
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ucgs20

Generative Multi-Purpose Sampler for Weighted
M-estimation

Minsuk Shin, Shijie Wang & Jun S. Liu

To cite this article: Minsuk Shin, Shijie Wang & Jun S. Liu (2024) Generative Multi-Purpose
Sampler for Weighted M-estimation, Journal of Computational and Graphical Statistics, 33:3,
1084-1097, DOI: 10.1080/10618600.2023.2292668

To link to this article: https://doi.org/10.1080/10618600.2023.2292668

View supplementary material

Published online: 17 Jan 2024.

Submit your article to this journal

Article views: 192

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/journals/ucgs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2023.2292668
https://doi.org/10.1080/10618600.2023.2292668
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2292668
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2292668
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2292668?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2292668?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf&date_stamp=17 Jan 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf&date_stamp=17 Jan 2024
https://www.tandfonline.com/doi/citedby/10.1080/10618600.2023.2292668?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/10618600.2023.2292668?src=pdf

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2024, VOL. 33, NO. 3, 1084–1097
https://doi.org/10.1080/10618600.2023.2292668

Generative Multi-Purpose Sampler for Weighted M-estimation

Minsuk Shina, Shijie Wanga, and Jun S. Liub

aDepartment of Statistics, University of South Carolina, Columbia, SC; bDepartment of Statistics, Harvard University, Cambridge, MA

ABSTRACT
To overcome computational bottlenecks of various data perturbation procedures such as the bootstrap
and cross-validations, we propose the Generative Multi-purpose Sampler (GMS), which directly constructs a
generator function to produce solutions of weighted M-estimators from a set of given weights and tuning
parameters. The GMS is implemented by a single optimization procedure without having to repeatedly
evaluate the minimizers of weighted losses, and is thus capable of significantly reducing the computational
time. We demonstrate that the GMS framework enables the implementation of various statistical procedures
that would be unfeasible in a conventional framework, such as iterated bootstrap procedures and cross-
validation for penalized likelihood. To construct a computationally efficient generator function, we also
propose a novel form of neural network called the weight multiplicative multilayer perceptron to achieve fast
convergence. AnR package calledGMS is provided, which runs underPytorch to implement the proposed
methods and allows the user to provide a customized loss function to tailor to their own models of interest.
Supplementary materials for this article are available online.

ARTICLE HISTORY
Received January 2023
Accepted December 2023

KEYWORDS
Bootstrap/resampling;
Cross-validation; Iterated
bootstrap; Scalable
computation; Weighted
M-estimation

1. Introduction

Consider a canonical setting in which y = {y1, . . . , yn} are iid
observations following a statistical model with the parameter
of interest denoted by θ ∈ � ⊂ R

p (n > p). In some
instances such as regression analysis, one may also include pre-
dictors or covariate variables for each observation. An efficient
estimator of θ can often be found by solving the following
(penalized) optimization problem: θ̂ = argminθ Ly(θ), where
Ly(θ) ≡ 1

n
∑n

i=1 �η(θ ; yi) with �η(·) being a suitable loss func-
tion with an auxiliary parameter η. The resulting θ̂ is often
referred to as an M-estimator (Huber 1992). For example, the
maximum likelihood estimator (MLE) is a special M-estimator
with the loss function being set as the negative log-likelihood
function.

To assess the variability of the M-estimator θ̂ , we study behav-
iors of the following tunable weighted M-estimators as inspired
by the bootstrap methods (Efron 1979):

θ̂w,λ,η = argminθ

[
1
n

n∑
i=1

wi�η(θ ; yi) + λu(θ)

]
�= argminθ Ly(θ ; w, λ, η), (1)

where η ∈ R
+ is an auxiliary parameter of the loss, u(·) is

a penalty function on the parameter with a tuning parame-
ter λ that can be set to zero for non-penalized settings, and
w = (w1, . . . , wn)� ∈ W is a vector of weights following
distribution π(w). The auxiliary parameter η tunes the loss
function. For example, in quantile regression models, η ∈ (0, 1)

represents the quantile level and the loss function takes the form

CONTACT Shijie Wang SHIJIEW@email.sc.edu Department of Statistics, University of South Carolina, Columbia, SC.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

�η(θ ; yi, Xi) = ρη(yi − X�
i θ), where ρη(t) = t(η − I(t < 0)).

When the loss function has no auxiliary parameter, we simply
denote the loss and the resulting estimator by �(θ ; yi) and θ̂w,λ,
respectively.

The formulation of (1) applies to a wide range of statis-
tical procedures. For example, the classical bootstrap proce-
dure of Efron (1979) corresponds to w ∼ Multinom(n,1n/n),
where 1n is a n-dimensional vector of one, and u(θ) = 0.
Random-weight bootstrap procedures can be formulated by
imposing a general distribution on w that has a mean of one,
finite variance, and sum to n. Its theoretical properties such as
consistency have been studied (Præstgaard and Wellner 1993;
Cheng and Huang 2010; Barbe and Bertail 2012). A special
and most well-known form of the random-weight bootstrap is
to set w ∼ n × Dirichlet(n;1n) as in the Bayesian Bootstrap
(Rubin 1981) and Weighted Likelihood Bootstrap (Newton and
Raftery 1994). Theoretical investigations and improvements of
the bootstrap methods have been considered in a large body
of literature (Efron 1987; Hall and Martin 1988; Hahn 1995;
Chatterjee and Bose 2005; Kleiner et al. 2014; McCarthy et al.
2018).

Iterated bootstrap procedures are often employed to reduce
the bias associated with a statistical inference procedure and/or
improve the coverage precision of confidence intervals (Hall and
Martin 1988). A most frequently cited procedure is the double
bootstrap, which first bootstraps and infers the parameter or pre-
diction, and then estimates the bias of each bootstrapped solu-
tion via a second-level bootstrap. In (1), the double bootstrap
procedures can be represented by setting a hierarchical weight
distribution such that s = {s1, . . . , sn} ∼ Multinom(n,1n/n)

© 2024 American Statistical Association and Institute of Mathematical Statistics

https://doi.org/10.1080/10618600.2023.2292668
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2292668&domain=pdf&date_stamp=2024-08-05
mailto:SHIJIEW@email.sc.edu
http://www.tandfonline.com/r/JCGS

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1085

and w | s ∼ Multinom(n, s/n). These iterated bootstrap
methods can be shown to provide more accurate confidence
coverage (i.e., the second or higher-order accuracy) compared
with single bootstraps and asymptotic approximations (Martin
1992; Lee and Young 1995, 1999; Hall 2013; McCarthy et al.
2018). However, iterative bootstraps are computationally very
expensive and are rarely used in practice when the data are of
moderate to large sizes.

The tunable weighted M-estimation in (1) can also represent
K-fold cross-validation. For pre-selected folds, such as a group
of sample indices I1, . . . , IK , we set wi = 0 for i in the fold of
interest, say I1, and set wi = 1 in all other folds. This means that
the observations in I1 will be ignored during training, rendering
I1 to be test samples. If u(·) = ‖·‖1, the evaluated θ̂w,λ is
equivalent to the LASSO estimator (Tibshirani 1996), based on
a tuning parameter λ, trained without using the samples in the
considered fold I1, resulting in a cross-validated LASSO. The
computational burden of the cross-validation linearly increases
with the fold size K and the candidate set size of the tuning
parameter, and a typical amount is at least a few hundreds of
repetitive computations.

While aforementioned weighted M-estimation procedures
are widely used in statistics and science, the computational bot-
tleneck caused by their repetitive nature poses significant prac-
tical difficulties. To alleviate these computational difficulties, we
propose a computational approximation strategy based on a
neural network-based generative process, called the Generative
Multi-purpose Sampler (GMS) (with the Generative Bootstrap
Sampler (GBS) as a special case for bootstrap). Instead of repeat-
ing the same optimization process for various combinations of
weights w’s and parameters λ’s and η’s, the GMS constructs a
generator function that takes (w, λ, η) as input and approximates
the corresponding weighted M-estimator θ̂w,λ,η. In addition to
taking advantage of the high representation power of neural
networks, a key idea for the GMS to achieve the desired com-
putational efficiency gain is to minimize an integrative loss in
its training, which optimizes both the M-estimation and the
parameters employed by the GMS simultaneously.

The rest of the article is organized as follows. Section 2 intro-
duces the general GMS framework and uses a toy example to
explain its potential gains. Section 3 details its specialization for
the bootstrap, namely the Generative Bootstrap Sampler (GBS).
Section 4 discusses the training of GMS for cross-validation with
Lasso and quantile regression. Section 6 provides details on the
neural network structures and detailed computational aspects of
GMS. Section 7 concludes with a brief discussion.

