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ABSTRACT

Buffering is a prevalent interconnect optimization technique to help
timing closure and is often performed after placement. A common
buffering approach is to construct a Steiner tree and then buffers
are inserted on the tree based on Ginneken-Lillis style algorithm.
Such an approach is difficult to scale with large nets. Our work
attempts to solve this problem with a generative machine-learning
(ML) approach without Steiner tree construction. Our approach
can extract and reuse knowledge from high quality samples and
therefore has significantly improved scalability. A generative ML
framework, BufFormer, is proposed to construct abstract tree topol-
ogy while simultaneously determining buffer sizes & locations. A
baseline method, FLUTE-based Steiner tree construction followed
by Ginneken-Lillis style buffer insertion, is implemented to generate
training samples. After training, BufFormer can produce solutions
for unseen nets highly comparable to baseline results with a correla-
tion coefficient 0.977 in terms of buffer area and 0.934 for driver-sink
delays. On average, BufFormer-generated tree achieves similar de-
lays with slightly larger buffer area. And up to 160X speedup can be
achieved for large nets when running on a GPU over the baseline
on a single CPU thread.
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1 INTRODUCTION

Buffering is a critical interconnect optimization technique for tim-
ing closure [12]. With the increasing dominance of interconnect
delay over gate delay, it is not uncommon that more than 30% cells
are buffers in VLSI circuits at advanced technology nodes [19].

Due to its great importance, buffering algorithms have been
heavily studied, from net-level buffering [11, 21, 27] to circuit-level
optimization [20, 26] as well as integration with other optimization
techniques and design steps [7, 18]. Net-level buffering is the back-
bone of other buffering techniques, and is the target of this work.
A common practice is to construct a Steiner minimum tree [2] or
timing-driven tree [13] first, followed by wire segmenting [9] on
the tree to generate candidate buffer locations, and then perform
Ginneken-Lillis style algorithms [15] to determine final buffer place-
ment. The joint space of tree generation and buffer insertion can be
huge [3], especially for large nets. Hence, existing algorithms often
use modeling approximations and heuristics to achieve acceptable
runtime [2, 10, 21]. Despite this, previous algorithms tend not to
scale well for large nets. It is reported in [2], which proposes a fast
Steiner tree generation package FLUTE, that its runtime complexity
is O(nlog(n)) (n is the number of sinks) and it takes 0.1s-13s to con-
struct Steiner trees with different qualities for a net with 100 sinks.
It is proved in [24] that the timing-driven minimum cost buffer
insertion problem is NP-complete. Lillis et al.[16] proposes a dy-
namic programming-based solution that runs in pseudo-polynomial
time and a fully polynomial approximation method is developed
in [21]. It would be even more runtime-expensive to navigate the
joint solution space of tree generation and buffer insertion. It is not
uncommon to take an hour to conduct buffering for an industrial
circuit with over 1 million nets.

To address the scalability challenge for large nets, we propose a
generative machine-learning (ML) approach [25]. Generative mod-
els generate new data instances by capturing the distribution of
data. With the help of the powerful modeling capability of ML,
generative ML approach can extract and reuse knowledge from
high quality samples, and is potentially more scalable due to its
advanced computational paradigms (e.g., ML models with GPU
acceleration) [17]. We deploy generative ML for constructing an
abstract tree topology while simultaneously determining the lo-
cations & sizes of buffers, without Steiner tree construction. We
name such a tree buffer-embedded tree. A recent work develops
a generative ML method for gate sizing and achieves over 1000X
speedup [22]. While gate sizing on a timing path can be treated as
a sequence generation problem that has been well-studied by the
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ML community, the following new challenges need to be solved
to enable an efficient ML solution to buffer-embedded tree genera-
tion: (1) optimization in the complex joint space of tree topology
construction, buffer type selection and buffer location determina-
tion; (2) consideration of complicated conditional information of
the driver and sinks, including their physical, electrical, timing
and parity attributes; (3) taking advantage of archived buffer tree
samples from legacy designs to save the runtime and license cost
of evoking design tools/flows.

