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Abstract
Unlike circuit parameter and sizing optimizations, the automated
design of analog circuit topologies poses significant challenges for
learning-based approaches. One challenge arises from the combina-
torial growth of the topology space with circuit size, which limits
the topology optimization efficiency. Moreover, traditional circuit
evaluation methods are time-consuming, while the presence of data
discontinuity in the topology space makes the accurate prediction
of circuit performance exceptionally difficult for unseen topologies.
To tackle these challenges, we design a novel Graph-Transformer-
based Network (GTN) as the surrogate model for circuit evaluation,
offering a substantial acceleration in the speed of circuit topology
optimization without sacrificing performance. Our GTN model ar-
chitecture is designed to embed voltage changes in circuit loops and
current flows in connected devices, enabling accurate performance
predictions for circuits with unseen topologies. Taking the power
converter circuit design as an experimental task, our GTN model
significantly outperforms an analytical approach and baseline meth-
ods directly utilizing graph neural networks. Furthermore, GTN
achieves less than 5% relative error and 196× speed-up compared
with high-fidelity simulation. Notably, our GTN surrogate model
empowers an automatic circuit design framework to discover cir-
cuits of comparable quality to those identified through high-fidelity
simulation while reducing the time required by up to 98.2%.

1 INTRODUCTION
The rapid advancement of artificial intelligence has led to a new
era of innovation in electronic design automation (EDA), partic-
ularly in the domain of analog circuit design. The analog circuit
design workflow comprises four phases: circuit topology design,
physical layout design, parasitic extraction, and validation. While
learning-based EDA tools have achieved notable success in the
lower-level design phases [6, 12, 18], the challenge of automating
circuit topology design persists, predominantly relying on the ex-
pertise and experiences of human designers. Moreover, the field
of analog circuit design offers abundant opportunities for novel
topologies, as demonstrated by the continuous evolution of power
converter topologies year after year [8]. Hence, the development of
learning-based topology design tools holds immense promise and
relevance in this dynamically expanding domain.
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However, the automatic design of circuit topologies faces for-
midable challenges. The topology design space grows faster than
an exponential increase with the circuit complexity and experi-
ences a combinatorial explosion. For example, Figure 1 shows that
the number of circuit topologies rapidly escalates to 191.8K for
5-component circuits, when each component can be chosen from 4
types and have 2 ports to be connected with other component ports
or 3 terminal ports. Consequently, while a single simulation for a
5-component circuit may require just a few seconds, evaluating all
these diverse topologies, each with multiple device parameters, de-
mands an astonishing 111 days. Recent works have introduced ma-
chine learning algorithms tailored for circuit topology automation,
encompassing tree-based search [5, 23] and genetic algorithms [13],
which intelligently explore the circuit topology space. Nevertheless,
the effectiveness of these algorithms hinges on the time cost and
accuracy of circuit evaluation. Thus, they still suffer intolerably
computational costs when employing high-fidelity simulations to
assess the searched circuit designs.

Leveraging learning-based methods as surrogate models to pre-
dict circuit performance holds great promise for accelerating circuit
evaluation, but it brings about distinctive challenges in the context
of circuit topology design. Unlike surrogate models aimed at op-
timizing device parameters of a fixed topology that remains the
same for both training and testing [2], those for topology design
must possess the capability to estimate the performance of circuits
with topologies previously unobserved in training data, as train-
ing a separate model for each topology is impractical for design
automation. This necessitates that the model comprehends the in-
herent topological structures of circuits. Moreover, learning-based
surrogate models for topology design suffer from severe data discon-
tinuity. Unlike problems in the general AI field, where similarities
in topologies often yield similar predictions, circuit design exhibits
the phenomenon wherein even a minor change in topology can dra-
matically alter circuit characteristics and performance. Additionally,
the data imbalance in topology space, due to the fact that good cir-
cuit candidates are inherently sparse, aggravates the difficulties in
learning accurate prediction. As a result, applying existing models
developed in the broader AI field, such as graph neural networks,
proves less effective. Instead, learning-based surrogate models for
topology design must be engineered to capture the fundamental
physics underlying diverse topologies, enabling the transfer of
knowledge gleaned from a limited set of topologies to those that
are previously unseen. In pursuit of effective circuit topology design
automation, we introduce a pioneering Graph-Transformer-based
Network (GTN) as our surrogate model, aimed at precise circuit per-
formance prediction and expedited circuit evaluation and topology
exploration. Specifically, we make the following contributions.
• We redefine a circuit topology as a topological graph, where cir-
cuit devices and their connection nodes are both represented as
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Figure 1: For circuits with 4 different component types, the
topology space and circuit evaluation time using high-fidelity
simulation increase combinatorially with circuit complexity.

