 924-25 (2021).

46. FED. ENERGY REGUL. COMM’N, STRATEGIC PLAN FY 2018-2022 6 (2018) (describing “algorithmic
screens” of market data), see also Cary Coglianese & Lavi M. Ben Dor, Al in Adjudication and Administration,
86 BROOKLYN L. R. 791 (2021).

47.  Video Interviews with Anonymous Regulatory Officials (Jan. 10, 2024).



12 ENERGY LAW JOURNAL [Vol. 45.1:1

courage new nuclear power generation have been exploring training large lan-
guage models to make the regulatory process cheaper and more efficient.* How-
ever, with market participants and their attorneys deploying generative Al as they
compose and submit regulatory filings, regulators can also expect many of the
same challenges the courts are facing. There have already been many documented
cases of hapless lawyers relying on Al in their court filings and litigation, only to
have the courts discover that many of the sources relied upon as binding or per-
suasive authority are nonexistent, invented by the AI’s “hallucinations.”*’

Regulators can also expect the courts to engage in complementary adjudica-
tion of Al-related cases. Recent scholarship suggests that early Al cases seeking
both statutory and common law remedies are already helping set incentives and
expectations in a regulatory-like function.”® It will be important for regulators to
watch how this caselaw develops —both to identify what principles and harms the
judiciary is announcing and recognizing, and to assess where courts are silent
about harms, externalities, or other market failures that regulators will need to take
up to address.

B. Privacy Regulators as Energy Regulators

By adopting Al systems, utilities may also find themselves subject to addi-
tional regulation due to privacy laws. Supranational jurisdictions like the Euro-
pean Union are already implementing comprehensive Al regulation. As of this
writing, the European Parliament has just passed the Artificial Intelligence Act, a
new regulation soon to come into force that will have substantial implications for
both providers and organizations that deploy Al systems.”!

In the absence of a federal data privacy statute in the U.S., many states have
gone ahead with their own legislation, a process we expect to continue. Much of
this state legislation is new and the implications have not yet been tested in the
courts. For example, in the state of Washington, to the degree that data about a
person’s health could be inferred from energy use data, utilities deploying Al to
data collected in that state may need to confirm they fall within a defined exception
of the new My Health My Data Act, coming into full force in 2024.>> At one
extreme, the Indiana Data Privacy Law, set to come into effect January 1, 2026,

48. Jennifer Hiller, Microsoft Targets Nuclear to Power AI Operations, WALL ST. J. (Dec. 12, 2023),
https://www.wsj.com/tech/ai/microsoft-targets-nuclear-to-power-ai-operations-e 1 0ft798.

49. See, e.g., Eugene Volokh, Another Example of a Lawyer-Filed Brief that Apparently Includes Citations
Hallucinated by AI, VOLOKH CONSPIRACY (Nov. 17,2023, 3:23 PM), https://reason.com/volokh/2023/11/17/an-
other-example-of-a-lawyer-filed-brief-that-apparently-includes-citations-hallucinated-by-ai/.

50. See Alicia Solow-Niederman, Do Cases Generate Bad Al Law?, 25 COLUM. SCI. & TECH. L. REV.
(forthcoming 2024), https://ssrn.com/abstract=4680641.

51. EUR. COMM’N, PROPOSAL FOR A REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND
AMENDING CERTAIN UNION LEGISLATIVE ACTS (Apr. 21, 2021), https:/eur-lex.europa.cu/re-
source.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF, adopted
March 13, 2024, https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html. A corrigendum
(errata) was published in mid-April:  https://www.europarl.europa.eu/doceo/document/TA-9-2024-
0138_EN.html.

52.  WASH. REV. CODE § 19.373.010(19) (2023).
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explicitly exempts public utilities.”> Some older statutes already regulated utili-
ties’ use of customer data, imposing a requirement of anonymity on aggregated
data.>® The variation across states and between countries means that, in some ju-
risdictions, privacy regulators may find themselves becoming part of the energy
regulatory system. In other jurisdictions, energy regulators may be the only ones
in a position to provide meaningful oversight and accountability to an industry that
holds tremendous data on the private details of millions of customers.”

IV. AT DATA PRIVACY AND CYBERSECURITY CHALLENGES

Harnessing the transformation potential of Al and ML hinges critically on
data access and sharing, entangled with concerns of privacy, cybersecurity, and
regulatory compliance. Al and ML technologies thrive on large datasets, offering
insights and predictions with precision far surpassing traditional statistical anal-
yses. The efficacy of Al and ML in utilities is contingent upon the availability of
high-quality, relevant data.

