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ABSTRACT

Buffering is a prevalent interconnect optimization technique to help

timing closure and is often performed after placement. A common

buffering approach is to construct a Steiner tree and then buffers

are inserted on the tree based on Ginneken-Lillis style algorithm.

Such an approach is difficult to scale with large nets. Our work

attempts to solve this problem with a generative machine-learning

(ML) approach without Steiner tree construction. Our approach

can extract and reuse knowledge from high quality samples and

therefore has significantly improved scalability. A generative ML

framework, BufFormer, is proposed to construct abstract tree topol-

ogy while simultaneously determining buffer sizes & locations. A

baseline method, FLUTE-based Steiner tree construction followed

byGinneken-Lillis style buffer insertion, is implemented to generate

training samples. After training, BufFormer can produce solutions

for unseen nets highly comparable to baseline results with a correla-

tion coefficient 0.977 in terms of buffer area and 0.934 for driver-sink

delays. On average, BufFormer-generated tree achieves similar de-

lays with slightly larger buffer area. And up to 160X speedup can be

achieved for large nets when running on a GPU over the baseline

on a single CPU thread.
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1 INTRODUCTION

Buffering is a critical interconnect optimization technique for tim-

ing closure [12]. With the increasing dominance of interconnect

delay over gate delay, it is not uncommon that more than 30% cells

are buffers in VLSI circuits at advanced technology nodes [19].

Due to its great importance, buffering algorithms have been

heavily studied, from net-level buffering [11, 21, 27] to circuit-level

optimization [20, 26] as well as integration with other optimization

techniques and design steps [7, 18]. Net-level buffering is the back-

bone of other buffering techniques, and is the target of this work.

A common practice is to construct a Steiner minimum tree [2] or

timing-driven tree [13] first, followed by wire segmenting [9] on

the tree to generate candidate buffer locations, and then perform

Ginneken-Lillis style algorithms [15] to determine final buffer place-

ment. The joint space of tree generation and buffer insertion can be

huge [3], especially for large nets. Hence, existing algorithms often

use modeling approximations and heuristics to achieve acceptable

runtime [2, 10, 21]. Despite this, previous algorithms tend not to

scale well for large nets. It is reported in [2], which proposes a fast

Steiner tree generation package FLUTE, that its runtime complexity

is O(𝑛 log(𝑛)) (n is the number of sinks) and it takes 0.1s-13s to con-

struct Steiner trees with different qualities for a net with 100 sinks.

It is proved in [24] that the timing-driven minimum cost buffer

insertion problem is NP-complete. Lillis et al.[16] proposes a dy-

namic programming-based solution that runs in pseudo-polynomial

time and a fully polynomial approximation method is developed

in [21]. It would be even more runtime-expensive to navigate the

joint solution space of tree generation and buffer insertion. It is not

uncommon to take an hour to conduct buffering for an industrial

circuit with over 1 million nets.

To address the scalability challenge for large nets, we propose a

generative machine-learning (ML) approach [25]. Generative mod-

els generate new data instances by capturing the distribution of

data. With the help of the powerful modeling capability of ML,

generative ML approach can extract and reuse knowledge from

high quality samples, and is potentially more scalable due to its

advanced computational paradigms (e.g., ML models with GPU

acceleration) [17]. We deploy generative ML for constructing an

abstract tree topology while simultaneously determining the lo-

cations & sizes of buffers, without Steiner tree construction. We

name such a tree buffer-embedded tree. A recent work develops

a generative ML method for gate sizing and achieves over 1000X

speedup [22]. While gate sizing on a timing path can be treated as

a sequence generation problem that has been well-studied by the
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ML community, the following new challenges need to be solved

to enable an efficient ML solution to buffer-embedded tree genera-

tion: (1) optimization in the complex joint space of tree topology

construction, buffer type selection and buffer location determina-

tion; (2) consideration of complicated conditional information of

the driver and sinks, including their physical, electrical, timing

and parity attributes; (3) taking advantage of archived buffer tree

samples from legacy designs to save the runtime and license cost

of evoking design tools/flows.

