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Abstract

The first successful detection of gravitational waves by ground-based obser-
vatories, such as the Laser Interferometer Gravitational-Wave Observatory
(LIGO), marked a revolutionary breakthrough in our comprehension of the
Universe. However, due to the unprecedented sensitivity required to make
such observations, gravitational-wave detectors also capture disruptive noise
sources called glitches, potentially masking or appearing as gravitational-
wave signals themselves. To address this problem, a community-science
project, Gravity Spy, incorporates human insight and machine learning to
classify glitches in LIGO data. The machine learning classifier, integrated
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into the project since 2017, has evolved over time to accommodate increas-
ing numbers of glitch classes. Despite its success, limitations have arisen in
the ongoing LIGO fourth observing run (O4) due to its architecture’s sim-
plicity, which led to poor generalization and inability to handle multi-time
window inputs effectively. We propose an advanced classifier for O4 glitches.
Our contributions include evaluating fusion strategies for multi-time window
inputs, using label smoothing to counter noisy labels, and enhancing inter-
pretability through attention module-generated weights. This development
seeks to enhance glitch classification, aiding in the ongoing exploration of
gravitational-wave phenomena.

Keywords: LIGO, Glitch Classification, Gravity Spy, O4, Machine
Learning, Attention

1. Introduction

The first discovery of gravitational waves, a pivotal element in Einstein’s
theory of general relativity [1], has opened up an entirely new window in the
cosmos. The Laser Interferometer Gravitational-Wave Observatory (LIGO)
[2] achieved groundbreaking success in detecting these ripples in spacetime
for the first time in September 2015 [3], fundamentally transforming our un-
derstanding of the Universe. Later on, Virgo [4] made its first detection of
gravitational waves in August 2017 [5, 6] and KAGRA initiated its gravita-
tional waves observations in April 2020 [7, 8]. However, achieving these obser-
vations demands exceptionally sensitive and intricate detectors to be able to
measure minuscule fluctuations in spacetime [9]. This heightened sensitivity,
in turn, leads to the detection of diverse sources of noise, with the poten-
tial to obscure or mimic authentic gravitational-wave signals [10, 11]. Among
these noises, bursts of non-Gaussian noise caused by environmental or instru-
mental factors, known as glitches, are particularly disruptive to measuring
gravitational waves. The origins of many glitches remain largely unknown
[12, 13]. The process of characterizing and eliminating these glitches is es-
sential to enhancing the quality of the detection system, thereby increasing
the likelihood of analyzing gravitational waves.

In pursuit of this objective, Gravity Spy [14, 15], a community-science
project, has been launched to leverage the power of both volunteers and ma-
chine learning to classify glitches in the LIGO time-series data. On one front,
the project engages human expertise in identifying and categorizing various
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glitches collected by LIGO. These labeled glitches then serve as training
data to refine machine learning classifiers, enhancing the accuracy and ef-
ficiency of glitch identification. Conversely, the classifiers provide guidance
to volunteers, assisting them in identifying existing or new potential glitch
classes [16]. Gravity Spy is implemented on the Zooniverse platform [17] on
the community-science side, and it has demonstrated significant success by
attracting over 30 thousand volunteers making more than 7 million glitch
classifications.1 The outputs are actively used by LIGO. One critical com-
ponent contributing to this significant achievement is the integration of the
machine learning classifier.

The machine learning classifier has been seamlessly integrated into the
Gravity Spy pipeline for over five years, largely maintaining its original ar-
chitecture. Periodically, fine-tuning of its final layer has been performed to
enhance its adaptability to diversely predicted glitch classes [18]. The input
for the classifier remains unchanged, featuring a structure that juxtaposes
four time window spectrograms (0.5 s, 1.0 s, 2.0 s and 4.0 s) of a single
glitch into one merged image. The first version of the machine learning clas-
sifier was introduced in the initial Gravity Spy paper [14] and integrated
into the Gravity Spy pipeline after the completion of the first observing run
(O1). Designed for a 20-class classification setup, this classifier consisted
of two convolutional layers and two fully-connected layers to extract image
features. Each convolutional layer was followed by a max pooling layer to
reduce the dimensionality of the features.

As the project progressed, during the second observing run (O2), Gravity
Spy volunteers identified new glitch classes and two of them, i.e., 1080 Lines
and 1400 Ripples, were added into the classifier. Therefore, the classifier
was optimized by incorporating two additional convolutional layers and max
pooling layers before the existing fully-connected layers, which facilitated
the extraction of more discriminative features and adapted the classifier to
a 22-class classification task [19].

During the third observing run (O3), two new glitch classes, known as Low
Frequency Blip and Fast Scattering, were identified through the collaborative
efforts of volunteers and LIGO experts [20]. Alongside this, the decision was
made to remove the None of the Above class from the training dataset. The
None of the Above class was initially aimed at empowering our volunteers
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to identify new glitch classes. However, its inclusion confuses the model,
especially given morphological similarities with other glitches. As a result,
removing this class allows the identification of new glitches more effectively
with low predicted confidence [20, 21]. This led to further retraining of the
classifier, enabling it to effectively accommodate a 23-class classification task
[20].