graph vertices. This representation, though resulting in larger
graphs compared to those with devices alone as vertices, enables
the exact preservation of topological information, including the
connectivity of different device ports. This proves pivotal for de-
tecting cases, such as shortcuts arising from certain device port
connections, which are crucial in identifying undesirable topolo-
gies generated by topology search algorithms. Furthermore, it
can truthfully convey current flows among devices linked to the
same connection node. To identify voltage changes within the
circuit, we employ the minimum loop algorithm [10] to iden-
tify minimally overlapping loops where voltage changes can be
effectively characterized with the smallest number of devices.

• We construct a novel GTN neural architecture that harnesses the
topological knowledge to embed voltage changes in circuit loops
and current flows between connected devices. This is achieved
by employing multi-head attention mechanisms, both for aggre-
gating embeddings of neighboring devices linked to the same
connection node cultivating the current flow information, and
for aggregating embeddings of devices within the same circuit
loop cultivating the voltage change information. Although circuit
loops can capture knowledge essential for accurate circuit perfor-
mance prediction, their greater distance compared to neighbors
makes training with a cold start difficult. Thus, we introduce
a specialized learning procedure that starts with training only
the aggregation of neighboring vertices via a special masking
technique and progressively adds the aggregation of loop devices
once the remaining networks have warmed up well.

• We focus on the power converter circuit topology design as an
experimental task in this work. Evaluation results show that our
GTN model reduces the relative squared error of an analytical
approach and baseline methods directly utilizing various graph
neural networks by more than 87.7% and 16.1%, respectively.
Furthermore, GTN can predict circuits’ power efficiency and
output voltage with less than 5% relative error and 196× speed-
up compared with high-fidelity simulation.

• We integrated our GTN surrogate model into a tree-based search
for a circuit topology design automation framework. GTN em-
powers this framework to discover circuits of comparable quality
to those identified through high-fidelity simulation while reduc-
ing the time required by up to 98.2%.

2 RELATED WORKS

AI-based Circuit Design Automation. Applying learning-based
models for circuit design tasks, such as physical implementation [6,

12] and parameter optimization [18] of integrated circuits, have at-
tracted increasing attention. However, most works focus on circuit
optimization using a given circuit topology. For topology explo-
ration, search algorithms have been investigated, including evolu-
tionary, genetic [13], and tree-based search algorithms [5, 23].

Learning-based Circuit Evaluation. Conventional SPICE simula-
tion software takes an extremely long time to evaluate one topology
with fixed parameters. Analytical methods, like State-Space Averag-
ing [14] for converter circuits, can reduce the time cost of evaluating
one topology with different parameters, but they can only be ap-
plied to a small fraction of topologies that satisfy certain theoretical
assumptions. Thus, recent works developed deep learning mod-
els to speed up circuit performance and characteristic estimation
tasks, such as estimating dynamic voltage drop [20, 24], post-layout
interconnect parasitics[16], and net lengths[19] of integrated cir-
cuits. Various Graph Neural Networks (GNN) were designed for
estimating electromagnetic properties [21], power [22], transient
electromigration stress [9], Circuit De-obfuscation Runtime [4], as
well as guiding analog IC placement [11], layout parasitics and de-
vice parameter prediction [15], symmetry constraint extraction [3],
reverse engineering [1] and arithmetic block identification [7].