A. Critical requirements on utility data and need for clarity

In the utility sector, such data encompasses various sensitive aspects:

1. Privacy and confidentiality: Individual meter readings can unveil per-
sonal lifestyle choices or expose confidential economic information about compa-
nies. Such individual data is protected by general regulations like GDPR*® and
California Consumer Privacy laws®’, and explicit energy specific privacy laws and
regulations. This limits the collection and use of meter data to specific entities and
to specific needs and uses. Any other use can require explicit consent. Some Al
and ML applications rely on mining large amounts of granular data without a priori
identification of relevant features, and are structurally limited by such privacy and
confidentiality restrictions;

2. Intellectual property: Operational data can reveal proprietary techniques
and processes through reverse engineering. Al and ML prove very effective at
identifying underlying patterns and information from available data, and therefore
reinforces this risk;

3. Critical Infrastructure Protection: Data security is paramount to prevent
malicious attacks on essential utility services. Restricting data access has long
been a common practice to limit exposure to this risk. However, in practice, this
limits innovation and interoperability, while much of this information (like the
physical location of the infrastructure or equipment parameters) can anyway be
obtained or estimated through other means. Reliance on data access restriction
can then give a false sense of security and prevent focusing efforts on securing

53. IND. CODE § 24-15-1-1(b)(6) (2023).

54. See, e.g., WASH. REV. CODE § 19.29A.100(8) (2023).

55.  See Kevin Frazier, Updating the Legal Profession for the Age of AI, YALE J. ON REG. (Dec. 6, 2023),
https://www.yalejreg.com/nc/updating-the-legal-profession-for-the-age-of-ai-by-kevin-frazier.

56. The General Data Protection Regulation, first enacted in 2016, defines data protection rules in the
European Union and when data collection impacts EU citizens. Commission Regulation 2016/679, 2016 O.J. (L
119) 1-88.

57.  Cal Civ Code § 1798.100 (2020).
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high critical data and ensuring physical and cyber-security by more robust tech-
niques and systems.

The discussion around Al, privacy, and data sharing in energy systems is not
new but is becoming increasingly critical with AI’s growth. Ensuring open and
equal access to utility data while meeting the requirements above is vital for fos-
tering transparency and innovation. Stakeholders expect regulatory bodies to pro-
vide clear guidelines that facilitate both the protection of sensitive data and the
advancement of Al technologies. For lack of clear guidelines, utility data holders
will tend to resist sharing data, fearing litigation and exposure.

B. Privacy preserving techniques

Issues of privacy and confidentiality are not specific to the energy sectors,
and techniques and frameworks have been developed™ to allow exploiting the
wealth of information in granular data while preserving confidentiality. Much of
this is readily applicable to energy data. In applying these techniques, it is essen-
tial to guarantee that privacy and confidential information has been effectively
obfuscated. Techniques like differential privacy offer a rigorous approach to this
question, with several available frameworks to ensure the desired level of protec-
tion balancing privacy requirements and the utility of the openly available data for
specific use cases. Open-source frameworks can be useful in this context, to pro-
vide transparent standards and tools to help certify if data is sufficiently anony-
mized for sharing.

Whether or not such techniques are used, it is essential to clarify the issue of
consent, especially regarding household level data where a large population of in-
dividuals are involved. But even for data involving commercial or industrial level
customers, obtaining consent for large scale studies and Al applications could be
untrackable. Legal clarity on disclosure to third parties and acceptable use is key
and needs to be provided by dedicated privacy regulations.*

C. Cybersecurity and critical infrastructure protection

Section 215A of the Federal Power Act, most recently amended by the FAST
Act of 2015, mandates regulations to prohibit the disclosure of Critical Electrical
Infrastructure Information (CEIl), as designated by FERC or DOE. The Commis-
sion further defined® CEII as:

[S]pecific engineering, vulnerability, or detailed design information about pro-
posed or existing critical infrastructure that:

(i) Relates details about the production, generation, transportation, transmission,
or distribution of energy;

(i) Could be useful to a person in planning an attack on critical infrastructure;
[...]

(iv) Does not simply give the general location of the critical infrastructure.

58. See, e.g., Georgina Evans et al., Statistically Valid Inferences from Privacy-Protected Data, 117 AM.
PoOL. ScI. REV. 1275 (2023).

