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Abstract

Recent studies on Graph Neural Networks(GNNs) provide both empirical and
theoretical evidence supporting their effectiveness in capturing structural patterns
on both homophilic and certain heterophilic graphs. Notably, most real-world
homophilic and heterophilic graphs are comprised of a mixture of nodes in both
homophilic and heterophilic structural patterns, exhibiting a structural disparity.
However, the analysis of GNN performance with respect to nodes exhibiting dif-
ferent structural patterns, e.g., homophilic nodes in heterophilic graphs, remains
rather limited. In the present study, we provide evidence that Graph Neural Net-
works(GNNs) on node classification typically perform admirably on homophilic
nodes within homophilic graphs and heterophilic nodes within heterophilic graphs
while struggling on the opposite node set, exhibiting a performance disparity. We
theoretically and empirically identify effects of GNNs on testing nodes exhibiting
distinct structural patterns. We then propose a rigorous, non-i.i.d PAC-Bayesian
generalization bound for GNNs, revealing reasons for the performance disparity,
namely the aggregated feature distance and homophily ratio difference between
training and testing nodes. Furthermore, we demonstrate the practical implications
of our new findings via (1) elucidating the effectiveness of deeper GNNs; and
(2) revealing an over-looked distribution shift factor on graph out-of-distribution
problem and proposing a new scenario accordingly.

1 Introduction

Graph Neural Networks (GNNs) [1-4] are a powerful technique for
tackling a wide range of graph-related tasks [5, 3, 6-10], especially node
classification [2, 4, 11, 12], which requires predicting unlabeled nodes
based on the graph structure, node features, and a subset of labeled nodes.
The success of GNNs can be ascribed to their ability to capture structural
patterns through the aggregation mechanism that effectively combines
feature information from neighboring nodes [13].

GNNs have been widely recognized for their effectiveness on homophilic

Homophily

graphs [14, 2, 11, 4, 15-17]. In homophilic graphs, connected nodes OQ )
tend to share the same label, which we refer to as homophilic patterns. g Ageregation

An example of the homophilic pattern is depicted in the upper part of
Figure 1, where node features and node labels are denoted by colors (i.e.,
blue and red) and numbers (i.e., 0 and 1), respectively. We can observe
that all connected nodes exhibit homophilic patterns and share the same
label 0. Recently, several studies have demonstrated that GNNs can also

Figure 1: Examples of ho-
mophilic and heterophilic
patterns. Colors/numbers in-
dicate node features/labels.

perform well on certain heterophilic graphs [18, 13, 19]. In heterophilic graphs, connected nodes
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tend to have different labels, which we refer to as heterophilic patterns. The example in the lower
part of Figure 1 shows the heterophilic patterns. Based on this example, we intuitively illustrate
how GNNs can work on such heterophilic patterns (lower right): after averaging features over all
neighboring nodes, nodes with label 0 completely switch from their initial blue color to red, and vice
versa; despite this feature alteration, the two classes remain easily distinguishable since nodes with
the same label (number) share the same color (features).

However, existing studies on the effectiveness of GNNs [14, 18, 13, 19] only focus on either
homophilic or heterophilic patterns solely and overlook the fact that real-world graphs typically
exhibit a mixture of homophilic and heterophilic patterns. Recent studies [20, 21] reveal that
many heterophilic graphs, e.g., Squirrel and Chameleon [22], contain over 20% homophilic nodes.
Similarly, our preliminary study depicted in Figure 2 demonstrates that heterophilic nodes are
consistently present in many homophilic graphs, e.g., PubMed [23] and Ogbn-arxiv [24]. Hence,
real-world homophilic graphs predominantly consist of homophilic nodes as the majority structural
pattern and heterophilic nodes in the minority one, while heterophilic graphs exhibit an opposite
phenomenon with heterophilic nodes in the majority and homophilic ones in the minority.

To provide insights aligning the real-world scenario with structural disparity, we revisit the toy
example in Figure 1, considering both homophilic and heterophilic patterns together. Specifically, for
nodes labeled 0, both homophilic and heterophilic node features appear in blue before aggregation.
However, after aggregation, homophilic and heterophilic nodes in label 0 exhibit different features,
appearing blue and red, respectively. Such differences may lead to performance disparity between
nodes in majority and minority patterns. For instance, in a homophilic graph with the majority pattern
being homophilic, GNNs are more likely to learn the association between blue features and class 0
on account of more supervised signals in majority. Consequently, nodes in the majority structural
pattern can perform well, while nodes in the minority structural pattern may exhibit poor performance,
indicating an over-reliance on the majority structural pattern. Inspired by insights from the above
toy example, we focus on answering following questions systematically in this paper: How does a
GNN behave when encountering the structural disparity of homophilic and heterophilic nodes within
a dataset? and Can one GNN benefit all nodes despite structural disparity?

Present work. Drawing inspiration from above intuitions, we investigate how GNNs exhibit different
effects on nodes with structural disparity, the underlying reasons, and implications on graph applica-
tions. Our study proceeds as follows: First, we empirically verify the aforementioned intuition by
examining the performance of testing nodes w.r.t. different homophily ratios, rather than the overall
performance across all test nodes as in [13, 14, 19]. We show that GCN [2], a vanilla GNN, often
underperforms MLP-based models on nodes with the minority pattern while outperforming them
on the majority nodes. Second, we examine how aggregation, the key mechanism of GNNs, shows
different effects on homophilic and heterophilic nodes. We propose an understanding of why GNNs
exhibit performance disparity with a non-i.i.d PAC-Bayesian generalization bound, revealing that
both feature distance and homophily ratio differences between train and test nodes are key factors
leading to performance disparity. Third, we showcase the significance of these insights by exploring
implications for (1) elucidating the effectiveness of deeper GNNs and (2) introducing a new graph
out-of-distribution scenario with an over-looked distribution shift factor. Codes are available at here.

2 Prelimaries

Semi-Supervised Node classification (SSNC). Let G = (V, E') be an undirected graph, where
V ={v1, -+ ,v,} is the set of n nodes and F C V x V is the edge set. Nodes are associated with
node features X € R™*? where d is the feature dimension. The number of class is denoted as K.
The adjacency matrix A € {0,1}"*" represents graph connectivity where A[i, j] = 1 indicates an
edge between nodes i and j. D is a degree matrix and D|¢, ¢] = d; with d; denoting degree of node
v;. Given a small set of labeled nodes, Vi C V, SSNC task is to predict on unlabeled nodes V' \ V4.