2. Generative Multi-Purpose Sampler

2.1. The Basic Formulation

We view the weighted M-estimator θ̂w,λ,η as a function of the
weight w, the tuning parameter λ, and the auxiliary parameter
η, that is, G(w, λ, η), and attempt to approximate it by a member
in a suitable family of functionsG = {Gφ : Rn+2 �→ R

p, φ ∈ �},
where � is the space of parameters that characterize a function
in the family. By doing so, we turn the unrestricted optimization
problem in (1) into a restricted optimization problem in a func-
tional space, that is, finding a proper parameter of the generator

function such that, for all w ∈ W , λ ∈ R
+, and η ∈ R

+,

φ̂ = argminφ∈�Ly(Gφ(w, λ, η); w, λ, η), (2)

A slightly less ambitious, but more robust, formulation is to solve

φ̂ = argminφ∈�Ew,λ,η
[
Ly(Gφ(w, λ, η); w, λ, η)

]
, (3)

where Ew,λ,η(·) is taken with respect to a proper distribution of
(w, λ, η) defined on W × R

+ × R
+. We name this generative

framework in (3) as the GMS. For non-penalized settings with-
out the auxiliary parameter η, we simply denote the generator
function by G(w). We also use the notation Ĝ = Gφ̂ . The weight
distribution for Efron’s nonparametric bootstrap is simply w ∼
Multinom(n,1n/n). For the Bayesian bootstrap (Rubin 1981),
w/n ∼ Dirichlet(n,1n). The distributions of λ and η can simply
be the uniform distribution on candidate sets of λ’s and η’s
chosen by the researcher. Another reasonable distribution of λ

and η is to add random noises to a discrete set of candidate values
(see Section 6.3 for details).

Suppose that φ̂ is the solution of (3) for a sufficiently large
familyG and a proper distribution on {w, λ, η},Pw,λ,η, supported
on W ×R

+ ×R
+. If the solution θ̂w,λ,η of (1) is unique for any

given (w, λ, η) in the support, then G
φ̂
(w, λ, η) should be very

close to θ̂w,λ,η almost surely in Pw,λ,η. It is easy to see this point
by contradiction—if not, then there exist ε > 0 and a subset
S∗ ⊂ W×R

+ ×R
+ such that Pw,λ,η(S∗) > 0 and G

φ̂
(w, λ, η) ≤

θ̂w,λ,η − ε on S∗. Thus, we can find another function that differs
from G

φ̂
only on S∗ and achieves a smaller value in (3).

A main takeaway from this argument is that optimizing the
integrative loss over the space of (w, λ, η) instead of the individ-
ual loss is appropriate for training. To benefit from this formu-
lation, we must choose an appropriate family G of functions Gφ

and a suitable distribution Pw,λ,η to cover the hyperparameter
space of interest. As demonstrated by our empirical studies on
a wide range of problems, restricting G to be a class of neural
networks and choosing a reasonable distribution Pw,λ,η appears
to work well (see details in Section 6.3).

As shown in Cybenko (1989) and Lu et al. (2017), Multi-
Layer Perceptrons (MLP), or equivalently, Feed-forward Neural
Networks (FNNs), are theoretically capable of approximating
any Lebesgue integrable function when the numbers of neu-
rons and layers are sufficiently large. Also, recent successful
applications of deep neural networks in a variety of data-rich
fields provide compelling evidence supporting the use of over-
parameterized MLPs and other types of neural networks for
approximating extremely complicated functions (Goodfellow
et al. 2014; Arjovsky, Chintala, and Bottou 2017). To train a
neural network to achieve the task in (3), we employ a back-
propagation algorithm (Rumelhart, Hinton, and Williams 1986)
along with Stochastic Gradient Descent (SGD) and its variants.
More details are given in Section 6.1.

2.2. Intuitions for Potential Gains

Imagine that we have independent weight vectors
(w(1), λ(1), η(1)), . . . , (w(M), λ(M), η(M)) from Pw,λ,η, we can

1086 M. SHIN, S. WANG, J. S. LIU

approximate the expectation in (3) by
Ew,λ,η

[
Ly(G(w, λ, η); w, λ, η)

]
(4)

≈ 1
M

M∑
m=1

Ly(G(w(m), λ(m)); w(m), λ(m), η(m)).

M do not need to be very large (M=100, say) since a small
number of samples of (w, λ, η) can be generated continuously
within the iterative SGD algorithm to aid the fitting: after updat-
ing the FNN parameter φ with SGD based on (4), we use the
newly created samples to evaluate the fit and to provide refreshed
gradient. Thus, the two optimization tasks, that is, minimizing
the loss function Ly and finding optimal φ for the generator G(·),
co-evolve and help each other.

If we were to cast the task of training a generator in a classical
machine learning framework, we would have to first obtain a
set of training samples, {(w(b), λ(b), θ̂ (b))}B

b=1, where θ̂ (b) =
θ̂w(b),λ(b) , by evaluating B optimizations in (1) with (w(b), λ(b))

for b = 1, . . . , B (ignoring η for simplicity in this case). Then,
one may try to learn a function g by minimizing

ĝ = argming

B∑
b=1

∥∥∥θ̂ (b) − g(w(b), λ(b))

∥∥∥2
, (5)

under the l2-distance ‖·‖. However, this squared-loss only mea-
sures the distance between the fitted generator ĝ(w, λ) and its
training true value θ̂w,λ. As a result, it cannot inform us how to
improve the fitting of the original statistical loss in (1) other than
a simple interpolation. Thus, the function trained in this manner
tends to be inaccurate if B is small, or may be prohibitively
expensive in computation if we must rely on a large B, in which
case computational advantages of the generative process would
be non-existing or limited.

Training the generator function G in conjunction with min-
imizing the loss function via the GMS formulation (3) is sig-
nificantly more efficient. The classical loss (5) fits only on the
training data with a limited size, {(w(b), λ(b), θ̂ (b))}B

b=1, resulting
in an over-fitting issue. The GMS, on the other hand, is trained
using the weights and tuning parameters generated from a pre-
defined distribution without requiring additional optimizations
for (1), and generating w and λ is nearly cost-less. As a result,
the GMS training procedure not only seeks the minimizer of
Ly(θ ; w, λ), but also allows for the use of an almost infinite
number of training weights and tuning parameters during the
training step, thereby avoiding over-fitting.

2.3. Illustration with a Simple Example

A novel aspect of our formulation is represented by the mini-
mization of the integrative loss (3), which combines the indi-
vidual optimization step required by each classical replication
with the approximation of the functional form G. Let us consider
the bootstrap procedure for a toy linear regression example with
data (yi, Xi), i = 1, . . . , n, and the loss function �(θ ; yi, Xi) =
(yi − X�

i θ)2 and λ = 0. For this problem, we can obtain
the closed-form solution of the optimization problem for each
bootstrapped sample: G0(w) = (X�WX)−1X�Wy, where y =
(y1, . . . , yn)�, X = (X�

1 , . . . , X�
n)�, and W = diag(w). Thus, a

bootstrap procedure would follow simple steps: for b = 1, . . . , B,
generate w(b) = (w(b)

1 , . . . , w(b)
n) ∼ Multinom(n,1n/n) or

n × Dirichlet(n,1n), and then for each w(b), plug in the formula
to get θ̂ (b) = G0(w(b)). However, if one does not have the closed-
form formula but has to solve numerically the minimization
problem of (1) for every generated w(b), the bootstrap procedure
can be prohibitively demanding in computation. Thus, our GMS
formulation via (3) can be thought of as an automatic way to
find a highly accurate approximation to the closed-form solution
(in the form of a neural network) of the minimization problem
of (1). Once this solution Ĝ is found, one can easily generate
bootstrap estimators with almost no computational cost.

For a case of n = 100 and p = 10, we set the true coefficient
θ = {1, 0, . . . , 0} and the regression variance one. The predic-
tors are independently generated from N(0, Ip). We generate a
dataset and evaluate random weight bootstrap estimators with
w ∼ n × Dirichlet(n;1n), and then numerically evaluate the
average loss of (1) on various weights from the trained generator
for the classical machine learning approach with B = 500 and
B = 5000, as well as the GMS. We initialize the optimization in
different five points for each procedure.

In Figure 1, we consider two performance measures for this
example: the training loss specified in (5) and the integrative
prediction loss (IPL) that can be defined as Ew

∥∥∥θ̂w − g(w)

∥∥∥2
.

The IPL is approximated by using 1,000,000 Monte Carlo eval-
uations, and the loss values are multiplied by n to adjust for
the scale of var(θ̂). Note that the GMS trains its generator G
by minimizing the integrative loss (3), whereas the naive gen-
erator g is trained using the l2-loss in (5) with B = 500 and
5000 training samples, respectively. As expected, Figure 1(a)
shows that the training l2-losses for the naive procedures are

Figure 1. Trace plots of (a) the training loss, and (b) the integrative prediction loss, in the logarithmic scale. Five lines for each optimization represent five distinct
initializations; and the red dashed and blue dotted lines indicate the conventional ML with B = 500 and B = 5000, respectively.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1087

significantly lower than those for the GMS. However, the IPLs
of the considered methods behave quite differently. The naive
minimizers (for the cases with B = 500 and 5000) first decrease
their IPLs rapidly, but after 200 iterations their IPLs begin to
increase. In contrast, the GMS seamlessly reduces its IPL. The
poor predictive performance of the naive procedure stems from
the fact that the l2-loss encourages the generator function ĝ to
overfit the training set θ̂ (1), . . . , θ̂ (B). Unlike the conventional
machine learning modeling, the GMS is quite resistant to over-
fitting, as we can sample w’s at near-zero computational cost
during the training of the generator function.

