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Should Opportunists Be Encouraged? Optimal
Decisions in Hybrid Cloud Service Systems

Sheng Zhu, Jinting Wang, and Wei Wayne Li, Senior Member, IEEE

Abstract—This paper investigates a hybrid service system with
a cloud server and an in-house server. We consider two different
scenarios: a hybrid service system with orbit space and a hybrid
service system without orbit space. In the hybrid service system
with orbit space, customers who fail to enter the cloud server can
choose to join the in-house subsystem or to enter an orbit space
and retry the cloud server. An admission control mechanism
based on queue-length limitation is adopted to adjust whether
the cloud service resources are open to customers. When the
cloud server cannot be accessed immediately, some customers
send their jobs to the in-house subsystem, while others (called
opportunists) try to send their jobs to the cloud server again. We
obtain the optimal queue-length limitation for a given retrial rate.
The service provider and customers are different stakeholders,
and their market forces are also different. Therefore, it is
more realistic to explore the game relationship between them
by using dynamic game theory. We can also explore the joint
optimums of the queue-length limitation and the retrial rate in
the framework of the Stackelberg game. Finally, by comparing
with the hybrid service system without orbit space, we discuss the
significance of the existence of orbit space, and gain management
insights. It is found that the existence of opportunists may
benefit the service provider, although they significantly harm
social interests, regardless of whether they are cooperative or
non-cooperative; therefore, opportunists are encouraged in some
situations. Numerical analysis shows that adding a retrial orbit
to a hybrid cloud service system with certain input parameters
may even more than triple the service provider’s revenue.

Key words: Cloud service; Queueing-game; Optimal decision;
hybrid service system; Stackelberg game.

I. INTRODUCTION

The cloud provides people with low-delay services, but

using the cloud also leads to a variety of security risks (listed

by Brender and Markov [1]), such as information security,

data location, and so on. In March 2015, while repairing the

XEN bug, cloud service providers such as Amazon AWS,
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IBM SoftLayer, Amazon Linode, and Rackspace suffered

multiple host restarts. Amazon AWS has to suspend nearly

10% of the business of its cloud hosts. Security accidents

have made potential users very cautious about the cloud

service. According to RightScale survey data, although 88%

of enterprises use the public cloud, 68% of them run less than

20% of their enterprise applications in the cloud. Specially,

for risk-sensitive enterprises, they always send their enterprise

applications to a mixed service system including cloud server

from external providers and their traditional servers (called

in-house servers in this paper).

In real-life situations, web service companies usually pro-

vide computing resources for customers. Considering the

security risk and the efficiency of cloud service, web service

companies often adopt a mixed service system with a cloud

server and an in-house server, in which customers who fail

to enter the cloud server can choose to join the in-house

subsystem or to enter an orbit space and retry the cloud server.

The cloud service resources are purchased from external cloud

service providers. It is generally agreed in the contract that

the arrival rate of jobs sent to the cloud shall not exceed a

fixed value. The web service companies must ensure that the

contract is not breached by limiting the effective arrival rate,

but customers always hope to access the cloud and to be served

at full speed. Therefore, an admission control needs to be

designed by the web service companies. Due to the admission

control, a portion of customers are diverted to the in-house

subsystem. However, some customers are opportunistic; if the

cloud server cannot be immediately accessed, they prefer to

suspend their jobs that remain in an orbit space, where service

requests do not require sorting and system management, and

only necessary storage space needs to be provided. After a

while, they try again at a certain retrial rate to enter the cloud.

In this paper, we consider the optimal admission control,

the joint optimal decisions of the web service company and

customers in the framework of a dynamic game theory, and

the rationality of the existence of opportunists.

The hybrid service system proposed in this paper is similar

to a two-tier service system. Tuohy et al. [16] first introduced

the two-tier service system, and recent works on this topic

include Guo, Lindsey and Zhang [7], Hua, Chen and Zhang

[10], among others. Different from previous literature, we

study a two-tier service system with an orbit space. Our model

is the same as Zhu, Wang and Li [20], in which they focused

on customers’ equilibrium strategies and a socially optimal

retrial rate. In this paper, we study optimal admission control,

joint optimal decisions, and the rationality of the existence of

opportunists.

In a pioneering study on admission control, Spencer et

al. [15] believed that the total arrival rate of jobs sent to the
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cloud server varies with the queue-length capacity of the in-

house subsystem, and that the arrival rate can be controlled

by limiting the capacity of the in-house subsystem. This study

explored the impact of the amount of information about the

future of queue-length on the system’s performance. In our

work, we adopt the same admission control, which will be

detailed in Section II. However, we focus on the optimal

admission control for customers. Further, we consider the

optimal queue-length limitation between customers and the

web service company in terms of dynamic game theory. To

the best of our knowledge, this paper is the first to study the

optimal admission control of a system with a cloud server

and an in-house server from the viewpoint of dynamic game

theory. Interested readers can refer to Xu [18] and Xu and

Chan [19] for more details about admission control.
In addition, customers are assumed to be strategic. They

decide whether to join the in-house subsystem or to enter the

orbit when the cloud cannot be immediately accessed due to

the admission control. Therefore, our discussion on all topics

cannot ignore customers’ equilibrium strategies. Fortunately,

it has been derived in Zhu et al. [20]. Interesting readers can

refer to Naor [13], Burnetas and Economou [2], Economou

and Manou [4], Engel and Hassin [5], Hassin and Haviv [8],

Hassin and Snitkovsky [9], Manou, Economou and Karaesmen

[12], Guo and Hassin [6], Shi and Lian [14], Wang and Zhang

[17] for more details on Nash equilibrium strategy.
Customers and the web service company represent different

interest groups. The interaction between them is an interesting

problem. The game between them can be characterized as the

Stackelberg game. Our use of dynamic game theory is inspired

by Caldentey and Wein [3], which discussed the two-stage

supply chain based on the Stackelberg game. Li et al. [11]

also considered the Stackelberg game problem between mobile

devices and edge cloud servers, and proved the existence of

a Stackelberg equilibrium in the game. Different from the

above works, we consider a hybrid service system that can

be modeled as a queueing system with two servers and one

retrial orbit, and we explore the economic phenomena based

on the dynamic game. In order to obtain the optimal strategy,

we need to analyze it by combining the queueing game and the

Stackelberg game. It is found that the web service company

may reap certain benefits from the strategically speculative

behavior of the opportunists.
The main contributions of this paper are listed as follows:

• Optimal admission control. In real-life situations, web

service companies maximize their interests by choosing

the appropriate admission control. In this paper, we derive

the optimal queue-length limitation in the hybrid service

system with orbit space, and explore the relation between

the expected total net benefit of the web service company

and VPC (defined in Section II).

• Joint optimum in dynamic game. Customers and the

web service company represent different interest groups.

Based on the dynamic game between them, we develop

the joint optimums of the queue-length limitation and

the retrial rate within the Stackelberg game formulation,

and provide the computational algorithm of the joint

optimums.

• Practical significance of the retrial orbit. The practical

significance of the retrial orbit in the system is discussed.

We find under certain conditions that the existence of the

retrial orbit is beneficial to the web service company,

although it harms broader social interests regardless of

whether customers are cooperative or non-cooperative.