59. Decision Adopting Rules to Protect the Privacy and Security of the Electricity Usage Data of the Cus-
tomers of Pacific Gas and Electric Company, Southern California Edison Company, and San Diego Gas & Elec-
tric Company, 2011 Cal. P.U.C. Decision 11-07-056 2-3 (Cal. P.U.C. July 28, 2011).

60. 18 C.F.R.§ 388.1131(2) (2024).
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In the context of data access for Al applications, this broad definition can be
interpreted to apply to most if not all detailed data about electric infrastructure and
systems. Regulations allow and facilitate voluntary sharing of data between utili-
ties, operators and government entities, taking into account ERO CIP standards.
However, beyond these authorized entities, information sharing is severely re-
stricted.

Cybersecurity and protection of critical electric infrastructure is a paramount
concern given its strategic nature and importance for national security. While
stringent measures are well justified given clear and present threats, in practice,
current CEII regulations create a black and white approach to data access which
can be considered detrimental to Al innovation and adoption. They make it very
difficult for non-utility partners to access realistic data to support R&D and inno-
vation efforts. Here again, striking the right balance between advancement of Al
adoption and national security is a key challenge facing regulators and policymak-
ers.

D. A framework to balance confidentiality, cybersecurity and innovation for Al
applications

To address these challenges, establishing legal and regulatory frameworks is
crucial.

First, one should ensure the collection and secure handling of granular high
quality energy data. This requirement will primarily fall onto electric utilities and
system operators, especially regarding meter data, which make them the focal
point of grid and grid-facing Al applications. For customer facing services, meter
data should be accessible to third parties with the customer’s consent, under equal
conditions but with equally stringent requirements regarding privacy and cyberse-
curity. The foundations for third party access to granular energy data were devel-
oped in the 2010s with the deployment of smart meter and energy efficiency or
benchmarking programs.®’ AI and ML has the potential to improve such services
greatly, which makes such programs even more critical. In addition, regulatory
provisions can mandate that a neutral public entity should have access to this data
for transparency and audit purposes. Utilities and such entities can be mandated
to release aggregate data through open data transparency programs, again allowing
open and equal access to such data to support the development and provision of
Al and ML based services.

Facilitating partnerships under confidentiality agreements with research in-
stitutions can enable innovation and comprehensive analysis. These institutions
should have secure data handling capabilities or access to such facilities. Data
owners can also provide dedicated private spaces on their own infrastructure for
third parties to deploy their algorithms and test them on confidential and sensitive
data. In both cases, however, confidentiality agreements prevent peer reviewed

61. See, e.g., PAC. GAS AND ELEC. Co., Electric Rule No. 25: RELEASE OF CUSTOMER DATA TO THIRD
PARTIES (2018), https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_RULES 25.pdf; PAC. GAS AND ELEC.
Co. ELECTRIC RULE NO. 27: PRIVACY AND SECURITY PROTECTIONS FOR ENERGY USAGE DATA (2012),
https://www.pge.comv/tariffs/assets/pdf/tariffbook/ELEC_RULES_27.pdf.
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published research. Other parties cannot reproduce, benchmark and build upon
the developed techniques.

Promoting open benchmark initiatives that encourage the use of both syn-
thetic and real data is therefore essential to support public research and collabora-
tive innovation. Synthetic data alone often lacks the realism necessary for effective
Al training. Real data remains indispensable, both for direct use and as a founda-
tion for generating high-quality synthetic datasets. The key is maintaining con-
sistency and realism. One approach is training synthetic models on real datasets
while ensuring consistency and maintaining confidential equivalent datasets for
verification by authorized entities. Even if they have been obfuscated in terms of
private and sensitive information, open benchmarks should strive to be realistic.
They should aspire to sufficiently reflect reality such that there is a fair chance
techniques developed and tested on them would transpose well on real test da-
tasets. Data holders have a key role both in the elaboration for such open bench-
marks in support of research and innovation, and in the evaluation and validation
of techniques and algorithms on associated real test data sets. Regulations and
policy should not hinder such initiatives and could even support such initiatives,
especially when research and innovation efforts are otherwise supported by public
funds.

Irrespective of the chosen specific policies, ensuring data quality, reliable
collection and access and meeting cybersecurity requirements imply investment in
infrastructure and skilled professionals. Cost recovery for the mandates and ac-
tions mentioned above is therefore an important aspect of the discussion, espe-
cially since the return on investment may not be direct and immediate.