Currently, the fourth observing run (O4) of the LIGO detector network is
in process [22]. With the anticipation of discovering new glitch classes dur-
ing O4 and subsequent runs, the current Gravity Spy classifier faces major
limitations [23, 24]. First, in the glitch classification task, unlike other image
processing tasks, location plays a crucial role. For example, distinguishing
between a line at the top and a line at the bottom of the image is essen-
tial as they represent different glitches at different frequencies. However,
the classifier’s relatively straightforward architecture, comprised mainly of a
combination of convolutional and fully-connected layers, hinders its capacity
to capture unique features in individual glitch classes [25]. Second, due to
its shallow layer structure, the classifier requires significant resizing of input
image dimensions, resulting in the loss of valuable information. Moreover,
the classifier uses a single model to extract features from merged image in-
puts across different time windows, which further constrains the ability to
uncover cross-time window correlations [26]. Recognizing these challenges, it
becomes apparent that the demand to analyze more data and diverse glitch
types exceeds the current model’s capabilities.

Additionally, the current classifier grapples with a confidence overfitting
issue, displaying excessive certainty in glitch predictions even when errors are
present. This tendency can potentially mislead both volunteers and LIGO ex-
perts, posing a risk to the efficiency and reliability of glitch characterization.
Therefore, there is a compelling need for an advanced classifier architecture
with robust generalization capabilities in the context of O4.

In this study, we develop a novel machine learning classifier for glitch clas-
sification in the ongoing O4 run to address these challenges. The proposed
classifier employs an attention-based multi-view fusion strategy to capture
cross-time window correlations across the four time windows. The incorpo-
ration of a regularizer and label smoothing techniques into the loss function
improves generalization and mitigates the confidence overfitting issue. The
contributions of this paper can be summarized as follows: 1) We compre-
hensively compare three fusion strategies (early fusion, late fusion, and in-
termediate fusion) in scenarios with multiple time windows as inputs. 2) We
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apply label smoothing to mitigate the impact of noisy training labels. 3)
We introduce attention modules in the classifier, enhancing transparency in
the glitch decision-making process by identifying specific window time that
predominantly influences the glitch classification decision — an exploration
undertaken for the first time.

The paper is organized as follows: in Section 2, we provide an overview
of the Gravity Spy dataset, introduce three fusion strategies, outline the
architecture of the proposed classifier, and elaborate on the conducted sta-
tistical analysis. Moving on to Section 3, we present the outcomes obtained
from various ablation studies. In Section 4, we delve into a comprehensive
discussion, addressing both the strengths and limitations of this study. We
conclude in Section 5.

2. Materials and Methods

In this section, we provide an overview of the Gravity Spy dataset, cov-
ering its data generation process, image preprocessing, and the methodology
for data splitting during both training and testing phases. Following this, we
delve into the multi-view fusion strategy, discussing its early, intermediate,
and late fusion components. Last, we propose a novel classifier, outlining
the model architecture, attention modules, and the application of a label
smoothing technique.

2.1. Gravity Spy Dataset

The Gravity Spy dataset comprises time-frequency spectrograms of glitches.
The glitches are initially identified by the Omicron trigger pipeline [27]. To
effectively capture glitches that pose significant challenges to gravitational-
wave searches, this pipeline employs strict criteria, identifying only noise
events with a signal-to-noise ratio exceeding 7.5 and a peak frequency falling
within the range of 10 Hz to 2048 Hz. Subsequently, the Q-transform pro-
cess [28, 29] is employed to convert the LIGO strain data into time-frequency
spectrograms, known as Omega scans. This involves segmenting the strain
time series into shorter intervals and applying the discrete Fourier transform
to extract the frequency content. Gravity Spy generates four spectrograms
for each glitch triggered, using distinct time windows: 0.5 s, 1.0 s, 2.0 s,
and 4.0 s. The incorporation of multiple time windows serves a crucial pur-
pose, allowing both volunteers and machine learning models to analyze the
morphologies of glitches occurring at different characteristic timescales. For
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Figure 1: Spectrogram examples of two glitches with four time windows (0.5 s, 1.0 s,
2.0 s and 4.0 s). (a) Blip, characterized by its short duration. (b) Whistle, characterized
by its long duration. These examples illustrate how different time windows enable the
analysis of glitches occurring at various temporal scales, providing valuable insights into
the morphological characteristics of each glitch type.

instance, this enables the examination of short (i.e., Blip) and long duration
(i.e., Whistle) noise events, as depicted in Fig. 1.

The training and testing datasets employed in this study are sourced from
Zevin et al. [30], focusing exclusively on data from the Hanford and Liv-
ingston detectors during the third observing run (O3) of Advanced LIGO.
This classification task has in total 23 glitch classes. To ensure consistency,
the names associated with each class and the typical morphology of glitches
belonging to each class were determined through a collaborative effort be-
tween LIGO scientists and citizen scientists. Examples representing each of
the 23 glitch classes are illustrated in Fig. 2 and more details are provided
in the O1-O3 data release paper [21].

For the purposes of this study, we consider the ground truth for glitches in
our dataset to be established through a collaborative effort involving volun-
teers and the previously implemented machine learning classifier [14]. How-
ever, this ground truth may exhibit a potential noisy-label issue, that is
a few glitches were misclassified by the classifier and some volunteers. To
strengthen the confidence in the ground truth used for our new classifica-
tion model, we adopt a filtering criterion to create the training and testing
dataset. Specifically, we only use glitches with consensus confidence scores
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Figure 2: Spectrogram examples of each of the 23 glitch classes within the Gravity Spy
dataset. All glitches share the same axes and scale bar with Violin Mode. These examples
provide one possible morphological representation for each class, while each class can
exhibit various shapes and patterns [21].
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from both machine learning and volunteers greater than 0.9. As a conse-
quence, our new model is trained on glitches with relatively reliable labels,
effectively reducing confusion during the training process and shielding the
model from potentially mislabeled ground truth. Improved training sets for
O4 data will be the focus of future studies.