The paper is organized as follows. In Section II, we provide

a detailed description. Section III studies the optimal queue-

length limitation given an exact retrial rate from the viewpoint

of the web service company. In Section IV, we explore the

joint optimums of the queue-length limitation and the retrial

rate based on the Stackelberg game. Section V considers

whether the web service company should permit the existence

of an orbit space. Numerical analysis is provided in Section

VI. Finally, conclusions are offered in Section VII.

II. MODEL DESCRIPTION AND PRELIMINARIES

We consider a hybrid service system with a cloud server and

an in-house server. According to whether the system has orbit

space, we divide the system into two categories: hybrid service

system with orbit space (see Figure 1) and hybrid service

system without orbit space (see Figure 2). The hybrid service

system with orbit space is the same as the model studied by

Zhu and Wang [20]. There is no difference between the hybrid

service system without orbit space and the hybrid system with

orbit space, except for the existence of orbit space. In order

to make the paper readable, we give a brief description of the

hybrid service system with orbit space.

In a hybrid service system with orbit space, the web

service company provides customers with two kinds of service

resources: the in-house subsystem and the cloud. The in-house

subsystem is the service resource of the web service company

itself, but the cloud service is that purchased by the web

service company from an external cloud computing provider.

Customers bring their jobs to the web service company at

random and ask for service from the company. The arrivals

of customers are assumed to follow a Poisson process with

intensity λ. The web service provider signs a long-term cloud

service contract with the external cloud computing provider,

which specifies that the total arrival rate of jobs sent to

the cloud within the contract time cannot exceed the stated

value. VPC is the abbreviation for the value prescribed by the

contract, denoted by γ. Hence, the total arrival rate of jobs

sent to the cloud server cannot exceed γ. Upon the arrivals of

customers, the web service company diverts their jobs through

the admission controller. If the queue-length in the in-house

subsystem is less than the given queue-length limitation of L,

their jobs are shunted to the in-house subsystem. Once the

queue-length reaches L, the arriving jobs will be sent to the

cloud until the queue-length in the subsystem is lower than L
again. The service rate of jobs in the in-house subsystem is

assumed to be μ.

In this paper, the service time does not include the prop-

agation delay, only considering the time from being served

by the server to the end of the service. In fact, our proposed

method is also feasible for considering the propagation delay

scenario. The reason is listed as follows. The propagation

delay depends on the specific network connection and can

be seen as a specific value, so the corresponding propagation
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Fig. 1. Illustration of the hybrid service system with orbit space (see Zhu et al. [20]).

delay cost is also a constant, denoted by Cpd. In this paper,

the reward after being completed by the cloud is R. When

considering the propagation delay situation, we only need to

replace the reward after being completed by the cloud, R, with

R−Cpd. In this paper, we do not consider the service times of

service requests in the cloud computing center. This is because

in this paper, we assume that the cloud computing capabilities

are much stronger than the in-house server. Compared to the

in-house server, the service time of the cloud can be almost

ignored. Mathematically, we can achieve a service time of

approximately zero for the cloud through standardization. In

addition, in the work of Zhu et al. [20], we have also explained

in detail that if the service time of the cloud is not close to

zero, our proposed method is still feasible.

The cloud computing center has powerful computing ca-

pacity and scalability, but the in-house server, especially those

without virtualization, are limited by their service equipment

and does not have the same powerful computing capacity and

scalability as the cloud. Therefore, from the perspective of

customers, they are more willing to join the cloud. Customers

are strategic. Some customers who can’t directly access the

cloud will follow the arrangement of the web service company

and join the in-house subsystem. But others will not. If they

find that their jobs can’t directly access the cloud, they will

suspend their jobs for a while and then try again to enter the

cloud at a specific retrial rate. Only when the queue-length

in the in-house subsystem reaches the given queue-length

limitation, can opportunists immediately access the cloud once

they make retrials. Otherwise, retrying jobs remain in an orbit

and repeat the previous operation. Customers in the orbit are

called opportunists. The inter-retrial times are exponentially

distributed with retrial rate θ.

The above model can be characterized as a two-tier queue-

ing system with a retrial space. This is because there are two

servers to choose from in the system: an in-house server and

a cloud server, and customers who are unwilling to join the

in-house server can join the retrial space and retry entering the

cloud system with certain rate. Our theoretical and numerical

research will reveal that, under some circumstances, using a

model with an orbit space allows the web service company to

increase the net benefit, suggesting that the managers have an

incentive to set up such a service mechanism.

Due to the scalability and powerful computing power of

the cloud computing center, all joined service requests can be

immediately serviced when allowed by the controller, so there

is no customer joining a retrial space in this situation. How-

ever, when the queue length in the in-house subsystem does

not reach the queue-length limitation, the controller will block

service requests from joining the cloud system, and these

service requests will join the in-house subsystem or enter the

retrial space. Strictly speaking, customers have three strategies

when the cloud server is not open due to the admission control:

joining the in-house subsystem directly, joining the retrial

orbit and then retrying the in-house subsystem, and joining

the retrial space and then retrying the cloud. However, joining

the retrial orbit and then retrying the in-house subsystem must

not be the best strategy, because the expected net benefit of an

arriving customer in this situation must be less than joining

the in-house subsystem directly. Therefore, when the in-house

subsystem does not reach the queue-length limitation, we only

consider that customers either join the in-house subsystem

directly or enter the retrial orbit and then retry the cloud.

Zhu et al. [20] showed that an arriving customer will enter

the in-house subsystem with equilibrium joining probability

qe(L, θ) or join the orbit with probability 1 − qe(L, θ) when

the queue-length in the in-house subsystem is lower than a

given queue-length limitation. Served jobs can be divided into

three types: some jobs directly enter the cloud and are served

immediately (type-1 jobs); some jobs enter the cloud from the

orbit (type-2 jobs); the remainder is served by the in-house

server (type-3 jobs). Customers with type-i jobs are called

type-i customers, where i = 1, 2, 3.

The following symbols will be used in the rest of paper. We

assume that � is the queue-length in the in-house subsystem,

which is a random variable. Each served customer will receive

the reward of R after service completion. Service delay will

incur a waiting cost, and customers in the retrial space will

also have to pay operational fees. Let Ci, i = 0, 1, 2 be the
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Fig. 2. Illustration of the hybrid service system without orbit space.

