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Abstract
Parallel real-time systems rely on a shared cache for dependent data
transmission. A conventional shared cache su�ers from intensive in-
terference, yet existing cache management techniques only ensure
determinism for single-threaded tasks. This paper introduces a vir-
tual indexed, physically tagged, selectively-inclusive, non-exclusive
L1.5 Cache, o�ering way-level control and �ne-grained sharing
capabilities. Focusing on DAG tasks, we construct a scheduling
method that exploits the L1.5 Cache to reduce data transmission,
hence, the makespan. As a systematical solution, we built a real
system, from the SoC and the ISA to the programming model. Ex-
periments show that our solution signi�cantly improves the timing
performance of DAG tasks with negligible overheads.
1 Introduction
With ever-complex functionalities being implemented in real-time
systems, multi/many-core architectures are increasingly applied,
and tasks often have complicated execution dependencies. For in-
stance, in an autonomous driving application, the control tasks
must be executed after the completion of perception and decision
tasks, forming a dependency graph due to the data �ow [13, 14].
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Figure 1: An example DAG task (numbers in black: node com-
putation time; numbers in red: edge communication cost).

The Directed Acyclic Graph (DAG) model is one of the main-
stream task models of parallel tasks with data dependency. In a
DAG task, a node represents a series of computations that must be
executed sequentially. An edge from node E 9 to node E: indicates
the dependency between them — E: can only start if E 9 is �nished
and the produced data is transmitted to E: with a communication
cost associated with the edge [14]. Fig. 1 shows an example of a
DAG task. When node E1 is �nished, it produces the data required
for E2, E3 and E4 to start execution, with a communication cost of 2.

Research on parallel real-time tasks focuses on the scheduling
method based on their computation times [8, 15]. However, in
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ership of elements, with grey denoting shared ways. In this
example, the L1.5 Cache is partitioned to be owned by cores 0
- 3, with certain ways set to be globally visible and read-only.
practice, the dependent data transmission heavily relies on the
shared cache, which can incur signi�cant communication cost due
to inter-core cache interference, increasing the makespan. However,
this is not well-recognised in the literature [5, 8, 15]. To address
this issue, hardware support that facilitates data transmission in
parallel tasks, whilst eliminating cache interference, is required.

Cache management techniques aimed at eliminating inter-core
interference have been introduced, primarily to ensure the deter-
minism of single-threaded tasks. Therefore, they either completely
prohibit cache-level data sharing (e.g., colouring [4] or partition-
ing [7]) or just lock frequently-accessed data on shared cache stati-
cally (e.g., locking [12]). This imposes a signi�cant barrier to sup-
porting parallel tasks with complex data dependency, in which
dependent data can be accessed from di�erent cores.
Contributions. In this paper, (i) we present a Virtual Indexed, Phys-
ically Tagged (VIPT), Selectively-Inclusive, Non-Exclusive (SINE) L1.5
Cache, which we positioned in each computing cluster between
the conventional L1 and L2 caches. The L1.5 Cache enables way-
level recon�guration of the ownership of the ways, global visibility
and an inclusion policy, allowing managed and �exible cache shar-
ing (Fig. 2). (ii) Focusing on the DAG tasks, we construct a novel
scheduling method that leverages the L1.5 cache to reduce the com-
munication cost and the DAG makespan. (iii) We built a systematic
full-stack framework from the System-on-Chip (SoC) and Instruc-
tion Set Architecture (ISA) to the programming model, forming a
complete solution for parallel real-time tasks.

We deployed our proposed system on the AMD Alveo U280
FPGA and examined it using various metrics, including makespan,
success ratio, and overhead. Experiments show that deploying the
L1.5 Cache in real-time SoCs can signi�cantly improve the timing
performance of DAG tasks with negligible hardware overhead.