Following the filtering criteria, the Gravity Spy dataset is divided into
three distinct sets. The training set consists of 8439 glitches and the valida-
tion set consists of 1687 glitches. Additionally, a separate set of 3538 glitches
is reserved for testing purposes. Each set is carefully curated to ensure no
overlapping glitch subjects, thereby preventing data leakage between those
three phases. A detailed breakdown of the data splitting is presented in Table
1.

Table 1: The distribution of each class in the Gravity Spy dataset across the training,
validation, and testing sets.
Class Train Validation Testing Class Train Validation Testing
1080Lines 184 49 225 Low Frequency Lines 381 91 225
1400Ripples 257 64 224 No Glitch 311 78 225
Air Compressor 293 57 225 Paired Doves 124 31 146
Blip 312 84 218 Power Line 354 83 224
Low Frequency Blip 337 103 222 Repeating Blips 411 90 224
Chirp 38 10 17 Scattered Light 521 128 224
Extremely Loud 327 85 224 Scratchy 178 36 225
Fast Scattering 515 128 224 Tomte 408 90 225
Helix 46 10 71 Violin Mode 210 56 225
Koi Fish 338 93 224 Wandering Line 25 8 25
Light Modulation 127 28 159 Whistle 462 129 224
Low Frequency Burst 378 106 223

The glitches from all three cohorts undergo the same pre-processing steps.
Initially, each spectrogram’s original dimension size is 600×800×3. We first
crop the spectrogram with a bounding box defined as [top-left vertical:60,
top-left horizontal:100, height:580, width:675] to retain only the intensity
region of interest and eliminate irrelevant information, such as axes and scal-
ing maps. Next, all cropped glitches are resized to a standardized size of
448 × 448 × 3 to facilitate uniformity during model training. Finally, min-
max normalization is applied, transforming the pixel intensities into a range
of 0 to 1, ensuring that all glitches are equally scaled and enhancing the
model’s ability to effectively learn from the data.
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Figure 3: Illustration of three fusion strategies. (a) Early fusion; (b) Late fusion, and (c)
Intermediate fusion

2.2. Multi-view Fusion Strategy

As Gravity Spy generates a dataset of glitches with four different du-
rations, it is crucial to have a method for incorporating glitch information
of varying characteristic timescales. Multi-view fusion, a powerful strat-
egy in machine learning, combines information from multiple sources to en-
hance the representation and performance of a model. Each view contributes
unique and complementary insights, leading to improved accuracy, robust-
ness, and generalization of the model [26]. As mentioned above, our Gravity
Spy project serves as an example where a single image with four time win-
dows enables models to extract features across diverse timescales. Typically,
multi-view fusion can employ one of three fusion architectures with different
strategies to combine data from various view images. We review those be-
low: the performance of these three fusion strategies will be compared in the
result section.

2.2.1. Early Fusion

Early fusion takes place at the input level, where features from each
view are combined in the input layer of the network before being fed into
one single model. By merging data from multiple views at this stage, the
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model has access to a more comprehensive representation of the data. This
approach was employed in previous Gravity Spy classifiers [21, 20, 14, 31],
which constructed a 2h× 2w matrix by juxtaposing four h×w view images,
as illustrated in Fig. 3a.

Although it offers several advantages, it has some limitations that may
impact its practicality, particularly for large-sized images. In previous clas-
sifiers [21, 20, 14, 31], the resizing of each view to 140× 170 was required to
fit within the model’s limitations, leading to a loss of valuable information.
Additionally, early fusion assumes equal contributions from all modalities
to the task, which may not hold true in this specific project. For instance,
Repeating Blips might only appear in the 4 s time window view and not in
others, necessitating the model to assign greater weight to the 4 s window
for accurate classification.

2.2.2. Late Fusion

Late fusion is a decision-level data fusion technique, where predictions
or outputs from individual models trained on different views are combined
at the final stage, as shown in Fig. 3b. This fusion process often involves
aggregation methods, such as majority voting or averaging, to make the final
decision. The advantage of late fusion is its flexibility in utilizing different
models for each view, enabling the selection of the most suitable model for
each input. Moreover, it handles missing views by excluding the correspond-
ing model during the fusion process, ensuring model evaluation even when
certain data sources are unavailable (though that was not in the case in this
application). However, one drawback of late fusion is its potential to over-
look cross-modal relationships, as fusion occurs at a higher decision level
rather than at the earlier processing stages. Consequently, in our case, this
might lead to suboptimal exploitation of valuable complementarity between
different time-window views.

2.2.3. Intermediate Fusion

Intermediate fusion, also known as feature-level fusion, allows features
from each view to be processed separately through different branches of the
network, and then combines the resulting feature maps at an intermediate
layer, as shown in Fig. 3c. This technique effectively addresses the limitations
of both early fusion and late fusion. Specifically, by leveraging the comple-
mentarity of different views and capturing cross-modal relationships at a
stage where features are still semantically meaningful, intermediate fusion
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Figure 4: Architecture of the proposed machine learning classifier used in O4. Further
elaboration on the hyperparameters can be found in Section 2.3.

enables the model to learn complex representations and potentially achieve
better performance. One general issue with intermediate fusion is the han-
dling of missing views. As the model relies on inputs from all views, the
absence of one or more views can lead to the loss of crucial information, po-
tentially affecting the model’s decision-making process. This problem is not
a concern for this project, as each glitch always contains complete data from
all four time windows during pre-processing.