We present a novel generative ML framework for buffering,

named BufFormer, to address the aforementioned challenges. Buf-

Former enables efficient buffer-embedded tree generation with a

layer-by-layer clustering-based process. The information of the

driver and all sinks is captured by a transformer[8]-based network.

And a self-supervised [25] training scheme is developed to allow

learning from archived data. Our main contributions are summa-

rized as follows:

(1) To our best knowledge, this work is the first successful attempt

at generative ML-based buffering, a critical problem in EDA.

Our approach learns how to conduct buffering by capturing the

distribution of high quality samples.

(2) A generative ML framework, BufFormer, is proposed for buffer-

ing. It incorporates physical, electrical, timing and parity in-

formation of cells to generate buffer-embedded trees without

Steiner tree construction.

(3) To generate training samples, a baseline method using the

FLUTE package for Steiner tree construction and a Ginneken-

Lillis style algorithm [16] for buffer insertion is implemented.

After training, BufFormer can produce solutions for unseen

nets very close to baseline results with a correlation coeffi-

cient 0.977 in terms of buffer area and 0.934 for driver-sink

delays. On average, BufFormer-generated tree achieves almost

the same delays with slightly larger buffer area. It can generate

a buffer-embedded tree for a net with 120 sinks within 0.1 s

when running on a GPU and achieve up to 160X speedup over

the baseline on a single CPU thread. BufFormer might serve as

a speedy buffering engine in early design iterations to facilitate

fast timing closure.

2 PRELIMINARY

2.1 Transformer and Self-Attention

Transformer is a generative neural network architecture relying en-

tirely on attention mechanism for sequence-to-sequence mapping.

Generally speaking, attention mechanism permits neural network

models to focus on the most relevant parts of data while ignoring

other parts in a trainable manner. Further, self-attention on the in-

put sequence, i.e., calculating attention of all other inputs w.r.t. each

input, allows inputs interact with each others to learn representa-

tions capturing both global and local information. Mathematically,

the attention operation for input matrices (Q,K,V) is calculated as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝑎𝑠𝑘 (QK
𝑇

√
𝑑

))V, (1)

whereQ,K,V are the concatenation of query, key, and value vectors,

which are obtained by applying linear transformations to input

vectors. And 𝑑 is the dimension of the query/key/value vectors.

Here, 𝑀𝑎𝑠𝑘 refers to adding negative infinity to specific elements

such that the corresponding elements will become zeros after the

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 operation, meaning no effect on the output. 𝑀𝑎𝑠𝑘 opera-

tors can be customized by users to integrate prior knowledge, e.g.,

specific part of inputs is not relevant to another part of inputs, to

the models.

2.2 Self-Supervised Learning

Roughly speaking, self-supervised learning predicts part of the data

from any observed parts [25]. In our problem, the driver and sinks

are the observed parts of a buffer-embedded tree and self-supervised

learning is utilized to predict its remaining parts, as shown in Fig-

ure 1. Unlike conventional supervised learning or reinforcement

learning methods requiring some sorts of labels or rewards (e.g.,

timing performance) from the environment, self-supervised ap-

proach can generate “label" from tree samples themselves. To be

specific, the archived tree samples contains the information of what

a buffer-embedded tree should look like given the driver and sinks

as well as delay target. Self-supervised learning utilizes such infor-

mation as “labels" to train models such that they can generate new

trees with the same distribution to the archived samples. In this

way, we can take advantage of samples from legacy designs to save

the runtime and license cost of evoking design tools/flows.

Figure 1: Illustration of self-supervised learning.

2.3 Problem Formulation

The net-level buffering problem can be defined as follows. Given

• a driver cell, its location and input slew,

• a set of sinks, and for each sink its parity, location, and the delay

target from the input pin of driver and the sink (this is actually

the required arrival time for each sink assuming the arrival time

at the input pin of driver is 0),

• a library of buffers and inverters,

• the timing information and input capacitance for each cell, in-

cluding the buffer/inverter cells,

• electrical information about wiring for estimating resistance

and capacitance,

the goal is to determine a buffer-embedded tree such that the total

cost (measured by the total buffer/inverter areas) is minimizedwhile

the delay targets, parity constraint (i.e. the number of inverters on

the path from the driver to the sink is even if and only if the sink

has parity +), capacitance and slew limits are satisfied.