Node homophily ratio is a common metric to quantify homophilic and heterophilic patterns. It is
calculated as the proportion of a node’s neighbors sharing the same label as the node [25, 26, 20].
It is formally defined as h; = w where N (v;) denotes the neighbor node set of v;

and d; = |N(v;)| is the cardinality of this set. Following [20, 27, 25], node ¢ is considered to be
homophilic when more neighbor nodes share the same label as the center node with h; > 0.5. We



define the graph homophily ratio / as the average of node homophily ratios h = Z’ﬁ/"‘ hi Moreover,

this ratio can be easily extended to higher-order cases hgk) by considering k-order neighbors Ny (v;).

Node subgroup refers to a subset of nodes in the graph sharing similar properties, typically ho-
mophilic and heterophilic patterns measured with node homophily ratio. Training nodes are denoted

as V4. Test nodes Vj, can be categorized into M node subgroups, V. = UM

'm—1 Vm» Where nodes in
the same subgroup V,,, share similar structural pattern.

3 Effectiveness of GNN on nodes with different structural properties

In this section, we explore the effectiveness of GNNs on different node subgroups exhibiting distinct
structural patterns, specifically, homophilic and heterophilic patterns. It is different from previous
studies [13, 14, 18, 28, 19] that primarily conduct analysis on the whole graph and demonstrate
effectiveness with an overall performance gain. These studies, while useful, do not provide insights
into the effectiveness of GNNs on different node subgroups, and may even obscure scenarios where
GNNs fail on specific subgroups despite an overall performance gain. To accurately gauge the
effectiveness of GNNs, we take a closer examination on node subgroups with distinct structural
patterns. The following experiments are conducted on two common homophilic graphs, Ogbn-
arxiv [24] and Pubmed [23], and two heterophilic graphs, Chameleon and Squirrel [22]. These
datasets are chosen since GNN's can achieve better overall performance than MLP. Experiment details
and related work on GNN disparity are in Appendix G and A, respectively.
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Figure 2: Node homophily ratio distributions. All graphs exhibit a mixture of homophilic and
heterophilic nodes despite various graph homophily ratio h.

Existence of structural pattern disparity within a graph is to recognize real-world graphs ex-
hibiting different node subgroups with diverse structural patterns, before investigating the GNN
effectiveness on them. We demonstrate node homophily ratio distributions on the aforementioned
datasets in Figure 2. We can have the following observations. Obs.1: All four graphs exhibit a
mixture of both homophilic and heterophilic patterns, rather than a uniform structural patterns. Obs.2:
In homophilic graphs, the majority of nodes exhibit a homophilic pattern with h;>0.5, while in
heterophilic graphs, the majority of nodes exhibit the heterophilic pattern with h;<0.5. We define
nodes in majority structural pattern as majority nodes, e.g., homophilic nodes in a homophilic graph.
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Figure 3: Performance comparison between GCN and MLP-based models. Each bar represents the
accuracy gap on a specific node subgroup exhibiting a homophily ratio within the range specified on
the x-axis. MLP-based models often outperform GCN on heterophilic nodes in homophilic graphs
and homophilic nodes in heterophilic graphs with a positive value.



Examining GCN performance on different structural patterns. To examine the effectiveness of
GNNs on different structural patterns, we compare the performance of GCN [2] a vanilla GNN, with
two MLP-based models, vanilla MLP and Graphless Neural Network (GLNN) [29], on testing nodes
with different homophily ratios. It is evident that the vanilla MLP could have a large performance
gap compared to GCN (i.e., 20% in accuracy) [13, 29, 2]. Consequently, an under-trained vanilla
MLP comparing with a well-trained GNN leads to an unfair comparison without rigorous conclusion.
Therefore, we also include an advanced MLP model GLNN. It is trained in an advanced manner
via distilling GNN predictions and exhibits performance on par with GNNs. Notably, only GCN
has the ability to leverage structural information during the inference phase while both vanilla MLP
and GLNN models solely rely on node features as input. This comparison ensures a fair study
on the effectiveness of GNNs in capturing different structural patterns with mitigating the effects
of node features. Experimental results on four datasets are presented in Figure 3. In the figure,
y-axis corresponds to the accuracy differences between GCN and MLP-based models where positive
indicates MLP models can outperform GCN; while x-axis represents different node subgroups with
nodes in the subgroup satisfying homophily ratios in the given range, e.g., [0.0-0.2]. Based on
experimental results, the following key observations can be made: Obs.1: In homophilic graphs, both
GLNN and MLP demonstrate superior performance on the heterophilic nodes with homophily ratios
in [0-0.4] while GCN outperforms them on homophilic nodes. Obs.2: In heterophilic graphs, MLP
models often outperform on homophilic nodes yet underperform on heterophilic nodes. Notably,
vanilla MLP performance on Chameleon is worse than that of GCN across different subgroups. This
can be attributed to the training difficulties encountered on Chameleon, where an unexpected similarity
in node features from different classes is observed [30]. Our observations indicate that despite the
effectiveness of GCN suggested by [13, 19, 14], GCN exhibits limitations with performance disparity
across homophilic and heterophilic graphs. It motivates investigation why GCN benefits majority
nodes, e.g., homophilic nodes in homophilic graphs, while struggling with minority nodes. Moreover,
additional results on more datasets and significant test results are shown in Appendix H and L.

Organization. In light of the above observations, we endeavor to understand the underlying causes of
this phenomenon in the following sections by answering the following research questions. Section 3.1
focuses on how aggregation, the fundamental mechanism in GNNs, affects nodes with distinct
structural patterns differently. Upon identifying differences, Section 3.2 further analyzes how
such disparities contribute to superior performance on the majority nodes as opposed to minority
nodes. Building on these observations, Section 3.3 recognizes the key factors driving performance
disparities on different structural patterns with a non-i.i.d. PAC-Bayes bound. Section 3.4 empirically
corroborates the validity of our theoretical analysis with real-world datasets.

3.1 How does aggregation affect nodes with structural disparity differently?

In this subsection, we examine how aggregation reveals different effects on nodes with structural dis-
parity, serving as a precondition for performance disparity. Specifically, we focus on the discrepancy
between nodes from the same class but with different structural patterns.

For a controlled study on graphs, we adopt the contextual stochastic block model (CSBM) with
two classes. It is widely used for graph analysis, including generalization [13, 14, 31, 18, 32, 33],
clustering [34], fairness [35, 36], and GNN architecture design [37-39]. Typically, nodes in CSBM
model are generated into two disjoint sets C; and Cy corresponding to two classes, ¢; and co,
respectively. Each node with c; is associated with features = € R? sampling from N (u;, I), where
1 is the feature mean of class ¢; with ¢ € {1,2}. The distance between feature means in different
classes p = ||pt1 — p2||, indicating the classification difficulty on node features. Edges are then
generated based on intra-class probability p and inter-class probability g. For instance, nodes with
class ¢; have probabilities p and g of connecting with another node in class ¢; and co, respectively.
The CSBM model, denoted as CSBM (1, 2, p, q), presumes that all nodes follow either homophilic
with p > ¢ or heterophilic patterns p < ¢ exclusively. However, this assumption conflicts with
real-world scenarios, where graphs often exhibit both patterns simultaneously, as shown in Figure 2.
To mirror such scenarios, we propose a variant of CSBM, referred to as CSBM-Structure (CSBM-S),
allowing for the simultaneous description of homophilic and heterophilic nodes.