3. Generative Bootstrap Samplers

3.1. Bootstrap and Subgroup Bootstrap

The simplest use of the GMS is to bootstrap M-estimators, which
is a special case of form (3) without η and u(·). The weight
distribution is Multinom(n,1n/n) (or n × Dirichlet(n,1n) for
the Bayesian bootstrap). More precisely, we let φ be the param-
eter underlying the generator G and solve the optimization
problem: φ̂ = argminφ∈�Ew

[1
n

∑n
i=1 wi�(Gφ(w); yi)

]
. We call

this simple GMS application the Generative Bootstrap Sampler
(GBS).

Despite its considerable efficiency, the GBS framework has
a fundamental limitation for practical bootstrap applications:
the dimension of the generator domain equals the sample size
n. Even when computationally efficient neural networks are
used to model the generator, the convergence is quite slow
when the input dimension is high (say, tens of thousands).
We may further encounter technical issues such as memory
shortage as well, which is particularly severe for big data.
To address this limitation, we consider a subgroup weighting
strategy, which divides the dataset into subgroups and assigns
equal weights to observations within each subgroup. The sub-
grouping idea is primarily used for bootstrapping time series
datasets, referred to as block bootstrap (Lahiri 1999; Härdle,
Horowitz, and Kreiss 2003), in order to preserve the tempo-
ral association within bootstrapped samples. In contrast to the
time series applications, we use subgrouping (or blocking) to
reduce the number of weights, or more precisely, the domain
dimension of the generator function so as to save computational
costs.

Let [n] denote the index set {1, . . . , n} of the observations. We
consider an exclusive and exhaustive partition: I1, . . . , IS ⊂ [n]
such that Ii ∩ Ij = ∅, ∀i �= j, and ∪S

s=1Is = [n]. Without loss of
generality, we assume that the size of each Is is the same, that is,
|Is| = n/S for s = 1, . . . , S. We define a subgroup assignment
function h : [n] �→ [S] such that h(i) = s if i ∈ Is. Then,
for {α1, . . . , αS}T ∼ Pα , with Pα being an S-dimensional weight
distribution, we impose the same value of weight on all elements
in a subgroup as

wi = αh(i) for i = 1, . . . , n. (6)

and we denote wα = {αh(1), . . . , αh(n)}T ∈ R
n. As a result,

it follows that αh(i) = αh(k), if i, k ∈ Is for some s. Similar
to the vanilla GBS, setting α ∼ Multinomial(S,1S/S) or α ∼
S × Dirichlet(S,1S) result in the block-based nonparametric
bootstrap and Bayesian bootstrap, respectively.

As an illustration, we consider a simple linear regression
example by generating a dataset from the model with n = 1000,
p = 10 and the coefficients θ being a sequence of equi-spaced
values between −2 and 2. Each covariate is drawn iid from
N(0, 1), and the regression variance is set to one. The resulting
domain dimension of a vanilla G is 1000. Figure 2 shows individ-
ual histograms of bootstrap distributions with varying subgroup
sizes. Even when the number of subgroups is tiny (S = 5),
the obtained bootstrap distributions are acceptable, although
the variability tends to be underestimated. As S increases (S =
25), the quality of the approximation of the subgroup boot-
strap distribution improves significantly. When S = 100, the
subgroup bootstrap distributions are indistinguishable from the
target ones. When we use 100 subgroups (10 observations in
each subgroup), the input dimension is reduced to 100 from the
original 1000 but the resulting bootstrap distributions are nearly
identical to those from the standard bootstrap (see Figure 3). We
use S = 100 by default.

Remark 3.1. Under some regularity conditions, one can show
that the subgroup bootstrap is consistent when S is of a higher
order than

√
n (see the supplementary materials for a formal

proof).

3.2. Iterated Bootstrap

The iterated bootstrap method was proposed to improve the
inference accuracy of the simple bootstrap method, and was
shown both theoretically and empirically to achieve a higher-
order accuracy for the coverage of the constructed confidence
intervals and bias-corrections (Martin 1992; Lee and Young
1995, 1999; Hall 2013; McCarthy et al. 2018). More precisely,
an iterated bootstrap procedure involves nested levels of data
resampling.

The double bootstrap, which is the simplest iterated boot-
strap, first creates B bootstrap samples, y∗

b , for b = 1, . . . , B by
resampling from the original dataset, and then, for each boot-
strapped sample y∗

b , creates C second-level bootstrap samples,
y∗∗

bc , c = 1, . . . , C, by resampling from y∗
b . For each y∗

b and
y∗∗

bc , we denote the corresponding estimator of θ by θ̂∗
b and θ̂∗∗

bc ,
respectively. By iterating this step, we can simply extend this to
more iterated bootstrap cases.

Various procedures for constructing confidence intervals
using bootstrap have been proposed, such as the percentile
method (Hall 1992), the studentized method (Efron 1979; Hall
1988), the Bias-Corrected and accelerated method BCa (Efron
1987), and Approximated Bias Correction (ABC; Diciccio and
Efron 1992), etc. Even though BCa and ABC procedures enjoy
the second-order accuracy (fast convergence in coverage error),
a practical implementation of these procedures are not triv-
ial since it is difficult to calculate their acceleration factor
for general models. On the other hand, the percentile pro-
cedure is only first-order correct, and the studentized proce-
dure requires an iterated bootstrap unless an explicit form of
the standard error of the bootstrap estimator is available. To
improve the quality of the constructed CI, we consider using
double bootstraps as in the coverage calibration method (Hall
1986; Hall and Martin 1988) and studentized CI procedure

1088 M. SHIN, S. WANG, J. S. LIU

Figure 2. Histograms of block bootstrap distributions with various S for the coefficient of X1 (top), X5 (middle), and X10 (bottom) for each subfigure. The red line indicates
the density function of the target distribution (of the standard bootstrap).

Figure 3. Comparisons of subgroup bootstraps across different numbers of blocks.

(Hall 1988). The calibrated percentile two-sided CI via double
bootstrap achieves the second-order accuracy O(n−1), while its
single bootstrap counterpart only attains a rate of O(n−1/2).
However, applying the conventional double bootstrap requires
undesirably intensive computation: a total of B × C evalu-
ations of bootstrap estimators θ̂∗∗

bc for b = 1, . . . , B and
c = 1, . . . , C. Lee and Young (1999) showed that B and C
should be of a higher order than n4 and n2 for two-sided

CIs and of order n2 and n for one-sided CIs, respectively, so
that the coverage error rate of the Monte Carlo interval is
no greater than that of the theoretical double bootstrap inter-
val. The authors considered B = 1000 and C = 500 in
their simulations, resulting in a total of 500,000 evaluations,
which is an unmanageable size under the conventional bootstrap
framework.

3.3. GBS for Iterated Bootstrap

Extending the GBS to iterated bootstraps is immediate as it
is a special case of (3) with a weight distribution that has a
hierarchical structure. For a d-level iterated bootstrap proce-
dure, we may characterize its weight distribution hierarchi-
cally: w(1) ∼ Multinom(n,1n/n), . . . , w(d) | w(d−1) ∼
Multinom(n, w(d−1)/n). The computational advantage of the
GBS framework is particularly significant in these iterated
situations.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1089

Figure 4. GBS 95% CIs for the logistic regression example: The basic single bootstrap CI (top left); the naïve percentile single bootstrap CI (top right); the calibrated percentile
bootstrap CI via double bootstrap (bottom left); a studentized bootstrap CI via double bootstrap (bottom right). CIs covering true parameters (black dots) are colored in
green and otherwise in light red. Averaged width of CIs across parameters is reported in parentheses.

One drawback of the standard nonparametric bootstrap is
that each bootstrap sample only touches upon about 1 − e−1 ≈
63% of the observations due to the nature of multinomial sam-
pling, which appears to be somewhat wasteful. This loss is com-
pounded and become more significant in iterated bootstraps. A
smoothed version of these weight distributions is a hierarchy
of Dirichlet distributions, which enable each θ̂∗

b and θ̂∗
bc to use

all the observations (Præstgaard and Wellner 1993; Cheng and
Huang 2010; Xu et al. 2020). Thus, we mainly consider w | z ∼
n × Dirichlet (n, z) and z ∼ n × Dirichlet (n,1n). If a subgroup
bootstrap as in Section 3.1 is employed the subgrouped weights
follow w | z ∼ S×Dirichlet (S, z) and z ∼ S×Dirichlet (S,1S).
We train a generator function that covers both single and double
bootstraps by adopting a probabilistic mixture of single and
double bootstrap weights distributions; for example, generate
single or double bootstrap weights with 50%–50% chances.