We present a novel generative ML framework for buffering,
named BufFormer, to address the aforementioned challenges. Buf-
Former enables efficient buffer-embedded tree generation with a
layer-by-layer clustering-based process. The information of the
driver and all sinks is captured by a transformer[8]-based network.
And a self-supervised [25] training scheme is developed to allow
learning from archived data. Our main contributions are summa-
rized as follows:

(1) To our best knowledge, this work is the first successful attempt
at generative ML-based buffering, a critical problem in EDA.
Our approach learns how to conduct buffering by capturing the
distribution of high quality samples.

(2) A generative ML framework, BufFormer, is proposed for buffer-
ing. It incorporates physical, electrical, timing and parity in-
formation of cells to generate buffer-embedded trees without
Steiner tree construction.

(3) To generate training samples, a baseline method using the
FLUTE package for Steiner tree construction and a Ginneken-
Lillis style algorithm [16] for buffer insertion is implemented.
After training, BufFormer can produce solutions for unseen
nets very close to baseline results with a correlation coeffi-
cient 0.977 in terms of buffer area and 0.934 for driver-sink
delays. On average, BufFormer-generated tree achieves almost
the same delays with slightly larger buffer area. It can generate
a buffer-embedded tree for a net with 120 sinks within 0.1 s
when running on a GPU and achieve up to 160X speedup over
the baseline on a single CPU thread. BufFormer might serve as
a speedy buffering engine in early design iterations to facilitate
fast timing closure.

2 PRELIMINARY

2.1 Transformer and Self-Attention

Transformer is a generative neural network architecture relying en-
tirely on attention mechanism for sequence-to-sequence mapping.
Generally speaking, attention mechanism permits neural network
models to focus on the most relevant parts of data while ignoring
other parts in a trainable manner. Further, self-attention on the in-
put sequence, i.e., calculating attention of all other inputs w.r.t. each
input, allows inputs interact with each others to learn representa-
tions capturing both global and local information. Mathematically,
the attention operation for input matrices (Q, K, V) is calculated as:

Attention(Q,K, V) = Softmax(Mask(Q%))V, (1)

where Q, K, V are the concatenation of query, key, and value vectors,
which are obtained by applying linear transformations to input
vectors. And d is the dimension of the query/key/value vectors.
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Here, Mask refers to adding negative infinity to specific elements
such that the corresponding elements will become zeros after the
Softmax operation, meaning no effect on the output. Mask opera-
tors can be customized by users to integrate prior knowledge, e.g.,
specific part of inputs is not relevant to another part of inputs, to
the models.

2.2 Self-Supervised Learning

Roughly speaking, self-supervised learning predicts part of the data
from any observed parts [25]. In our problem, the driver and sinks
are the observed parts of a buffer-embedded tree and self-supervised
learning is utilized to predict its remaining parts, as shown in Fig-
ure 1. Unlike conventional supervised learning or reinforcement
learning methods requiring some sorts of labels or rewards (e.g.,
timing performance) from the environment, self-supervised ap-
proach can generate “label” from tree samples themselves. To be
specific, the archived tree samples contains the information of what
a buffer-embedded tree should look like given the driver and sinks
as well as delay target. Self-supervised learning utilizes such infor-
mation as “labels" to train models such that they can generate new
trees with the same distribution to the archived samples. In this
way, we can take advantage of samples from legacy designs to save
the runtime and license cost of evoking design tools/flows.

What should
be in the box?

driver -4 O

sinks and required
arrival time

Figure 1: Illustration of self-supervised learning.