2 L1.5 Cache: Overview
In this work, we make the following assumptions: (i) The processor
core used for demonstration is a 5-stage pipelined, single-width,
open-source RISC-V core [2]. The L1.5 Cache design is agnostic to
the pipeline depth and execution width (design method to support
a super-scalar Out-of-Order (OoO) core is detailed in Sec. 3.3);
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Figure 3: Integrating L1.5 Cache with 5-stage pipelined cores (IPU: Inclusion Policy Unit; GPR: General-Purpose Register; CSR:
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(ii) in alignment with modern processor design, the selected core
incorporates a Translation Lookaside Bu�er (TLB) and supports
the full privilege levels stipulated by RISC-V, meaning that user
applications always use virtual addresses for memory accesses.
2.1 Top-level Concepts
As discussed above, the inter-core cache interference in multi/many-
core systems presents a major bottleneck for the timing perfor-
mance of parallel real-time tasks with data dependency.

In coping with this issue, we present a VIPT and SINE cache (L1.5
Cache), deployed between the conventional L1 and L2 caches and
shared across the cores in the same computing cluster (see Sec. 3).
Di�erent from the other shared caches, the proposed L1.5 Cache is
tightly coupled to the cores’ pipelines and o�ers �exibility for the
software, e.g., the Operating System (OS), to (re)de�ne characteris-
tics at the way level. The recon�gurable characteristics of the cache
ways include their ownership, global visibility to all cores in a clus-
ter and inclusion policy (either inclusive or non-inclusive). A cache
way is solely controlled and accessible by its designated owner, i.e.,
one of the cores in the cluster; however, it can be reassigned during
execution. By setting the way to be “globally visible”, it attains a
read-only status, allowing the bu�ered contents to be seen by other
cores in the same cluster. The bene�ts of the design are three-fold:

• The pipeline-coupled design o�ers an e�cient “channel” for
data sharing between the dependent tasks, accelerating the
resolution of data dependency.

• The recon�gurations of the cache ways’ ownership enable
dynamic adjustments of cache capacity between parallel
tasks, unblocking possible parallelism.

• The control over cache ways’ visibility and inclusion policy
enables precise and �exible data sharing, allowing optimisa-
tion of the L1.5 Cache’s usage under di�erent use scenarios.

With the L1.5 Cache, we establish a real SoC (Sec.2.2) and expand
the conventional RISC-V ISA to o�er dedicated interfaces for cache
recon�gurations (Sec. 2.3). On the software side, we present a sched-
uling method (Sec. 4) to demonstrate the e�ectiveness of the L1.5
cache on a typical parallel task model with dependency, i.e., DAGs.
2.2 Integerating L1.5 Cache into a SoC
Fig. 3 depicts the integration of the L1.5 Cache into a multi/many-
core SoC with 5-stage pipelined cores. Unlike the isolated L1 cache,
the L1.5 Cache bu�ers both instructions and data collectively; thus,
it is integrated into both the Instruction Fetch (IF) and Memory
Access (MA) stages. To do this, we developed two Inclusion Policy

Units (IPUs) usingmultiplexers and control registers, and connected
them to the address ports of the Instruction Fetch Unit (IFU) and
the Load Store Unit (LSU), respectively (see Fig. 3 a ). The IPU
selectively routes memory accesses to the L1.5 Cache based on the
con�gured inclusion policy and also combines the virtual index and
physical tag (returned by the TLB) into the address port of the L1.5
Cache see Fig. 3 b ). With the IPUs, a demultiplexer is deployed at
the IF and MA stages to route the read data back to the next stages.

We deployed a Mini-Decoder (Mini-D) at the MA stage to di�er-
entiate the conventional RISC-V and newly introduced L1.5 Cache
ISA, constructing independent paths for each. The Mini-D directs
the load and store instructions to the LSU and cache con�guration
instructions to the control port of the L1.5 Cache, with other in-
structions being passed straight to the WB pipeline stage (Fig. 3 c ).

Since reading data from the L1.5 Cache may induce data hazards
for subsequent instructions, bu�ered at an earlier pipeline stage,
we designed a forwarding channel, connecting the L1.5 Cache’s
data port and the Execution (EX) stage (Fig. 3 d ). This facilitates
the direct passage of the dependent data, resolving hazards directly
at the MA stage, rather than waiting until the data is written back.
Table 1: New ISA for the L1.5 Cache recon�gurations (Priv: 1
and 0 indicate the kernel and user modes, respectively).