Definition 1 (CSBM-S(p1, i1z, (p, ¢™), (p®, ¢?)), Pr(homo))). The generated nodes consist
of two disjoint sets C1 and Co. Each node feature x is sampled from N (u;,I) with i € {1,2}.

Each set C; consists of two subgroups: CZ(I) for nodes in homophilic pattern with intra-class and



inter-class edge probability p™" > ¢V and CZ-(2) for nodes in heterophilic pattern with p® < ¢2).
Pr(homo) denotes the probability that the node is in homophilic pattern. CZ-(] ) denotes node in
class i and subgroup j with (p(j ), qU )). We assume nodes follow the same degree distribution with
p(l) + q(l) — p(2) _|_ q(Q)‘

Based on the neighborhood distributions, the mean aggregated features F = D~!AX obtained
follow Gaussian distributions on both homophilic and heterophilic subgroups.

. () ) I - () ) I ,
(9 o N (W ) fori € CP3 D o N (W ) fori € CY)
p(J) +q(]) ‘/di p(J) +q(]) ‘/di
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Where Cl-(j ) is the node subgroups with structural pattern with (p(j)7 q(j)) in label 7. Our initial
examination of different effects on aggregation focuses on the aggregated feature distance between
homophilic and heterophilic node subgroups within class c; .

Proposition 1. The aggregated feature mean distance between homophilic and heterophilic node
P Puit¢Wps  p®Ppi 4P py
(Mg [ OEe)
of homophilic and heterophilic subgroups are from different feature distributions, with a mean
distance larger than 0 distance before aggregation, since original node features draw from the same

distribution, regardless of different structural patterns.

> 0, indicating the aggregated feature

subgroups within class cy is ‘

Notably, the distance between original features is regardless of the structural pattern. This proposition
suggests that aggregation results in a distance gap between different patterns within the same class.

In addition to node feature differences with the same class, we further examine the discrepancy
between nodes v and v with the same aggregated feature f, = f, but different structural patterns.
We examine the discrepancy with the probability difference of nodes u and v in class c;, denoted as
IP1(yy = c1lf) — Pa(y, = c1]f,)]. Py and Py are the conditional probability of y = ¢; given the
feature f on structural patterns (p(*), ¢(V)) and (p(?), ¢?)), respectively.

Lemma 1. With assumptions (1) A balance class distribution with P(Y = 1) = P(Y = 0) and
(2) aggregated feature distribution shares the same variance o. When nodes u and v have the same
aggregated features £, = f,, but different structural patterns, (p(l), q(l)) and (p®, q(Q)), we have:

2
V2o

Notably, above assumptions are not strictly necessary but employed for elegant expression. Lemma 1
implies that nodes with a small homophily ratio difference |h; — ho| are likely to share the same class,
and vice versa. Proof details and additional analysis on between-class effects are in Appendix D.

‘Pl(yu = Cllfu) - PQ(yv = Cl‘fv)‘ S

|hu - hv ‘ (2)

3.2 How does Aggregation Contribute to Performance Disparity?
--+-- Chameleon -=<= Arxiv

We have established that aggregation can affect nodes with distinct Squirrel =~ PubMed

structural patterns differently. However, it remains to be elucidated .50,

how such disparity contributes to performance improvement pre- Los .

dominantly on majority nodes as opposed to minority nodes. It

should be noted that, notwithstanding the influence on features, test 9 100

performance is also profoundly associated with training labels. Per-  Zo.7s G

formance degradation may occur when the classifier is inadequately 0501

trained with biased training labels. 025

We then conduct an empirical discriminative analysis taking both T e ——
. . . . 0 1 2 3 4 5

mean aggregated features and training labels into consideration. #aggregation

Drawing inspiration from existing literature [40—43], we describe

the discriminative ability with the distance between train class proto- Figure 4: Illustration on
types [44, 45], i.e., feature mean of each class, and the corresponding discriminative ratio variation
test class prototype within the same class 7. For instance, it can be along with aggregation. x-axis
denoted as || — ||, where pff and ™ are the prototype of class  denotes the number of aggre-
7 on train nodes and test majority nodes, respectively. A smaller gations and y-axis denotes the
value suggests that majority test nodes are close to train nodes within  discriminative ratio.



the same class, thus implying superior discriminative ability. A relative discriminative ratio is then

proposed to compare the discriminative ability between majority and minority nodes. It can be

w__  ma
denoted as: r=3"1 | M
lower relative discriminative ratio suggests that majority nodes are easier to be predicted than minority
nodes.

where ™ corresponds to the prototype on minority test nodes. A

The relative discriminative ratios are then calculated on different hop aggregated features and original
features denote as 0-hop. Experimental results are presented in Figure 4, where the discriminative
ratio shows an overall decrease tendency as the number of aggregations increases across four datasets.
This indicates that majority test nodes show better discriminative ability than the minority test nodes
along with more aggregation. We illustrate more results on GCN in Appendix K. Furthermore,
instance-level experiments other than class prototypes are in Appendix C.

3.3 Why does Performance Disparity Happen? Subgroup Generalization Bound for GNNs

In this subsection, we conduct a rigorous analysis elucidating primary causes for performance
disparity across different node subgroups with distinct structural patterns. Drawing inspiration from
the discriminative metric described in Section 3.2, we identify two key factors for satisfying test
performance: (1) test node u should have a close feature distance min,cy;, ||f, — £, || to training
nodes V4, indicating that test nodes can be greatly influenced by training nodes. (2) With identifying
the closest training node v, nodes u and v should be more likely to share the same class, where
> c,ce IP(yu = cilfu) — Py, = cilfy)| is required to be small. The second factor, focusing on
whether two close nodes are in the same class, is dependent on the homophily ratio difference
|y — By, as shown in Lemma 1. Notably, since training nodes are randomly sampled, their structural
patterns are likely to be the majority one. Therefore, training nodes will show a smaller homophily
ratio difference with majority test nodes sharing the same majority pattern than minority test nodes,
resulting in the performance disparity in distinct structural patterns. We substantiate the above
intuitions with controllable synthetic experiments in Appendix B.