In conventional methods, Steiner or timing-driven trees are usu-

ally used to assist the buffering process and the routing information

on the tress is dropped after buffer insertion, especially in the tim-

ing optimization steps at pre-routing stages. In contrast, trees are

not required as input to our approach and our method does not

generate the actual routing for interconnects.
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In our experiment setting, cell timing is estimated via look-up

table and the Elmore delay analysis model is utilized for estimat-

ing wire delay. It is noteworthy that, technically, our method is

compatible with any timing models as long as a large set of high

quality samples optimized under the timing model can be collected.

In addition, for evaluation purpose, Steiner trees are constructed

for each interconnect in our generated buffer-embedding trees to

estimate wire delays. Please note that the Steiner tree construction

is not required when applying our method.

3 METHODOLOGY

3.1 Overview of BufFormer Framework

BufFormer is a generative ML framework for buffer-embedded tree

generation. It consists of a clustering-based tree generation process,

a transformer-based BufFormer-Net and a self-supervised train-

ing scheme, as shown in Figure 2. BuFFormer-Net is trained with

archived samples in a self-supervised learning manner. Trained

BufFormer-Net guides the buffer-embedded trees generation pro-

cess. Technical details are elaborated in the following.

3.2 Tree Generation Process

Our tree generation process is shown in Figure 2, which has three

important properties as follows.

(1) Recursive process. The tree consisting of only the driver and

sinks is viewed as the original buffer-embedded tree. Buffers

are inserted to the tree recursively to improve performance. In

this way, the constraint that the tree must have the driver cell

as root and sinks as leaves can be naturally satisfied.

(2) Layer-by-layer bottom-up process. Similar to classical Ginneken-

Lillis style algorithms, our tree generation process inserts buffers

in a bottom-up manner. We define the height of a cell in a buffer-

embedded tree as the number of edges on the longest path from

itself to a sink, and a layer of buffers as a set of buffers with

the same height. Unlike Ginneken-Lillis algorithm processing

one candidate buffer location at a time, our generation process

inserts a layer of buffers in their proper locations simultaneously

without the Steiner tree generation and wire segmenting, as

depicted in fig. 2 (a). In such a way, a buffer tree of height 𝑁
can be constructed in 𝑁 steps.

(3) Clustering-based process. The buffer-embedded tree is con-

structed in a hierarchical clustering manner. Given the driver

and sinks with delay targets, our BufFormer-Net aggregates

information on the driver and all sinks to determine what to

cluster and whether to insert buffer for each cluster. Therefore

the decision for one cluster correlates to the decisions for other

clusters. After the first layer clustering, the delay targets of

newly created buffers will be updated and the new buffers will

be regarded as dummy sinks that serve as input to the next layer

of buffering. The reason is that the inserted buffers will shield

the effects of downstream cells/wires and we only need to up-

date the delay targets by considering the delays of downstream

cells/wires. This property is also utilized by Ginneken-Lillis

style algorithms to simplify the problem. Note that if no buffer

is required for a cluster, then sinks in the cluster are untouched

and will go through the next layer of clustering. The stop con-

dition for our tree generation process is that no more buffer is

required for any cluster. It is noteworthy that one sink can also

form a cluster, which enables BufFormer to handle the problem

of repeater insertion along a long wire.

To sum up, our generation process can generate buffered-embedded

tree with the driver as root and sinks as leaves, getting rid of the

construction of Steiner tree and wire segmenting. Further, a tree

of height 𝑁 (i.e., the height of the driver is 𝑁 ) can be constructed

in 𝑁 steps, which is more scalable for large nets than classical

Ginneken-Lillis style algorithms.

3.3 BufFormer-Net

3.3.1 Transformer-Based Architecture. During each layer of buffer

insertion in our generation process, BufFormer-Net is responsible

for four tasks, i.e., given the information of the driver and sinks, de-

termining 1) the clustering of sinks, 2) the sizes of buffers/inverters

(or None to indicate that no buffer is needed) for each cluster, 3)

the buffer locations, and 4) the delay targets for the newly inserted

buffers. All these tasks can be viewed as sequence-to-sequence

“translation" between different domains. Also, the clustering task re-

quires to aggregate the information of the driver and all sinks. Thus,

we customize a transformer-based architecture for BufFormer-Net.