2.3 Problem Formulation
The net-level buffering problem can be defined as follows. Given

e adriver cell, its location and input slew,

e aset of sinks, and for each sink its parity, location, and the delay
target from the input pin of driver and the sink (this is actually
the required arrival time for each sink assuming the arrival time
at the input pin of driver is 0),

e alibrary of buffers and inverters,

e the timing information and input capacitance for each cell, in-
cluding the buffer/inverter cells,

e clectrical information about wiring for estimating resistance
and capacitance,

the goal is to determine a buffer-embedded tree such that the total
cost (measured by the total buffer/inverter areas) is minimized while
the delay targets, parity constraint (i.e. the number of inverters on
the path from the driver to the sink is even if and only if the sink
has parity +), capacitance and slew limits are satisfied.

In conventional methods, Steiner or timing-driven trees are usu-
ally used to assist the buffering process and the routing information
on the tress is dropped after buffer insertion, especially in the tim-
ing optimization steps at pre-routing stages. In contrast, trees are
not required as input to our approach and our method does not
generate the actual routing for interconnects.
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In our experiment setting, cell timing is estimated via look-up
table and the Elmore delay analysis model is utilized for estimat-
ing wire delay. It is noteworthy that, technically, our method is
compatible with any timing models as long as a large set of high
quality samples optimized under the timing model can be collected.
In addition, for evaluation purpose, Steiner trees are constructed
for each interconnect in our generated buffer-embedding trees to
estimate wire delays. Please note that the Steiner tree construction
is not required when applying our method.

3 METHODOLOGY
3.1 Overview of BufFormer Framework

BufFormer is a generative ML framework for buffer-embedded tree
generation. It consists of a clustering-based tree generation process,
a transformer-based BufFormer-Net and a self-supervised train-
ing scheme, as shown in Figure 2. BuFFormer-Net is trained with
archived samples in a self-supervised learning manner. Trained
BufFormer-Net guides the buffer-embedded trees generation pro-
cess. Technical details are elaborated in the following.

3.2 Tree Generation Process

Our tree generation process is shown in Figure 2, which has three
important properties as follows.

(1) Recursive process. The tree consisting of only the driver and
sinks is viewed as the original buffer-embedded tree. Buffers
are inserted to the tree recursively to improve performance. In
this way, the constraint that the tree must have the driver cell
as root and sinks as leaves can be naturally satisfied.
Layer-by-layer bottom-up process. Similar to classical Ginneken-
Lillis style algorithms, our tree generation process inserts buffers
in a bottom-up manner. We define the height of a cell in a buffer-
embedded tree as the number of edges on the longest path from
itself to a sink, and a layer of buffers as a set of buffers with
the same height. Unlike Ginneken-Lillis algorithm processing
one candidate buffer location at a time, our generation process
inserts a layer of buffers in their proper locations simultaneously
without the Steiner tree generation and wire segmenting, as
depicted in fig. 2 (a). In such a way, a buffer tree of height N
can be constructed in N steps.

Clustering-based process. The buffer-embedded tree is con-
structed in a hierarchical clustering manner. Given the driver
and sinks with delay targets, our BufFormer-Net aggregates
information on the driver and all sinks to determine what to
cluster and whether to insert buffer for each cluster. Therefore
the decision for one cluster correlates to the decisions for other
clusters. After the first layer clustering, the delay targets of
newly created buffers will be updated and the new buffers will
be regarded as dummy sinks that serve as input to the next layer
of buffering. The reason is that the inserted buffers will shield
the effects of downstream cells/wires and we only need to up-
date the delay targets by considering the delays of downstream
cells/wires. This property is also utilized by Ginneken-Lillis
style algorithms to simplify the problem. Note that if no buffer
is required for a cluster, then sinks in the cluster are untouched
and will go through the next layer of clustering. The stop con-
dition for our tree generation process is that no more buffer is
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required for any cluster. It is noteworthy that one sink can also
form a cluster, which enables BufFormer to handle the problem
of repeater insertion along a long wire.

To sum up, our generation process can generate buffered-embedded
tree with the driver as root and sinks as leaves, getting rid of the
construction of Steiner tree and wire segmenting. Further, a tree
of height N (i.e., the height of the driver is N) can be constructed
in N steps, which is more scalable for large nets than classical
Ginneken-Lillis style algorithms.