To rigorously examine the role of aggregated feature distance and homophily ratio difference in
performance disparity, we derive a non-i.i.d. PAC-Bayesian GNN generalization bound, based on the
Subgroup Generalization bound of Deterministic Classifier [46]. We begin by stating key assumptions
on graph data and GNN model to clearly delineate the scope of our theoretical analysis. All remaining
assumptions, proof details, and background on PAC-Bayes analysis can be found in Appendix F.
Moreover, a comprehensive introduction on the generalization ability on GNN can be found in A.

Definition 2 (Generalized CSBM-S model). Each node subgroup V,, follows the CSBM distribution
Vin ~ CSBM(p1, o, D, q(i)), where different subgroups share the same class mean but different
intra-class and inter-class probabilities p\") and ¢). Moreover, node subgroups also share the same
degree distribution as p") + ¢ = pl) 4 ¢,

Instead of CSBM-S model with one homophilic and heterophilic pattern, we take the generalized
CSBM-S model assumption, allowing more structural patterns with different levels of homophily.

Assumption 1 (GNN model). We focus on SGC [16] with the following components: (1) a one-hop

mean aggregation function g with g(X, G) denoting the output. (2) MLP feature transformation
flgi(X,GQ); W, Wy, -+ ,Wy,), where f is a ReLU-activated L-layer MLP with W1,--- W, as
parameters for each layer. The largest width of all the hidden layers is denoted as b.

Notably, despite analyzing simple GNN architecture theoretically, similar with [46, 13, 47], our
theory analysis could be easily extended to the higher-order case with empirical success across
different GNN architectures shown in Section 3.4.

Our main theorem is based on the PAC-Bayes analysis which typically aims to bound the generaliza-
tion gap between the expected margin loss £9, on test subgroup V;,, for a margin 0 and the empirical
margin loss Eg on train subgroup V;, for a margin -y. Those losses are generally utilized in PAC-Bayes
analysis[48-51]. More details are found in Appendix F. The formulation is shown as follows:

Theorem 1 (Subgroup Generalization Bound for GNNs). Let h be any classifier in the classifier
Sfamily H with parameters {Wl}le. forany 0 < m < M, v > 0, and large enough number of the
training nodes Ny, = |V},|, there exist 0 < o < % with probability at least 1 — § over the sample of




y" = {yitiev,, we have:
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The bound is related to three terms: (a) describes both large homophily ratio difference |hy — by |
and large aggregated feature distance € = max;cpy,, min;ey;, ||g:(X, G) — ¢;(X, G)||2 between test
node subgroup V;,, and training nodes V;; lead to large generalization error. p = ||y — p2|| denotes
the original feature separability, independent of structure. K is the number of classes. (b) further
strengthens the effect of nodes with the aggregated feature distance ¢, leads to a large generalization
error. (¢) R is a term independent with aggregated feature distance and homophily ratio difference,

In LC(2B,)"*
NZa T /Ls

feature norm. R vanishes as training size Ny grows. Proof details are in Appendix F

depicted as 1 5= + where B, = max;cv,uv,, ||g:(X, G)||2 is the maximum

Our theory suggests that both homophily ratio difference and aggregated feature distance to training
nodes are key factors contributing to the performance disparity. Typically, nodes with large homophily
ratio difference and aggregated feature distance to training nodes lead to performance degradation.

3.4 Performance Disparity Across Node Subgroups on Real-World Datasets
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Figure 5: Test accuracy disparity across node subgroups by aggregated-feature distance and
homophily ratio difference to training nodes. Each figure corresponds to a dataset, and each bar
cluster corresponds to a GNN model. A clear performance decrease tendency can be found from
subgroups 1 to 5 with increasing differences to training nodes.
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Figure 6: Test accuracy disparity across node subgroups by aggregated-feature distance to train nodes. Each
figure corresponds to a dataset, and each bar cluster corresponds to a GNN model. A clear performance decrease
tendency can be found from subgroups 1 to 5 with increasing differences to training nodes.

To empirically examine the effects of theoretical analysis, we compare the performance on different
node subgroups divided with both homophily ratio difference and aggregated feature distance to
training nodes with popular GNN models including GCN [2], SGC [16], GAT [11], GCNII [52],
and GPRGNN [53]. Typically, test nodes are partitioned into subgroups based on their disparity
scores to the training set in terms of both 2-hop homophlly ratio h( ) and 2- hop aggregated features
F® obtained by F® = (D"'A)2X, where A = A + I and D = D + L For a test node i, we

measure the node disparity by (1) selecting the closest training node v = arg min, ey, ||Fu2) - UQ) I

(2) then calculating the disparity score s,, = ||F;2) - F5,2)||2 + |h1(f) - h5)2)|, where the first and
the second terms correspond to the aggregated-feature distance and homophily ratio differences,
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Figure 7: Test accuracy disparity across node subgroups by homophily ratio difference to train nodes. Each
figure corresponds to a dataset, and each bar cluster corresponds to a GNN model. A clear performance decrease
tendency can be found from subgroups 1 to 5 with increasing differences to training nodes.

respectively. We then sort test nodes in terms of the disparity score and divide them into 5 equal-
binned subgroups accordingly. Performance on different node subgroups is presented in Figure 5
with the following observations. Obs.1: We note a clear test accuracy degradation with respect to
the increasing differences in aggregated features and homophily ratios. Furthermore, we investigate
on the individual effect of aggregated feature distance and homophily ratio difference in Figure 6
and 7, respectively. An overall trend of performance decline with increasing disparity score is
evident though some exceptions are present. Obs.2: When only considering the aggregated feature
distance, there is no clear trend among groups 1, 2, and 3 on GCN, SGC, and GAT on heterophilic
datasets. Obs.3: When only considering the homophily ratio difference, there is no clear trend
among groups 1, 2, and 3 across four datasets. These observations underscore the importance of both
aggregated-feature distance and homophily ratio differences in shaping GNN performance disparity.
Combining these factors together provides a more comprehensive and accurate understanding of the
reason for GNN performance disparity. For a more comprehensive analysis, we further substantiate
our finding involving higher-order information and a wider array of datasets in Appendix J.1.

Summary In this section, we study GNN performance disparity on nodes with distinct structural
patterns and uncover its underlying causes. We primarily investigate the impact of aggregation,
the key component in GNNs, on nodes with different structural patterns in Sections 3.1 and 3.2.
We observe that aggregation effects vary across nodes with different structural patterns, notably
enhancing the discriminative ability on majority nodes. These observed performance disparities
inspire us to identify crucial factors contributing to GNN performance disparities across nodes with
a non-i.i.d PAC-Bayes bound in Section 3.3. The theoretical analysis indicates that test nodes with
larger aggregated feature distances and homophily ratio differences with training nodes experience
performance degradation. We substantiate our findings on real-world datasets in Section 3.4.