As shown in Figure 2 (b), BufFormer-Net has the Self-Attention0

module, which consists of a series of self-attention layers, learn

representations of sinks by incorporating the information of the

driver and sinks. The learnt representations are shared and used

for all tasks. Then there are individual modules for each task, e.g.,

FCL0 module (Here, FCL is the short for Fully Connected Layer)

for the clustering task. We let these four tasks share the same sink

representations mainly for two reasons. First, we argue that these

tasks are related to each other. Hence, the learnt representations

for one task might benefit other tasks too. Also, sharing the Self-

Attention0 module can help reduce the total model parameters,

consequently less memory usage and faster training and inference.

BufFormer clusters sinks first, whose results are used to guide

other tasks. To be specific, for each sink cluster, the prediction of

buffer size/location/delay target might only need to involve the

sink representations in the corresponding cluster. Such priors are

integrated into BufFormer-Net by constructing attention masks

for Self-Attention1,2,3 modules according to clustering results, as

depicted in Figure 2 (b). Further, the buffer size prediction results are

used for buffer location and delay target prediction, while results

of location prediction are also utilized for delay target prediction.

Note that BufFormer-Net feeds learnt sink representations to

a clustering algorithm to generate final clusters, as depicted in

Figure 2 (b). A simple clustering algorithm, named Connection

Clustering, is developed. Firstly, the cosine similarity between rep-

resentations of every two sinks are calculated. Sink pairs having

similarity higher than a given threshold are regarded connected.

Then, connected components among sinks are detected. If a con-

nected component contains sinks with different parities, then split

the component into two parts according to parities of sinks. Fi-

nally, each component is viewed as one cluster. Such a clustering

algorithm does not need pre-defined number of clusters and can

automatically enforce the fulfillment of the parity constraint. We

implement Connection Clustering as a series of matrix operations,

which can be conveniently accelerated by GPU.
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Figure 2: Illustration of our BufFormer framework, which consists of a layer-by-layer tree generation process, a transformer-based BufFormer-

Net, and a self-supervised training scheme. (a) shows a 3-layer generation process for a tree of height 3. (b) shows how BufFormer-Net make

decisions for the 1𝑠𝑡 layer buffer insertion by integrating the information of the driver and 4 sinks. (c) illustrates that 3 input-label pairs can be

constructed from a tree sample of height 3.

With respect to capacitance and slew limits, they are implicitly

modelled by training BufFormer-Net with legal samples.

3.3.2 Feature Engineering. We incorporate physical, electrical, tim-

ing and parity information into input features to BufFormer-Net.

More specifically, the input to BufFormer-Net is a sequence of

feature vectors, each of which corresponds to the driver or one

(dummy) sink, as depicted in Figure 2 (b). Each feature vector con-

sists of a trainable embedding for the cell type, input slew ( −1 for
sinks), input capacitance (−1 for the driver), relative location and

distance to the driver, a flag indicating whether it is a driver or a

sink, the delay target (0 for the driver), and parity (+ for the driver).

Note that input normalization is applied since the magnitudes of

different features vary greatly.

3.4 Self-Supervised Training Scheme

3.4.1 Training Data Preparation. Essentially, self-supervised train-

ing scheme constructs labels from tree samples themselves and

then train BufFormer-Net in a supervised-learning manner. Given

a buffer-embedded tree, the heights of cells in the tree can be found

using a depth-first search algorithm. For a tree of height 𝑁 , 𝑁
input-label pairs can be constructed, as illustrated in Figure 2(c).

Specifically, input in the first input-label pair consists of the set of

sinks as well as the driver, while labels are the parent buffers or

None denoting no buffer. For the 𝑖-th (1 < 𝑖 ≤ 𝑁 ) pair, the input

consists of the set of (dumpy) sinks with height 𝑖 − 1, the driver,

and the cells in the input set of the (𝑖 − 1)-th pair that have None

as label.