3.3 BufFormer-Net

3.3.1 Transformer-Based Architecture. During each layer of buffer
insertion in our generation process, BufFormer-Net is responsible
for four tasks, i.e., given the information of the driver and sinks, de-
termining 1) the clustering of sinks, 2) the sizes of buffers/inverters
(or None to indicate that no buffer is needed) for each cluster, 3)
the buffer locations, and 4) the delay targets for the newly inserted
buffers. All these tasks can be viewed as sequence-to-sequence
“translation" between different domains. Also, the clustering task re-
quires to aggregate the information of the driver and all sinks. Thus,
we customize a transformer-based architecture for BufFormer-Net.

As shown in Figure 2 (b), BufFormer-Net has the Self-Attention0
module, which consists of a series of self-attention layers, learn
representations of sinks by incorporating the information of the
driver and sinks. The learnt representations are shared and used
for all tasks. Then there are individual modules for each task, e.g.,
FCLO module (Here, FCL is the short for Fully Connected Layer)
for the clustering task. We let these four tasks share the same sink
representations mainly for two reasons. First, we argue that these
tasks are related to each other. Hence, the learnt representations
for one task might benefit other tasks too. Also, sharing the Self-
Attention0 module can help reduce the total model parameters,
consequently less memory usage and faster training and inference.

BufFormer clusters sinks first, whose results are used to guide
other tasks. To be specific, for each sink cluster, the prediction of
buffer size/location/delay target might only need to involve the
sink representations in the corresponding cluster. Such priors are
integrated into BufFormer-Net by constructing attention masks
for Self-Attention1,2,3 modules according to clustering results, as
depicted in Figure 2 (b). Further, the buffer size prediction results are
used for buffer location and delay target prediction, while results
of location prediction are also utilized for delay target prediction.

Note that BufFormer-Net feeds learnt sink representations to
a clustering algorithm to generate final clusters, as depicted in
Figure 2 (b). A simple clustering algorithm, named Connection
Clustering, is developed. Firstly, the cosine similarity between rep-
resentations of every two sinks are calculated. Sink pairs having
similarity higher than a given threshold are regarded connected.
Then, connected components among sinks are detected. If a con-
nected component contains sinks with different parities, then split
the component into two parts according to parities of sinks. Fi-
nally, each component is viewed as one cluster. Such a clustering
algorithm does not need pre-defined number of clusters and can
automatically enforce the fulfillment of the parity constraint. We
implement Connection Clustering as a series of matrix operations,
which can be conveniently accelerated by GPU.
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Figure 2: Illustration of our BufFormer framework, which consists of a layer-by-layer tree generation process, a transformer-based BufFormer-
Net, and a self-supervised training scheme. (a) shows a 3-layer generation process for a tree of height 3. (b) shows how BufFormer-Net make
decisions for the 157 layer buffer insertion by integrating the information of the driver and 4 sinks. (c) illustrates that 3 input-label pairs can be

constructed from a tree sample of height 3.

With respect to capacitance and slew limits, they are implicitly
modelled by training BufFormer-Net with legal samples.

3.3.2  Feature Engineering. We incorporate physical, electrical, tim-
ing and parity information into input features to BufFormer-Net.
More specifically, the input to BufFormer-Net is a sequence of
feature vectors, each of which corresponds to the driver or one
(dummy) sink, as depicted in Figure 2 (b). Each feature vector con-
sists of a trainable embedding for the cell type, input slew ( —1 for
sinks), input capacitance (—1 for the driver), relative location and
distance to the driver, a flag indicating whether it is a driver or a
sink, the delay target (0 for the driver), and parity (+ for the driver).
Note that input normalization is applied since the magnitudes of
different features vary greatly.