4 Implications of graph structural disparity

In this section, we illustrate the significance of our findings on structural disparity via (1) elucidating
the effectiveness of existing deeper GNNs (2) unveiling an over-looked aspect of distribution shift
on graph out-of-distribution (OOD) problem, and introducing a new OOD scenario accordingly.
Experimental details and discussions on more implications are in Appendix G and O, respectively.

4.1 Elucidate the effectiveness of Deeper GNNs

Deeper GNNSs [53, 52, 15, 54-57] enable each node to capture more complex higher-order graph
structure than vanilla GCN, via reducing the over-smoothing problem [58-60, 55, 61] Deeper
GNNs empirically exhibit overall performance improvement, as demonstrated in Appendix G.2.
Nonetheless, which structural patterns deeper GNNs can exceed and the reason for its effectiveness
remain unclear. To investigate this problem, we compare vanilla GCN with different deeper GNNss,
including GPRGNN][53], APPNP[15], and GCNII[52], on node subgroups with varying homophily
ratios, adhering the same setting with Figure 3. Experimental results are shown in Figure 8. We
can observe that deeper GNNs primarily surpass GCN on minority node subgroups with slight
performance trade-offs on the majority node subgroups. We conclude that the effectiveness of deeper
GNNs majorly contributes to improved discriminative ability on minority nodes. Additional results
on more datasets and significant test are in Appendix I and M.
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Figure 8: Performance comparison between GCN and deeper GNNs. Each bar represents the
accuracy gap on a specific node subgroup exhibiting homophily ratio within range specified on x-axis.

Having identified where deeper GNNs excel, reasons why effectiveness
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tion, we further investigate how higher-order homophily ratio differences

vary on the minority nodes, denoted as, |h1(f) — hgk) |, where node u is
the test node, node v is the closest train node to test node u. We concen-
trate on analyzing these minority nodes Vp,; in terms of default one-hop

homophily ratio h,, and examine how », - \h&k) — hgk)| varies with
different k orders. Experimental results are shown in Figure 9, where a
decreasing trend of homophily ratio difference is observed along with
more neighborhood hops. The smaller homophily ratio difference leads to
smaller generalization errors with better performance. This observation is
consistent with [20], where heterophilic nodes in heterophilic graphs ex-
hibit large higher-order homophily ratios, implicitly leading to a smaller
homophily ratio difference.

Ratio difference

o
o

Figure 9: Multiple hop
homophily ratio differ-
ences between training
and minority test nodes.

4.2 A new graph out-of-distribution scenario

The graph out-of-distribution (OOD) problem refers to the underperformance of GNN due to distri-
bution shifts on graphs. Many Graph OOD scenarios [62-65, 24, 66, 46, 67], e.g., biased training
labels, time shift, and popularity shift, have been extensively studied. These OOD scenarios can
be typically categorized into covariate shift with PU"(X) # P®(X) and concept shift [68-70]
with P"in(Y'|X) # P*(Y|X). P"(.) and P'**!(-) denote train and test distributions, respectively.
Existing graph concept shift scenarios [62, 66] introduce different environment variables e resulting
in P(Y|X, efain) # P(Y|X, ews) leading to spurious correlations. To address existing concept
shifts, algorithms [62, 71] have been developed to capture the environment-invariant relationship
P(Y|X). Nonetheless, existing concept shift settings overlook the scenario where there is not a
unique environment-invariant relationship P(Y|X). For instance, P(Y |Xhomo) and P (Y |Xpete)
can be different, indicated in Section 3.1. X}omo and Xpee correspond to features of nodes in ho-
mophilic and heterophilic patterns. Notably, homophilic and heterophilic patterns are crucial task
knowledge that cannot be recognized as the irrelevant environmental variable. Consequently, we
find that homophily ratio difference between train and test sets could be an important factor leading
to an overlook concept shift, namely, graph structural shift. Notably, structural patterns cannot be
considered as environment variables given their integral role in node classification task. The practical
implications of this concept shift are substantiated by the following scenarios: (1) graph structural
shift frequently occurs in most graphs, with a performance degradation in minority nodes, as depicted
in Figure 3. (2) graph structural shift hides secretly in existing graph OOD scenarios. For instance,
the FaceBook-100 dataset [62] reveals a substantial homophily ratio difference between train and test
sets, averaging 0.36. This discrepancy could be the primary cause of OOD performance deterioration
since the exist OOD algorithms [62, 72] that neglect such a concept shift can only attain a minimal
average performance gain of 0.12%. (3) graph structural shift is a recurrent phenomenon in numerous
real-world applications where new nodes in graphs may exhibit distinct structural patterns. For
example, in a recommendation system, existing users with rich data can receive well-personalized
recommendations in the exploitation stage (homophily), while new users with less data may receive
diverse recommendations during the exploration stage (heterophily).



Given the prevalence and importance Table 1: Performance (Accuracy) on the proposed OOD split.
of the graph structural shift, we pro-
pose a new graph OOD scenario em-
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validation, and minority ones for test. EERM(I) 67.59+091 40.28+0.84 44.31+0.40 48.59+0.78

This data split strategy highlights the

homophily ratio difference and the corresponding concept shift. To better illustrate the challenges
posed by our new scenario, we conduct experiments on models including GCN, MLP, GLNN,
GPRGNN, and GCNII. We also include graph OOD algorithms, SRGNN [63] and EERM [62],
with GCN encoders. EERM(II) is a variant of EERM with a GCNII encoder For a fair comparison,
we show GCN performance on an i.i.d. random split, GCN(i.i.d.), sharing the same node sizes for
train, validation, and test. Results are shown in Table 1 while additional ones are in Appendix G.4.
Following observations can be made: Obs.1: The performance degradation can be found by com-
paring OOD setting with i.i.d. one across four datasets, confirming OOD issue existence. Obs.2:
MLP-based models and deeper GNNs generally outperform vanilla GCN, demonstrating the supe-
riority on minority nodes. Obs.3: Graph OOD algorithms with GCN encoders struggle to yield
good performance across datasets, indicating a unique challenge over other Graph OOD scenarios.
This primarily stems from the difficulty in learning both accurate relationships on homophilic and
heterophilic nodes with distinct P(Y|X). Nonetheless, it can be alleviated by selecting a deeper
GNN encoder, as the homophily ratio difference may vanish in higher-order structure information,
with reduced concept shift. Obs.4: EERM(II), EERM with GCNII, outperforms the one with GCN.
Observations suggest that GNN architecture plays an indispensable role in addressing graph OOD
issues, highlighting the new direction.