3.4. An Illustration: Double-Bootstrap for Logistic
Regression

We consider the standard logistic regression model: yi ∼
Bernoulli

(
1

1+exp{−X�
i θ}

)
, where Xi ∈ Rp and θ ∈ R

p for

i = 1, . . . , n. To apply the GBS to this model, we simply set the
loss function to be (1−yi)XT

i θ + log(1+exp(−XT
i θ)) in (3). We

simulate a dataset that contains n = 400 observations, each with
p = 20 covariates generated independently from the standard
Gaussian. The true coefficient vector is set to be an equi-spaced
sequence between −3 and 3.

We examine 95% CIs constructed by various procedures,
including a bias-corrected percentile CI (single bootstrap,
denoted by “basic”), a naïve percentile CI (single bootstrap,
denoted by “Percentile”), a calibrated percentile CI (double

bootstrap), and a studentized CI (double bootstrap). The “basic”
CI is constructed as (2θ̂ − q∗

97.5%, 2θ̂ − q∗
2.5%), where q∗

β is the
β-quantile of the bootstrap distribution of θ̂∗. The calibrated
percentile CI is obtained as (2θ̂ − q∗

α̂U
, 2θ̂ − q∗

α̂L
), where α̂L

and α̂U are calibrated coverage levels via the double bootstrap
aiming at 2.5% and 97.5%, respectively. The studentized CI is
(θ̂ − t̃∗97.5%ŝ, θ̂ − t̃∗2.5%ŝ), where t̃∗β is the β-quantile of the stu-
dentized bootstrap statistic, and ŝ is the estimated standard error
(a detailed description of these bootstrap procedures is given
in Section B of the supplementary materials). The coverage
is calculated as the proportion of how many individual true
parameters are covered by the bootstrap marginal CIs. Figure 4
shows these CIs, which are marked green if they cover the true
θ , and in light red if not. Figure 4 shows that, despite the fact
that the basic single bootstrapped CI (top left) and the double
bootstrapped CIs (bottom left and bottom right) both satisfy the
target coverage 95%, the width of the single bootstrap is clearly
wider than those of the double (1.64 for the single vs. 1.18 and
1.29 for the double). In addition, Figure 4 also demonstrates
that the GBS bootstrap CIs are almost indistinguishable from the
classical bootstrap CIs. GBS for percentile bootstrap shares the
same poor coverage (80%) as the classical percentile bootstrap
(80%), along with nearly identical widths of the CIs (1.64 for
GBS vs. 1.67 for the classical bootstrap). The classical bias-
corrected percentile bootstrap (“Basic”) attains 95% coverage,
and so does GBS (Basic) counterpart.

For the double bootstrapped CIs, we generate 5000 bootstrap
samples for the first-level and 1000 for the second-level, resulting
in a total of 5000×1000 = 5,000,000 bootstrap evaluations. This
poses a significant computational challenge under the conven-
tional framework. In comparison, once the generator function is
trained (which takes less than 3 min for this example), the GBS
produces 10,000 bootstrap estimators in less than 0.1 sec, and its

1090 M. SHIN, S. WANG, J. S. LIU

Table 1. Cases of 5% in-sample error in classification.

(n, p) = (500, 30) (n, p) = (5000, 200) (n, p) = (10000, 300)

Method Cov Width Time Cov Width Time Cov Width Time

GBS1 (Basic) 0.967 2.595 140.8 + 0.1 0.958 0.318 152.9 + 0.2 0.947 0.235 163.6 + 0.4
GBS1 (Percentile) 0.398 2.595 140.8 + 0.1 0.424 0.318 152.9 + 0.2 0.403 0.235 163.6 + 0.4
GBS2 (Student) 0.962 1.762 140.8 + 15.6 0.929 0.298 152.9 + 45.0 0.930 0.225 163.6 + 63.9
GBS2 (Calibrated) 0.927 1.495 140.8 + 15.6 0.924 0.295 152.9 + 45.0 0.929 0.227 163.6 + 63.9

Basic (25C) 0.975 3.677 8.4 0.984 0.36 539.6 NA NA 4227.05
Basic (1C) 93.8 3833.3 25540.5
Percentile (25C) 0.405 3.677 8.4 0.444 0.36 539.6 NA NA 4227.05
BCa (25C) 0.818 NA 84.3 NA NA NA NA NA NA
Profile 0.678 2.290 0.7 NA NA 1310.8 NA NA 8670.7
Wald 0.752 2.253 <0.1 0.770 0.318 2.5 0.748 0.241 10.8

NOTE: Results of the simulation study for logistic regression models; “GBS1” and “GBS2” indicate single and double bootstraps implemented by the GBS, respectively; “Cov”,
“Width”, and “Time” mean the averages (over 20 replicates) of the coverage, the width, and the actual computing time (seconds) of each evaluated 95% CI, respectively;
for the computation time of the GBS, the black and red numbers indicate training and generation time (including post processing time for the GBS), respectively.

Table 2. Cases of 10% in-sample error in classification.

(n, p) = (500, 30) (n, p) = (5000, 200) (n, p) = (10000, 300)

Method Cov Width Time Cov Width Time Cov Width Time

GBS1 (Basic) 0.978 0.799 140.8 + 0.1 0.940 0.228 152.9 + 0.2 0.904 0.149 163.6 + 0.4
GBS1 (Percentile) 0.698 0.799 140.8 + 0.1 0.750 0.228 152.9 + 0.2 0.777 0.149 163.6 + 0.4
GBS2 (Student) 0.932 0.711 140.8 + 15.6 0.936 0.210 152.9 + 45.0 0.912 0.153 163.6 + 63.9
GBS2 (Calibrated) 0.885 0.668 140.8 + 15.6 0.932 0.210 152.9 + 45.0 0.882 0.155 163.6 + 63.9

Basic (25C) 0.985 0.844 8.4 0.972 0.228 539.6 NA NA 4227.05
Basic (1C) 93.8 3833.3 25540.5
Percentile (25C) 0.727 0.844 8.4 0.787 0.228 539.6 NA NA 4227.05
BCa (25C) 0.972 0.933 84.3 NA NA NA NA NA NA
Profile 0.875 0.745 0.7 NA NA 1310.8 NA NA 8670.7
Wald 0.890 0.742 <0.1 0.904 0.216 2.5 0.914 0.148 10.8

NOTE: “Basic”means bias-corrected percentile bootstrap CI and “Percentile”stands for classic percentile bootstrap CI. Results of BCa, profile likelihood CI (“Profile”) and Wald
interval (“Wald”) are also provided. As for classical bootstrap, “25C” represents 25 CPU cores for parallel computing and “’1C’ is a single-core computation.

computational advantage is even more significant when n and p
are larger, as shown next.

3.5. Scaling Up Toward Large n and p

We consider the same logistic regression model as in Sec-
tion 3.4, and the true regression coefficients {θj} is set to be
an equi-spaced sequence in (−c, c), where the value of c is
chosen to match the in-sample classification error to 5% or
10%. We compare the performance of the GBS with those
of the standard bootstrap, BCa (Efron 1987), Wald interval
and the profile likelihood confidence interval with sample size
n ∈ {500, 5000, 10000} and dimension of covariates p ∈
{30, 200, 300}. This simulation is replicated independently 20
times. We examine properties of the 95% CIs constructed by
these bootstrap methods (i.e., the average coverage and average
width, and their actual computing time). For standard bootstrap
procedures, we consider both a parallel computing environment
using 25 CPU cores (abbreviated as “25C”), and a single-core
computation (i.e., “1C”). The detailed setting is described in
Section 6.3, and the specification of the computing server is
given in the supplementary materials. We use the R package
boot to implement conventional bootstrap procedures. The
classical Wald CI based on Fisher information is obtained for
comparison. The profile likelihood CI is based on an asymptotic
approximation, and its computation is carried out by using
the confint function in R. Due to the computational burden,
the conventional CI procedures for large sized datasets are too

expensive, so we only report the estimated computation times
using two replicates.

Tables 1 and 2 compare traditional bootstrap procedures with
their GBS equivalents in various settings. The GBS procedures
are comparable to their conventional counterparts (“Basic” and
“Percentile” in the table) in terms of the coverage and width
of the constructed CIs. The standard bootstrap percentile CIs
(“Percentile”) have been shown to have low coverage in all simu-
lations. GBS1 (Percentile), a fast approximation to the bootstrap,
performs nearly equally badly. For high-dimensional logistic
regression, confidence intervals based on asymptotic approxi-
mation, such as the profile likelihood and the Wald CI, also
have low coverage (lower than the nominal 95%). In contrast,
the bias-corrected bootstrap (Basic”) attains very good coverage,
and so does its fast approximation, GBS1 (Basic). Appendix
D provides more detailed descriptions and analyses, including
GBS1 coverages against single bootstrap counterparts per repli-
cation. The results show that GBS can recover its original boot-
strap results almost perfectly. Additionally, the “Time” column
in Tables 1 and 2 reveals that GBS greatly reduces the classical
bootstrap’s computing time.