3.4 Self-Supervised Training Scheme

3.4.1 Training Data Preparation. Essentially, self-supervised train-
ing scheme constructs labels from tree samples themselves and
then train BufFormer-Net in a supervised-learning manner. Given
a buffer-embedded tree, the heights of cells in the tree can be found
using a depth-first search algorithm. For a tree of height N, N
input-label pairs can be constructed, as illustrated in Figure 2(c).
Specifically, input in the first input-label pair consists of the set of
sinks as well as the driver, while labels are the parent buffers or
None denoting no buffer. For the i-th (1 < i < N) pair, the input
consists of the set of (dumpy) sinks with height i — 1, the driver,
and the cells in the input set of the (i — 1)-th pair that have None
as label.

3.4.2  Training Losses. A contrastive loss is utilized for the clus-
tering task to push sinks belonging to the same cluster closer in
the representation space while simultaneously pushing apart sinks
from different clusters. Firstly, the cosine similarity between a pair
of sink representations (y;, ;) output by BufFormer-Net is calcu-
lated as follow:

YYi 1).
lyilly;l

Note that s(y;,y;) € [0,1] for any y;, y;. And it can be interpreted
as the probability of sinks i, j belonging to the same cluster. For
notational convenience, we define p(y;, y;) as:

o s(yiy))
pyey)) {1—s(yi,yj) Otherwise.

s(yiyj) = 0.5 % ( @)

if sinks i, j belong to the same cluster,

®)

The clustering loss is defined as

L(yi,yj) = —log[p(yi. yj)]. )
Such a loss function will push s(y;,y;) to 1 if nodes i, j belong to
the same cluster and to 0 if not.

The buffer size prediction task is a (M + 1)-class classification
problem, where M is the total number of buffers/inverters in the
library, and an extra class for None. We observe high imbalance be-
tween the usage frequencies among different buffer/inverter library
cells in our data set, therefore we deploy Focal loss [23], which is
an enhancement to the classical cross entropy loss to handle class
imbalance, for the buffer size prediction task. The raw classification
output for a buffer is z € {[z0,z1,---zm] | 0 < zp,21,- -+ ,zm <
1 and zp +z1 + - - - ,zp = 1}, which describes the probabilities of
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this buffer belonging to each of the M + 1 classes. Denote the labels
asl € {0,1,--- M}, then focal loss can be calculated as follow:

M
FL(z,1) = )" =(1 = pi)'log(pl), ®)
i=0
i Zi, if i=1
= 6
Pz {l —zj, otherwise. ©)

(1- pl)Y is a modulating factor for down-weighting well-classified
samples. (1—p?) near 0 indicates easy-to-classify samples while (1—
pl) near 1 means difficult-to-classify. When a sample is misclassified
and p’ is small, the modulating factor is near 1 and the loss is
unaffected. As p. — 1, the factor goes to 0 and the loss for well-
classified samples is down-weighted. The parameter y adjusts the
rate at which easy samples are down-weighted.,.

For the buffer location and the delay target prediction tasks, we
use the mean-square-error loss. Note that the predicted delay target
of each buffer will be used in the features for the prediction of next
level clustering during inference.

3.4.3 Multi-Objective Training. The training of BufFormer-Net is
a multi-objective optimization problem since four losses, each of
which corresponds to one task, are to optimize. A common practice
is to optimize a linear combination of per-task losses. However,
it is not easy to find the proper weights for the losses to balance
the priorities of different tasks. A gradient-based neural network
training technique that can optimize a collection of objectives is
proposed in [6]. For the individual modules for each task, e.g., FCLO
module for clustering, their parameters are updated according to
the gradients of the corresponding loss. As for the shared network
parameters, i.e., parameters in Self-Attention0, they are updated by
following the ideas in [6] as follows. Firstly, the gradients of each
loss w.r.t. the parameters in Self-Attention0 are computed. Then
a minimum-norm vector in the convex hull of the set of gradient
vectors for our four tasks is found. Finally, parameters are updated
in the direction of the minimum-norm vector. It has been shown in
[6] that such gradient update approach essentially uses adaptive
weights and optimizes an upper bound for the multi-objective loss.