Table 1 Notation and explanation

Notation Explanation
λ The arrival rate of jobs.
μ The service rate of jobs in the in-house subsystem.
θ The retrial rate of opportunists retrying the cloud server.
γ The VPC, i.e., the upper limit of total arrival rate of jobs sent to the cloud server.
L the queue-length limitation.
� The queue-length in the in-house subsystem.
R The reward after service completion
C0 The waiting cost per unit time per job in the in-house subsystem.
C1 The waiting cost per unit time per job in the orbit.
C2 The operational fee of each retrial per unit time.
Ch1 the holding cost per time unit per job in the in-house subsystem.
Ch2 the holding cost per time unit per job in the orbit, respectively.
qe(L, θ) The conditional equilibrium joining probability of joining the in-house subsystem given � < L.
Pi(L, θ, q

e(L, θ)) The probability of having i jobs in the in-house subsystem.
Nslow(L, θ, qe(L, θ)) The mean number of jobs in the in-house subsystem.
Norbit(L, θ, q

e(L, θ)) The mean number of jobs in the orbit.
N̄(L, θ, qe(L, θ)) The mean number of retrials before accessing the cloud successfully.
λotc(θ, qe(L, θ)|� = L) The arrival rate of jobs from the orbit to the cloud under � = L.
Ψ1(L, θ) The individual expected net benefit per unit time obtained by each type-2 customer after service completion.
Ψ2(L, θ) The expected total net benefit per unit time of all type-2 customers.
Φwsc(L, θ, qe(L, θ)) The expected total net benefit per unit time of the web service company.
θ∗i (L), i = 1, 2 The non-cooperatively optimal retrial rate and the cooperatively optimal retrial rate, respectively.

waiting cost per unit time per job in the in-house subsystem,

the waiting cost per unit time per job in the orbit and the

operational fee of each retrial per unit time, respectively. Ch1

(or Ch2) is the holding cost per time unit per job in the

in-house subsystem (or in the orbit). The mean number of

jobs in the in-house subsystem (or in the orbit) is denoted as

Nslow(L, θ, q
e(L, θ)) (or Norbit(L, θ, q

e(L, θ))). We assume

that N̄(L, θ, qe(L, θ)) is the mean number of retrials before

accessing the cloud successfully. Let λotc(θ, q
e(L, θ)|� = L)

be the arrival rate of jobs from the orbit to the cloud under

� = L. Ψi(L, θ), i = 1, 2 denote the individual expected

net benefit per unit time obtained by each type-2 customer

after service completion and the expected total net benefit per

unit time of all type-2 customers, respectively. The expected

total net benefit per unit time of the web service company is

denoted as Φwsc(L, θ, q
e(L, θ)). Let θ∗i (L), i = 1, 2 be the

non-cooperatively optimal retrial rate and the cooperatively

optimal retrial rate, respectively. The relevant definitions are

also given in Table 1.

The input parameters λ, μ, γ,R,C0, C1, C2 remain fixed,

and the rest can be obtained from the results in Zhu et al.

[20]. In our proposed model, real-time queue lengths in the in-

house subsystem need to be continuously tracked, and service

requests in the in-house subsystem will be uniformly allocated

by the system. The system needs to record their arrival order,

track their location in real-time, and then provide services

one by one in order. However, in orbit space, there is no

need to record their arrival order or track their position in

real-time, as they are not sorted in orbit space. Therefore,

the waiting/holding costs in the orbit space differ from those

in the in-house server. According to the result of [20], after

replacing q in Theorem 3.1 of [20] (which denotes the joining

probability) with equilibrium joining probability qe(L, θ), we

can obtain the following results.
Let PL(L, θ, q

e(L, θ)) be the probability of having L jobs

in the in-house subsystem in the equilibrium state. For the

in-house subsystem, it can be considered as an M/M/1/L
queue, then PL(L, θ, q

e(L, θ)) can be obtained based on the

basic result of M/M/1/L queue as follows:

PL(L, θ, q
e(L, θ)) =

(ρqe(L, θ))L(1− ρqe(L, θ))

1− (ρqe(L, θ))L+1
. (2.1)

Zhu et al. [20] obtained the conditional mean waiting time

and the mean queue-length based on the probability gen-

erating method. By using the Little formula, the effective

arrival rate from the orbit to the cloud given � = L,

λotc (θ, q
e(L, θ)|� = L), can be obtained as follows:

λotc (θ, q
e(L, θ)|� = L)
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=
θ(1− (ρqe(L, θ))L+1)HL(θ, q

e(L, θ))

(ρqe(L, θ))L(1− ρqe(L, θ))D(θ, qe(L, θ))
, (2.2)

where ρ = λ/μ, D(θ, qe(L, θ)) = |A|,A =
(Ai,j)(L+1)×(L+1) ∈ R

(L+1)×(L+1), in which A1,1 =
Ak+1,k = λqe(L, θ), k = 1, 2, · · · , L, AL+1,L+1 = −(θ+ μ),
Ak,k = −(μ + λqe(L, θ)), 2 ≤ k ≤ L, A1,2 = −Ak,k+1 =
−μ, k = 1, 2, · · · , L, and Hi(θ, q

e(L, θ)) = |Ai|, Ai is A
with its i-th column replaced by vector[

b0,−b1, · · · ,−bL−1, 0
]T

,

here

bi=
λ(1− qe(L, θ))(ρqe(L, θ))i(1−ρqe(L, θ))

1−(ρqe(L, θ))L+1
, 0≤ i≤L−1.

By using the expectation formula, the mean number of jobs

in the in-house subsystem can be written as

Nslow(L, θ, q
e(L, θ)) =

ρqe(L,θ)−(ρqe(L,θ))L+1−(1−(ρqe(L,θ)))L(ρqe(L,θ))L+1

(1− ρqe(L, θ)) (1− (ρqe(L, θ))L+1)
,

(2.3)

the mean number of jobs in the orbit is

Norbit(L, θ, q
e(L, θ)) =

∑L
i=0 Hi(θ, q

e(L, θ))

D(θ, qe(L, θ))
, (2.4)

and the mean number of opportunist’s retrials before accessing

to the cloud successfully is

N̄(L, θ, qe(L, θ))

=
θ
(
1− (ρqe(L, θ))L+1

)∑L−1
i=0 Hi(θ, q

e(L, θ))

λ(1− qe(L, θ)) (1− (ρqe(L, θ))L)D(θ, qe(L, θ))
. (2.5)

It should be noted that we discuss the related optimal

decision problems under the condition that customers adopt

the Nash equilibrium strategy in this paper. We will explore

the optimal queue-length limitation. Based on the dynamic

game between the web service company and customers, we

also obtain the joint optimums of the queue-length limitation

and the retrial rate. These results are instructive to the manager

of the web service company. Further, some economic insights

are also analyzed.

III. OPTIMAL QUEUE-LENGTH LIMITATION

In this section, we consider the optimal queue-length limi-

tation in the hybrid service system with orbit space from the

viewpoint of the web service company. The manager of the

web service company wants to maximize the company’s bene-

fits. To realize this objective, the manager has the authority to

set the optimal queue-length limitation, since he/she decides

the queue-length limitation. Theorem 3.1 provides the optimal

queue-length limitation, and Proposition 3.2 shows that the

expected net benefit per unit time of the web service company

under its optimal policy will increase with the VPC of γ. All

proofs are given in the Appendix.

Let λcloud(L, θ) be the total effective arrival rate of jobs

entering the cloud system given � = L. Jobs entering the

cloud can be divided into two types: (1) some jobs directly

enter the cloud system when there are L jobs in the in-house

subsystem upon new job arrival (arriving in the cloud from an
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Fig. 3. The relation between λcloud(L, θ) and θ for λ = 0.8, μ = 1, L =
2, C1 = 0.4, C2 = 0.2.

external source); (2) some jobs enter the cloud system from

the orbit (arriving in the cloud from the orbit). This means

that the total effective arrival rate of jobs entering the cloud

given � = L is the sum of the arrival rate of jobs coming from

external sources and the arrival rate of jobs coming from the

orbit. Based on the above analysis, we get

λcloud(L, θ) =λotc (θ, q
e(L, θ)|� = L)PL(L, θ, q

e(L, θ))

+ λPL(L, θ, q
e(L, θ)), (3.1)

where PL(L, θ, q
e(L, θ)) and λotc (θ, q

e(L, θ)|� = L) can be

determined by (2.1) and (2.2), respectively. Obviously, the

total effective arrival rate of jobs entering the cloud is depen-

dent on the retrial rate θ. Through numerical analysis (Figure

3), we easily find that the total effective arrival rate of jobs

entering the cloud is weakly unimodal with respect to θ when

the queue-length in the in-house subsystem reaches the queue-

length limitation.