Instruction Priv Description
demand, rs1 1 Apply rs1 ways from L1.5 Cache.
supply, rd 0 Return the assigned ways in rd.
gv_set, rs1 0 Set owned ways’ global visibility.
gv_get, rd 0 Return owned ways’ global visibility.
ip_set, rs1 0 Set inclusion policy for all owned ways.

2.3 ISA Support
In coping with the recon�gurable characteristics, we developed
a new ISA to abstract control interfaces for the software (Tab. 1).
Speci�cally, we present an ip_set() instruction to con�gure the
cache ways’ inclusion policy, paired with demand() and supply()
to apply the cache ways from the L1.5 Cache and check the cache
ways have been properly assigned. Moreover, we present a pair of
gv_set() and gv_get() instructions to set and check the global
visibility of the cache ways owned by a core. To ensure the con-
trol e�ciency, parameters delivered by supply(), gv_set(), and
gv_get() are compacted using bitmaps. For instance, to set cache
ways 2 and 7 to be globally visible, 0x42 is sent using gv_set().

Given that the demand() can cause way contention between the
cores, it is designed as a privileged instruction, executable only by
an OS or a hypervisor with a comprehensive view of the system.



(a) Micro-architecture of L1.5 Cache (OW: Ownership, GV: Global Visibility, TID: Task ID, V: Valid, T: Tag, D: Dirty). (c) Microarchitecture of data selector.

(b) Connections of the write paths.
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Figure 4: Microarchitecture of the L1.5 Cache, containing 12 cache ways and connecting two cores.
3 L1.5 Cache: Design
To enable dynamic sharing of L1.5 Cacheways among cores, we
developed the L1.5 Cache microarchitecture using bitmap-assisted
mask circuits. Speci�cally, we deploy a set of bitmap control regis-
ters, each of which is mapped 1-to-1 with a core, storing ownership
(i.e., the allocated core) and global visibility of cache ways. When a
memory request is dispatched to the L1.5 Cache’s address port, the
mask circuits �lter and direct the memory request to the cache ways
with the correct permissions based on the bitmap combinations.

3.1 The Microarchitecture
Fig. 4.(a) shows the L1.5 Cache microarchitecture, using the read
paths as an example: a control registers record the access permis-
sions of the cores; b mask logic �lters requests and directs them
to the corresponding selection logic ( d and e ), extracting the
data from c cache ways; and f a Supply-Demand Unit (SDU) that
distributes and maintains cache capacities between the cores.
Control registers. We divide the control registers into three (Fig.
4.(a) a ): one for recording the Task ID (TID) of the core’s running
task, and the others for tracking the Ownership (OW) and Global
Visibility (GV) of the cache ways assigned to the core. These regis-
ters are interfaced with the control port of the L1.5 Cache through
a multiplexer for ISA accesses, where the modi�cations of the OW
registers are fully handled by the SDU to minimise con�icts.
Mask logic. The mask logic links the control registers, the L1.5
Cache’s address port and the cache ways, using a dual-level �ltering
mechanism (Fig. 4.(a) b ): at the upper level, it combines all GV
registers with the local OW register through OR-gates; at the lower
level, the outputs from the OR-gates are connected to the index bits
of the request using AND-gates. The connections direct requests to
ways either owned by the associated core or globally shared.

Unlike read paths, write paths (Fig. 4 (b)) do not involve shared
ways, thus require a di�erent mask logic in the upper-level �ltering.
We deploy AND-gates to link the OW register with the NOT-gated
GV register, selecting the ways owned by the core but not shared.
Cache ways and their selection logic. Cache ways were devel-
oped using SRAMs and organised using a set-associative architec-
ture [9]. Each line is partitioned into four: valid, tag, data and dirty
(Fig. 4.(a) c ). The valid bit�eld indicates the validity of the line; the
tag and data bit�elds store the tag and data of the mapped memory
block; and the dirty bit reveals if the line requires coherence.