4 EXPERIMENTAL VALIDATION

4.1 Experiment Setups

Experiments are conducted in the OpenPhySyn platform [1]. Five
types of buffers and four types of inverters from NanGate45 open

cell library are used for buffering. Input capacitance of these cells
2

varies from 0.78 fF to 49.2 fF, and area varies from 0.8 pm? to 13.0 pm?.

The maximum load capacitance is set to 100 {fF and we use the slew
limits defined by the cell library. To generate training samples and
benchmark our performance, a baseline method using the FLUTE
package for Steiner tree generation and a Ginneken-Lillis style al-
gorithm [16] for buffer insertion is implemented. Given a Steiner
tree and candidate buffer locations on it, the Ginneken-Lillis style
algorithm can find a set of buffering solutions that achieve different
trade-offs between delay and buffer area. Considering the trade-off
between solution quality and runtime, candidate buffer locations
are inserted every 60um (which is around 20X of the width of a
buffer) along each edge of the Steiner tree, all Steiner points and all
turning points.
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Table 1: Characteristics of Training and Testing Samples

l characteristic H train set [ test set ‘
net count 23083 1620
tree count 343004 32031
sink count range [1,150] [0,98]
buffer area range (um?) [0,151] [0,99]
driver-sink delay range (ps) [0,1128] [0,609]
HPWL range (pum) [0, 2214] | [0, 2796]

To collect a large training set, we sample artificial net instances
and then invoke the FLUTE+Lillis baseline method to generate
buffer tree samples. Note that a set of buffer trees achieving different
trade-offs between buffer area and delay is collected for each net.
For simplicity but without loss of generality, we also use the library
of buffers/inverters for the drivers and sinks. The characteristics of
collected samples are shown in Table 1. The training set contains
over 300K buffer trees while the testing set contains around 30K
samples. The achieved driver-sink delays by the baseline method
are recorded as the delay targets for the training and evaluation
of our method. This ensures that the delay targets are achievable.
We tend to collect buffer trees for large nets over smaller ones as
training samples, because the buffer trees for large nets are more
informative as their sub-trees can be viewed as solutions for small
nets.

Our BufFormer framework is built with the PyTroch package.
In the default version of BufFormer-Net, 6 layers of 8-head self-
attention are used for Self-Attention0, 3 layers of 8-head-attention
for each of Self-Attention1,2,3, and 3 fully connected layers for each
of FCL0,1,2,3. The dimension of intermediate representations is set
to 256. And the batch size for training and testing are 128 and 256,
respectively. The FLUTE+Lillis baseline method runs on a single
Intel Xeon CPU thread, while BufFormer-Net runs on a NVIDIA
Tesla V100 GPU.

Both layer-wise performance metrics and entire tree perfor-
mance metrics are evaluated. There are four tasks for each layer
of buffer insertion, i.e., clustering of sinks, prediction of buffer li-
brary cell, of buffer location, and of delay target. For measuring
layer-wise performance, we utilize pair-wise accuracy for cluster-
ing performance, classification accuracy for library cell prediction,
and root mean square error (RMSE) for buffer location and de-
lay target prediction. Pair-wise clustering accuracy is obtained by
dividing the number of sink pairs that BufFormer-Net correctly
predicts whether they are in the same cluster by the total number of
sink pairs. Classification accuracy refers to the number of correctly
predicted buffers divided by the total number of buffers.

To evaluate the quality of an entire buffer-embedded tree gen-
erated by BufFormer, we measure the total buffer area and the
achieved driver-sink delays for all driver-sink pairs, and compare
them with the area and delays achieved by the baseline method.
Their correlation coefficient, and the mean and standard deviation
(std.) of the difference between ML generated trees and baseline
trees are calculated. Note that the difference is computed as:

area/delay achieved by BufFormer — baseline area/delay.