We assume that the web service company will obtain an

income of P upon the arrival of each job. Note that the income

often does not come from the payments of the customers, but

rather from a third party, such as a company that has a contract

with the web service company for advertisement services and

pays the advertisement fees based on the number of jobs. Let

Ch1 and Ch2 be the holding cost per time unit per job in the

in-house subsystem and the holding cost per time unit per job

in the orbit, respectively. From (2.3), the number of jobs in in-

house subsystem in the equilibrium state, Nslow(L, q
e(L, θ)),

can be computed from

Nslow(L, q
e(L, θ))

=
ρqe(L, θ)−(ρqe(L, θ))L+1−(1−ρqe(L, θ))L(ρqe(L, θ))L+1

(1− ρqe(L, θ)) (1− (ρqe(L, θ))L+1)
.

From (2.4), we get the mean number of jobs in the orbit in

the equilibrium state as follows:

Norbit(L, θ, q
e(L, θ)) =

∑L
i=0 Hi(θ, q

e(L, θ))

D(θ, qe(L, θ))
.

The mean total income of the web service company per unit

time comes from two parts: the income due to job arrivals

and the income due to the operation fees of job retrials.
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Obviously, the first part equals λP , and the second part

is C2Norbit(L, θ, q
e(L, θ))N̄(L, θ, qe(L, θ)). In addition, the

mean total cost is the sum of the holding cost per unit time in

the in-house subsystem and the holding cost per unit time in

the orbit. Hence, the expected total net benefit per unit time

of the web service company can be written as

Φwsc(L, θ, q
e(L, θ))

= λP + C2Norbit(L, θ, q
e(L, θ))N̄(L, θ, qe(L, θ))

− Ch1Nslow(L, q
e(L, θ))− Ch2Norbit(L, θ, q

e(L, θ)),
(3.2)

where N̄(L, θ, qe(L, θ)), Nslow(L, q
e(L, θ)), Norbit(L, θ, q

e(L, θ))
are determined by (2.3), (2.3) and (2.5), respectively. Let

L∗(θ, γ) be the optimal queue-length limitation given the

retrial rate θ and the VPC γ. We know that the queue-

length limitation is decided by the manager of the web service

company. Thus, the optimal queue-length limitation from the

company’s perspective can be obtained by maximizing the

company’s benefit.

Theorem 3.1 (Optimal queue-length limitation): For the

given retrial rate θ and VPC γ, the optimal queue-length

limitation can be computed from the following equation:

L∗(θ, γ) = argmax
L∈N

{
Φwsc(L, θ, q

e(L, θ))
∣∣λcloud(L, θ) ≤ γ

}
,

(3.3)

where λcloud(L, θ), Φwsc(L, θ, q
e(L, θ)) are given in (3.1) and

(3.2), respectively.

The web service company signs a long-term contract with

an external cloud-computing provider for a fixed amount

of computing resources to be consumed during the contract

period. The contract stipulates that the total arrival rate of

jobs sent to the cloud cannot exceed γ. Hence, the man-

ager of the web service company must first ensure that the

condition λcloud(L, θ) ≤ γ is satisfied and then determine

the optimal queue-length limitation under this condition.

Thus, (3.3) is an optimization problem with constraint, where

Φwsc(L, θ, q
e(L, θ)) can be computed from (3.2). Due to

the uncomplicated objective function and constraint, we can

easily obtain L∗(θ, γ) using Mathematica software or Matlab

software. In addition, we find that γ has a key effect on

the optimal queue-length limitation. The following proposition

shows the relation between the expected total net benefit of

the web service company and the VPC γ.

Proposition 3.2 (Monotonicity): Assume that γ1 and γ2 are

two different VPCs, and L∗(θ, γ1), L∗(θ, γ2) are the corre-

sponding optimal queue-length limitations. If γ1 ≤ γ2, the

following inequality holds:

Φwsc(L
∗(θ, γ1), θ, qe(L∗(θ, γ1), θ))

≤ Φwsc(L
∗(θ, γ2), θ, qe(L∗(θ, γ2), θ)). (3.4)

Proof: See A.1 in Appendix for the proof of Proposition

3.2.

Proposition 3.2 shows that the larger the VPC, the higher

the benefit the web service company will obtain. However,

as an external service resource, the cloud brings a variety

of security risks, such as the leakage of the web service

company’s business data and customers’ data. Because of this,

the web service company needs to balance between utilities

and risk tolerance. This is an interesting problem that is worthy

of further study in future work.

IV. SYSTEM OPTIMIZATION BASED ON THE

STACKELBERG GAME

In this section, we consider the joint optimization problem

in the hybrid service system with orbit space. We obtain the

joint optimums of the queue-length limitation and the retrial

rate based on the Stackelberg game. Specifically, Theorem 4.1

gives the joint optimums of the queue-length limitation and

the retrial rate in the case that the web service company is the

Stackelberg leader, and Theorem 4.2 gives the joint optimums

in the case that opportunists are the Stackelberg leader. All

proofs are given in the Appendix.

As we know, both customers and the web service com-

pany are selfish. They maximize their respective interests by

choosing the appropriate admission control and the appropri-

ate retrial rate. This dynamic game between them exists in

real life. To maximize their interests under the other party’s

tactics, both parties decide on their own strategies depending

on the potential strategies of the other party. In this game

model, the party that decides first is referred to as the leader,

while the party that decides second is referred to as the

follower. The leader then modifies their choice in response

to the follower’s choice, and so on, until they attain Nash

equilibrium. We assume that the parties’ payoff functions are

common knowledge and that the players know the complete

history of the game thus far. The web service company and the

opportunists represent different market forces in the market,

so the Stackelberg game can be adopted.

Whether opportunists are cooperative or not must be de-

termined based on specific actual situations. For example, if

a web service company’s service group is a specific group

with a high correlation, we may consider them cooperative

consumers. However, in general, customers are often nonco-

operative. In order to adapt our method to different market

situations, we will explore the optimal strategies for each

scenario. There are four cases that must be considered: (1)

the manager is the Stackelberg leader and the opportunists

are non-cooperative; (2) the manager is the Stackelberg leader

and the opportunists are cooperative; (3) the opportunists are

the Stackelberg leader and they are non-cooperative; (4) the

opportunists are the Stackelberg leader and they are cooper-

ative. (L̂m,1, θ̂m,1), (L̂m,2, θ̂m,2), (L̂c,1, θ̂c,1) and (L̂c,2, θ̂c,2)
are the joint optimums of the queue-length limitation and the

retrial rate in these four cases, respectively.