5 Conclusion & Discussion

In conclusion, this work provides crucial insights into GNN performance meeting structural disparity,
common in real-world scenarios. We recognize that aggregation exhibits different effects on nodes
with structural disparity, leading to better performance on majority nodes than those in minority. The
understanding also serves as a stepping stone for multiple graph applications.

Our exploration majorly focuses on common datasets with clear majority structural patterns while real-
world scenarios, offering more complicated datasets, posing new challenges Additional experiments
are conducted on Actor, IGB-tiny, Twitch-gamer, and Amazon-ratings. Dataset details and experiment
results are in Appendix G.3 and Appendices H-K, respectively. Despite our understanding is
empirically effective on most datasets, further research and more sophisticated analysis are still
necessary. Discussions on the limitation and broader impact are in Appendix N and O, respectively.
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A Related work

Graph Neural Networks (GNNs) have emerged as a powerful technique in Deep Learning, specifi-
cally designed for graph-structured data. They address the limitations of traditional neural networks in
dealing with irregular data structures. GNNs learn node representations by aggregating neighborhood
and transforming features recursively. The node representation can then be successfully utilized to a
wide range of graph-related downstream tasks [2, 5, 3, 6-8, 73, 74].

The aggregation mechanism in GNNs is often viewed as feature smoothing [61, 75, 76]. This
perspective leads some recent studies [26, 53, 20, 77] claiming that GNN models are overly reliant
on homophilic patterns and unsuited to capturing heterophilic patterns To accommodate heterophilic
graphs, recent works propose carefully designed GNN architectures, e.g., CPGNN [78], GGNN [79],
GPRGNN [53], GCNII [52] GBK-GNN [27], ACM-GNN [19], Bernnet [80].

More recent analyses on GNNs [18, 13, 19] indicate that even GCN [2], a vanilla GNN, can deliver
strong performance on certain heterophilic graphs. According to these findings, new metrics and un-
derstandings [81, 82, 21, 19, 13, 28] have been proposed to further expose the remaining weaknesses
of GNNs.

There is a concurrent work [28] investigates when Graph Neural Networks help with node classifica-
tion with a comparison between GNN and MLP. Nonetheless, our work is distinct from [28] in two
primary ways:

* [28] is majorly grounded on the CSBM-H model focusing on different feature variances for
different classes, from a feature perspective. In contrast, our work examines the homophilic
and heterophilic patterns from a structural perspective instead of sharing the same node
homophily ratio across the graph.

* [28] proposes a new metric to identify whether GNN can outperform graph-agnostic MLP on
particular datasets. Nonetheless, it still focuses on all the nodes in the whole graph together.
In contrast, our work reveals the scenario where GNNs show performance degradation on
certain node subgroup across most homophilic and heterophilic graph datasets. Typically,
we focus on a node subgroup perspective, rather than all nodes in the whole graph. Our
paper highlights the drawback of GNNs in a more general case.

Fairness on Graph Although recent years have seen a satisfying performance from Graph Neural
Networks (GNNs), risks can be found. GNNs may unintentionally learn and perpetuate biases present
in the training data, potentially resulting in unfair outcomes for certain populations. Such risks
raise concerns about biases and discriminatory behaviors when GNNs are used in human-centric
applications.

Fairness issues on graphs can be roughly categorized into attribute bias and structural bias, based on
the source of the bias. Several works [35, 83—85] focus on fairness issues originating from sensitive
node attributes, e.g., gender or underrepresented ethnic groups. Other literature [63, 46, 86—88]
focuses on addressing fairness issues arising from different structural information, e.g., degree,
geodesic distance to the training node, and Personal Pagerank score. Our work aligns closely with
structural bias, showing that a larger homophily ratio difference between training and test nodes
may lead to performance degradation. To the best of our knowledge, we are the first to propose this
performance disparity induced by the homophily ratio difference.

Generalization ability analysis on Graph Neural Network The generalization ability analysis on
Graph Neural Networks aims to develop theoretical understandings of GNNs with a focus on the
uniqueness of the graph structure. Recent research progress reveals the generalization ability [89,
47, 90-92] of GNN across different tasks and settings. Our work typically studies the generalization
ability on the transductive node classification task indicating relationship with [93, 14, 18, 13].
Typically, [93] employs the transductive uniform stability [94] to understand why deeper GNNs
generalize better than the vanilla GCN. Several studies [14, 18, 13] investigate the generalization
of GCN under the CSBM model assumption, while they focus on either homophilic or heterophilic
patterns rather than consider both patterns together. [46] provides the first non-i.i.d. PAC-Bayes
generalization bound on GNNSs, serving as the basis of our theory 1. However, there are key
differences between our work and [46] detailed as follows:
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» Assumption difference. [46] assumes the existence of c-Lipschitz continuous functions on
the conditional probability of y; = k given the aggregated feature g;(X, G), denoted as
P(y; = k|g:(X, G)). The assumption suggests that nodes with a closer distance are likely
to belong to the same class. However, this assumption may not align with the real-world
scenario where nodes with closer distances may belong to different classes when they exhibit
a large homophily ratio difference, as shown in Lemma 1. In contrast, we utilize a different
assumption considering the influence of the structural pattern on the conditional probability,
enabling analyses on the scenario that nodes with a closer distance but from different classes.
This scenario happens frequently when the graph is a mixture of homophilic and heterophilic
patterns. An intuitive illustration can be found in Figure 1.

» Application scope difference. [46] is primarily focused on the homophilic graphs and does
not easily extend to the heterophilic ones. Empirical evidence can be found in Section 3.4
and Appendix J. In contrast, our theory can be established on most datasets except for the
Actor dataset which structural information hardly helps.

Disclaimer: Structural disparity is different from distribution shift between train and test data. The
structural disparity is that homophilic and heterophilic patterns exist simultaneously in a single node
set. Such disparity consistently exists in all graphs, as shown in Figure 2. If randomly sample train
and test data, the distribution shift between train and test will not happen. Both train and test sets will
have homophilic and heterophilic patterns, indicating structural disparity happens on both the train
and test sets.

B Investigation on the effectiveness of homophily ratio difference with
targeted synthetic edge addition algorithm.