When (n, p) = (500, 30), the traditional bootstrap-based
CIs are significantly faster to compute. However, as data size
increases, the conventional bootstrap becomes prohibitively
expensive, taking more than an hour for (n, p) = (10000, 300)

using a parallel computation with 25C, and more than 7 hr
using 1C. Due to its heavy computational need, the BCa cannot
produce meaningful results for moderately large datasets (e.g.,

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1091

for (n, p) = (5000, 200) and (10000, 300)). The profile like-
lihood procedure (“Profile”), which is based on an asymptotic
approximation of the sampling distribution, is also quite expen-
sive when data size becomes large.

For the double bootstraps, the conventional repetitive com-
putations take more than 2.5 hr with parallel computation using
25C for the case with (n, p) = (500, 30), and would have taken
more than 48 days for the case with (n, p) = (10000, 300). As a
result, the conventional double bootstrap procedures are infeasi-
ble for multiple replicates, so their results are omitted in Tables 1
and 2. In contrast, the GBS training takes less than 3 min for
all examined settings, while the generation and post-processing
for the double bootstrap take about 1 min. Furthermore, the
double-bootstrap GBS2s requires very little extra computational
time, but achieves a significantly higher accuracy, than the single
bootstrap GBS1s.

4. Bootstrap Cross-Validation for Parameter Tuning
Via GMS

Tuning parameter selection has been a challenging and compu-
tationally intensive task for many statistical and machine learn-
ing algorithms since repetitive computations are often required
over a wide range of possible choices of the tuning parameter.
We note that the GMS framework is not only applicable to
bootstrap, but can also be used to expedite the computation
of Cross-Validation (CV) procedures. It is easy to see that for
a weight wi = 0, the corresponding term in the weighted
M-estimation loss function (1) is zero, which is equivalent to
ignoring observation yi. More generally, we denote w(−I) =
{w1, . . . , wn} with wi = 0 for i ∈ I, and {wi : i �∈ I} ∼ (n−|I|)×
Dirichlet(n−|I|;1n−|I|). Thus, index sets I and Ic can be viewed
as those for the test and training data, respectively. To train the
CV generator without the bootstrapping aspect, one may employ
a simpler weight distribution than the multinomial or Dirichlet,
such as setting all the weights in a randomly selected fold to be
zero, and the remaining to be one. Based on this setup, a simple
modification of Algorithm 1 (with strategies in Section 6.3) can
be used to train the generator for the K-fold CV (more details
in the supplementary materials). Once the generator is trained,
one can easily compute the estimated out-of-sample error across
different tuning parameters by alternating zero weight for each
fold.

More precisely, for b = 1, . . . , B and a tuning parameter λl in
a candidate set {λ1, . . . , λL}, we set zero weights on a fold I∗

k for
k = 1, . . . , K; that is, w(b,k)

i = 0 for i ∈ I∗
k . For i �∈ I∗

k , we can set
w(b,k)

i = 1 when only CV is of interest, or let {w(b,k)
i }i �∈I∗k ∼ (n −

|I∗
k |) × Dirichlet(n − |I∗

k |,1n−|I∗k |) so as to quantify uncertainty
in the CV via bootstrap. The bootstrapped CV estimator without
considering the test set I∗

k with a tuning parameter λl, denoted
by θ̂

(b)

(−I∗k),λl
, can be computed as Ĝ(w(b,k), λl). The CV loss for

the kth fold and λl follows as ê(b,k)
l = ∑

i∈I∗k
�(θ̂

(b)

(−I∗k),λl
; yi)/|I∗

k |.
After repeating this step for all the K folds, we obtain the
bootstrapped K-fold CV errors as ē(b)

l = ∑K
k=1 ê(b,k)

l /K. After
obtaining ē(b)

l for l = 1, . . . , L and b = 1, . . . , B, one can easily
identify the bootstrap distribution of the out-of-sample loss via

the empirical distribution of {ē(b)

l }b=1,...,B under λl, as well as
confidence bands of the out-of-sample loss over {λ1, . . . , λL}.

Moreover, with l(b) = argminl{ē(b)

l }, the empirical
distribution of {λ(b)

min
�= λl(b) , b = 1, . . . , B} serves as the

bootstrap distribution of the minimizer of CV errors and
can naturally quantify the uncertainty of the chosen tuning
parameter (an example is given in the left of Figure 6). For
example, this bootstrap distribution {λ(b)

min} provides us an
alternative to the ad hoc one-standard-error rule commonly
recommended for Lasso regression, in which one chooses the
most parsimonious model whose CV error is no more than one
standard deviate above that of the best model. In contrast, with
the availability of the bootstrap distribution of λmin, we may
pursue a more parsimonious model by using the lower (1−α)%
confidence bound of this distribution as our chosen λ.

Cross-validation for LASSO and ridge regression. Two rep-
resentative examples of the penalized M-estimation are ridge
(Hoerl and Kennard 1970) and LASSO regression models (Tib-
shirani 1996), with the corresponding loss function for GMS:

Ew,λ
[1

n

n∑
i=1

wi{yi − XT
i G(w, λ)}2 + λu(G(w, λ))

]
, (7)

with u(x) = ‖x‖2
2 for the ridge regression and u(x) = ‖x‖1

for the LASSO. This setting is closely related to the weighted
Bayesian bootstrap (WBB) setting analyzed recently in Newton,
Polson, and Xu (2021) and Ng and Newton (2022). For this
problem the GMS learns the mapping between (w, λ) and β̂w,λ,
the optimal solution under the WBB setting. After obtaining
the trained Ĝ from (7), for a given input w∗ and λ∗, its output
Ĝ(w∗, λ∗) approximates the minimizer of

∑n
i=1 w∗

i �(θ ; yi)/n +
λ∗u(θ) with respect to θ . We simulated from a linear regression
model with n = 500, p = 50, the true parameter θ0 =
{1, −2, 1, 0, . . . , 0}, and σ 2

0 = 1. Each covariate vector Xi follows
iid N(0, �) with �kl = 1 for k = l and �kl = 1/2 for k �= l.

Figure 5 shows solution-path plots that depict the relations
between the tuning parameter choices and the corresponding
estimated ridge and LASSO estimators. The x-axis indicates
the l2 norm of the ridge regression or l1 norm of the LASSO
estimators based on a series of λ’s, and the y-axis, the value of
the estimated coefficient. After the generator is trained by min-
imizing (7), ridge (top left) and LASSO (bottom left) coefficient
values are simply Ĝ(1, λ), which generates the curves in Figure 5
by letting λ vary from 0.0006 to 0.6. The resulting solution-
paths of the GMS ridge and LASSO procedures show that the
proposed method approximates the standard ones obtained by
LARS (Efron et al. 2004) very accurately.

We further investigate how the GMS-bootstrap helps to
quantify uncertainty in choosing λ. Figure 6 illustrates some
benefits of the bootstrapped CV procedure for the LASSO
example. The left panel shows a 95% confidence band for the
CV errors across λ. As Efron and Tibshirani (1997) noted, the
bootstrapped CV improves the performance of prediction error
estimation. However, due to heavy computational burden in the
standard bootstrap algorithm, applications of the bootstrapped
CV have been greatly hindered. The example in Figure 6 shows
that the GMS helps overcome this computational difficulty. The

1092 M. SHIN, S. WANG, J. S. LIU

Figure 5. Solution paths of the GMS ridge (top left), the standard ridge regression (top right) and the GMS LASSO (bottom left), and the LARS (bottom right).

Figure 6. Left: The 95% confidence band of CV error evaluated from the GMS bootstrap with random weights, and the red solid line indicates the mean curve. Middle: The
GMS bootstrapped distribution of the CV-error minimizer λmin. Right: CV errors based on the standard LASSO and the GMS with the constant weight vector 1. The purple
vertical line indicates the value of λ that minimizes the CV error.

center panel depicts the WBB distribution of the minimizer λ of
the CV errors (the red line is the estimated density function). If
the CV error curve is of main interest, one can easily generate it
by the GMS using binary weights (corresponding to the chosen
and left-out folds) as the input. In the right panel of Figure 6,
the CV error curve obtained by the standard CV computation is
nearly identical to that by the GMS.

5. Quantile Regression Inference at Various Quantile
Levels

Quantile regression models, which assume that a certain quan-
tile of the response variable linearly depends on the covariates,
have been commonly used for robust regression analysis (Yu and
Moyeed 2001; Yu, Lu, and Stander 2003; Koenker 2004). More
precisely, for a given η ∈ (0, 1), the conditional η-th quantile
of the response given Xi is modeled by XT

i θ . The standard loss
function for fitting such a model is

�(θ ; yi, Xi) = ρη(yi − XT
i θ), (8)

where ρη(u) = (η−I(u < 0))u. The inference for the regression
coefficients in this setting is more challenging than that for

parametric regression models, because the sampling distribu-
tion of the coefficient estimates often relies on the regression
error density function, which needs to be estimated and is a
challenging task by itself in high-dimensional settings (Koenker
1994). In routine applications of quantile regression analyses,
bootstrap procedures are popular to use for approximating the
sampling distribution of the estimates (Hahn 1995; Kochergin-
sky, He, and Mu 2005; Feng, He, and Hu 2011), which can be
computationally demanding. Furthermore, when a practitioner
is interested in investigating multiple quantile levels, it is also
necessary to repeat the bootstrap procedure multiple times, each
at a different quantile level. Such a computational burden is
prohibitive when the data size is large.