Theorem 4.1 (Joint optimums (a)): If the manager of the

web service company is the Stackelberg leader, the joint

optimums of the queue-length limitation and the retrial rate

can be obtained from⎧⎪⎪⎨
⎪⎪⎩
L̂m,i=argmax

L∈N

{
Φwsc (L, θ

∗
i (L), q

e(L, θ∗i (L)))∣∣λcloud(L, θ
∗
i (L))≤γ

}
, i=1, 2,

θ̂m,i = θ∗i (L̂m,i), i = 1, 2,

(4.1)

where θ∗i (L) can be obtained from Theorem 5.1 in [20], and

λcloud(L, θ), Φwsc (L, θ, q
e(L, θ)) are given in (3.1) and (3.2),

respectively.



7

Proof: See A.2 in Appendix for the proof of Theorem

4.1.

In real-life situations, the web service company has a greater

market force than the opportunists and often acts first. The

opportunists observe the web service company’s action, and

they then make decisions based on their observations. Hence

the web service company is generally the Stackelberg leader,

and the opportunists are the Stackelberg follower. To extend

our model to other scenarios, we also consider the case that

the opportunists are the Stackelberg leader.

Theorem 4.2 (Joint optimums (b)): If the opportunists are

the Stackelberg leader, the joint optimums of the queue-length

limitation and the retrial rate can be obtained from{
θ̂c,i = arg max

0<θ<∞
Ψi

(
L∗(θ, γ), θ

)
, i = 1, 2,

L̂c,i = L∗(θ̂c,i, γ), i = 1, 2,
(4.2)

where L∗(θ, γ) is given in Theorem 3.1,

Ψ1(L
∗(θ, γ), θ) = R−{
(C1 + θC2)

(
1− (ρqe(L∗(θ, γ), θ))L

∗(θ,γ)+1
)

×∑L∗(θ,γ)−1
i=0 Hi(θ, q

e(L∗(θ, γ), θ))

}
{
λ(1− qe(L∗(θ, γ), θ))

(
1− (ρqe(L∗(θ, γ), θ))L

∗(θ,γ)
)

×D(θ, qe(L∗(θ, γ), θ))

} ,

(4.3)

and

Ψ2(L
∗(θ, γ), θ) ={

λ (1− qe(L∗(θ, γ), θ))
(
1− (ρqe(L∗(θ, γ), θ))L

∗(θ,γ)
)

Ψ1(L
∗(θ, γ), θ)

}
1− (ρqe(L∗(θ, γ), θ))L∗(θ,γ)+1

.

(4.4)

Proof: See A.3 in Appendix for the proof of Theorem

4.2.

Theorem 4.1 and Theorem 4.2 imply the arithmetic logic

used to compute the joint optimums of the queue-length

limitation and the retrial rate. In practice, we can obtain the

joint optimums in different cases using Matlab tools. How

may we determine who the Stackelberg leader is? The answer

can be obtained according to specific real-life situations. If

the service resources provided by the web service company

are scarce, the company can be regarded as the Stackelberg

leader. However, if the required service resources saturate the

market, we may regard opportunists as the Stackelberg leader.

V. SIGNIFICANCE OF THE EXISTENCE OF THE ORBIT

In this section, we discuss the significance of the existence

of the orbit from the perspective of the web service company.

According to the result of [20], the existence of opportunists

(i.e., the customers that have sent jobs to the orbit) harms the

greater social interest (i.e., social welfare). The term “social

interest" denotes the overall benefits of all customers. In

fact, the sum of consumer and enterprise benefits is often

referred to as social welfare in the literature. Due to the fact

that service fees are usually paid by customers to businesses

and offset each other without affecting social welfare, all

other literature views the overall customer benefit as social

welfare. Each selfish cooperative/noncooperative opportunist

sets a cooperatively/noncooperatively optimal retrial rate to

maximize his/her benefit. In the absence of external con-

straints, opportunists always choose the optimal retrial rate to

maximize their own benefits. In order to maximize the social

welfare, the social planner needs to formulate relevant policies.

In reality, the minority’s interests are always at the expense

of the majority’s. As a result, we are not surprised that the

existence of opportunists has a significant impact on social

welfare, which is also due to their selfish behavioral strategies.

In this paper, we will find another interesting phenomenon.

Specifically, Theorem 5.1 and Theorem 5.2 show that from the

perspective of the web service company, dealing strategically

with the speculative behavior of certain customers can create

more benefits for the web service company. All proofs are

provided in the Appendix.

To explain this result more explicitly, we construct another

model (see Figure 2 in Section II), which is the same as the

model studied earlier in this paper, except that it has no orbit

space. These two models are called “the model without orbit

space” and “the model with orbit space”, respectively. The

existence of the orbit space implies that some opportunists

are permitted to wait for some time and then retry to enter the

cloud. But for the model without an orbit space, an arriving

job can be sent only to the in-house subsystem when the

queue-length in the in-house subsystem is less than the queue-

length limitation. This means that no customer has a chance to

become an opportunist. Indeed, if an orbit space is provided,

this means that the manager of the web service company

permits the existence of the opportunists.

First, we consider the model without an orbit space. When

a customer sends a job to the web service company, the

manager of the web service company first checks whether

the queue-length in the in-house subsystem is less than the

given queue-length limitation. If not, then the newly arriving

job will be sent to the cloud; otherwise, it will be sent to the

in-house subsystem. As we know, in the model without an

orbit space, no customer has the option to postpone his/her

job and retry to enter the cloud at a later time; rather, the

newly arriving customer must send his/her job to the in-house

subsystem when the queue-length in the in-house subsystem

is less than the queue-length limitation. For the given queue-

length limitation L, Nnos(L) and Pnos(i) denote the mean

number of jobs in the in-house subsystem and the probability

of having i jobs in the in-house subsystem, respectively. The

in-house subsystem can be regard as the M/M/1/L queue

with arrival rate λ and service rate μ. From the basic result of

the queueing system, we get Pnos(L) = ρi(1−ρ)/(1−ρL+1).
In addition, we find that the model with an orbit space will

degenerate to the model without an orbit space as q = 1. So

Nnos(L) = Nslow(L, 1). From (2.3), we have

Nnos(L) =
ρ− ρL+1 − (1− ρ)LρL+1

(1− ρ) (1− ρL+1)
. (5.1)

By the simple proof, we can find that Nnos(L) is increasing in

L. Let Φnos(L) be the expected net benefit of the web service

company per unit time for the given queue-length limitation

L. It is the mean total income per unit time minus the mean

total cost per unit time. In the model without an orbit space,

the mean total income per unit time is the total arrival rate λ
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times P , and the mean total cost per unit time equals the mean

number of jobs in the in-house subsystem Nnos(L) times Ch1.