In Section 3.4, we intuitively show that a larger homophily ratio difference could be a key reason for
performance disparity. We demonstrate the effectiveness of intuition with both theoretical analysis
and experiments conducted on real-world datasets. To further verify the influence of the homophily
ratio difference, we conduct more controllable synthetic experiments adopted from [13], adding
different amounts of synthetic edges on real-world datasets, to further evaluate how the performance
of GCN, a vanilla GNN, changes on varied homophily ratio differences. Typically, we are to manually
make heterophilic nodes more homophilic and make homophilic nodes more heterophilic with the
targeted homophilic edge addition and the targeted heterophilic edge addition algorithms, respectively.
Notably, despite synthetic edges added, we utilize the real-world dataset serves as the entrance to
keep the analysis more approach to the real-world scenario. The following subsections are organized
as follows. We first introduce the targeted heterophilic and homophilic edge addition algorithms and
how it leads to larger homophily ratio difference in Appendix B.1. Detailed experiment analysis can
be found in Appendix B.2. Further experiment details can be found in the Appendix B.3.

B.1 Targeted heterophilic & homophilic edge addition algorithms

Both targeted heterophilic and homophilic edge addition algorithms commence with standard, real-
world benchmark graphs, modifying the structure by adding synthetic edges to manipulate the
homophily ratio on either train nodes or test nodes. For example, we can add synthetic heterophilous
edges on the targeted test nodes in a homophily graph. Consequently, a homophily ratio difference
between the training and testing nodes can be observed.

We first introduce the homophilic edge addition algorithm, as shown in Algorithm 1. Specially,
we introduce a total of K edges on either training or targeted test nodes on heterophilic dataset,
denoted as Vigrgered- For each edge addition, a node  is uniformly sampled from the targeted node set,
Viargeted» and obtains its corresponding label, y,,. Another targeted node v sharing the same label, y,,,
is selected, and a homophilic edge is added between them, resulting in a homophily ratio decrease.
Consequently, we can observe a homophily ratio decrease on both target nodes u and v with the new
homophily edge added. Notably, we only add synthetic edges among targeted nodes, ensuring the
homophily ratio unchanged on the other nodes.

The heterophilic edge addition algorithm, as shown in the Algorithm 2, is analogous to the homophilic
one. The only difference is the selection of a newly added heterophilic edge instead of the homophilic
one. While homophilic edges can be readily added by connecting nodes within the same label, adding
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cross-label heterophilic edges poses a new challenge that the target node u should be connected to
which label, other than the target label y,,. Typically, we follow the principle [13] that nodes with
the same label should share similar neighborhood label distributions. This principle aligns with the
CSBM assumption, discussed in Section 3. Specifically, given a real-world graph G, we first define
a discrete neighborhood target label distribution D, for each label ¢ € C. Examples of D, can be
found in Appendix B.3. Specifically, we will first randomly select a label ¢ based on distribution
D.. Another node v in the target set with label c is then selected, and a heterophilic edge is added
between them. This process enables us to add heterophilic edges on target nodes following similar
neighborhood label distributions.

Algorithm 1: Targeted Homophilic Edge Addition

input : = {V 8} Vta.'rgeted €V, K, and {V }‘CI !
output:G' = {V, &’}
Initialize &’ =&, k=1
while 1 < k£ < K do
do
Sample node i ~ Uniform(Viargeted);
Obtain the label, y; of node ;
Sample node j ~ Uniform(Vy, N Viargeted);
while (i, j) € £';
Update edge set &' = &' U {(4,5)};
k+—k+1;

return G’ = {V, &'}

Algorithm 2: Targeted Heterophilous Edge Addition

input :G = {V,E}, Viargetea € V. K, {D.} 5" and {V.}/° 1
output:G' = {V,&'}
Initialize &' =&, k=1
while 1 < k < K do
Sample node i ~ Uniform(Viargeted);
Obtain the label, y; of node ;
Sample a number r ~ Uniform(0,1);
Sample a label ¢ ~ D, ;
Sample node j ~ Uniform(V. N Viargeted);
Update edge set &' = &' U {(4,7)};
k+ k+1;

return G’ = {V, &'}

B.2 Detailed experiment results

In this section, we conduct experiments on the homophilic graph, Cora, employing the targeted
homophilic edge addition algorithm, and the heterophilic graph, Squirrel, employing the targeted
heterophilic edge addition algorithm. For each dataset, we apply the synthetic edge addition algorithm
to training nodes and a subset of test nodes, respectively, resulting in homophily ratio difference
between training and test sets. The synthetic edges are added gradually until reaching the predefined
maximum budget K ,x, resulting in multiple synthetic graphs generated. More experimental details
on the synthetic graphs can be found in Appendix B.3. The GCN, a vanilla GNN model, is trained
from the sketch on each synthetic graph. The experimental results are illustrated in Figure 10, where
the x-axis represents the edge permutation ratio calculated as K , where K is the number of added
edges on the ¢-th synthetic graph. The y-axis represents the test performance when addlng synthetic
edge on training nodes. When adding synthetic edges on the targeted test subset, The y-axis represents
the performance on the targeted test node subset. A clear degradation in test performance is observed
with more and more synthetic edges added to test nodes and training nodes exclusively. The above
observations clearly demonstrate that the GCN test performance will degrade with a larger homophilic
ratio difference between train and test nodes.
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Figure 10: The performance of GCN on synthetic graphs with various edge permutation ratios. The
y-axis represents the test performance on all nodes when adding synthetic edge on training nodes.
When adding synthetic edges on the targeted test subset, The y-axis represents the performance on
the targeted test node subset. Test performance generally decrease with more synthetic edges added
with a large homophily ratio difference.

B.3 Details on the generated graph

In this subsection, we elaborate on the details of the synthetic graphs generated in Appendix B.2.
Specifically, we provide more details regarding the distributions D, ¢ € C employed in the Cora
and Squirrel datasets. We adopted circulant matrix-like designs for simplicity and straightforward
implementation. We also show details on the number of added edges, and the corresponding graph
homophily ratio on the Cora and Squirrel datasets.

Cora We utilize the targeted heterophilic edge addition algorithm on the Cora dataset. The Cora
dataset has seven labels that we represent as 0, 1,2, 3,4, 5,6, and the neighborhood distributions
D., c € C for adding heterophilic synthetic edges are presented as follows.

D, : Categorical(]0,0.5,0,0,0,0,0.5]),
D, : Categorical(]0.5,0,0.5,0,0,0,0]),
D, : Categorical([0,0.5,0,0.5,0,0,0]),
Djs : Categorical([0,0,0.5,0,0.5,0,0]),
D, : Categorical([0,0,0,0.5,0,0.5,0]),
Ds : Categorical([0,0,0,0,0.5,0,0.5]),
D¢ : Categorical([0.5,0,0,0,0,0.5,0]).

The number of added edges K and the corresponding homophily ratio h on the targeted test nodes
and the train nodes are presented in Table 2 and 3, respectively.