3.4.2 Training Losses. A contrastive loss is utilized for the clus-

tering task to push sinks belonging to the same cluster closer in

the representation space while simultaneously pushing apart sinks

from different clusters. Firstly, the cosine similarity between a pair

of sink representations (𝒚𝑖 ,𝒚 𝑗 ) output by BufFormer-Net is calcu-

lated as follow:

𝑠 (𝒚𝑖 ,𝒚 𝑗 ) = 0.5 × ( 𝒚𝑖𝒚 𝑗

|𝒚𝑖 | |𝒚 𝑗 |
+ 1). (2)

Note that 𝑠 (𝒚𝑖 ,𝒚 𝑗 ) ∈ [0, 1] for any 𝒚𝑖 ,𝒚 𝑗 . And it can be interpreted

as the probability of sinks 𝑖, 𝑗 belonging to the same cluster. For

notational convenience, we define 𝑝 (𝒚𝑖 ,𝒚 𝑗 ) as:

𝑝 (𝒚𝑖 ,𝒚 𝑗 ) =
{
𝑠 (𝒚𝑖 ,𝒚 𝑗 ) if sinks 𝑖, 𝑗 belong to the same cluster,

1 − 𝑠 (𝒚𝑖 ,𝒚 𝑗 ) Otherwise.

(3)

The clustering loss is defined as

L(𝒚𝑖 ,𝒚 𝑗 ) = − log[𝑝 (𝒚𝑖 ,𝒚 𝑗 )] . (4)

Such a loss function will push 𝑠 (𝒚𝑖 ,𝒚 𝑗 ) to 1 if nodes 𝑖, 𝑗 belong to
the same cluster and to 0 if not.

The buffer size prediction task is a (𝑀 + 1)-class classification

problem, where 𝑀 is the total number of buffers/inverters in the

library, and an extra class for None. We observe high imbalance be-

tween the usage frequencies among different buffer/inverter library

cells in our data set, therefore we deploy Focal loss [23], which is

an enhancement to the classical cross entropy loss to handle class

imbalance, for the buffer size prediction task. The raw classification

output for a buffer is 𝒛 ∈ {[𝑧0, 𝑧1, · · · 𝑧𝑀 ] | 0 ≤ 𝑧0, 𝑧1, · · · , 𝑧𝑀 ≤
1 𝑎𝑛𝑑 𝑧0 + 𝑧1 + · · · , 𝑧𝑀 = 1}, which describes the probabilities of
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this buffer belonging to each of the𝑀 + 1 classes. Denote the labels

as 𝑙 ∈ {0, 1, · · ·𝑀}, then focal loss can be calculated as follow:

FL(𝒛, 𝑙) =
𝑀∑
𝑖=0

−(1 − 𝑝𝑖𝑧)𝛾 𝑙𝑜𝑔(𝑝𝑖𝑧), (5)

𝑝𝑖𝑧 =

{
𝑧𝑖 , 𝑖 𝑓 𝑖 = 𝑙

1 − 𝑧𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(6)

(1− 𝑝𝑖𝑧)𝛾 is a modulating factor for down-weighting well-classified

samples. (1−𝑝𝑖𝑧) near 0 indicates easy-to-classify samples while (1−
𝑝𝑖𝑧) near 1means difficult-to-classify.When a sample is misclassified

and 𝑝𝑖𝑧 is small, the modulating factor is near 1 and the loss is

unaffected. As 𝑝𝑖𝑧 → 1, the factor goes to 0 and the loss for well-

classified samples is down-weighted. The parameter 𝛾 adjusts the

rate at which easy samples are down-weighted,.

For the buffer location and the delay target prediction tasks, we

use the mean-square-error loss. Note that the predicted delay target

of each buffer will be used in the features for the prediction of next

level clustering during inference.