However, most prior works focused on tasks that involve training
and testing using a single topology or similar topologies. They
tend to perform suboptimally when confronted with the challenges
posed by a diverse topology design space with data discontinuity
and imbalance. In contrast, this work aims for accurate performance
prediction of diverse and unseen topologies explored by topology
design automation frameworks.

3 PROBLEM STATEMENT
In this work, we aim to design a fast-running surrogate model 𝑓
that can learn from a small amount of ground truth circuit evalua-
tion results to accurately predict the key performance of a circuit
with unobserved topology generated by an automatic circuit topol-
ogy design framework. In this way, the surrogate model that can
help the design automation framework generate circuits with the
same quality as the framework using high-fidelity simulation while
reducing the time cost as much as possible. In this context, a cir-
cuit consists of a topology 𝑠 and a device parameter 𝑑 . The circuit
topology contains a set of device components with ports and edges
connecting the ports. Each component has a device type (from the
set of available devices in the design task) with device parameters
(e.g., inductance, capacitance, transistor dimensions, and switching
control parameters) and ports (i.e., left and right ports).

The accuracy of the surrogate model is measured by the Relative

Squared Error 𝑅𝑆𝐸 =

∑
𝑖 (𝑦𝑖 − 𝑦𝑖 )2∑
𝑖 (𝑦𝑖 − 𝑦)2

, where 𝑦𝑖 is the performance

predicted by the model, 𝑦𝑖 is the ground-truth performance given
by the high-fidelity simulation 𝐹𝑠𝑖𝑚 , and𝑦 is the sample mean of the
ground-truth performance. Intuitively, the RSE gives a normalized
mean squared error. Thus, our goal is to design a surrogate model
𝑓 that achieves the minimum RSE:

𝑓 ∗ = argmin
𝑓

∑
𝑖 (𝐹𝑠𝑖𝑚 (𝑠𝑖 , 𝑑𝑖 ) − 𝑓 (𝑠𝑖 , 𝑑𝑖 ))2∑
𝑖 (𝐹𝑠𝑖𝑚 (𝑠𝑖 , 𝑑𝑖 ) − ¯𝐹𝑠𝑖𝑚)2

In this paper, we use the two-phase power converter circuit de-
sign as the exemplar and experimental design task. Specifically, we
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Figure 2: GTN Surrogate Model Structure.

consider 5-components circuits with devices types of capacitors
(C), inductors (L), phase-I switches (S𝑎), and phase-II switches (S𝑏 ).
Each component has two ports without direction. In addition to
components, three external terminal ports are essential in each
circuit: the input voltage (Vin), output voltage (Vout), and ground
(Gnd) ports. For device parameter 𝑑 , we consider the duty cycle of
switches that affects the output voltage. We consider two key per-
formance metrics of power converters, the output voltage𝑉out (𝑠, 𝑑)
and power conversion efficiency (𝜂𝑠,𝑑 ). When automatically design
power converter circuits, a high-quality converter is the one that
has high efficiency and 𝑉out close to a target output voltage 𝑉0.

4 GTN SURROGATE MODEL
In this section, we present our topological graph representation
of circuits and the insights from Kirchhoff’s Current and Voltage
Laws that are exploited in the novel model architecture of our
Graph-Transformer-based Network (GTN) surrogate model.

4.1 Topological Graph Representation
In contrast to existing learning-based surrogate models that repre-
sent only the devices as vertices in a circuit’s topological graph, our
approach redefines the topological graph to include both devices
and their connection nodes as graph vertices. While the graph rep-
resentation with devices alone yields smaller graphs and expresses
device connectivity, it lacks the vital information regarding which
ports of devices are connected. This omission results in identical
graph representations for circuits with different performances, such
as high-quality circuits and those with shortcuts. In contrast, our
topological graph representation (akin to the netlist representa-
tion) preserves precise topological information, proving essential
in identifying undesirable topologies generated by topology search
algorithms. Additionally, it accurately conveys current flows within
the circuit, a key characteristic leveraged in our GTN architecture.