By using �(G(w, η); yi, Xi) = ρη(yi − X�
i G(w, η)) in (3), we

apply the GMS to overcome the computational challenges for the
inference of quantile regression models with a GMS loss of

Ĝ = argminGEw,η
[n∑

i
wiρη(yi − X�

i G(w, η))
]

, (9)

where Ew,η is the expectation operator on w and η, assuming
that η follows some distribution Pη whose support is (0,1) and

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1093

independent with w. A default choice is to add random noises
to the candidate set of quantile levels, and let w follow the
probability law in (6).

To demonstrate the effectiveness of this procedure, we test the
method on a simulation setting examined in Feng, He, and Hu
(2011). The dataset is generated from the model yi = XT

i θ0 +
3−1/2[2 + {1 + (x1i − 8)2 + x2i}/10]εi, i = 1, . . . , n, where
Xi = (xi1, . . . , xip)�, n = 500, p = 5, θ0 = 1�

5 , and εi ∼ t3.
We let x2i = 1 for i ≤ 400 and = 0 for i > 400, and generate the
other covariates independently from the standard log-normal
distribution.

As in Feng, He, and Hu (2011), we consider the wild boot-
strap, as well as the standard bootstrap. Figure 7(a)–(c) compare
the 90% confidence bands of several coefficients generated by the
GMS with those obtained by the standard bootstrap and the wild
bootstrap over quantiles varying from 0.05 and 0.95, showing
that the approaches result in nearly identical bands.

To investigate computational efficiency of the GMS for quan-
tile regression, we increase the sample size and the number of
predictors in the above simulation model to (n, p) = (1000, 50),
(2000, 100), (3000, 150), and (5000, 300), respectively, and con-
sider quantile levels varying from 0.05 to 0.95 (total 19 quantile
levels). We set the first five coefficients of θ0 to be one and the
others be zero. Our target is to obtain 5000 bootstrap samples
under each setting. Due to heavy computational burden of the
standard bootstrap procedure, we compute only five bootstrap
evaluations and report an estimated time from them (e.g., mul-
tiplying 1000 to the time taken for the five evaluations). Fig-
ure 8 depicts the computation time required for each proce-
dure. While the GMS can be trained in less than 10 min for
moderately large data size (n = 5000, p = 300), the standard
bootstrap requires more than 30 min for the smallest dataset
(n = 1000, p = 50) and about 3 months for the case of (n =
5000, p = 300).

6. Computational Strategies for Training the
Generator

6.1. Multilayer Perceptron

Neural networks have been shown effective for approximat-
ing functions with complicated structures. Recently, researchers
have experimented with various novel ways of using neural net-
works, such as constructing generators of real-life-like images
and creating generative adversarial networks for approximat-
ing high-dimensional distributions (Goodfellow et al. 2014;
Arjovsky, Chintala, and Bottou 2017; Ledig et al. 2017; Wang
et al. 2018; Karras et al. 2018). The simplest neural network
structure is a class of MLPs/FNNs constructed by composing
activated linear transformations. For k = 1, . . . , K, let gk denote
the feed-forward mapping represented by N(k) hidden nodes,
where gk : RN(k) �→ R

N(k+1) is defined as gk(X) = σ(U(k)X +
b(k)) ∈ R

N(k+1) , where X ∈ R
N(k) is the input variable of gk.

Also, this function is characterized by a “weight” parameter and
a “bias” parameter: the N(k+1) × N(k) weight matrix U(k) and
the N(k+1)-dimensional bias vector b(k) = {b(k)

1 , . . . b(k)
N(k)}. A

K-layer MLP function g : RN(1) �→ R
D can be defined by the

composition of these functions as

g(X) = L ◦ gK ◦ · · · ◦ g1(X), (10)

where L : RN(K) �→ R
D is a linear function that maps the final

hidden layer gK ◦ · · · ◦ g1(X) to the D-dimensional output space
of g. Commonly used activation functions include the sigmoid
function, the hyperbolic tangent function, the Rectified Linear
Unit (ReLU) (Nair and Hinton 2010), the Exponential Linear
Unit (Clevert, Unterthiner, and Hochreiter 2015), the Gaussian
Error Linear Unit (Hendrycks and Gimpel 2016), etc. We here
employ neural networks with the ReLU activation function
σ(t) = max{t, 0} to construct generator G in (3) in a novel
way as characterized by the integrative loss (3) and the weight
multiplicative MLP explained below.

6.2. Weight Multiplicative MLP

Despite its generalizability and practicability, we observe that
the simple MLP converges slowly for our GMS applications (as
shown in Figure 9). We propose a modification motivated by
the Taylor approximation of the first derivative of the weighted
loss function. For illustration, let us consider the weighted M-
estimation loss

∑n
i=1 wi�(θ ; yi) and its optimizer θ̂w in (1) for

a case of p = 1 (ignoring η and λ for simplicity). Under mild
conditions, we assume that

∑n
i=1 wi�′(θ̂w; yi) = 0, where �′ is

the first derivative of � with respect to θ . Then, by using a Taylor
approximation of �′ at a local region of some arbitrary g(w), we
obtain that

0 =
n∑

i=1
wi�

′(θ̂w; yi) ≈
n∑

i=1
wi�

′(g(w); yi)

+
n∑

i=1
wi�

′′(g(w); yi)(θ̂w − g(w)), (11)

where �′′(θ , y) denotes the second derivative of � with respect
to θ .

The approximation term used in (11) contains two different
kinds of approximations: the approximation of θ̂w ≈ g(w)

and the Taylor’s approximation for
∑n

i=1 wi�′(θ̂w; yi). The first
kind of approximation can be justified by the universal approx-
imation theorem for neural networks (Hornik, Stinchcombe,
and White 1989; Barron 1993; Lu et al. 2017; Kratsios and
Papon 2022). The universal approximation theorem states that
a feed-forward neural network is capable of approximating any
continuous function, if the size of the neural network is large
enough.

Thus, we have

θ̂w ≈ g(w) −
n∑

i=1

wi�′(g(w); yi)∑n
j=1 wj�′′(g(w); yj)

�= g(w) +
n∑

i=1
wihi(w).

(12)
Motivated by this approximation, we propose a new neural
network structure called the Weight Multiplicative MLP (WM-
MLP) as the sum of a simple MLP and a weight multiplicative
one:

G(w, λ, η) = L1 ◦ BK(w, λ, η)︸ ︷︷ ︸
Simple MLP:

g(w)

+ L2 ◦ ({f ◦ BK(w, λ, η)} � w)︸ ︷︷ ︸
Weight multiplicative network:∑n

i=1 wihi(w,λ,η)

,

(13)

1094 M. SHIN, S. WANG, J. S. LIU

Figure 7. (a)–(c): Comparisons between the 90% confidence bands obtained from the GMS (blue), the classical bootstrap (yellow) and the classical wild bootstrap (red)
across quantile levels ranging from 5% to 95%. The quantreg R package is used for the conventional bootstrap and wild bootstrap.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1095

Figure 8. Computation time for the GMS quantile regression (black solid line with
triangle marks) and its conventional counterpart (red dashed line with filled-dot
marks).

Figure 9. Comparison of the losses obtained by the simple MLP and the WM-MLP
with various numbers of hidden layers and nodes. The number noted after “MLP‘’
indicates the number of layers K .

where “�” indicates an element-wise multiplication operator;
L1 : R

H �→ R
p and L2 : R

n �→ R
p are linear functions;

BK : Rn+1+1 �→ R
H and f : RH �→ R

n are simple MLPs with
K hidden layers and one hidden layer, respectively. For a large n,
the subgroup bootstrap in Section 3.1 reduces the dimension of
w and the network size.

To demonstrate the improvement, we compare the perfor-
mances of WM-MLP and the simple MLP for various sizes of
hidden nodes (500, 1000, 2000) and layers (K = 1, 2, 3), for a
logistic regression example. The true θ ’s in the simulations are
equi-spaced between −0.5 and 0.5 with p = 100 and n = 1000.
We train the generator G from ten random initializations and
report the average loss values after 30,000 iterative updates for
each MLP structure. The results are summarized in Figure 9,
demonstrating that for all network sizes the proposed WM-
MLP outperforms the simple MLP uniformly. In comparison to
a large-sized MLP with three hidden layers and 2000 neurons,
even a small-scale WM-MLP with a single hidden layer and 500
neurons achieves a lower loss, whereas the simple MLP with
one hidden layer performs much poorly. For all examples in
the article, we used the WM-MLP with three hidden layers as a
default, and observed that the resulting generator function based
on the WM-MLP performed satisfactorily.