3.4.3 Multi-Objective Training. The training of BufFormer-Net is

a multi-objective optimization problem since four losses, each of

which corresponds to one task, are to optimize. A common practice

is to optimize a linear combination of per-task losses. However,

it is not easy to find the proper weights for the losses to balance

the priorities of different tasks. A gradient-based neural network

training technique that can optimize a collection of objectives is

proposed in [6]. For the individual modules for each task, e.g., FCL0

module for clustering, their parameters are updated according to

the gradients of the corresponding loss. As for the shared network

parameters, i.e., parameters in Self-Attention0, they are updated by

following the ideas in [6] as follows. Firstly, the gradients of each

loss w.r.t. the parameters in Self-Attention0 are computed. Then

a minimum-norm vector in the convex hull of the set of gradient

vectors for our four tasks is found. Finally, parameters are updated

in the direction of the minimum-norm vector. It has been shown in

[6] that such gradient update approach essentially uses adaptive

weights and optimizes an upper bound for the multi-objective loss.

4 EXPERIMENTAL VALIDATION

4.1 Experiment Setups

Experiments are conducted in the OpenPhySyn platform [1]. Five

types of buffers and four types of inverters from NanGate45 open

cell library are used for buffering. Input capacitance of these cells

varies from 0.78 fF to 49.2 fF, and area varies from 0.8 µm2 to 13.0 µm2.

The maximum load capacitance is set to 100 fF and we use the slew

limits defined by the cell library. To generate training samples and

benchmark our performance, a baseline method using the FLUTE

package for Steiner tree generation and a Ginneken-Lillis style al-

gorithm [16] for buffer insertion is implemented. Given a Steiner

tree and candidate buffer locations on it, the Ginneken-Lillis style

algorithm can find a set of buffering solutions that achieve different

trade-offs between delay and buffer area. Considering the trade-off

between solution quality and runtime, candidate buffer locations

are inserted every 60µm (which is around 20X of the width of a

buffer) along each edge of the Steiner tree, all Steiner points and all

turning points.

Table 1: Characteristics of Training and Testing Samples

characteristic train set test set

net count 23083 1620

tree count 343004 32031

sink count range [1,150] [0,98]

buffer area range (µm2) [0,151] [0,99]

driver-sink delay range (ps) [0,1128] [0,609]

HPWL range (µm) [0, 2214] [0, 2796]

To collect a large training set, we sample artificial net instances

and then invoke the FLUTE+Lillis baseline method to generate

buffer tree samples. Note that a set of buffer trees achieving different

trade-offs between buffer area and delay is collected for each net.

For simplicity but without loss of generality, we also use the library

of buffers/inverters for the drivers and sinks. The characteristics of

collected samples are shown in Table 1. The training set contains

over 300K buffer trees while the testing set contains around 30K

samples. The achieved driver-sink delays by the baseline method

are recorded as the delay targets for the training and evaluation

of our method. This ensures that the delay targets are achievable.

We tend to collect buffer trees for large nets over smaller ones as

training samples, because the buffer trees for large nets are more

informative as their sub-trees can be viewed as solutions for small

nets.

Our BufFormer framework is built with the PyTroch package.

In the default version of BufFormer-Net, 6 layers of 8-head self-

attention are used for Self-Attention0, 3 layers of 8-head-attention

for each of Self-Attention1,2,3, and 3 fully connected layers for each

of FCL0,1,2,3. The dimension of intermediate representations is set

to 256. And the batch size for training and testing are 128 and 256,

respectively. The FLUTE+Lillis baseline method runs on a single

Intel Xeon CPU thread, while BufFormer-Net runs on a NVIDIA

Tesla V100 GPU.

Both layer-wise performance metrics and entire tree perfor-

mance metrics are evaluated. There are four tasks for each layer

of buffer insertion, i.e., clustering of sinks, prediction of buffer li-

brary cell, of buffer location, and of delay target. For measuring

layer-wise performance, we utilize pair-wise accuracy for cluster-

ing performance, classification accuracy for library cell prediction,

and root mean square error (RMSE) for buffer location and de-

lay target prediction. Pair-wise clustering accuracy is obtained by

dividing the number of sink pairs that BufFormer-Net correctly

predicts whether they are in the same cluster by the total number of

sink pairs. Classification accuracy refers to the number of correctly

predicted buffers divided by the total number of buffers.

To evaluate the quality of an entire buffer-embedded tree gen-

erated by BufFormer, we measure the total buffer area and the

achieved driver-sink delays for all driver-sink pairs, and compare

them with the area and delays achieved by the baseline method.