This comprehensive approach to data governance in Al deployment in the
utility sector aims to balance the need for data access with the imperative of data
protection, fostering an environment conducive to innovation while maintaining
privacy and security. This can be used as a basis for discussions between utilities,
regulators, policymakers and other stakeholders.

V. TRUSTWORTHINESS: HOW TO ENSURE EXPLAINABILITY, TRANSPARENCY,
RELIABILITY AND LIABILITY

Definition of Trustworthiness:

Trustworthiness in the context of Al adoption by electrical power utilities
refers to the system’s ability to ensure reliability and performance, to inspire con-
fidence and transparency among stakeholders in a context of energy transition with
more volatility and an evolving system complexity. It encompasses a combination
of factors, including the reliability of the technology, the accountability of Al-
generated outcomes and the clarity of decision-making processes. Achieving
trustworthiness is essential for fostering acceptance, mitigating risks, and ensuring
responsible use of Al in critical decision-making within the energy sector.

Reliability for critical system operation:

A conceptual framework of operational processes for electrical power utili-
ties can be organized as three interacting layers: optimize, control, and protect. Al
can be deployed in each of these layers but with increasing need of reliability cer-
tification. The protection layer ensures the ultimate integrity of the equipment,
operators and the population at large, in this layer, Al solutions must be certified
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with the highest standards of reliability which themselves may need to be clearly
specified. The control layer ensures the service continuity in line with the regula-
tory procedures (e.g. LOLE: Loss of Load Expectation). This layer is also fully
automated, and Al has significant potential to address the increasing complexity
but there is a strong need for establishing and enforcing rigorous validation stand-
ards. It is understood that this layer can never account for all possible system
conditions, which justifies the existence of the protection layer. The optimize
layer implements the market design, maximizing the welfare under physical and
engineering constraints managed by the control and protect layers. Here, Al could
be transformative by increasing the modeling fidelity and improving risk and un-
certainty management. But any Al assisted system must be compliant with market
regulations and provide explainability and transparency essential for human oper-
ators.

Explainability for multiple stakeholders:

Tailoring explanations to a wide range of stakeholders is integral to building
trust. Explainability ensures that Al decisions are understandable and accessible
to a large diversity of participants, from technical experts to market designers,
regulators and policy makers.

Al systems should have the ability to articulate the rationale behind their de-
cisions or recommendations using the proper ontology for the relevant stakehold-
ers. The Al should generate narratives using the existing and elucidated ontology
to capture essential features driving the recommended decisions. Translating Al
system complex inferences in clear and interpretable explanations in the cognitive
model of humans is a fundamental open research issue. The understanding of hu-
man-Al interaction is still in its infancy. Human-Centered AI*?, which promotes a
partnership between humans and Al based on the extension of “Thinking Fast and
Slow” (Kahneman 2011), is certainly a step in the right direction.

Transparency as a Pillar of Trust:

Transparency is foundational to trust in Al systems. Any Al system should
be auditable by independent experts with respect to the reliability criteria men-
tioned previously. It should also involve communicating the methodologies, data
sources, and decision pathways employed by the Al. The benefits of open source
and open data should be carefully examined. As a result, these transparent pro-
cesses will ensure that the fairness, integrity, and reliability of the Al system can
be independently verified. This transparency not only builds trust among end-
users and regulatory bodies but also fosters a culture of accountability within the
organization.

Liability and Accountability in Al Decisions:

Defining liability and accountability procedures has always been fundamen-
tal in ensuring the reliability of power system operation. It will be exacerbated by
the deployment of Al and increasing complexity.

Most utilities accept responsibility for damages caused by their negligence,
but make exceptions for events “outside” of their control. Power shutoffs pose
risks beyond economic or property damage. Individuals who depend on powered

62. Adam Dahlgren Lindstrom et al., Thinking Fast And Slow In Human-Centered AI, HAL OPEN SCI.
(Feb. 17,2023), https://inria.hal.science/hal-03991946.
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medical equipment, whether at home or in a medical facility are especially vulner-
able. Defining ‘negligence’ in cases where decisions are made based on the advice
of an Al assistant is an unresolved issue. As an illustrative example, in the case
of PG&E® (wildfires caused by power lines), Al could be used to assist in vege-
tation management and to perform preventive load shedding to avoid wildfires.*
But what if the Al assistant’s advice is wrong, but highly plausible, and causes
deaths related to uncontrolled wildfires started by power lines? We can find very
similar problems for the “self-driving car.” One difficult issue is the need to per-
form a counterfactual analysis of what the operator would have done without the
advice of its Al assistant. In this context, preserving the traces of the interaction
between the operator and his Al assistant seems essential. The ability to replay
the process for post-mortem analysis is also very important to detect possible mal-
functions of the Al technology, in which case the companies responsible for de-
veloping the software may also be liable.