With the cache ways, we designed Line Selectors (LSs) and Data
Selectors (DSs) to retrieve the bu�ered data. The LS directs all lines
of a cache way to the data ports of the multiplexers and routes the
outputs to the DSs (Fig. 4.(a) d ), where the multiplexers’ control
ports are connected to the mask logic’s outputs. Each DS is linked
with a core, validating if a request meets a cache-hit (Fig. 4(c)). To
do this, the DS uses a set of latches to bu�er the outputs from the
LSs. Each LS is connected by a hit-checker, comprising an XNOR-
gate and an AND-gate. The XNOR-gate connects to the latch’s tag,
assessing the cache-hit status, while the AND-gate connects to the
XNOR-gate’s output and the valid bit�eld, checking its validity.
Supply-Demand Unit (SDU). SDU (Fig.5) receives a demand()
from cores and supply()ways with its best e�orts. The SDU design
has a set of Supply-Demand (SD) registers, comparators and a Way
Allocator (Walloc). The SD registers (Fig. 5 a ) are associated with
a core, bu�ering the core ID, the number of ways being demanded
via a Demand (D) register and those currently supplied via a Supply
(S) register. A comparator (Fig. 5 b ), comprising a subtractor and
an XOR-gate, links the S and D registers. The subtractor computes
the gap between S and D registers, while the XOR-gate �nds a mis-
match. When a mismatch is detected, the gap value is sent to the
Walloc joined with the core ID. The Walloc (Fig. 5 c ) was designed
using a FSM alongside a register bank and register controller. The
register bank acts as a “shadow” of the ways’ ownership, allow-
ing the FSM to alter the ownership by its controller. When extra
cache ways are allocated, Walloc writes to slots that are unoccupied
(marked as N/U). Conversely, when the number of cache ways is
reduced, Walloc marks the relevant slots with N/U. After updating
the register bank, the new value is sent to the corresponding control
register using a bitmap, while the Walloc updates the S register.

3.2 Mitigating Cross-application Invasion
Di�erent applications might be executed in a single cluster, each
involving a unique mapping of virtual-to-physical addresses. Thus,
cross-application cache sharing is not allowed [9]. To enforce this,
a protector, employing XNOR- and AND-gate to govern the connec-
tivity of the control registers (Fig. 4(a) g ). The XNOR-gate connects
the TIDs across the control registers, checking if the same applica-
tion is being executed. The XNOR-gate’s output is interfaced with
the GV registers using AND-gates, before being sent to the mask
logic, preventing cache sharing between di�erent applications.
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3.3 Supporting Instruction-level Parallelism
The proposed L1.5 Cache is also compatible with superscalar OoO
cores, where multiple memory requests may be dispatched in one
cycle. To facilitate instruction-level parallelism, several modi�ca-
tions are necessary. At the interface, additional address and data
ports are required to interface with head entries of Load and Store
Queues (LSQs) to handle simultaneously dispatched requests. Prior
to the mask logic, an extra bu�er should be instantiated to tem-
porarily store and prioritise the in-�ight requests.

4 Exploiting L1.5 Cache in DAG Scheduling
This section presents a DAG schedule that utilises the L1.5 Cache
to reduce the communication cost and the programming model.
4.1 System Model
Task Model. We consider a recurrent DAG task g8 = {+8 , ⇢8 ,)8 ,⇡8 },
in which+8 denotes a set of nodes, ⇢8 is a set of edges,)8 is the period
of g8 and ⇡8 is the deadline with ⇡8  )8 . For a node E 9 , ⇠ 9 denotes
the worst-case computation time (WCET) and % 9 is the priority.
Function ?A4(E 9 ) returns nodes that are connected to E 9 (i.e., the
predecessors) while BD2(E 9 ) gives the successors connecting from E 9 .
The volume of data produced by E 9 (consumed by BD2(E 9 )) is denoted
by X 9 , and can be obtained using pro�ling tools, e.g., Valgrind [1].
An edge 4 9,: connecting E 9 and E: has a communication cost ` 9,: .
A path is a node sequence in which any two consecutive nodes
are connected with an edge. The length of the longest path that
contains E 9 is denoted by _ 9 . As with [8], g8 has one source node EBA2
and one sink node EB8= . Nodes are scheduled by a non-preemptive
�xed-priority scheduler with the work-conserving scheme [8].
Cache Model. The system contains a typical two-level (L1 and L2)
cache hierarchy along with the L1.5 Cache described in Sec. 2 (see
Fig. 2). The L1.5 Cache has in total Z cache ways and each way has
a size of ^ . An L1.5 Cache way can be con�gured as local or global.
A local way is dedicated to a node with full control (i.e., read and
write), whereas a global way can be read by all nodes in g8 . Each
way can be con�gured as non-inclusive (by default) or inclusive,
and has a unique owner node, i.e., the core designated to the node.
TimingModel. The Execution TimeModel (ETM) in [15] is applied
to compute the speed-up of the communication cost of an edge 4 9,:
given = L1.5 Cache ways. As described in [15], for a dedicated cache
without any inter-core interference, the ETM can be e�ectively
constructed as ⇢) (4 9,: ,=) = ` 9,: ⇥ (1 � U 9,: ⇥ =