Their correlation coefficient, and the mean and standard deviation

(std.) of the difference between ML generated trees and baseline

trees are calculated. Note that the difference is computed as:

𝑎𝑟𝑒𝑎/𝑑𝑒𝑙𝑎𝑦 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑏𝑦 𝐵𝑢𝑓 𝐹𝑜𝑟𝑚𝑒𝑟 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑟𝑒𝑎/𝑑𝑒𝑙𝑎𝑦.
Negative values mean better performance than the baseline results.

268



ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Rongjian Liang, Siddhartha Nath, Anand Rajaram, Jiang Hu, and Haoxing Ren

Table 2: Results of Ablation Studies

factors method
cluster

acc

libcell

acc

loc RMSE

(µm)

delay tar.

RMSE (ps)

buf. area diff. (µm2) driver-sink delay diff.(ps)

cor mean std cor mean std

𝒅𝒆𝒇𝒂𝒖𝒍𝒕 92.6% 91.6% 34 10 0.977 4.8 4.9 0.934 0 25

data

amount

40% 91.1% 88.7% 36 11 0.964 4.6 5.9 0.762 7 51

25% 87.0% 84.5% 40 14 0.939 1.3 7.1 0.761 8 50

model

size

larger 93.1% 92.5% 34 10 0.975 6.3 5.3 0.931 0 25

smaller 92.9% 90.7% 34 10 0.970 4.7 5.4 0.927 0 26

train loss weighted 82.9% 95.8% 34 8 0.976 4.1 4.5 0.873 0 35

model arch. separate 90.8% 95.5% 36 8 0.964 6.8 6.1 0.762 7 51

clustering

algorithm

AC / / / / 0.974 4.2 4.9 0.916 0 28

AP / / / / 0.972 6.1 5.4 0.905 0 30

DBSCAN / / / / 0.932 -2.1 7.9 0.676 11 67

4.2 Experiment Results

4.2.1 Comparison with Baseline Method. As shown in Figure 3 and

Table 2, BufFormer can generate buffer-embedded trees for unseen

nets with highly comparable quality to the baseline results. Specif-

ically, as for layer-wise performance, it achieves 92.6% clustering

accuracy, 91.6% library cell prediction accuracy, 34 µm RMSE in

location prediction and 10 ps RMSE in delay target prediction. For

the performance of entire buffer trees, the correlation coefficient

between ML-generated trees and the one generated by the baseline

is as high as 0.977 in terms of buffer area and 0.934 for driver-sink

delays. Compared with baseline results, ML-generated tree achieves

almost the same driver-sink delays with slightly larger buffer area.

The average buffer area overhead is 4.8 µm2, around the area of a

middle size buffer. As shown in Figure 3, the divergence of buffer

area becomes higher for trees with buffer area larger than 60 µm2.

One reason might be that we do not have enough training samples

with large buffer area. Such divergence could be mitigated and the

buffer area overhead would decrease if BufFormer is trained with a

greater number of large buffer tree samples.

It is interesting to note that, though on average ML-generated

tree achieves the similar driver-sink delays with slightly larger

buffer area, there are cases where ML-generated trees outperform

the baseline results in terms of both buffer area and delay. Figure 5

depicts one of the examples. In future work we will systematically

investigate the impact of refining the training set recursively by

replacing the original buffer trees by the ML-generated trees that

are of greater quality.

��� ���

Figure 3: Comparing (a) buffer areas and (b) all achieved driver-sink

delays of ML-generated buffer trees with baseline trees.

As discussed in Section 3, our tree generation process guarantees

the satisfaction of the polarity constraint. We empirically observe

that ML-generated buffer trees also satisfy the slew and capacitance

limits everywhere. It implies that generative ML model can capture

such constraints by learning the distribution of legal solutions.

Table 3: Speedup of Our Method over Baseline for Different Net Sizes

group idx 1 2 3 4 5

sink count [1,3] [31,33] [61,63] [91,93] [121,123]

avg. HPWL (µm) 40 225 348 470 590

avg. speedup 0.2 38 53 125 165

Figure 4: Runtime comparison between BufFormer and the baseline.