6.3. Computational Strategy in Optimization

It is straightforward to optimize the GMS integrative loss (3)
because the expectation can be approximated by a few Monte
Carlo samples at each iteration. We use a variant of the popular
SGD algorithms such as Adam (Kingma and Ba 2014), AdaGrad

Algorithm 1 A general algorithm to train the GMS.
• Set Pα,λ,η , S (subgroup size), M (Monte Carlo sample size), and T (total
iterations).
• Randomly split the full data into S subgroups, resulting in an index function
h(·) in (6).
• Initialize the neural net parameter φ(0).
• Set t = 0.
while the stop condition is not satisfied or t < T do

• Independently sample M values of α’s, λ’s, and η’s from Pα,λ,η .
• Consider L = 1

M
∑M

m=1
∑n

i=1 α
(m)
h(i) l(G

φ(t) (α(m), λ(m), η(m)); yi)/n +
λ(m)u(G

φ(t) (α(m), λ(m), η(m))),
where α(m) is the mth sample of M α’s.
• Update φ(t+1) by using the gradient of L via a SGD step.
• Let t = t + 1.

end while

(Duchi, Hazan, and Singer 2011), RMSProp (Tieleman et al.
2012), etc, to iteratively update the neural net parameters until
the algorithm converges. Algorithm 1 summarizes the detailed
steps of the GMS. As in (4), this algorithm samples M values of
w’s and λ’s to approximate the expectation and updates the neu-
ral network parameters via SGD. It is not uncommon nowadays
for a dataset to be extremely large, to the point that the full data
size surpasses the memory capacity of the computer in use. Data
subsampling would be advantageous in this setting for training
the GMS, which partially updates the weights corresponding to
the subsampled data in the same spirit as stochastic optimization
(Allen-Zhu, Li, and Song 2019).

Technical details of the optimization. In all our examples, we
use the WM-MLP with three hidden layers and 1,000 hidden
neurons in each layer. In Pytorch, algorithm Adam is used
with a learning rate of 0.0003 and a decay rate of t−0.3 by default.
We use full samples in the SGD optimization without mini-
batches because the data sizes of the examples we considered are
manageable. However, when the data size is massive, minibatch
subsampling would be necessary.

Choosing distributions for w, λ, and η. For bootstrap proce-
dures, the distribution of bootstrap weights w (or α) can be easily
chosen depending on the practitioner’s interest; for example,
w ∼ Multinomial(n,1n/n) or w ∼ n×Dirichlet(n,1n). When
n is excessively large, the dimension of w can be reduced by
the subgroup bootstrapping method in Section 3.1. As a general
rule, when n > 500, we recommend considering subgrouping.
While our theoretical evidence suggests that S � n1/2 is optimal
(see Section A.1 in supplementary materials), empirically setting
S to a few hundreds performs well in all situations shown in this
article. By default, S = 100 was used. Choosing the training
distributions for λ and η is more arbitrary because usually we
have no reference distributions for λ and η unlike the case
of w. We may first set candidate sets for λ and η in advance
(which can be large in size) and then add some random noises
to form mixture distributions. For example, we can generate
λ = exp{log λ′ + ε}, where λ′ is randomly selected from the
candidate set and ε ∼ N(0, δ) with δ = 0.22 as default. For the
quantile regression example in Section 5, we generate η = η′ +
N(0, 0.032) with η′ randomly selected from a pre-determined
candidate set, and then truncated to be in (0.001, 0.999).

1096 M. SHIN, S. WANG, J. S. LIU

Training stopping criteria. In order to judge the convergence
in training the generator function, we first set the maximum
number of epochs depending on computational resources at
hands (our default is 20,000 epochs). In addition to this stopping
criterion, we also consider an early stopping rule that has been
commonly used in training general neural networks (Prechelt
1998; Li, Soltanolkotabi, and Oymak 2020; Heckel and Yilmaz
2021) to determine when we stop the optimization algorithm
before reaching the maximum number of epochs. Intuitively, we
stop the algorithm when the updates do not further reduce the
loss value. More specifically, for each epoch t, we evaluate the
averaged loss value Lt on epoch t and compare it with those of
the previous epochs {Lt−�, � = 1, 2, . . . , k} for some lags. We
terminate the SGD algorithm if Lt is within ε of a quantile (such
as the median) of the previous losses. We recommend to monitor
the change of loss values in the previous k=100 epochs, and use
the 25th percentile with ε = 0.01.

6.4. Limitation of GBS and GMS

Despite the empirical successes of GBS and GMS in various
applications examined in this article, they are not free of limita-
tions. First, unlike the conventional bootstrap procedures, even
for a small-sized dataset, training the generator function of GBS
and GMS requires a certain amount of computation time as
minimum in training the generator. Tables 1 and 2 show that the
GBS for the smallest dataset (n = 500, p = 30) takes about 15
times longer computation time compared to the standard boot-
strap using 25 cores in parallel. Second, like all other applications
of neural network, choosing optimal hyperparameters such as
learning rate, widths of networks, the number of neurons, etc,
is not systematically justified and somewhat heuristic. However,
we find that our default settings for the WM-MLP proposed in
Section 6.3 result in accurate approximations for our examples.
Third, when the output dimension (the dimension of θ) and
the input dimension (the subgroup size) for the generator are
high, the resulting computation can be bottlenecked in terms
of the computational time and the convergence of optimization.
Even though for a case of (n = 10,000, p = 300) in Tables 1
and 2, the GBS approximates the target bootstrap estimators
well, the convergence of training would be slow under higher
dimensional settings. As a result, it would be desirable to con-
sider a larger network to approximate more complicated target
function, resulting in even more longer computation time.

7. Conclusion

We propose the GMS as a general computational approximation
framework to accelerate repeated calculations for (penalized)
weighted M-estimations. The GMS was shown effective for a
variety of statistical inference procedures, including bootstrap
methods and cross-validations for general M-estimators. We
apply the GMS to a variety of models, including LASSO, logistic
regression, quantile regression, etc. The GMS performs well
in all of the situations we investigated, and the weighted M-
estimators generated by the GMS are sufficiently accurate and
comparable to the much more computationally expensive tra-
ditional solutions for all inference purposes. By lowering the

computational barrier associated with repetitious data-splitting
or data-sampling processes such as (bootstrapped) CVs and
iterated bootstrap, the GMS opens up a new perspective on mod-
ern statistics. To date, these approaches have been less noticed
and rarely practiced by the statistical community not because
they are less valuable, but because their computation cost is
prohibitively high. We expect that the GMS will prove to be an
effective tool for augmenting the power of statistical models in
the era of big data.

Supplementary Materials

R-package: R package for GMS can be found at the following URL: https://
github.com/shijiew97/GMS.

Supplementary Material: The supplementary material contains proofs of
theorems, additional simulation analysis and details of training algo-
rithms. (.pdf)

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported in part by the NSF grant DMS-2015411.

References

Allen-Zhu, Z., Li, Y., and Song, Z. (2019), “A Convergence Theory for
Deep Learning via Over-Parameterization,” in International Conference
on Machine Learning, pp. 242–252, PMLR. [1095]

Arjovsky, M., Chintala, S., and Bottou, L. (2017), “Wasserstein Generative
Adversarial Networks,” in International Conference on Machine Learning,
pp. 214–223. [1085,1093]

Barbe, P., and Bertail, P. (2012), The Weighted Bootstrap (Vol. 98), New York:
Springer. [1084]

Barron, A. R. (1993), “Universal Approximation Bounds for Superpositions
of a Sigmoidal Function,” IEEE Transactions on Information Theory, 39,
930–945. [1093]

Chatterjee, S., and Bose, A. (2005), “Generalized Bootstrap for Estimating
Equations,” The Annals of Statistics, 33, 414–436. [1084]

Cheng, G., and Huang, J. Z. (2010), “Bootstrap Consistency for General
Semiparametric m-estimation,” The Annals of Statistics, 38, 2884–2915.
[1084,1089]

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015), “Fast and Accu-
rate Deep Network Learning by Exponential Linear Units (elus),” arXiv
preprint arXiv:1511.07289. [1093]

Cybenko, G. (1989), “Approximation by Superpositions of a Sigmoidal
Function,” Mathematics of Control, Signals and Systems, 2, 303–314.
[1085]

Diciccio, T., and Efron, B. (1992), “More Accurate Confidence Intervals in
Exponential Families,” Biometrika, 79, 231–245. [1087]

Duchi, J., Hazan, E., and Singer, Y. (2011), “Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization,” Journal of Machine
Learning Research, 12, 2121–2159. [1095]

Efron, B. (1979), “Bootstrap Methods: Another Look at the Jackknife,” The
Annals of Statistics, 7, 1–26. [1084,1087]

(1987), “Better Bootstrap Confidence Intervals,” Journal of the
American Statistical Association, 82, 171–185. [1084,1087,1090]