dX 9 /^e ), in which⌃
X 9/^

⌥
is the number of ways required for storing the dependent

data produced by E 9 and U 9,: is the speed-up ratio of 4 9,: . Details of
the ETM construction with veri�ed feasibility can be found in [15].
4.2 DAG Scheduling with L1.5 Cache
L1.5 Cache Con�guration. Each node E 9 is assigned a number of
local or global L1.5 Cache ways. The local ways allow E 9 to store
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Figure 6: The L1.5 Cache con�guration of an example DAG.
dependent data for BD2(E 9 ), whereas the global ones contain data
required by E 9 . The local ways are con�gured as global once E 9 is
�nished, making the dependent data visible to all BD2(E 9 ). Fig. 6
illustrates the cache con�guration of an example DAG task. For
E1, a set of local ways are assigned to store its dependent data. As
?A4(E1) = ú, E1 has no global ways. Once E1 is �nished, its local
ways are set as global for E2 (the �rst successor of E1), and are
shared by E2, E3 and E4. Then, local ways are also assigned to these
nodes. The same con�guration applies to the following nodes, in
which E7 is only assigned with global ways as BD2(E7) = ú.

Algorithm 1: DAG scheduling with L1.5 Cache.
1 Q = EBA2 ; ⌦ = ú; ?A8 = |+8 | ;
2 while Q < ú do
3 for lG 2 ⌦ do
4 /* L1.5 global cache ways configuration */

5 if lG is local then
6 lG .C~?4 = global; lG .>F=4A = BD2(lG .>F=4A ).5 8ABC ();
7 else
8 ⌦ = ⌦ \ lG ;
9 end

10 end
11 for E9 2 Q do
12 E9 = 0A6<0G

9
{_ 9 | 8E9 2 Q};

13 /* local L1.5 cache ways configuration */

14 if ⌦.B8I4 < Z then
15 lG .B8I4 = � (E9 ,⌦, Z ); lG .>F=4A = E9 ; ⌦ = ⌦ [lG ;
16 end
17 /* node priority assignment */

18 % 9 = ?A8 ; ?A8 = ?A8 � 1; Q = Q \ E9 ;
19 end
20 update _ 9 , 8E9 2 + via dynamic programming;
21 update Q based on the precedence constraint of examined nodes;
22 end

Scheduling with L1.5 Cache. With the cache con�guration in
Fig. 6, Alg. 1 presents the proposed DAG schedule that exploits the
L1.5 Cache. The proposed method takes a DAG task (g8 ) and the
number of ways in the L1.5 Cache (Z ) as the input, and produces the
L1.5 Cache con�guration and priority of each node in g8 . Essentially,
the method follows the principle that always assigns dedicated L1.5
Cache ways and higher priority to nodes in the longer path, so that
the DAG makespan can be e�ectively reduced. Notation Q denotes
the set of currently-examined nodes, ⌦ contains the currently-
allocated L1.5 Cache ways, ?A8 is the current priority level. For
simplicity, we let lG denote a group of L1.5 Cache ways assigned
to a node with three attributes: (i) number of ways (lG .B8I4), (ii)
type (lG .C~?4 = {;>20;,6;>10;}), and (iii) owner node (lG .>F=4A ).