To study the scalability of our method, we apply BufFormer and

the baseline to five groups of nets with different sizes. Table 3 shows

the characteristics of nets and the speedup of our method over the

baseline. The absolute runtime per net is depicted in Figure 4. The

baseline runs on a single CPU thread and the runtime for Steiner

tree generation and buffer insertion are measured. For BufFormer,

we assume that the features of the driver and sinks are already

extracted and stored in a matrix form, and we measure the runtime

taken by BufFormer to generate an entire buffer-embedded tree.

Note that the input features for BufFormer can be easily computed.

As for the FLUTE+Lillis baseline, we observe that the runtime

grows fast as the size of nets increases. And the majority runtime

is spent on the timing-driven minimum cost buffer insertion. As

for BufFormer, it can generate buffer tree for a net with 121 sinks
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Figure 5: Snapshot of (a) a buffer-embedded tree generated by the

baseline method and (b) a tree by BufFormer for the same net. Blue

box is the driver, gray circles are sinks, and red shapes represent

buffers/inverters. The total buffer area and mean driver-sink delay

for the baseline tree are 31.7 µm2 and 155 ps, respectively, while the

tree generated by BufFormer reduces the buffer area by 3.2 µm2 and

decreases the mean delay by 8 ps.

within 0.1s, with a speedup up to 160X over the baseline. Our

speedup is obviously greater than the fast buffering method [21],

which achieves 4.6X speedup over Ginneken-Lillis style algorithms

and requires a Steiner tree as input. The scalability advantage of

BufFormer mainly comes from our efficient tree generation process

as well as GPU acceleration. BufFormer can generate a tree of height

𝑁 in𝑁 steps, which is fairly scalable with large nets. Also, its neural

network backbone enables GPU acceleration for significant speedup

that is difficult to be achieved bymulti-threading programming used

in traditional methods, since GPUs can bring massive parallelism,

i.e., great throughput.

4.2.2 Ablation Studies. The following ablation studies are con-

ducted to identify important factors for BufFormer performance.

(1) Data amount. Besides using the full training set, we train Buf-

Former with 40% data and 25% data.

(2) Model size. A larger BufFormer-Net (dimension of intermediate

representations = 516) and a smaller one (dimension = 128) are

implemented.

(3) Train loss. A linear combination of per-task losses is used for

training rather than our multi-objective training method.

(4) Model architecture. Instead of using a shared model, individual

models are developed for each of four tasks: clustering, buffer

library cell, buffer location and delay target prediction.

(5) Clustering algorithms. Besides our default Connection Clus-

tering algorithm, we also integrate the Agglomerative Cluster-

ing [5], Affinity Propagation [4] and DBCAN [14] algorithms

into our BufFormer framework. All of them can automatically

determine the number of clusters.

Table 2 shows the ablation study results. It seems that the most

influential factor is the data amount. Greater amount of training

data help boost the performance of BufFormer. The default model

size seems to be a proper choice given current amount of training

data, since increasing the model size does not improve performance.

Using a shared model and deploying our multi-objective training

scheme contribute to the good performance of BufFormer. As for

clustering algorithms, while DBCAN delivers much worse results,

Agglomerative Clustering andAffinity Propagation produce slightly

worse results to the default Connection Clustering algorithm.

5 CONCLUSION AND FUTURE DIRECTIONS

This work is an attempt to solve buffering problem with a gen-

erative ML framework, named BufFormer. BufFormer generates

buffer-embedded trees without Steiner tree construction by learn-

ing from high quality samples. After training with tree samples

generated by a FLUTE+Lillis baseline algorithm, it can produce

solutions for unseen nets highly comparable to baseline results

with a correlation coefficient 0.977 in terms of buffer area and 0.934

for driver-sink delays. BufFormer-generated tree achieves similar

delays with slightly larger buffer area. And up to 160X speedup

can be achieved for large nets when running on a GPU over the

baseline on a single CPU thread. BufFormer might serve as a speedy

buffering engine in early design iterations. We plan to extend the

BufFormer framework to handle realistic layout environment con-

straints (e.g., placement and routing congestion) and circuit-level

optimization for industrial designs.
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