2.3. Methods

The proposed classifier distinguishes itself from glitch classification through
several key optimizations, addressing the limitations of previous models [21,
20, 14, 31]. First, it adopts intermediate fusion, effectively combining four
views to enhance its representation power by leveraging their complementary
information. Second, to handle a larger input dimension, a deeper network is
adopted, featuring the inception residual block [32] to mitigate the vanishing
gradient problem and to extract more discriminative features. Additionally,
an attention module is introduced at a later stage, providing valuable insights
into the model’s focus on specific views during decision-making. Last, the in-
corporation of smooth labeling during training effectively addresses the noisy
label issue. The architecture of the proposed classifier is shown in Fig. 4, and
detailed explanations of these optimizations are presented next.
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2.3.1. Inception Residual Block

The inception residual block combines the ideas of the inception module
and the residual block proposed in Szegedy et al. [32]. As shown in Fig. 4, it
combines these concepts by applying the inception module within a residual
block structure. Specifically, the block consists of four parallel convolutional
branches with filters of different sizes (1 × 1, 1 × 1, 3 × 3, 5 × 5). The
outputs of these branches are then concatenated, and the resulting feature
map is combined with the original input after a 1 × 1 convolutional layer
using a skip connection, followed by a rectified linear unit (ReLU) activation
function. Particularly, the use of parallel convolutional filters of different
sizes allows the block to capture features at multiple scales, improving the
model’s ability to recognize patterns of varying complexities [33]. Moreover,
the incorporation of skip connections facilitates the training of deep networks,
effectively mitigating the vanishing gradient problem [34].

2.3.2. Attention Module

To assess the varying importance of each view in the final glitch classifi-
cation, we introduce an attention module [35] MAtt to the latent vectors of
four inputs, denoted as zi ∈ R1×M , i = {1, 2, 3, 4}, extracted after the fully-
connected layer. The attention weight αi ∈ R, i = {1, 2, 3, 4} calculated for
each latent vector zi quantifies the significance of each view in making the
glitch classification, with all αi’s summing up to 1. The attention module is
defined as:

MAtt =
4∑

i=1

αizi, (1)

where the attention weight αi is computed as

αi =
exp{wT [tanh(V zTi )⊙ σ(UzTi )]}∑4
j=1 exp{wT [tanh(V zTj )⊙ σ(UzTj )]}

. (2)

The trainable parameters V ∈ RL×M and w ∈ RL×1 are associated with the
attention mechanism. Here, M represents the dimension of latent vectors
(set to M = 128 in this paper) while L signifies the one dimension of the
matrices for transforming the latent vectors (set to L = 64). The V matrix
is instrumental in identifying similarities among different views. The non-
linear hyperbolic tangent function tanh(·) includes both positive and negative
values in the gradient flow, but the concern is that it is almost linear in the
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[−1, 1] range. To handle complex data patterns effectively, we leverage the
gated attention mechanism [35], which combines tanh(·) with the element-
wise sigmoid function σ(·). The sigmoid function helps adjust the relevance of
information, while the element-wise multiplication ⊙ facilitates the attention
process. The gated attention mechanism introduces additional parameters
U ∈ RL×M to serve as control gates, mitigating the linearity issue present
in tanh(·). The attention module, widely used in multiple-instance learning
tasks [35, 36, 37, 38], excels in identifying key instances within a bag, i.e., a
collection of instances.

In this paper, we assess the impact of the attention module on the model’s
performance through comparative experiments conducted with and without
the incorporation of attention modules.

2.3.3. Label Smoothing

As mentioned in Sec. 2.1, the ground truth labels for the Gravity Spy
dataset are generated by the previous classifier and volunteers. Despite fil-
tering the dataset to only use high-confidence predictions, mislabeled glitches
can still be present, potentially confusing the model. To address this problem,
label smoothing [39], a valuable regularization technique in machine learn-
ing, is applied during model training to enhance generalization and prevent
overconfidence in predictions, especially when dealing with noisy or uncer-
tain data. This technique introduces a small amount of uncertainty into
the training labels. Instead of assigning a hard 1 to the correct class and
0 to other classes, label smoothing assigns a smoothed value, denoted by q,
slightly less than 1 to the correct class while distributing the remaining con-
fidence uniformly across the other classes. Mathematically, it can be defined
as:

q = (1− β)y + βu, (3)

where y represents the true label (encoded as a one-hot vector), u is a uniform
distribution over the classes, and β is a smoothing parameter between 0 and
1.

In addition, to address the issue of class imbalance (as shown in Table 1),
we apply different weights γi to each class i = {1, 2, ..C} in the loss function
during training. These weights are inversely proportional to the number of
instances in each glitch class and sum up to 1, ensuring a balanced learning
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process. Therefore, the loss function of the proposed model is defined as

L(x, y) = − 1

C

C∑
i=1

γiqi log(ŷi), (4)

where ŷ represents the predicted probability distribution over classes and
C is the number of glitch classes. By adjusting the smoothing parameter,
the level of smoothing applied to the labels can be controlled. For example,
setting β = 0 (i.e, no smoothing) leads to one-hot encodings and restores the
standard categorical cross-entropy loss, while β = 1 (i.e., completely smooth)
results in a uniform distribution over all classes.

In this paper, the impact of different smoothing levels on the model’s
performance is also evaluated through different experiments on the value of
β.