The algorithm starts from the source node, i.e., Q = {EBA2 }.
In each iteration, the algorithm �rst sets the local ways in ⌦ as
global (if any, owned by nodes in Q of the previous iteration),
and updates the ownership accordingly, allowing nodes in Q to
access the dependent data from their predecessors (lines 5-7). The
global ways in ⌦ are freed as they are no longer required (line 8).
Then, starting from the node E 9 with the highest _ 9 in Q (line 12),
the algorithm determines the number of local L1.5 Cache ways
(lines 14-16) and the priority (line 18) for E 9 . Function � (E 9 ,⌦, Z ) =
min{

⌃
X 9/^

⌥
, (Z � Õ

lG 2⌦ lG .B8I4)} computes the number of L1.5
Cache ways supplied to E 9 , in which (Z � Õ

lG 2⌦ lG .B8I4) is the
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number of ways that can be allocated. Then, a priority is assigned
to % & following the principle of the node in the longer path !rst.

After nodes in Q are examined, & & of all nodes is updated based
on '( () &,' ,*), given newly-allocated cache ways (line 20). By doing
so, the algorithm keeps tracking long paths in +% and prioritises the
reduction of their communication cost and execution, e"ectively
reducing the DAG makespan. Finally, Q is updated with nodes for
the next iteration (line 21). The algorithm !nishes when Q = ∅, and
returns L1.5 Cache con!guration and priority for nodes in +% . Note,
the proposed method does not undermine the predictability, as the
inter-core interference is eliminated in the L1.5 Cache. Existing
analysis (e.g., the one in [8]) can be applied to provide safe timing
bounds, with minor modi!cations for communication cost on edges.
The time complexity of Alg. 1 is cubic, which contains at most |,% |
iterations with a quadratic complexity for updating & & and - [8].
4.3 Programming Model
Wenow present the programmingmodel that supports the proposed
I/O allocation and scheduling method with the L1.5 Cache. Alg. 1
speci!es the number of local and global L1.5 Cache ways of each
node. For a node % & , the L1.5 Cache con!guration is conducted
before it is dispatched by the scheduler, e.g., during the context
switch. For the local ways, demand() (see the ISA in Tab. 1) is
invoked given the number of ways assigned to % & . Then, ip_set()
is used to set the ways as inclusive, so that the dependent data
produced by % & can be written to the L1.5 Cache through the L1
cache. For the global cache ways, supply() is invoked to obtain
the local ways for % & ’s predecessors, along with gv_set(), which
sets the global visibility of these ways, enabling read-only accesses
of nodes that require the same data.

5 Evaluation
Experimental platform. We built 8/16-core SoCs on the AMD
Alveo U280. We implemented the cores based on the Rocket [2], an
open-source RISC-V core. We con!gured the cores with a 5-stage
pipelined, in-order dispatch, with microarchitectural changes to
support the new ISA (Sec. 2.3). Each core was equipped with an
independent 4KB I$ and D$ (1 - 2 cycles latency).We organised these
cores into clusters, each comprising four cores sharing a L1.5 Cache.
The L1.5 Cache was implemented using Bluespec SystemVerilog
under the guidelines in Sec. 3, featuring 16 ways (each containing
2KB, 2 - 8 cycle latency). We integrated the computing clusters, the
L1.5 Cache, L2 cache (512 KB, 15 - 25 cycles latency) and external
memory (4GB@800Mhz) as an SoC using the approach described
in Sec. 2.2. The hardware was synthesised, implemented and routed
using Vivado (v.2021.1). FreeRTOS (v.10.4) was used as the OS kernel
across all cores (see Sec. 2.3). All software (OS kernels, drivers and
user applications) was compiled using a RISC-V GNU toolchain.

We built three baseline systems as Comparators (CMPs). Both
CMP|L1 andCMP|L2 are legacy real-time systems developed upon
the above hardware without the L1.5 Cache. CMP|Shared-L1 [10]
is a system with a shared L1 cache, using a heuristic for capacity
allocation. For the CMPs, the L1 and L2 capacity was increased to
ensure that the total cache size was equivalent across all systems.