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), “Least Angle
Regression,” The Annals of Statistics, 32, 407–499. [1091]

Efron, B., and Tibshirani, R. (1997), “Improvements on Cross-Validation:
The 632+ Bootstrap Method,” Journal of the American Statistical Associ-
ation, 92, 548–560. [1091]

https://github.com/shijiew97/GMS
https://github.com/shijiew97/GMS

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1097

Feng, X., He, X., and Hu, J. (2011), “Wild Bootstrap for Quantile Regres-
sion,” Biometrika, 98, 995–999. [1092,1093]

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014), “Generative Adversarial Nets,”
in Advances in Neural Information Processing Systems, pp. 2672–2680.
[1085,1093]

Hahn, J. (1995), “Bootstrapping Quantile Regression Estimators,” Econo-
metric Theory, 11, 105–121. [1084,1092]

Hall, P. (1986), “On the Bootstrap and Confidence Intervals,” The Annals of
Statistics, 14, 1431–1452. [1087]

(1988), “Theoretical Comparison of Bootstrap Confidence Inter-
vals,” The Annals of Statistics, 16, 927–953. [1087,1088]

(1992), “On Bootstrap Confidence Intervals in Nonparametric
Regression,” The Annals of Statistics, 20, 695–711. [1087]

(2013), The Bootstrap and Edgeworth Expansion, New York:
Springer. [1085,1087]

Hall, P., and Martin, M. A. (1988), “On Bootstrap Resampling and Iteration,”
Biometrika, 75, 661–671. [1084,1087]

Härdle, W., Horowitz, J., and Kreiss, J.-P. (2003), “Bootstrap Methods for
Time Series,” International Statistical Review, 71, 435–459. [1087]

Heckel, R., and Yilmaz, F. F. (2021), “Early Stopping in Deep Networks:
Double Descent and How to Eliminate It,” in International Conference
on Learning Representations. [1096]

Hendrycks, D., and Gimpel, K. (2016), “Gaussian Error Linear Units
(Gelus),” arXiv preprint arXiv:1606.08415. [1093]

Hoerl, A. E., and Kennard, R. W. (1970), “Ridge Regression: Biased Estima-
tion for Nonorthogonal Problems,” Technometrics, 12, 55–67. [1091]

Hornik, K., Stinchcombe, M., and White, H. (1989), “Multilayer Feedfor-
ward Networks are Universal Approximators,” Neural Networks, 2, 359–
366. [1093]

Huber, P. J. (1992), “Robust Estimation of a Location Parameter,” in Break-
throughs in Statistics, eds. S. Kotz and N. L. Johnson, pp. 492–518, New
York: Springer. [1084]

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018), “Progressive Growing
of Gans for Improved Quality, Stability, and Variation,” in International
Conference on Learning Representations. [1093]

Kingma, D. P., and Ba, J. (2014), “Adam: A Method for Stochastic Optimiza-
tion,” arXiv preprint arXiv:1412.6980. [1095]

Kleiner, A., Talwalkar, A., Sarkar, P., and Jordan, M. I. (2014), “A Scalable
Bootstrap for Massive Data,” Journal of the Royal Statistical Society, Series
B, 76, 795–816. [1084]

Kocherginsky, M., He, X., and Mu, Y. (2005), “Practical Confidence Inter-
vals for Regression Quantiles,” Journal of Computational and Graphical
Statistics, 14, 41–55. [1092]

Koenker, R. (1994), “Confidence Intervals for Regression Quantiles,” in
Asymptotic Statistics, eds. P. Mandl and M. Hušková, pp. 349–359, Hei-
delberg: Springer. [1092]

(2004), “Quantile Regression for Longitudinal Data,” Journal of
Multivariate Analysis, 91, 74–89. [1092]

Kratsios, A., and Papon, L. (2022), “Universal Approximation Theorems
for Differentiable Geometric Deep Learning,” The Journal of Machine
Learning Research, 23, 8896–8968. [1093]

Lahiri, S. N. (1999), “Theoretical Comparisons of Block Bootstrap Meth-
ods,” Annals of Statistics, 27, 386–404. [1087]

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta,
A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al. (2017), “Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial
Network,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4681–4690. [1093]

Lee, S. M., and Young, G. A. (1995), “Asymptotic Iterated Bootstrap Confi-
dence Intervals,” The Annals of Statistics, 23, 1301–1330. [1085,1087]

(1999), “The Effect of Monte Carlo Approximation on Coverage
Error of Double-Bootstrap Confidence Intervals,” Journal of the Royal
Statistical Society, Series B, 61, 353–366. [1085,1087,1088]

Li, M., Soltanolkotabi, M., and Oymak, S. (2020), “Gradient Descent with
Early Stopping is Provably Robust to Label Noise for Overparameterized
Neural Networks,” in International Conference on Artificial Intelligence
and Statistics, pp. 4313–4324, PMLR. [1096]

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017), “The Expressive Power
of Neural Networks: A View from the Width,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems, pp.
6232–6240. [1085,1093]

Martin, M. A. (1992), “On the Double Bootstrap,” in Computing Science and
Statistics, eds. C. Page and R. LePage, pp. 73–78, New York: Springer.
[1085,1087]

McCarthy, D., Zhang, K., Brown, L. D., Berk, R., Buja, A., George,
E. I., and Zhao, L. (2018), “Calibrated Percentile Double Bootstrap for
Robust Linear Regression Inference,” Statistica Sinica, 28, 2565–2589.
[1084,1085,1087]

Nair, V., and Hinton, G. E. (2010), “Rectified Linear Units Improve
Restricted Boltzmann Machines,” in Proceedings of the 27th International
Conference on International Conference on Machine Learning, pp. 807–
814. [1093]

Newton, M. A., Polson, N. G., and Xu, J. (2021), “Weighted Bayesian Boot-
strap for Scalable Posterior Distributions,” Canadian Journal of Statistics,
49, 421–437. [1091]

Newton, M. A., and Raftery, A. E. (1994), “Approximate Bayesian Inference
with the Weighted Likelihood Bootstrap,” Journal of the Royal Statistical
Society, Series B, 56, 3–26. [1084]

Ng, T. L., and Newton, M. A. (2022), “Random Weighting in Lasso Regres-
sion,” Electronic Journal of Statistics, 16, 3430–3481. [1091]

Præstgaard, J., and Wellner, J. A. (1993), “Exchangeably Weighted Boot-
straps of the General Empirical Process,” The Annals of Probability, 21,
2053–2086. [1084,1089]

Prechelt, L. (1998), “Early Stopping-but When?” in Neural Networks: Tricks
of the Trade, eds. G. Montavon, G. B. Orr, and K.-R. Müller, pp. 55–69,
Berlin: Springer. [1096]

Rubin, D. B. (1981), “The Bayesian Bootstrap,” The Annals of Statistics, 9,
130434. [1084,1085]

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), “Learning Rep-
resentations by Back-Propagating Errors,” Nature, 323, 533–536. [1085]

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society, Series B, 58, 267–288. [1085,1091]

Tieleman, T., Hinton, G., et al. (2012), “Lecture 6.5-rmsprop: Divide the
Gradient by a Running Average of its Recent Magnitude,” COURSERA:
Neural Networks for Machine Learning, 4, 26–31. [1095]

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., and Catanzaro, B.
(2018), “High-Resolution Image Synthesis and Semantic Manipulation
with Conditional Gans,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8798–8807. [1093]

Xu, L., Gotwalt, C., Hong, Y., King, C. B., and Meeker, W. Q. (2020),
“Applications of the Fractional-Random-Weight Bootstrap,” The Amer-
ican Statistician, 74, 345–358. [1089]

Yu, K., Lu, Z., and Stander, J. (2003), “Quantile Regression: Applications and
Current Research Areas,” Journal of the Royal Statistical Society, Series D,
52, 331–350. [1092]

Yu, K., and Moyeed, R. A. (2001), “Bayesian Quantile Regression,” Statistics
& Probability Letters, 54, 437–447. [1092]

	Abstract
	1. Introduction
	2. Generative Multi-Purpose Sampler
	2.1. The Basic Formulation
	2.2. Intuitions for Potential Gains
	2.3. Illustration with a Simple Example

	3. Generative Bootstrap Samplers
	3.1. Bootstrap and Subgroup Bootstrap
	3.2. Iterated Bootstrap
	3.3. GBS for Iterated Bootstrap
	3.4. An Illustration: Double-Bootstrap for Logistic Regression
	3.5. Scaling Up Toward Large n and p

	4. Bootstrap Cross-Validation for Parameter Tuning Via GMS
	5. Quantile Regression Inference at Various Quantile Levels
	6. Computational Strategies for Training the Generator
	6.1. Multilayer Perceptron
	6.2. Weight Multiplicative MLP
	6.3. Computational Strategy in Optimization
	6.4. Limitation of GBS and GMS

	7. Conclusion
	Supplementary Materials
	Disclosure Statement
	Funding
	References