2.3.4. Architecture of the Classifier

The overall architecture of the proposed classifier is shown in Fig. 4. Each
of the four branches shares a common architecture. Within each branch, a
pre-convolutional block is followed by three instances of a combination of a
convolutional block and an inception residual block (Incep-Res Block) [32],
along with a post-convolutional block. These stages effectively extract fea-
tures from each glitch view. Specifically, all convolutional blocks (i.e., Pre-
Conv, Conv and post-Conv blocks) consist of a convolutional layer, a ReLu
activation function, and batch normalization (BN) layer and a max pool-
ing (Max Pool) layer. Subsequently, a flatten layer and a fully-connected
(FC) layer process and reduce the dimensionality of the feature vectors. The
attention module [35] then takes these vectors as input, generating a sin-
gle weighted averaged feature vector, which is then fed into the final FC
layer. The softmax activation function yields the probabilities of the 23
glitch classes. To enhance the model’s generalization and prevent overfit-
ting, we incorporate an L2 regularizer [40] for each convolutional layer and
introduce dropout [41] after each FC layer. For optimization, we use the
Adam optimizer [42], with the learning rate starting at 2×10−5. This choice
of optimizer helps to efficiently update the model’s parameters during train-
ing. To address the potential issue of confidence overfitting, where the model
may become overconfident in its predictions on the training data, we employ
early stopping with a patience of 10, i.e., if the model doesn’t improve its
accuracy on the validation set within 10 rounds of training, we stop training
to prevent potential overconfidence.
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2.4. Statistical Analysis

To ensure the robustness of the model, five independent runs for all exper-
iments are conducted. For each experiment, we calculate the overall accuracy,
precision, F1 score, and the area under the receiver operating characteristic
curve (AUC) on the held-out test set, where the mean and standard devi-
ation values for each metric are reported. To assess the significance of the
differences between different model results, we perform a paired t-test [43],
considering the comparison statistically significant if the p-value is less than
0.05 (p < 0.05). Furthermore, to calibrate the performance of the model, a
reliability plot [44] is employed, offering a visual representation of the model’s
calibration across varying confidence levels. Specifically, this plot juxtaposes
predicted probabilities against empirical frequencies of positive outcomes,
providing insights into the model’s accuracy in conveying uncertainty. Addi-
tionally, calibration accuracy is quantified through the expected calibration
error (ECE) [45], a statistical metric that measures the average deviation
between predicted probabilities and the true likelihood of event occurrence.

3. Results

In this section, we present an overview of our results. We begin by outlin-
ing the design of all experiments conducted, providing a comprehensive un-
derstanding of our methods. Next, we compare the classifier’s results under
various fusion strategies, evaluate the impact of different smoothing levels,
analyze the effects of the gated attention mechanism, and, last, perform a
comparative assessment between the proposed model and the previous model
implemented in the Gravity Spy pipeline.

3.1. Experimental Design

In this study, we conduct various ablation studies to assess the model’s
performance. First, the effectiveness of different fusion strategies is com-
pared, as shown in Fig. 3. Specifically, the early fusion involves merging four
view images and resizing the merged input to a size of 448 × 448× 3 before
feeding it into the model. The late fusion uses each branch to individually
produce probabilities for each class, and the final classification is determined
by averaging the probabilities obtained from the four view images. The pro-
posed classifier employs intermediate fusion. Second, we evaluate different
values of the smoothing parameter β between 0 and 1 with an increment
of 0.1, allowing us to identify the optimal value for β. Third, we compare
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the proposed classifier with the attention module and a variant without the
attention module (i.e., max pooling and mean pooling) to demonstrate the
effectiveness of the attention mechanism. Fourth, we evaluate the perfor-
mance of our proposed classifier by comparing it with the previous Gravity
Spy model architecture [20, 21]. Both models are trained from scratch us-
ing the same training dataset, and their performance is assessed on the same
test set. Finally, to better understand the learned feature representations, we
employ t-distributed stochastic neighbor embedding (t-SNE) plots to reduce
the dimensionality of feature vectors obtained after the attention module
from 128 to 2, offering insightful visualizations for model comparisons in a
two-dimensional space. The experiments and analyses are conducted using
TensorFlow 2.11 on two GPUs (NVIDIA Quadro RTX 8000) and scikit-learn,
respectively, in Python 3.8. The codes are available via the GitHub of Grav-
ity Spy.

3.2. Comparison of Three Fusion Strategies

Table 2 demonstrates the model performance of three fusion strategies on
the same test set. The proposed intermediate fusion model achieves the best
result with an overall accuracy of 0.941, precision of 0.950, F1 of 0.931 and
AUC of 0.965, followed by the late fusion and the early fusion, although the
difference between the latter two is not statistically significant. Moreover, the
results exhibit robustness, as indicated by the minimal standard deviations
derived from 5 independent experiment runs.

Table 2: Model evaluations (the overall mean ± standard deviation across 5 independent
runs) for three fusion strategies (i.e., early fusion, late fusion and intermediate fusion) on
the test set. Best results are highlighted in bold, and * indicates that the comparison is
statistically significant (p < 0.05).