Table 2: Comparison of the normalisedworst-casemakespan.
!! CMP [15] Prop. " CMP [15] Prop. #"$ CMP [15] Prop.
0.2 0.095 0.061 9 0.446 0.35 0.1 0.378 0.296
0.4 0.189 0.137 12 0.405 0.313 0.2 0.40 0.310
0.6 0.283 0.214 15 0.379 0.294 0.3 0.427 0.338
0.8 0.378 0.292 18 0.362 0.281 0.4 0.464 0.380
1.0 0.472 0.372 21 0.348 0.275 0.5 0.509 0.427

The pseudo-LRU is applied for all caches with the same memory
model [11], simulating 1.2 GHz systems at 30 MHz.

5.1 Makespan Comparison
Experimental setup.We evaluated the proposed schedule with
the L1.5 Cache against the SOTA in [15], which provides a DAG
scheduling solution that bene!ts from the caches in CMP|L1 and
CMP|L2. The evaluation was conducted on the simulator developed
in [15] with synthetic DAGs. A DAG task was generated as follows:
the number of layers was randomly decided in [5, 10], and the
number of nodes in each layer was decided in [2, "] (" = 15 by
default). A node had a probability of 20% to connect with every
node in the previous layer. The period (% was randomly generated
in [1,1440] units of time with .% = (% . The workload/% = !% ×(%
was computed given a utilisation !% . The WCETs of nodes were
then generated uniformly based on/% . A parameter critical path
ratio (#"$ ) was used to control the proportion of the longest path in
+% , e.g., #"$ = 20% means the length of the longest path is/% × 20%.
The ratio between the sum of communication cost (denoted∑( ) and
/% was 0.5, with the communication cost of each edge generated
in [1,∑(/|'% | × 2]. Each edge has an ETM with 0 &,' generated in
(0, 0.7], i.e., with a maximum speed-up of 70% from the L1.5 Cache.
Results. The proposed DAG schedule with the L1.5 Cache outper-
formed the SOTA in terms of the DAG makespan. This is observed
from Fig. 7, which shows the average makespan (normalised by
the highest value observed) of the !rst 10 instances of 500 DAGs.
Our method provided the lowest makespan in general, e.g., out-
performed CMP|L1 and CMP|L2 by 11.1% and 22.9% on average in
Fig. 7(a), respectively. In particular, it showed a strong performance
with a relatively high !% or a low #"$ , e.g., !% ≥ 0.8 or #"$ ≤ 0.3.
In such cases, the traditional cache can hardly speed up the nodes
due to high WCET. Hence, the communication cost becomes the
bottleneck for reducing DAG makespan, which was decreased us-
ing L1.5 Cache. Tab. 2 shows the normalised worst-case makespan
of competing methods. Our method outperformed the CMP by
26.3%, 22.1%, and 19.9% on average with the varied !% , " and #"$ ,
respectively. Notably, the traditional cache requires a warm-up
phase to speed up the node execution, leading to a high worst-case
makespan. By contrast, with the L1.5 Cache, the dependent data
that a node requires is available in the cache each time it is released,
hence, achieves a signi!cantly lower worst-case DAG makespan.
5.2 Case Study
Experimental setup.We examined the real-time performance of
the systems using a case study. We con!gured all systems with 8/16
cores and then executed the Parsec 3.0 benchmark (multi-thread
version) [3] with the simsmall input. We slightly modi!ed the
workloads by introducing precedence constraints and data #ow
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Figure 8: Case study. In Fig. 8(a) and 8(b), 1-axis: target utilisation; In Fig. 8(c): 1c|2%: an SoC with 1 cores and 2% utilisation.
dependency between the threads to form DAG tasks. Before run-
time, the raw data used by the tasks was generated and stored in
the memory. At run-time, the cores fetched the raw data, executed
the tasks, and then sent the calculated results back to the memory.
Each task had a randomly de!ned period and implicit deadline. We
executed the examined systems 200 times under varying target
utilisation [40%, 90%], at intervals of 5%. The dependent data shared
between the nodes was synthetically generated with a random size
[2KB, 16KB]. For fair comparisons, we ensured the dependent data
and timing parameters in each trial were identical. We examined
the real-time performance using the success ratio, which recorded
the percentage of trials that were executed without deadline misses.
Results. Deploying the L1.5 Cache in conventional multi/many-
core SoCs signi!cantly improved the systems’ real-time perfor-
mance. As shown in Fig. 8(a) and 8(b), when systems were con!g-
ured with the same settings (core number and target utilisation),
our proposed solution consistently outperformed CMPs in terms of
success ratios [5%, 40%]. Such improvements bene!ted from deploy-
ing the L1.5 Cache (Sce. 2) and suitable con!gurations (Sec. 4) for
the DAG tasks, e"ectively increasing the parallelisms of execution
and expediting the sharing of interdependent data.
5.3 Side-e!ects Analysis
The L1.5 Cache introduces a range of valuable features previously
unseen in L1 and L2 caches. Therefore, it is important to understand
the e"ectiveness and potential gaps in the L1.5 Cache design, espe-
cially during time periods when the system is busy. The potential
side-e"ects brought by the L1.5 Cache are twofold: (i) decreased
cache utilisation due to the additional cache management; and (ii)
cache con!guration delays caused by contentions between cores.
Experimental setup. We adopted the same experimental setup
and methods as in Sec. 5.2, with only the proposed system being
executed. To replicate a high-demand scenario, we con!gured 8/16-
core systems with 80% and 100% utilisation. We deployed a cycle-
accurate monitor to trace the cores and L1.5 Cache recording (i) the
utilisation of the L1.5 Cache and (ii) the con!guration latencies. The
utilisation was calculated by the percentage of the cache ways that
had been assigned. The latency was assessed by determining the
percentage 3 of task executions that occurred with an unexpected
setting. For example, if a task executes in 100ms with the correct
settings and 1ms with the incorrect settings, 3% would be 1%.
Results. In busy periods, the L1.5 Cache was e"ectively utilised and
the miss-con!guration latency was less than 1% of task executions.
In Fig. 8(c), with the systems con!gured at 80% utilisation, the
average L1.5 Cache utilisation surpassed 95%. When increasing the
system’s utilisation to 100%, the L1.5 Cache utilisation exceeded
98%, thereby ensuring the stability of the systems’ throughput.
Across all experimental setups, 3 consistently remained below 1%.
Nevertheless, when the system was set up with higher utilisation,
a minor increase in 3 was observed. This is chie#y attributed to the
DSU’s constraint of con!guring only one cache way at a time.