As described in Section 3, each device component is associated
with a specific device type, while a connection node can either be
one of the terminal ports or an internal connection. To effectively
capture these distinct vertex types in the topological graph, we
employ a one-hot representation as the vertex feature, where each
bit corresponds to a particular device or connection type. Addition-
ally, we concatenate the device parameters (normalized to be at the
same scale of 1) into the vertex feature, where the parameter is set
to 0 if the vertex is not the corresponding device type.

Furthermore, we supplement our topological graph with explic-
itly identified circuit loops, which are utilized in our GTN model
to capture the conservation of charge and energy in circuit loops.
While all circuit loops hold voltage information, they encompass
largely overlapping voltage data. Moreover, using all circuit loops
makes the model more complex and harder to train. To address this
challenge, we leverage the minimum loop algorithm [10] imple-
mented in the Networkx package to identify minimally overlapping
loops (e.g., 𝑙𝑖 and 𝑙 𝑗 in Figure 2). This strategic approach allows
us to accurately characterize voltage information with a minimal
number of devices, enhancing the GTN model’s effectiveness.

4.2 Physics Insights Behind GTN Architecture
Real-world circuits often exhibit inherent complexity, rendering
direct analysis challenging. It is also challenging for learning-based
surrogate models to grasp their underlying physics if blindly em-
ploying standard deep learning models. To facilitate the model’s
comprehension of critical physics information embedded within
circuit topologies, we draw inspiration from Kirchhoff’s two fun-
damental laws of electrical circuits, which encapsulate the unique
interplay of current, voltage, and resistance in electrical circuits.
Specifically, Kirchhoff’s Current Law dictates that the current enter-
ing a connection node or device within a circuit equals the current
departing from the same node or device. Kirchhoff’s Voltage Law
states that, for any closed loops within an electrical circuit, the sum
of the electrical voltage across the loop must equate to zero.

Our approach to incorporating these physics insights involves
two key steps. Firstly, we explicitly encode the connected nodes (in
addition to devices) as graph vertices and identify smallest loops
within our topological graph representation. Subsequently, we tai-
lor the architecture of our GTN model to aggregate the informa-
tion within the small sub-circuits of interconnected vertices and
smallest loops, which captures the nuances of charge and energy
conservation. This synergistic integration bolsters GTN’s capability
in unraveling the intricate physics underpinning complex circuit
topologies, enhancing its effectiveness in modeling circuits.

Note that the state-space averaging method [14] for analyzing
power converter circuits is also built upon Kirchhoff’s two laws.
However, it solves the state-space equations based on the assump-
tion that the current or voltage on each device is stable. The equa-
tion matrix, which is a canonical form for writing the differential
equations of a circuit, presents challenges for certain circuit (e.g.,
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circuits containing inductors connected in series). Our empirical
evaluation of state-space averaging for 5-component circuits shows
that 46% circuits cannot derive the canonical matrix. Additionally,
among circuits that can derive the canonical matrix, an additional
7% were unable to derive the inverse matrix, a prerequisite for
the state space averaging method. All these circuits have diverse
performance and cannot be set to a constant performance value.

4.3 GTN Model Architecture

Our innovative GTN neural architecture, depicted in Figure 2, lever-
ages topological knowledge and physics laws of voltage changes in
circuit loops and current flows between connected devices. Specifi-
cally, it first embeds the vertex features detailed in Section 4.1 into
vertex embeddings and then employs multiple layers that share a
common architecture but do not share weights. Each layer consists
of 3 steps: neighboring vertex aggregation, loop device aggregation,
and merging. Intuitively, the neighboring vertex aggregation step
can assimilate embedded information concerning current flows
arriving and departing a connection node or device. Meanwhile,
the loop device aggregation step aggregates embedded information
pertaining to voltage changes across circuit loops. Harmoniously
combining these embedded information facilitates learning the
topological and physical characteristics of circuit topologies.

The neighbor and loop aggregations generate the aggregated
embedding using the multi-head attention (MHA) mechanism in
Transformer [17], and the merging step combines these two em-
beddings into the embedding of each topological graph vertex.