Fusion
Strategies

Early Fusion
(Fig. 3a)

Late Fusion
(Fig. 3b)

Intermediate Fusion
(Proposed Fig. 4)

Accuracy 0.911 ± 0.013 0.922 ± 0.022 0.941 ± 0.021*
Precision 0.918 ± 0.008 0.920 ± 0.011 0.950 ± 0.010*

F1 0.901 ± 0.009 0.901 ± 0.014 0.931 ± 0.015*
AUC 0.939 ± 0.003 0.940 ± 0.003 0.965 ± 0.004*

3.3. Effects of Smoothing Levels

Figure 5 presents a comparative analysis of model performance across
various smoothing levels of β in Eq. (3). At the outset, for β = 0, no label
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smoothing yields a model accuracy of 0.921, precision of 0.915, F1 of 0.908
and AUC of 0.946. With an increase in β, the model’s performance exhibits
an initial ascent followed by a subsequent decline. When β = 0.3, the model
achieves the optimal performance across all metrics. Additionally, the results
indicate that, with the implementation of label smoothing, for β ⩽ 0.5, the
model consistently outperforms the one without label smoothing (β = 0)..

Figure 5: The evaluation of model performance (Accuracy, Precision, F1, and AUC scores)
on the test set presented across varying smoothing levels (β) ranging from 0 to 1 in
increments of 0.1. Here, β = 0 represents no smoothing.

3.4. Effects of Gated Attention Mechanism

Table 3 compares the performance of models with and without the gated
attention mechanism. These models share an identical CNN architecture
for feature extraction from each view but diverge in their feature fusion ap-
proaches, such as mean pooling and max pooling. The results demonstrate
that the performance of the model with the gated attention mechanism is
significantly better than of those without it. Additionally, statistical analysis
indicates no significant difference between the performances of mean pooling
and max pooling.

The gated attention mechanism also enhances interpretability, rendering
the model’s outputs more explainable to humans. Figure 6 shows examples
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with attention weights assigned by the proposed classifier for four glitch pre-
dictions. The magnitude of attention weights positively correlates with the
contribution of each time view to the prediction. For instance, in Fig. 6
(a), (d) and (e), the model places greater emphasis on long time windows to
predict glitches like Repeating Blips and No Glitch, while allocating higher
attention to short time windows to predict glitches such as Blip and Koi Fish
in Fig. 6 (b) and (c).

Table 3: Model evaluations (the overall mean ± standard deviation across 5 independent
runs) for classifiers with gated attention mechanism and without attention mechanism
(using max pooling and mean pooling) on the test set. Best results are highlighted in bol,
and * indicates that the comparison is statistically significant (p < 0.05).

Attention
Mechanism

Proposed
(Gated Attention)

No Attention
(Max Pooling )

No Attention
(Mean Pooling)

Accuracy 0.941 ± 0.021* 0.916 ± 0.013 0.911 ± 0.011
Precision 0.950 ± 0.010* 0.928 ± 0.010 0.929 ± 0.006

F1 0.931 ± 0.015* 0.908 ± 0.011 0.903 ± 0.008
AUC 0.965 ± 0.004* 0.948 ± 0.002 0.949 ± 0.001

3.5. Comparison with Previous Classifiers

We compare the performance of the proposed model with the previously
implemented classifier [20] in the O3 run on the same test set, as shown in
Table 4. The proposed model shows superiority across all metrics, outper-
forming the previous model by 2.7% to 3.7%. Furthermore, a detailed ex-
amination of class-wise accuracies reveals that the proposed model provides
more accurate predictions for the majority of glitch classes. In particular,
the model excels in classes like Wandering Line, Repeating Blips, and Helix.
While there are a few instances for which the previous classifier attains bet-
ter outcomes, such as Koi Fish and Scattered Light, the differences remain
relatively modest.

To obtain a deeper insight into this finding, we compare the t-SNE plots
of these two classifiers within a two-dimensional space, as shown in Fig. 7.
Compared to the previous classifier, it is evident that the feature distri-
butions generated by the new classifier exhibit tighter clusters within the
same glitch class and distinct separation among clusters of different classes.
However, some degree of overlap persists between glitch classes with similar
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Figure 6: Illustrative examples of glitch classification with attention weights generated by
the classifier for each time window view. Attention weights are shown in white in each
subplot. A higher attention weight indicates that the model relies more on that particular
view for predicting the glitch class.
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Figure 7: Comparison of t-SNE plots in a two-dimensional space (latent feature z1 and
z2) between the previous classifier and the newly proposed classifier on the same test set.
The proposed classifier (right) generates more tightly-clustered glitch features than the
previous one (left) within the latent space.

morphologies, such as Extremely Loud and Koi Fish, Blip and Repeating
Blips, Scattered Light and Low Frequency Lines.

Figure 8 presents the reliability plots of two classifiers applied to the
test set. Both classifiers are overconfident in their predictions, evidenced by
the majority of points residing below the diagonal line. Nevertheless, the
proposed model demonstrates better calibration compared to the previous
model, particularly in the high confidence range (> 0.8) – a crucial aspect
for detector characterization and gravitational-wave data analysis. Addition-
ally, the proposed model achieves a lower expected calibration error of 0.06,
compared to the previous model’s 0.09. This discrepancy indicates that the
proposed model displays less bias and higher reliability than the previous
classifier.

4. Discussion

In this study, we introduce a novel classifier for the Gravity Spy project,
aiming to enhance the accuracy of glitch classification provided by the LIGO
gravitational-wave detectors. Overall, our proposed classifier achieves accu-
racy of 0.941, precision of 0.950, F1 score of 0.931 and AUC of 0.965 on the
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Figure 8: The reliability plots of the model output probabilities on the test set. The plots
illustrate the observed fraction of positives against the predicted fraction of positives. The
diagonal dotted line indicates perfect reliability. The expected calibration error (ECE)
quantifies the average discrepancy between predicted probabilities and actual accuracy.

held-out set of glitches, outperforming prior classifiers integrated into the
previous Gravity Spy workflow.