New questions are being asked about generative Al and Large Language
Models. There are specific risks associated with these general-purpose Al assis-
tants that are not dedicated to specific use cases and technical domains. The paper
“Taxonomy of Risks posed by Language Models”® identifies twenty-one types of
risks. The risk of “Disseminating false or misleading information” (also called
hallucinations) is certainly very serious in technical utility-related activities. For
the time being, it should be recommended that this type of Al assistant not be used
for critical, near real-time decision making, where verification is nearly impossi-
ble.

Trustworthiness requires a clear delineation of responsibilities and mecha-
nisms for addressing decision making in assisted Al systems.

VI. ETHICAL CONSIDERATIONS

The rapid and extensive spread of artificial intelligence has motivated a grow-
ing scholarly literature on Al ethics.®® Al systems have also been simultaneously
hailed as necessary for addressing climate change and marked as ethically prob-
lematic—both for implicitly embedding particular moral judgments, values, and

63.  Order Instituting Investigation on the Commissions Own Motion into the Maintenance, Operations
and Practices of Pacific Gas and Electric Company (U39¢) with Respect to its Electric Facilities; and Order to
Show Cause Why the Commission Should Not Impose Penalties and/or Other Remedies for the Role PG&Es
Electric Facilities Had in Igniting Fires in Its Service Territory in 2017. 2 (Cal. P.U.C. 2020).

64.  See John McCormick, California Utilities Hope Drones, AI Will Lower Risk of Future Wildfires, WALL
ST.J. (Sep. 11, 2020), https://www.wsj.com/articles/california-utilities-hope-drones-ai-will-lower-risk-of-future-
wildfires-11599816601.

65. Laura Weidinger et al., Taxonomy of Risks posed by Language Models, FAccT *22 ACM CONF. ON
FAIRNESS, ACCOUNTABILITY, & TRANSPARENCY 214, 215 (2022).

66. See, e.g., Changwu Huang et al., An Overview of Artificial Intelligence Ethics, 4 IEEE TRANSACTIONS
ON AL 799, 799-800 (2023); see also Thilo Hagendorff, The Ethics of Al Ethics: An Evaluation of Guidelines,
30 MINDS AND MACHINES 99, 99 (2020) (discussing twenty-two of the ethical principles that have circulated in
Al ethics).
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biases and for cloaking the real-world uncertainty behind the mathematical ap-
proximations that make such models work.®” The machine learning models that
power many contemporary Al implementations have been extolled for the welfare
improvements they were or still are expected to deliver.®® They have also been
heavily criticized for the harms they have been observed to cause or are anticipated
to bring about, for the exact same reasons arising from how machine learning tech-
niques work in theory and practice.” A frequent anxiety about inscrutable Al
models is their opacity, which naturally invites calls for greater transparency in
both their development and operation as deployed production systems.’® Utilities
and regulators may be able to address some of the ethical concerns (and in Europe,
legal requirements) that motivate demands for model transparency and explaina-
bility by inviting greater participation and co-development of their Al models.”"
Additionally, although the public is becoming more aware of the threat of Al-
driven discrimination, scholars have also suggested that Al can assist in detecting
discrimination harms in ways not previously possible.”” In other words, Al gen-
erates both ethical dilemmas and opportunities.

A. Energy Requirements & Environmental Impacts of Artificial Intelligence

Training and operating large machine learning and AI models often takes
considerable electricity and thus typically produces substantial emissions.” The
extent of this issue has led to calls for sustainable approaches to the development
and deployment of AI"* and the integration of environmental ethics into discus-
sions about Al ethics more generally.” At the same time, while language models
are large, not every Al model is, and many such systems will be relatively small,
tailored to a particular, energy-specific use case.”® Jurisdictions that have sustain-

67. See Sonya Ziaja, How Algorithm-Assisted Decision Making Is Influencing Environmental Law and
Climate Adaptation, 48 ECOLOGY L. Q. 899, 902, 91218, 920 (2021); see also Amy L. Stein, Artificial Intelli-
gence and Climate Change, 37 YALE J. ON REG. 890 (2020) (examining AI’s promise in the energy sector).