Negative values mean better performance than the baseline results.
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Table 2: Results of Ablation Studies

factors method cluster | libcell | loc RMSE | delay tar. buf. area diff. (um?) || driver-sink delay diff.(ps)

acc acc (pm) RMSE (ps) || cor [ mean [ std || cor [ mean [ std

| | default ][ 926% [916% | 34 [ 10 [[0977[48 [49][0934]0 | 25 ]
data 40% 91.1% | 88.7% 36 11 0.964 | 4.6 59 [[ 0762 | 7 51
amount 25% 87.0% | 84.5% 40 14 0939 | 1.3 7.1 |[ 0.761 | 8 50
model larger 93.1% | 92.5% 34 10 0975 | 6.3 53 [[ 0931 [ 0 25
size smaller 92.9% | 90.7% 34 10 0.970 | 4.7 54 |[ 0927 [0 26

| trainloss | weighted || 829% | 958% | 34 | 8 [0976 [41 [45][ 0873 [0 EE

| modelarch. | separate [ 90.8% [ 955% [ 36 | 8 [[0.964 [68 [e61] 07627 [ 51 ]
clustering AC / / / / 0.974 | 4.2 49 [[ 0916 [0 28
algorithm AP / / / / 0972 | 6.1 54 |[ 0,905 |0 30
DBSCAN / / / / 0932 | -21 | 7.9 [ 0676 | 11 67

4.2

4.2.1 Comparison with Baseline Method. As shown in Figure 3 and
Table 2, BufFormer can generate buffer-embedded trees for unseen
nets with highly comparable quality to the baseline results. Specif-
ically, as for layer-wise performance, it achieves 92.6% clustering
accuracy, 91.6% library cell prediction accuracy, 34 pm RMSE in
location prediction and 10 ps RMSE in delay target prediction. For
the performance of entire buffer trees, the correlation coefficient
between ML-generated trees and the one generated by the baseline
is as high as 0.977 in terms of buffer area and 0.934 for driver-sink
delays. Compared with baseline results, ML-generated tree achieves
almost the same driver-sink delays with slightly larger buffer area.
The average buffer area overhead is 4.8 pmz, around the area of a
middle size buffer. As shown in Figure 3, the divergence of buffer
area becomes higher for trees with buffer area larger than 60 pm?.
One reason might be that we do not have enough training samples
with large buffer area. Such divergence could be mitigated and the
buffer area overhead would decrease if BufFormer is trained with a
greater number of large buffer tree samples.

It is interesting to note that, though on average ML-generated
tree achieves the similar driver-sink delays with slightly larger
buffer area, there are cases where ML-generated trees outperform
the baseline results in terms of both buffer area and delay. Figure 5
depicts one of the examples. In future work we will systematically
investigate the impact of refining the training set recursively by
replacing the original buffer trees by the ML-generated trees that
are of greater quality.

Experiment Results
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Figure 3: Comparing (a) buffer areas and (b) all achieved driver-sink
delays of ML-generated buffer trees with baseline trees.
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As discussed in Section 3, our tree generation process guarantees
the satisfaction of the polarity constraint. We empirically observe
that ML-generated buffer trees also satisfy the slew and capacitance
limits everywhere. It implies that generative ML model can capture
such constraints by learning the distribution of legal solutions.

Table 3: Speedup of Our Method over Baseline for Different Net Sizes

[ group idx [+ ] 2 [ 3 [ 4 ] 5 |
sink count [1.3] | [31,33] | [61,63] | [91.93] | [121,123]
avg. HPWL (um) 40 225 348 470 590
avg. speedup 0.2 38 53 125 165
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Figure 4: Runtime comparison between BufFormer and the baseline.