5.4 Hardware Overhead
Experimental setup. We conducted a physical implementation
of a 16-core SoC (at 400 Mhz) with the L1.5 Cache (32KB, 8 ways
per computing cluster) and with only the L1 Cache (8KB, 2 ways

per core), which was carried out at the post-layout stage using
Synopsys 28*4 Generic PDKs [6]. The RTL was synthesised using
the Synopsys Design Compiler (v2022.12). The synthesised netlist
was placed and routed with the Synopsys IC Compiler 2 (v2022.12).
Results. The SoC has a reported area of 2.757mm2, with each
cluster contributing 0.574mm2. Within an individual cluster, the
four processors occupy 0.359mm2, and the integration of the new
ISA entails an area overhead of approximately 0.001mm2 per core.
In comparison, the SoC designed using the conventional L1 cache
with the same capacity yields a reduced total area of 2.604mm2, due
to its relatively simple microarchitecture. In summary, developing
a 16-core SoC with the L1.5 Cache results in an increased area
consumption of 0.153mm2, representing 5.88% of the SoC’s area.
6 Conclusion
This paper presented a VIPT and SINE L1.5 Cache that provides
con!gurable and !ne-grained data-sharing capabilities for parallel
tasks with data dependency. Focusing on a mainstream parallel task
model, i.e., DAGs, a scheduling method was proposed that exploits
the L1.5 Cache to reduce the commutation cost between nodes,
hence, the DAG makespan. As a complete solution, a systematic
full-stack framework was constructed from the SoC and the ISA to
the programming model. Experimental results demonstrated the ef-
fectiveness of the proposed solution over the SOTAmethod in terms
of timing performance of DAG tasks with negligible overheads.
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