Concretely, we use𝑀𝐻𝐴 to denote the attention calculation:

𝑀𝐻𝐴(𝑒𝑖 , 𝑒 𝑗 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑒𝑖𝑊𝑊𝑊𝑄 · 𝑒 𝑗𝑊𝑊𝑊𝐾√︁

𝐷𝑘

)𝑒 𝑗𝑊𝑊𝑊𝑉 (1)

where 𝑒𝑖 and 𝑒 𝑗 are two embeddings,𝑊𝑊𝑊𝑄 ∈ R𝐷𝑖𝑛×𝐷𝑘 ,𝑊𝑊𝑊𝐾 ∈
R𝐷𝑖𝑛×𝐷𝑘 and𝑊𝑊𝑊𝑉 ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 are the query, key and value matri-
ces, respectively. And 𝐷𝑖𝑛, 𝐷𝑜𝑢𝑡 and 𝐷𝑘 are the matrix dimensions.

The neighbor aggregation step generates the neighbor embed-
ding ℎ𝑛𝑒𝑖 for each vertex 𝑛 by aggregating the embeddings of neigh-
boring vertices 𝑁𝑒𝑖 (𝑛) of vertex 𝑛 using multi-head attention:

ℎ𝑛𝑛𝑒𝑖 =
∑︁

𝑚∈𝑁𝑒𝑖 (𝑛)
𝑀𝐻𝐴𝑛𝑒𝑖 (ℎ𝑛, ℎ𝑚) (2)

The loop aggregation step generate one loop embedding ℎ𝑛
𝑙𝑖
for

each device or terminal port vertex 𝑛 in each loop 𝑙𝑖 using MHA:
ℎ𝑛
𝑙𝑖
=

∑︁
𝑚∈𝐿𝑜𝑜𝑝 (𝑙𝑖 )

𝑀𝐻𝐴𝑙 (ℎ𝑛, ℎ𝑚) (3)

in which 𝐿𝑜𝑜𝑝 (𝑙𝑖 ) denotes the set of device and terminal port ver-
tices that are in the loop 𝑙𝑖 . Note that the internal connections nodes
that do not have voltages do not participate the loop aggregation.

In the merging step, after getting the neighbor embedding ℎ𝑛
𝑛𝑒𝑖

and all the loop embeddings ℎ𝑛
𝑙0
, ℎ𝑛
𝑙1
, ...ℎ𝑛

𝑙𝑡
, where 𝑡 is the total num-

ber of loops that vertex 𝑛 is involved in, we combine all these
embeddings using a weighted summation function:

ℎ𝑛 =
∑︁

ℎ∈ (ℎ𝑛𝑒𝑖 ,ℎ𝑛𝑙0 ,ℎ
𝑛
𝑙1
,...ℎ𝑛

𝑙𝑡
)
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

ℎ𝑊𝑊𝑊𝑄 · ℎ𝑊𝑊𝑊𝐾√︁
𝐷𝑘

)ℎ (4)

The 3 steps generate the embedding of each vertex in one layer,
and we iterate these processes for multiple layers. Lastly, as a graph-
level prediction task, we conduct the mean pooling to generate

the representation of the entire circuit and use a multi-layer fully
connected network to generate the final performance prediction.

4.4 Sub-network Warm Up
Although circuit loops can capture knowledge essential for accurate
prediction, their larger distance leads to over-smoothing and makes
training with a cold start difficult. In comparison, the neighbor
embedding is more local and easier to learn. Thus, we introduce a
specialized learning procedure that starts with training only the
aggregation of neighboring vertices via a special masking technique
applied to the merging step (omitted due to space limit). Only after
the remaining networks have warmed up well, do we remove the
masking and add the aggregation of loop devices.

5 EVALUATION
This section evaluates our Graph-Transformer-basedNetwork (GTN)
surrogate model for circuit design. We first show the prediction
accuracy and speed of GTN. Then, we compare GTN with different
baseline surrogate models. To comprehensively assess the advan-
tage of our GTN model in enhancing circuit design, we integrate
GTN into a circuit generation framework and compare it with the
framework using the software simulator. The experiments are con-
ducted on two servers: one has an Intel Xeon 6238R CPU with two
NVIDIA RTX A4000 GPUs. The other has an Intel(R) Xeon(R) Silver
4216 CPU with two NVIDIA RTX A5000 GPUs.