The proposed classifier exhibits superior glitch classification through var-
ious attributes. First, the use of the inception residual block empowers the
model to deepen its architecture without overfitting concerns, thereby facili-
tating the extraction of more discriminative features unique to different glitch
classes. The tightly-clustered distributions in Fig. 7 further substantiate this
finding. Next, the intermediate fusion strategy outperforms early and late fu-
sion due to its ability to capture and combine cross-view correlations, which
aligns with findings from prior studies, such as using multiple time scales
for anomaly detection [46] and multiple modalities for gesture recognition
[47]. Moreover, label smoothing effectively tackles the issue of noisy labels
within the training dataset by introducing a controlled level of uncertainty
into label distributions during training, resulting in enhanced glitch predic-
tions. However, it is crucial to choose the level of this uncertainty infusion
appropriately, as excessive smoothing, illustrated in Fig. 5, can lead to label
confusion within the model, hindering its ability to learn effectively.
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Table 4: Comparison of class-wise classification accuracy and the overall performance
(accuracy, precision, F1 and AUC scores) between the previous classifier and the proposed
classifier. Better results are highlighted in bold, and * indicates that the comparison is
statistically significant (p < 0.05).

Class Previous Proposed Class Previous Proposed
1080Lines 0.985 0.991 Paired Doves 0.849 0.882*
1400Ripples 0.967 0.979* Power Line 0.987 0.994*
Air Compressor 0.921 0.954* Repeating Blips 0.772 0.933*
Blip 0.980 0.991* Scattered Light 0.929 0.924
Blip Low Frequency 0.926 0.928 Scratchy 0.862 0.957*
Chirp 0.913 0.926* Tomte 0.963 0.984*
Extremely Loud 0.901 0.960* Violin Mode 0.924 0.960*
Fast Scattering 0.884 0.890 Wandering Line 0.52 0.740*
Helix 0.732 0.891* Whistle 0.957 0.972*
Koi Fish 0.921 0.917 Overall
Light Modulation 0.918 0.947* Accuracy 0.906 0.941*
Low Frequency Burst 0.962 0.981* Precision 0.913 0.950*
Low Frequency Lines 0.818 0.916* F1 0.904 0.931*
No Glitch 0.978 0.984 AUC 0.937 0.965*

The challenge of the black box issue in deep learning stems from the in-
herent lack of transparency in comprehending how these models arrive at
decisions. The attention mechanism addresses this challenge by enabling the
model to selectively focus on specific features of the input data, assigning
varying levels of importance to different regions. By highlighting informa-
tive features and providing interpretable decisions, the attention mechanism
enhances transparency in the decision-making process.

In our study, the model achieves interpretability by discerning which view
contributes the most to the classification decision. Consequently, the at-
tention mechanism significantly improves the overall model performance by
selectively prioritizing informative aspects of each view and effectively cap-
turing cross-view relationships. For example, as shown in Fig. 6, the model’s
extraction of more discriminative features from the 4 s and 2 s windows
when classifying a glitch as Repeating Blips aligns with volunteers’ experi-
ences, reflecting their awareness that repeating patterns primarily manifest
in longer time windows. In contrast, when identifying a single Blip class,
the model focuses on extracting more specific features from the 0.5 s win-
dow, corresponding to the transient nature of this particular glitch category.
Similarly, when dealing with cases resembling Blip or Koi Fish, the model
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Figure 9: Examples of glitches with different predicted classes between the previous model
and the proposed model. (a) Initially predicted as the Koi Fish class by the previous model,
it is now classified as Extremely Loud by the proposed model. (b) Initially classified as
the Scattered Light class by the previous model, it is now predicted as Low Frequency
Lines by the proposed model.

directs greater attention to the 0.5 s window. Concerning No Glitch classi-
fication, the model’s emphasis on the 4 s window is intuitive, aligning with
the necessity to inspect the longest window time to confirm all background
features or, in other words, the absence of glitches. It is essential to note
that the emphasis on specific windows does not diminish the importance of
those with low attention weights. Instead, the model effectively captures
crucial information from all four windows, enabling it to make optimal glitch
predictions. Potentially, the attention mechanism can guide volunteers and
LIGO experts, enabling them to enhance their understanding of glitches and
thereby facilitating a more effective characterization process.

Given its superior overall performance in comparison to the previous clas-
sifier, the proposed classifier has been integrated into the Gravity Spy sys-
tem for the O4 run. This integration coincides with major infrastructure
enhancements introduced in the O4 run [48, 22], aimed at achieving higher
instrument sensitivity for the detection of gravitational-wave signals. How-
ever, this improvement in detector sensitivity is accompanied by a trade-off,
i.e., a higher sensitivity to environmental and instrumental artifacts, which
potentially leads to new glitch classes. In this context, the more discrimina-
tive features extracted by the proposed classifier, as shown in Fig. 7, hold the
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potential to more effectively identify and categorize these new glitch classes.
An underperformance is observed in certain glitch classes, such as Koi

Fish and Scattered Light as presented in Table 4. It is essential to note
that this underperformance is not significant (p > 0.05), approximately 0.5%
compared to the previous model, which may potentially be attributed to
random sampling variations in our test set. Besides, this underperformance
is also influenced by the inherent complexity and variability within these
classes. Given their prevalence and diverse morphologies, establishing strict
boundaries for these classes poses a challenge, leading to expected variations
in classifiers when distinguishing these intricacies. For instance, in Fig. 9,
Koi Fish can be confused with Extremely Loud when the trigger is very loud
[20] and Scattered Light can be confused with Low Frequency Lines as they
share characteristics of low-frequency and long duration [49].