Therefore, the expected net benefit per unit time of the web

service company for the given queue-length limitation L is

Φnos(L) = λP − Ch1Nnos(L), (5.2)

where Nnos(L) is determined by (5.1). Obviously, Φnos(L) is

decreasing in L since Nnos(L) is an increasing function with

respect to L. L∗
nos denotes the optimal queue-length limitation

for the web service company in the model without an orbit

space, and it can be obtained from

L∗
nos = arg max

L∈N

{
Φnos(L)

∣∣λPnos(L) ≤ γ
}
. (5.3)

Since Φnos(L) is decreasing function with respect to L, L∗
nos

can be rewritten as

L∗
nos = min

L∈N
{L : λPnos(L) ≤ γ} , (5.4)

where Pnos(L) = ρL(1− ρ)/(1− ρL+1). From (5.4), we get

L∗
nos as follows:

L∗
nos =

⌈
logρ

γ

λ(1− ρ) + γρ

⌉
. (5.5)

As the queue-length limitation is L∗
nos, the net benefits

of the web service company are maximized. Thus, the web

service company will follow the admission control policy: If

the queue-length in the in-house subsystem reaches L∗
nos, an

arriving job will be sent to the cloud; otherwise, it will be sent

to the in-house subsystem. Therefore, the mean number of jobs

in the in-house subsystem can be written as Nnos(L
∗
nos). From

(5.1), we have

Nnos(L
∗
nos) =

ρ− ρL
∗
nos+1 − (1− ρ)L∗

nosρ
L∗

nos+1

(1− ρ) (1− ρL
∗
nos+1)

. (5.6)

In the model without an orbit space, the expected net benefit

per unit time of the web service company corresponding to

the queue-length limitation L∗
nos is

λP − Ch1Nnos(L
∗
nos). (5.7)

Secondly, we consider the model with an orbit space.

As stated in Section IV, there are four cases that must

be considered. The joint optimums of the queue-length

limitations and the retrial rates in the four cases —

(L̂m,1, θ̂m,1), (L̂m,2, θ̂m,2), (L̂c,1, θ̂c,1), and (L̂c,2, θ̂c,2)
— are given in Theorem 4.1 and Theorem 4.2. We first

consider the case that the manager of the web service

company is the Stackelberg leader. In the model with an

orbit space, the mean total income per unit time of the

web service company comes from the income generated by

job arrivals and the operational fees that customers in the

orbit pay the web service company. The mean total incomes

per unit time in cooperative and non-cooperative cases are

C2Norbit(L̂m,i,θ̂m,i, q
e(L̂m,i, θ̂m,i))N̄(L̂m,i,θ̂m,i,q

e(L̂m,i,θ̂m,i))
+λP , i = 1, 2, respectively. The mean total holding cost per

unit time is composed of two parts: the holding cost in the

in-house subsystem and the holding cost in the orbit. So the

mean total holding costs per unit time in cooperative and

non-cooperative cases can be written as

Ch1Nslow(L̂m,i, q
e(L̂m,i, θ̂m,i))

+ Ch2Norbit(L̂m,i, θ̂m,i, q
e(L̂m,i, θ̂m,i)), i = 1, 2.

Therefore, when the manager of the web service company

is the Stackelberg leader, the expected net benefits per unit

time of the web service company in the non-cooperative and

cooperative cases can be obtained from

C2Norbit(L̂m,i,θ̂m,i, q
e(L̂m,i,θ̂m,i))N̄(L̂m,i,θ̂m,i,q

e(L̂m,i, θ̂m,i))

+ λP − Ch1Nslow(L̂m,i, q
e(L̂m,i, θ̂m,i))

− Ch2Norbit(L̂m,i, θ̂m,i, q
e(L̂m,i, θ̂m,i)) i = 1, 2. (5.8)

If the opportunists are the Stackelberg leader, by adopting

a similar method, the expected net benefits per unit time of

the web service company in non-cooperative and cooperative

cases can be computed from

C2Norbit(L̂c,i, θ̂c,i, q
e(L̂c,i,θ̂c,i))N̄(L̂c,i,θ̂c,i,q

e(L̂c,i,θ̂c,i))

+ λP − Ch1Nslow(L̂c,i, q
e(L̂c,i, θ̂c,i))

− Ch2Norbit(L̂c,i, θ̂c,i, q
e(L̂c,i, θ̂c,i)) i = 1, 2. (5.9)

To sum up, the expected net benefits per unit time of the web

service company is given in (5.7) for the model without an

orbit space, and the expected net benefits per unit time in

the model with an orbit space can be computed from (5.8)

and (5.9). If the former is less than the latter, it is a wise

decision for the web service company to permit the existence

of opportunists.

Theorem 5.1 (Existence condition of an orbit space (a)):
Assume that the manager of the web service company is

the Stackelberg leader. The web service company can obtain

more benefits in the model with an orbit space if one of the

following two cases holds:

(1) the opportunists are non-cooperative and the following

inequality holds:{
Ch1[Nslow(L̂m,1,q

e(L̂m,1,θ̂m,1))−Nnos(L
∗
nos)]

+Ch2Norbit(L̂m,1, θ̂m,1, q
e(L̂m,1, θ̂m,1))

}
{
C2Norbit(L̂m,1, θ̂m,1, q

e(L̂m,1, θ̂m,1))

×N̄(L̂m,1, θ̂m,1, q
e(L̂m,1, θ̂m,1))

} <1, (5.10)

(2) the opportunists are cooperative and the following

inequality holds:{
Ch1[Nslow(L̂m,2,q

e(L̂m,2,θ̂m,2))−Nnos(L
∗
nos)]

+Ch2Norbit(L̂m,2, θ̂m,2, q
e(L̂m,2, θ̂m,2))

}
{
C2Norbit(L̂m,2, θ̂m,2, q

e(L̂m,2, θ̂m,2))

×N̄(L̂m,2, θ̂m,2, q
e(L̂m,2, θ̂m,2))

} <1, (5.11)

where Nslow(L, q), Norbit(L, θ, q), N̄(L, θ, q), and Nnos(L)
are given in (2.3), (2.4), (2.5) and (5.1), respectively.

Proof: See A.4 in Appendix for the proof of Theorem

5.1.

If the opportunists are the Stackelberg leader and the web

service company is the Stackelberg follower, the results similar

to those in Theorem 5.1 can be obtained. We summarize these

results in the following theorem.
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Theorem 5.2 (Existence condition of an orbit space (b)):
Assume that the opportunists are the Stackelberg leader. The

web service company can obtain more benefits in the model

with an orbit space if one of the following two cases holds:

(1) the opportunists are non-cooperative and the following

inequality holds:{
Ch1[Nslow(L̂c,1,q

e(L̂c,1,θ̂c,1))−Nnos(L
∗
nos)]

+Ch2Norbit(L̂c,1, θ̂c,1, q
e(L̂c,1, θ̂c,1))

}
{
C2Norbit(L̂c,1, θ̂c,1, q

e(L̂c,1, θ̂c,1))

×N̄(L̂c,1, θ̂c,1, q
e(L̂c,1, θ̂c,1))

} <1, (5.12)

(2) the opportunists are cooperative and the following

inequality holds:{
Ch1[Nslow(L̂c,2,q

e(L̂c,2,θ̂c,2))−Nnos(L
∗
nos)]

+Ch2Norbit(L̂c,2, θ̂c,2, q
e(L̂c,2, θ̂c,2))

}
{
C2Norbit(L̂c,2, θ̂c,2, q

e(L̂c,2, θ̂c,2))

×N̄(L̂c,2, θ̂c,2, q
e(L̂c,2, θ̂c,2))

} <1, (5.13)

where Nslow(L, q), Norbit(L, θ, q), N̄(L, θ, q), and Nnos(L)
are given in (2.3), (2.4), (2.5) and (5.1), respectively.