To study the scalability of our method, we apply BufFormer and
the baseline to five groups of nets with different sizes. Table 3 shows
the characteristics of nets and the speedup of our method over the
baseline. The absolute runtime per net is depicted in Figure 4. The
baseline runs on a single CPU thread and the runtime for Steiner
tree generation and buffer insertion are measured. For BufFormer,
we assume that the features of the driver and sinks are already
extracted and stored in a matrix form, and we measure the runtime
taken by BufFormer to generate an entire buffer-embedded tree.
Note that the input features for BufFormer can be easily computed.
As for the FLUTE+Lillis baseline, we observe that the runtime
grows fast as the size of nets increases. And the majority runtime
is spent on the timing-driven minimum cost buffer insertion. As
for BufFormer, it can generate buffer tree for a net with 121 sinks
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o
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Figure 5: Snapshot of (a) a buffer-embedded tree generated by the
baseline method and (b) a tree by BufFormer for the same net. Blue
box is the driver, gray circles are sinks, and red shapes represent
buffers/inverters. The total buffer area and mean driver-sink delay
for the baseline tree are 31.7 um? and 155 ps, respectively, while the
tree generated by BufFormer reduces the buffer area by 3.2 ym? and

decreases the mean delay by 8 ps.

within 0.1s, with a speedup up to 160X over the baseline. Our
speedup is obviously greater than the fast buffering method [21],
which achieves 4.6X speedup over Ginneken-Lillis style algorithms
and requires a Steiner tree as input. The scalability advantage of
BufFormer mainly comes from our efficient tree generation process
as well as GPU acceleration. BufFormer can generate a tree of height
N in N steps, which is fairly scalable with large nets. Also, its neural
network backbone enables GPU acceleration for significant speedup
that is difficult to be achieved by multi-threading programming used
in traditional methods, since GPUs can bring massive parallelism,
i.e., great throughput.

4.2.2  Ablation Studies. The following ablation studies are con-
ducted to identify important factors for BufFormer performance.

(1) Data amount. Besides using the full training set, we train Buf-
Former with 40% data and 25% data.

Model size. A larger BufFormer-Net (dimension of intermediate
representations = 516) and a smaller one (dimension = 128) are
implemented.

(3) Train loss. A linear combination of per-task losses is used for
training rather than our multi-objective training method.
Model architecture. Instead of using a shared model, individual
models are developed for each of four tasks: clustering, buffer
library cell, buffer location and delay target prediction.
Clustering algorithms. Besides our default Connection Clus-
tering algorithm, we also integrate the Agglomerative Cluster-
ing [5], Affinity Propagation [4] and DBCAN [14] algorithms
into our BufFormer framework. All of them can automatically
determine the number of clusters.

()

4)

5

=

Table 2 shows the ablation study results. It seems that the most
influential factor is the data amount. Greater amount of training
data help boost the performance of BufFormer. The default model
size seems to be a proper choice given current amount of training
data, since increasing the model size does not improve performance.
Using a shared model and deploying our multi-objective training
scheme contribute to the good performance of BufFormer. As for
clustering algorithms, while DBCAN delivers much worse results,
Agglomerative Clustering and Affinity Propagation produce slightly
worse results to the default Connection Clustering algorithm.
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5 CONCLUSION AND FUTURE DIRECTIONS

This work is an attempt to solve buffering problem with a gen-
erative ML framework, named BufFormer. BufFormer generates
buffer-embedded trees without Steiner tree construction by learn-
ing from high quality samples. After training with tree samples
generated by a FLUTE+Lillis baseline algorithm, it can produce
solutions for unseen nets highly comparable to baseline results
with a correlation coefficient 0.977 in terms of buffer area and 0.934
for driver-sink delays. BufFormer-generated tree achieves similar
delays with slightly larger buffer area. And up to 160X speedup
can be achieved for large nets when running on a GPU over the
baseline on a single CPU thread. BufFormer might serve as a speedy
buffering engine in early design iterations. We plan to extend the
BufFormer framework to handle realistic layout environment con-
straints (e.g., placement and routing congestion) and circuit-level
optimization for industrial designs.
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