The previous Gravity Spy classifier has long grappled with the challenge
of confidence overfitting. This issue can be attributed to various factors,
including imbalances in our glitch classes, the presence of noisy labels in
our training set, and the use of cross-entropy loss for updating the model
parameters. These challenges pose the risk of hindering the model’s ability
to generalize effectively to new and unseen glitch data. To address this
issue, our proposed classifier incorporates several techniques. We apply L2
regularization and incorporate smooth labeling into the cross-entropy loss to
penalize extreme confidence. Moreover, we monitor accuracy for updating
model parameters, extending beyond the sole reliance on cross-entropy loss,
which tends to drive the predicted confidence close to 1.

To demonstrate the impact of confidence overfitting in the O4 run, we con-
duct a comparative analysis of the predicted confidence distributions between
the previous model and the proposed model. This analysis encompasses a
total of 2267 glitches extracted from May 24, 2023, to September 19, 2023,
within the O4 run. As illustrated in Fig. 10 (a), the previous model exhibits
persistent confidence overfitting, as most glitch classes receive predictions
with confidence close to 1, except for Paired Doves and Light Modulation.
In contrast, the proposed model, as shown in Fig. 10 (b), significantly miti-
gates this issue, providing predictions with varying confidence ranges across
glitch classes. Specifically, for glitch classes like Extremely Loud and Low
Frequency Lines, which exhibit less variation in morphologies within the O4
distribution compared to O3, the proposed model confidently expresses pre-
dictions with relatively high confidence. Conversely, for glitch classes such
as Whistle, Wandering Line, Violin Mode, and Scratchy, the proposed model

24



Figure 10: The density distribution plot of predicted confidence for O4 glitches between
(a) the previous model and (b) the proposed model.

displays lower confidence in predictions, given the visually distinct morpholo-
gies in O4 compared to their distributions in O3. This distinction is crucial
for LIGO experts during glitch analysis and characterization, allowing the
exclusion of glitches with lower confidences to enhance the precision of their
analyses. This, in turn, opens avenues to explore the potential discovery of
new glitch classes within clusters exhibiting lower confidences. A good ex-
ample is the identification of a new glitch class, named 589 Hz, 2 depicted in
Fig. 11, which occurred on May 30, 31, and June 1 of 2023 in the Hanford
detector. The previous model predicted it as Whistle with an overall high
confidence of 0.976(±0.059) on 267 collections, attributing this classification
to its high-frequency nature similar to Whistle, while the proposed model
predicted it with significantly lower confidence scores of 0.463(±0.138) for
195 cases classified as Whistle, 0.428(±0.137) for 49 cases classified as No
Glitch and 0.347(±0.057) for 23 cases classified as Violin Mode, respectively.

This study has some limitations. First, as the classifier is trained under
full supervision, its generalization capability to new classes is constrained.
Consequently, if a novel glitch class arises during the O4 run, the classifier
requires retraining on a dataset that incorporates the new glitch class. This
process also involves the participation of volunteers who, with assistance
from the Gravity Spy similarity search [16], identify and categorize these
new glitch classes. Next, the training and test set used in this study are

2https://www.zooniverse.org/projects/zooniverse/gravity-spy/talk/762/2986261
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Figure 11: An example of a new glitch class, named 589 Hz in the O4 run. It is a narrow
band line glitch near 589 Hz lasting less than 0.4 s, appearing in these spectrograms as
bright yellow for 0.02 s to 0.2 s. It was classified as the Whistle class with a high confidence
of 0.972 by the previous classifier and a low confidence of 0.348 by the proposed classifier.

still imperfect with noisy labels. To improve the reliability of the model,
future efforts should be put into preparing a test set with validated ground
truth, as confirmed by LIGO experts. Additionally, there is room for further
optimization of the classifier for improved glitch classification. Future studies
can enhance the model’s training by incorporating additional information
such as sensor locations, temporal attributes, and supplementary auxiliary
data [15, 50, 51]. For instance, supplementary auxiliary channels, could
assist in reducing potential Scattered Light, as illustrated in Fig. 9 (b), by
aiding in the identification of ground motion [52]. Last, our model currently
provides information on important views but does not specify which parts of
the focused image trigger predictions. Our research will explore techniques
like Grad-CAM [53] to precisely identify the influential regions within glitch
images.

5. Conclusion

In this study, we present a novel classifier for the Gravity Spy project,
specifically designed to enhance the accuracy of glitch classification within
the LIGO gravitational-wave detectors. The proposed classifier demonstrates
exceptional performance compared to the previous classifiers. Several fac-
tors contribute to the classifier’s distinctiveness. Leveraging the inception
residual block allows for deeper architecture exploration, facilitating the ex-
traction of discriminative glitch features. The intermediate fusion strategy
captures cross-view correlations more effectively. Label smoothing addresses
noisy training labels, enhancing the generalization of glitch predictions. The
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attention mechanism not only enhances model performance but also provides
interpretability, potentially aiding volunteers and experts in understanding
glitch classification decisions.

The new classifier has successfully been integrated into the ongoing O4
run, actively employed by both volunteers on the Zooniverse platform and
LIGO experts. Its capacity to potentially help volunteers identify and cate-
gorize new glitch classes fits well with the larger context of improved detector
sensitivity, where a more advanced model becomes essential for understand-
ing the details of more intricate glitch patterns.
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