Proof: See A.5 in Appendix for the proof of Theorem

5.2.

Remark 5.3: According to the result of [20], the existence

of opportunists significantly harms social interests. However,

Theorem 5.1 and Theorem 5.2 show that sometimes the web

service company can obtain more benefits in the model with

an orbit space. That is to say, the existence of opportunists,

regardless of whether they are cooperative or non-cooperative,

may be beneficial to the web service company, even though

opportunists harm the greater social interests. Specifically, if

the condition of Theorem 5.1 or Theorem 5.2 holds, the web

service company can obtain more benefits in the model with an

orbit space, and thus the web service company should consider

opening an orbit space.

Remark 5.4: If (5.10)-(5.13) do not hold, the web service

company can obtain more benefits in the model without an

orbit space; that is, the existence of an orbit is bad for the

web service company. Hence, the web service company should

not open an orbit space, and will have no opportunists in the

system.

In this following, we show the algorithm of net benefits

of web service company under two different models when the

manager of the web service company is the Stackelberg leader

(see Table 2).

VI. NUMERICAL ANALYSIS

In this section we explore the effect of different parameters

on the optimal strategy and the net benefit of the web

service company through numerical analysis. The numerical

experiments below all assume that the web service company

is the Stackelberg leader and the opportunists may be coop-

erative or noncooperative. The related numerical results were

obtained based on Matlab R2020b. In the following numerical

experiments, except for the varying parameters, other default

parameters that we use are shown in Table 3.

• Comparisons of optimal queue-length limitations. First,

we consider the case of smaller C0 (see Figure 4). In this

Table 2 The algorithm of net benefits of web service company
under two different models.

Step 1 Obtain the cooperatively and non-cooperatively optimal
retrial rates θ∗i (L) by Theorem 5.1 in [20]. Substituting
θ∗i (L) into (3.1) yields λcloud(L, θ

∗
i (L)).

Step 2 Compute the conditional equilibrium joining probability
of a job joining the in-house subsystem qe(L,θ∗i (L)) by
substituting θ∗i (L) into qe(L, θ), where qe(L, θ) can be
obtained from Theorem 4.4 in [20].

Step 3 Obtain Φwsc (L, θ
∗
i (L), q

e(L, θ∗i (L))) by substituting
θ∗i (L) and qe(L, θ∗i (L) into (3.2).

Step 4 Compute L̂m,i by substituting λcloud(L, θ
∗
i (L)) and

Φwsc (L, θ
∗
i (L), q

e(L, θ∗i (L))) into (4.1). Get θ̂m,i by

using θ̂m,i = θ∗i (L̂m,i), i = 1, 2.
Step 5 Obtain the net benefits of web service company in the

model with orbit space by substituting (L̂m,i,θ̂m,i)
into (5.8).

Step 6 Compute L∗
nos from (5.5). Substituting L∗

nos into (5.7)
yields the net benefits of web service company in the
model without orbit space.

Table 3 The default values of all the parameters.

R P λ μ θ C0 C1 C2 Ch1 Ch2 γ

4 7 0.8 1 2 4 0.4 0.2 2.8 2.5 0.32

case, if VPC is small (e.g., γ < 0.102 in Figure 4(a)), a

larger optimal queue-length limitation will be applied under

the model without orbit space, while the opposite is true for

larger VPC. This is because the data security risk requirements

of the web service company are higher when the VPC is

smaller, and the orbit space can effectively buffer the arrival

rate at the cloud server, so the model with orbit space can

adopt a smaller optimal queue-length limitation. In addition,

it can be observed from Figure 4(b) that the optimal queue-

length limitation under the model with orbit space will be

larger if C0 is relatively large. This is because the profit

that the web service company obtains from a single service

request is relatively small as C0 is relatively large. In order to

maximize profits, the web service company will allow more

service requests to enter the in-house subsystem while meeting

risk control conditions. Therefore, setting a larger queue length

limitation for the in-house subsystem in this situation is more

profitable.

• Effect of VPC on joint optimal strategies. We give

the joint optimums of the queue-length limitation and the

retrial rate when the manager of the web service company

is the Stackelberg leader. Figure 5 shows the relation between

the joint optimums and VPC, which can be obtained based

on the algorithm provided in Section IV. In Figure 5(a), the

opportunists are non-cooperative; while the cooperative case

is given in Figure 5(b). When γ is sufficiently large, the joint

optimum will remain unchanged. This is because if a large

VPC is set, the web service company is not sensitive to data

security risks, and in this case the VPC poses little constraint

on the system, so the joint optimum will not depend on it.

• Comparison of net benefits under two models. With

the increase of Ch2, the net benefit of web service company

under the model without orbit space remains constant, while
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(b) C0 = 21

Fig. 4. Optimal queue-length limitations vs. γ for R = 7, P = 4, λ = 0.8, μ = 1, θ = 2, C1 = 0.4, C2 = 0.2.
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(a) The non-cooperative case
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(b) The cooperative case

Fig. 5. Net benefits of web service company vs. γ for R = 7, P = 4, μ = 1, C0 = 5, C1 = 0.4, C2 = 0.2, Ch1 = 2.8, Ch2 = 2.5.
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Fig. 6. Net benefits of web service company vs. C0 when the opportunists are non-cooperative for R = 7, P = 4, λ = 0.8, μ = 1, C1 = 0.4, C2 =
0.2, Ch1 = 2.8, γ = 0.32.

that under the model with orbit will gradually decrease. Figure

6 shows that when Ch2 is small (e.g., Ch2 = 1 in Figure 6(a)),

the expected net benefit of the web service company under

the model with orbit is always greater than that under the
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Fig. 7. Net benefits of web service company vs. C0 when the opportunists are non-cooperative for R = 7, P = 4, λ = 0.8, μ = 1, θ = 2, C0 = 4, C2 =
0.2, Ch1 = 2.8, γ = 0.32.

model without orbit space. However, when Ch2 is sufficiently

large (e.g., Ch2 = 7.5 in Figure 6(c)), the result is exactly

the opposite. In other cases, the profit curves of the web

service company under these two models intersect, and there

is no one model that completely dominates the other. The

specific model to be adopted depends on the specific value

of Ch2. Region Ω1 (or Region Ω2) in Figure 6 indicates that

the service mechanism with retrial orbit (or without retrial

orbit) should be adopted. Similarly, when C1 or C2 are small,

a service mechanism with orbit space will benefit the web

service company, while a service mechanism without orbit

space should be used (see Figures 7-8) when C1 or C2 are

large. In addition, under the model with orbit space, we can

also observe that the net benefit of the web service company

in the case of Ch1 > Ch2 is higher than that in the case of

Ch1 < Ch2, when the opportunists may be cooperative (see

Figure 10(a)) or noncooperative (see Figure 10(b)). Actually,

in real-life situations, Ch1 is generally greater than Ch2,

which has been explained in Section II. Figure 10 shows a

comparison of net benefits between two models using the

three-dimensional graphs. The model with orbit space is more

advantageous for the web service company when the green

surface is above the yellow surface, while the model without

orbit space is better when the yellow surface is above.