68. See, e.g., Jon Kleinberg et al., Prediction Policy Problems, 105 AM. ECON. REV. PAPERS & PROC. 491,
494 (2015).

69. See, e.g., CATHY O’NEIL, WEAPONS OF MATH DESTRUCTION: HOW BIG DATA INCREASES
INEQUALITY AND THREATENS DEMOCRACY (2016) (other Al challenges include what have been termed algorith-
mic harms, where software models “exploit consumers’ imperfect information or behavioral biases.”); see also
Oren Bar-Gill et al., Algorithmic Harm in Consumer Markets, 15 J. LEG. ANALYSIS 1, 3 (2023).

70.  For skepticism about the efficacy of increasing transparency in algorithmic systems to address their
potential harms, see Deven R. Desai & Joshua A. Kroll, Trust But Verify: A Guide to Algorithms and the Law,
31 HARV. J.L. & TECH. 1, 4-5 (2017); see generally Joshua A. Kroll et al., Accountable Algorithms, 165 U. PA.
L. REV. 633 (2017); see also Ziaja, supra note 67, at 3.

71.  See Ziaja, supra note 67. For the value of considering legal and ethical imperatives at every stage of
software development, including from the very beginning. See COURTNEY BOWMAN ET AL., THE ARCHITECTURE
OF PRIVACY: ON ENG’G TECHS. THAT CAN DELIVER TRUSTWORTHY SAFEGUARDS (O’Reilly Media, Inc. 2015).

72.  Jon Kleinberg at al., Discrimination in the Age of Algorithms, 10 J. LEG. ANALYSIS 113 (2018).

73.  See Stein, supra note 67, at 917-18.

74.  See, e.g., Aimee van Wynsberghe, Sustainable Al: Al for Sustainability and The Sustainability of Al,
1 Al & ETHICS 213, 213-14 (2021).

75.  Seth D. Baum & Andrea Owe, A.1. Needs Env’t Ethics, 26 ETHICS, POL’Y & ENV’T 139 (2022).

76.  See Stein, supra note 67, at 918.
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ability or carbon-reduction commitments will need to consider how market partic-
ipants’ use of Al impacts those environmental goals, as Al systems vary, with
some promising to advance while others would undermine climate policy objec-
tives.”” Al may also change the costs associated with sourcing different types of
energy; it is not yet clear whether deploying Al might make fossil fuels or renew-
ables more competitive vis-a-vis the other.”

B. Ethics and AI Governance

A traditional criterion for government legitimacy is justice, or at least a com-
mitment to it in some form, such as the fair application of the procedures that
constitute the rules of everyday life. One of the more troubling (although perhaps
philosophically unsurprising) findings among computer science scholars in recent
years is that alternative conceptions of fairness are mutually incompatible and can-
not be simultaneously implemented in an algorithm’s code.” Many organizations
have taken to establishing Al ethics committees to work to align their Al develop-
ment efforts with institutional and societal values.*

Additionally, those charged with managing electricity grids face the chal-
lenge of preventing a range of system disruptions, up to and including energy
emergencies, which continue to draw scholarly attention.®' At the same time, pro-
fessionals in the military, law enforcement, public health, and disaster and emer-
gency management have been promoting the advantages of artificial intelligence
for effective responses during periods of crisis.* Yet there are definite risks to the
potential junction of Al and emergency response. Al systems are often inscruta-
ble—even to those who program them—and lack traditional accountability
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checks,* while also frequently encoding biases and leading users to make preju-
diced choices.® Al may yet offer many advantages when responding to emergen-
cies. Its potential—and in many cases, demonstrated ability—to fuse, process, and
respond to vast and disparate data flows have generated considerable optimism
about improving or augmenting human decision making under challenging infor-
mational conditions. Some of that optimism may prove to be well-founded, but
there are also latent risks in delegating high-stakes decisions at critical moments
to algorithms.® A government that relies on Al can easily claim it does a better
job meeting all the legitimating principles detailed in the classic theories of emer-
gency powers: in particular, it would enjoy in even greater degree than a human
crisis leader the advantages of better information and speedier response in the face
of imminent threats.*® Yet, relying on Al at times of emergency or crisis would
be to fragment what has long been thought a unitary, sovereign decision made by
a legitimate human leader — elected by the citizenry or appointed by elected offi-
cials — and instead delegate it, at least partially, to a nonhuman, unelected, and
likely inexplicable automated entity.