5.1 Experiment Setup
Dataset.We conduct the evaluation on the power converter design
task with 5 components. The total number of vertices of the corre-
sponding topological graphs is often larger than 13 with internal
connection nodes and 3 terminal ports. The capacitance is set as
C (10𝜇𝐹 ) and the inductance as L (100𝜇𝐻 ). The frequency is 1𝑀𝐻𝑧

and the input voltage is 100𝑉 . For external devices, we consider an
input resistor of 0.1Ω for Vin, and an output resistor of 100Ω and an
output capacitor of 10𝜇𝐹 for Vout. The duty cycle ranges from 0.1 to
0.9, with a step size of 0.2. We exhaustively generate 959k converter
circuits (with 191.8k topologies) that cover almost all those with
valid outputs. Note that the circuits with the same topology but
different duty cycles are considered distinct. We evaluated their
efficiency and output voltage using the NGSPICE-38 simulator as
ground truth. Regarding the model training, we randomly sample
from the entire dataset at 6 various ratios to construct separate
training datasets. The sampling ratios spanned from 0.33% to 1.98%,
with an increment of 0.33%. We randomly sample 1% of the dataset
as the test dataset and 0.15% of the dataset for validation purposes.

GTN Implementation. For topological graph representation, we
convert the circuit topology into a graph and encode vertices into
embeddings with dimension of 48, which is the size of 𝐷𝑖𝑛 and
𝐷𝑜𝑢𝑡 . Then, we identify loops using Networkx. We store the graph
and loops in the format of adjacency matrix, which can simplify
the mask operations in the training. As for the model, we construct
GTN by comprising a total of 4 layers with ReLU activation. For the
multi-head attentionmechanismwithin each layer, we configure the
number of heads as 4 and 𝐷𝑘 as 6. The MLP network for prediction
has two hidden layers with sizes of 64 and 16, respectively. In this
way, the total number of parameters in the GTN is around 157k.
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better the surrogate model performs.

We train each model for 700 epochs in total and aggregate the loop
devices after 450 epochs of sub-network warm up.

BaselineModels. We compare our GTNmodel with three baseline
models: Graph Convolutional Network (GCN), Graph Attention
Network (GAT) [19], and Circuit-GNN [21]. GCN updates a node’s
feature by combining its feature with features from neighboring
nodes. Similarly, GAT aims to learn node representations in a graph
but dynamically calculates neighboring node weights using an at-
tentionmechanism. Different fromGCN andGAT, Circuit-GNN [21]
is designed to learn to simulate the electromagnetic properties of
distributed circuits with a special GNN model that captures infor-
mation from both nodes and edges across the entire graph.

Experiments of Circuit Generation. We integrated our GTN
surrogate model into the framework in [5] that generates custom
power converters from design specifications using Monte Carlo
Tree Search (MCTS). To demonstrate the advantage of the GTN
model, we conduct a comparative analysis with the same framework
but incorporate the high-fidelity NGSpice simulator for evaluation.
The simulator plays the same role as the surrogate model in the
framework. Most experiment settings for circuit generation are
the same as the ones in [5]. The target output voltage is set as 50V,
equivalent to the 0.5 target conversion ratio in [5]. Major differences
include (1) values of the duty cycle are from 0.1 to 0.9, with a step
size of 0.2; (2) the circuit evaluation is queried for each topology
with a specific duty cycle but not duty cycle sweeping; (3) we query
the top 1% of the generated circuits for high fidelity evaluation.
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5.2 Experiment Results

Performance of GTN Surrogate Model. Figure 3 shows the
performance of our model using different training ratios. Trained
with 40 seeds, each model calculates the average RSE on the testing
set. As the training set expands, the RSEs for efficiency and output
voltage monotonically decrease. When we use 1.98% of the dataset
for training, the RSE of the efficiency is 2.08% and the output voltage
is 4.48%. Figure 4 visualize the distribution of efficiency and output
voltage generated by the GTN versus the corresponding ground-
truth value on the entire dataset. 4(a) and 4(b) shows that most
data points are aligned with the diagonal line. This confirms that
our GTN can precisely evaluate the entire dataset and is accurate
enough for circuit design.