• System improvement and the percentage of profit
increase. Our proposed hybrid service system with orbit

only requires adding a control system based on real-time

queue-length feedback to the original hybrid service system.

However, the need to implement our proposed mechanism

must be based on the specific input parameters; for example,

when the holding cost in the in-house subsystem is high or

the holding cost in the orbit space is relatively low, executing

our proposed hybrid service system with orbit can significantly

improve the revenue of service providers. According to Figure

11, when C0 = 2.6, adopting a model with a retrial model, the

company’s revenue increases by approximately 200% in the

cooperative case and by nearly 100% in the non-cooperative

case. In particular, when C0 = 4, the company’s revenue

Fig. 10. Net benefits of web service company vs. Ch1 and Ch2 in non-
cooperative case for R = 7, P = 4, λ = 0.8, μ = 1, θ = 2, C0 = 4, C1 =
0.4, C2 = 0.2, γ = 0.32.

increases by about 250%.

VII. CONCLUSIONS

In this paper, we considered the optimal decision problems

involved in the allocation of jobs in a hybrid service sys-

tem. We summarized the real problem as a queueing system

with two servers and one orbit space, obtaining the optimal

queue-length limitation from the viewpoint of the manager.

Additionally, we derived the joint optimums of the queue-

length limitation and the retrial rate based on the Stackelberg

game. We observed an interesting phenomenon: the existence

of opportunists in the system can harm greater social interests

but may be beneficial to the web service company in certain

situations. We also enhanced our previous work in characteriz-

ing performance measures by comparing of the hybrid service

model with orbit space and the hybrid service system without

orbit space to explore whether the orbit space should be set or

not and to initially identify specific conditions in applications.

For our future work, we plan to investigate the infrastructure

utilization and identify how our model, when applied, affects
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Fig. 8. Net benefits of web service company vs. C0 when the opportunists are non-cooperative for R = 7, P = 4, λ = 0.8, μ = 1, θ = 2, C0 = 4, C1 =
0.4, Ch1 = 2.8, γ = 0.32.
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Fig. 9. Net benefits of web service company vs. λ for R = 7, P = 4, μ = 1, θ = 2, C0 = 4, C1 = 0.4, C2 = 0.2, Ch1 = 2.8, Ch2 = 2.5.
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Fig. 11. Proportion of revenue increase vs. C0 for R = 7, P = 4, λ =
0.8, μ = 1, C1 = 0.4, C2 = 0.2, Ch1 = 2.8, Ch2 = 1, γ = 0.32.

specific resources such as links, capacities, latencies. These

details are typically obtained only with (at least) a low-

level simulator/emulator of the system. Additionally, we aim

to extend the model to a more challenging trilateral game

model. While in this paper, we only consider the Stackelberg

game between customers and the web service company, in

reality, the cloud provider interacts with both the web service

company and the customers and thus a trilateral game would

possibly a more realistic model and is the logical next step for

our future research. Furthermore, this paper does not consider

the case of heterogeneous customers, another extension of our

model that is worth studying.
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APPENDIX

A.1. Proof of Proposition 3.2 If the VPC equals γ1,

according to Theorem 3.1, the optimal queue-length limitation

adopted by the web service company can be written as:

L∗(θ, γ1) = argmax
L∈N

{
Φwsc(L, θ, q

e(L, θ))
∣∣λcloud(L, θ) ≤ γ1

}
.

(A.1)

Since γ1 ≤ γ2, we get the inequality as follows:

λcloud(L
∗(θ, γ1), θ) ≤ γ1 ≤ γ2. (A.2)

From (3.3), we also obtain

L∗(θ, γ2)=argmax
L∈N

{
Φwsc(L, θ, q

e(L, θ))
∣∣λcloud(L, θ)≤γ2

}
.

From (A.2), we immediately obtain (3.4) in Proposition 3.2;

that is

Φwsc(L
∗(θ, γ1), θ, qe(L∗(θ, γ1), θ))

≤ Φwsc(L
∗(θ, γ2), θ, qe(L∗(θ, γ2), θ)). (A.3)

This completes the proof.

A.2. Proof of Theorem 4.1 According to the condition of

Theorem 4.1, the manager of the web service company is the

Stackelberg leader. Assume opportunists are non-cooperative.

From Theorem 5.1 in [20], we get the optimal retrial rate

θ∗1(L) for a given queue-length limitation L. Second, under the

condition that θ = θ∗1(L), the optimal queue-length limitation

L̂m,1 can be obtained from Theorem 3.1. Then, the optimal

retrial rate θ̂m,1 can be written as θ∗1(L̂m,1). Hence, the

joint optimum value of the queue-length limitation and the

retrial rate is (L̂m,1, θ̂m,1) when the manager of the web

service company is the Stackelberg leader. If opportunists are

cooperative, we can obtain the joint optimum using a similar

method.

A.3. Proof of Theorem 4.2 According to the condition

of Theorem 4.2, opportunists are the Stackelberg leader. We

only prove the case that the opportunists are non-cooperative.

A similar analysis can be used for the cooperative case. From

Theorem 3.1, we get the optimal length limitation L∗(θ, γ)
for the given retrial rate θ and the given VPC γ. Under the

condition that L = L∗(θ, γ), the optimal retrial rate θ̂c,1 can

be obtained from Theorem 5.1 in [20]. Then, the optimal

retrial rate, L̂c,i, equals L∗(θ̂c,1, γ) in the non-cooperative

case. Hence the joint optimum of the queue-length limitation

and the retrial rate is (L̂c,1, θ̂c,1) when opportunists are the

Stackelberg leader and non-cooperative.

A.4. Proof of Theorem 5.1 (1) From (5.7), the expected

net benefit per unit time of the web service company in the

model without an orbit space is λP − Ch1Nnr(L
∗
nos). Since

the manager is the Stackelberg leader and the opportunists

are non-cooperative, from (5.8) we find that the expected net

benefit per unit time of the web service company is

C2Norbit(L̂m,1,θ̂m,1,q
e(L̂m,1,θ̂m,1))N̄(L̂m,1,θ̂m,1,q

e(L̂m,1,θ̂m,1))

+ λP − Ch1Nslow(L̂m,1, q
e(L̂m,1, θ̂m,1))

− Ch2Norbit(L̂m,1, θ̂m,1, q
e(L̂m,1, θ̂m,1)).

Moreover, (5.10) can be rewritten as

λP − Ch1Nnr(L
∗
nos) <

C2Norbit(L̂m,1,θ̂m,1, q
e(L̂m,1,θ̂m,1))N̄(L̂m,1,θ̂m,1,q

e(L̂m,1,θ̂m,1))

+ λP − Ch1Nslow(L̂m,1, q
e(L̂m,1, θ̂m,1))

− Ch2Norbit(L̂m,1, θ̂m,1, q
e(L̂m,1, θ̂m,1)). (A.4)

The left side of (A.4) is the expected net benefit per unit time

of the web service company in the model without an orbit

space, and the right side is the expected net benefit per unit

time of the web service company in the model with an orbit

space. Therefore, we can see that the web service company

can obtain more benefits in the model with an orbit space.

(2) A similar method can be used to prove the cooperative

case.

A.5. Proof of Theorem 5.2 We ignore the proof of Theorem

5.2, since it is similar to the proof of Theorem 5.1.
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