Regulators and policymakers face the task of finding the right balance be-
tween efficacy, caution, and the participatory practices that legitimize democratic
polities as they strive to ensure the participants in the energy market operate ethi-
cally.

VIIL KEY TAKEAWAYS AND RECOMMENDATIONS

Adoption of Al by utilities is advancing, yet a vast potential remains un-
tapped. The scope of Al applications in this field is extensive, signaling a trans-
formative era ahead. Policymakers and legal professionals at federal and state
levels, including members of public utility commissions and state energy offices,
are at the forefront of navigating the complex legal and regulatory landscapes that
shape this emerging technology. In doing so, they need to engage in constructive
and informed dialogue with other stakeholders to best navigate the complex issues
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of privacy, cybersecurity, explainability, transparency, liability, and Al govern-
ance and balance them with the transformative benefits of Al

In the United States, the intersection of state and federal regulations adds lay-
ers of complexity. Al applications in utilities, depending on their impact on the
wholesale market, national security or broader Al concerns, may fall under federal
regulation but states will add their own regulations over safety, privacy and relia-
bility concerns. This reinforces the need for effective dialogue at all levels.

The shift from model-based simulations to data-driven analysis with Al ex-
acerbates existing concerns around data access, privacy, and cybersecurity. Data
availability is a pivotal factor in enabling Al and machine learning adoption, and
regulations should not unduly hinder access to relevant data. As already permitted
by existing regulations, data sharing should be encouraged and facilitated between
utilities, system operators and public entities in charge of oversight and energy
policy. Collaboration with non-utility stakeholders is complicated under current
regulatory frameworks — yet it is critical to mobilize the innovation ecosystem
around Al and machine learning which leads the research and development of
these new technologies. To create a level playing field and spur collaborative in-
novation, producing ‘realistic open benchmarks’-datasets that are closely aligned
with real-world data but modified for privacy and security — is recommended as a
critical enabler. These benchmarks would allow for world leading innovation and
research in Al without compromising confidentiality and security. This would
also allow validation of promising beneficial techniques against real data in part-
nership with original data owners — provided the “realistic open benchmarks” re-
main sufficiently similar. Policymakers and regulators should support such initi-
atives, as the best compromise to balance privacy and security issues against rapid
development of Al and global leadership in this new technology.

Achieving trustworthiness in Al is fundamental for its acceptance and re-
sponsible use in critical decision-making within the energy sector. Trustworthi-
ness by design is non-negotiable, especially for the most critical applications. A
conceptual framework of operational processes for electrical power utilities can
be organized as three interacting layers that optimize, control, and protect. Al can
be deployed in each of these layers but with the increasing need of reliability cer-
tification.

Tailoring Al explanations to various stakeholders and investing in human-Al
interaction research are crucial steps in building this trust. Transparency forms
the foundation of trust in Al systems. Ensuring that Al systems are auditable by
independent experts and communicating their methodologies and decision-making
processes are also key steps. In taking them, the potential benefits of open source
and open data approaches warrant careful consideration.

Regarding liability and accountability, a critical aspect involves analyzing
what decisions would have been made without Al assistance. Preserving interac-
tion traces between operators and Al assistants is vital. Large language models
are probabilistic engines that should be coupled with other models before using
them in critical, near real-time decision-making. Reliance on Al during emergen-
cies or crises would also represent a paradigm shift in decision-making, as it would
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move away from solely human-led processes to a collaborative approach with au-
tomated systems. This change raises important questions about accountability and
governance.

To tackle these issues and develop effective Al regulations, constructive di-
alogue among stakeholders, including regulators, policymakers, operators, and so-
lution providers, is essential. This dialogue should balance privacy, cybersecurity,
and trustworthiness requirements with Al’s benefits. Exchanging best practices
and innovative solutions with other industries and countries can enhance this pro-
cess. Communication and outreach regarding Al deployments are also crucial. As
regulators and policymakers engage with industry and academia, it is vital to also
communicate with the public, gather stakeholder feedback, and conduct commu-
nity outreach and transparency initiatives. Al is a new technology and its use and
regulations are still very much a work in progress, yet it is already clear it will be
instrumental in addressing climate change and the transformation of energy sys-
tems.