As for the computation time, we measured the average inference
time, that is, the time needed to make a prediction given a circuit.
The average inference time is 0.56 sec. over 16k data points. The
NGSpice simulation time is 111.7 sec. The GTN achieves over 196×
speed-up, highlighting its computational efficiency advantage.

In conclusion, our GTN is a fast-running surrogate model that
can learn from a small amount of ground truth circuit evaluation
and accurately predict the key performance of unseen circuits.
Comparison with Baselines. We compare the GTN with the
baseline models for predicting circuit output voltage. Fig.5(a) shows
RSE of 0.33% training data and Fig.5(b) shows the ones with 1.98%
training data. We observe that the GTN achieves 16.1% and 53.9%
performance improvement respectively compared to Circuit-GNN,
and Circuit-GNN performs better than GAT and GAT performs bet-
ter than GCN. The superiority of GTN and the performance trend
remain consistent across different experimental configurations and
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datasets. We also compute the RSE when using the state-space
averaging method. When setting the voltage prediction of the cir-
cuits that cannot be analyzed by state-space averaging as 0 (i.e.,
disconnect) or 1 (i.e., shortcut), the RSE of state-space averaging is
at least 1.0. In comparison, the RSE of our GTN model is only 0.123,
achieving a relative improvement of 87.7%.

The results demonstrate that our GTN model, utilizing the multi-
head attention mechanism to aggregate both neighbor and loop
information, outperforms baseline models focusing solely on neigh-
bor aggregation. Our model can effectively represent nodes within
the graph and capture crucial current and voltage knowledge es-
sential for accurate circuit performance prediction.
Accelerating Circuit Generation using GTN. Figure 6 shows
the performance of the power converter generation frameworks
using different circuit evaluation methods. The reward 𝑅 for each
converter circuit is defined as:

𝑅(𝑠, 𝑑,𝑉0) = 𝜂𝑠,𝑑 · 1.1−
(
15(𝑉out (𝑠,𝑑 )−𝑉0 )

|𝑉0 |
)2
. (5)

Recall that 𝑉out (𝑠, 𝑑) is the output voltage and 𝜂𝑠,𝑑 denotes the
power conversion efficiency. A high-quality converter has high
efficiency and 𝑉out close to a target output voltage 𝑉0 which is 50V
in our experiment. Thus higher 𝑅 means better quality of a power
converter circuit. We run each set 200 times and output the average
reward of the generated circuits. Compared with the simulator, the
proposed GTN surrogate model significantly reduces the overall
design time by up to 98.2% performance without degradation of
the quality of the generated power converters. This improvement
shows that, during the circuit topology generation process, GTN
can swiftly and accurately predict the efficiency and output voltage
of the generated circuit. Consequently, our GTN model guarantees
that the framework keeps sufficiently exploring the space with
better circuit designs. In conclusion, the results demonstrate the
effectiveness of the proposed GTN surrogate model that can accu-
rately evaluate the performance of the circuits with a much lower
time cost compared to the high-fidelity simulator.

6 CONCLUSION
This work introduces a novel Graph-Transformer-based Network
(GTN) surrogate model to accelerate circuit evaluation and topol-
ogy exploration without sacrificing performance. GTN cultivates
voltage information in circuit loops and current information in con-
nected devices, enabling accurate predictions for unseen topologies.
For power converter circuit design, GTN outperforms analytical
and baseline methods, reduces the design time by up to 98.2%, and
offers a powerful tool for automatic topology design. In the future,
we plan to enhance GTN by incorporating additional factors, such
as layout parasitics, apply GTN to larger-scale power converters,
and explore its utility in designing other types of circuit topologies.
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