Table 2: K and h values for graphs with synthetic edges added targeted test nodes on Cora

K 100 200

300

400

500

600

700

800 900

h 0.645 0.483

0.382 0.321

0.279 0.249 0.223

0.206 0.194

Table 3: K and h values for graphs with synthetic edges added targeted training nodes on Cora

K 200 400

600

800

1000

1200

1400

1600 1800

h 0.620 0.507 0424 0365 0324 0.292 0.264 0.243 0.224
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Squirrel We utilize the targeted homophilic edge addition algorithm on the Squirrel dataset. We
first sample the label from discrete uniform distributions. Then, we randomly select two nodes with
the same label and do not have an edge between them. The number of added edges K and the
corresponding homophily ratio h on the targeted test nodes and train nodes are presented in Table 4
and 5, respectively.

Table 4: K and h values for graphs with synthetic edges added targeted test nodes on Squirrel
K 100 200 300 400 500 600 700 800 900

h 0237 0345 0412 0467 0505 0536 0562 0.585 0.606

Table 5: K and h values for graphs with synthetic edges added targeted train nodes on Squirrel
K 1500 3000 4500 6000 7500 9000 10500 12000 13500

h 0261 0299 0330 0356 0379 0399 0417 0434 0.448

C Instance-level discriminative analysis

In section 3.2, we conduct a discriminative analysis considering the distance between the feature
means from different classes from a global perspective. In this section, we further investigate the
discriminability from an instance-level perspective. Specifically, we focus on the feature distance
between different nodes feature rather than the feature mean.

To qualify the discriminative difficulty on the feature of each individual test node, we propose the
two metrics, local agreement ratio, and local accuracy difference. The local agreement ratio aims to
measure the local clustering property in a KNN manner. It can be calculated with the following steps:
(1) Given a particular node, find the top-k feature-close train nodes. We set k = 9 in our experiment,
and L2 distance is utilized as the feature distance metric. (2) Given the top-k closest train nodes, we
examine the number of nodes on each label. If there exists a particular label ¢ with the number of
nodes over g, it indicates that over half of neighborhood nodes reach an agreement on the class c. (3)
The local agreement ratio can then be calculated as the proportion of nodes reaching an agreement in
the test set, denoted as:
e 1 BeeC, Mg > £
r= “
Vel

where 7 is the local agreement ratio, Vi, and C are the test node set and class set, respectively. M., is
the node set including top-k nearest training of the node v. |M¢] is the number of nearest training
nodes in class c. A larger agreement ratio on the test set indicates the data are more clustered with a
close distance between train and test nodes. Nonetheless, a higher agreement ratio does not naturally
lead to a better discriminative ability. Despite the top-k feature-close nodes reaching an agreement
on a particular class, the test node may have a different class from the agreement. It indicates that the
center node misaligns with the top-k feature-close nodes.

The local accuracy is then proposed to identify whether the category of the center node aligns with
the agreement from top-k feature-close nodes. Concretely speaking, the local agreement accuracy is
the proportion of agreement nodes in the test set. It can be calculated as:

Soeva Llew = ox]
|V;1gree|
where Vigree is the test node set reaching top-k feature-close nodes agreement. ¢, is the category of

node v. cpq, is the agreement category from feature-close nodes. A higher local agreement accuracy
indicates that most agreement nodes are aligned with the same category.

&)

ACclocal =

Similar to the relative discriminative ratio proposed in Section 3.2, we illustrate the local agreement
accuracy improvement on the majority nodes over minority nodes. Experiments are conducted on
four homophilic datasets, Cora, CiteSeer, PubMed and Ogbn-arxiv, and two heterophilic datasets,
Chameleon and Squirrel. The experimental setting details can be found in Section G. Experiment
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Figure 11: Illustration of the change on local agreement ratio along with the aggregation. The
x-axis represents the number of aggregations and the y-axis represents the local agreement ratio.
For homophilic graphs, the local agree ratio generally increases along with more aggregations,
indicating better cluster effects. For heterophilic graphs, the local agreement ratio shows an opposite
phenomenon, which decreases consistently.

results on local agreement ratio and local agreement accuracy difference are illustrated in Figure 11

and 12, respectively.
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The observations can be found as follows: (1) For homophilic graphs, the local agree ratio generally
increases along with more aggregations, indicating better cluster effects. Meanwhile, the relative
accuracy improvement on the majority nodes also increases, further indicating the disparity effects
on different nodes group with more improvement on the majority nodes. (2) For heterophilic graphs,
the local agreement ratio shows an opposite phenomenon, which decreases consistently. Meanwhile,
the relative accuracy improvement on the majority nodes only increases on the first two hops and
decrease and decline from the third hop. The potential reason is that, despite a general global trend,
the heterophilic patterns on each individual node may still be quite complicated, with a local pattern
shift disparity. We leave the discussion on more complex local structure patterns as the future work.
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Figure 12: Illustration of the change on local agreement accuracy difference between the majority
and minority patterns along with the aggregation. The x-axis represents the number of aggregations
and the y-axis represents the majority local agreement accuracy minus the minority local agreement
accuracy. For homophilic graphs, the relative accuracy improvement on the majority nodes also
increases, further, while the relative accuracy improvement on the majority nodes only increases on
the first two hops and decrease and decline from the third hop.

D Effects of aggregation on nodes in different classes with structural
disparity

In Section 3.1, we examine the behavior difference between nodes from the same class but with
different structural patterns. In this section, we further provide a more complicated analysis focusing
on the between-class patterns, i.e., linear separability. Notably, linear separability is a good indicator
of feature differences in different classes, where features with better linear separability can be easier
to distinguish with a suitable linear classifier.

D.1 Linear separability analysis based on CSBM model

To ease the analysis, we utilize the CSBM-S model as the data assumption showing as follows:

Definition 1 (CSBM-S (11, 112, (pM, ¢™M), (p®),¢)), Pr(homo))). The generated nodes consist of
two disjoint sets C1 and Cy. each node feature x is sampled from N (u;, I) with i € {1,2}. Each set C;
consists of two subgroups: CZQ) for nodes in homophilic pattern with intra-class and inter-class edge
probability p) > ¢ and Ci@)for nodes in heterophilic pattern with p®) > ¢ Pr(homo) denotes
the probability that the node is in the homophilic pattern. CZ-(j ) denotes node in class i and subgroup j
with (p(j), q(j)). We assume nodes follow the same degree distribution with p") + ¢(V) = p(2) 4 ¢,

The original node features follow the Gaussian distribution:

x; ~ N (p1,I) fori € Cy; and x; ~ N (o, I) fori € Cy 6)
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Where C; corresponds to the node set corresponding to class 4.

Based on the neighborhood distributions, the mean aggregated features F = D~!AX obtained
follow Gaussian distributions on both homophilic and heterophilic subgroups.

, ©) ) 1 L ©)) ©)) I A
) o N (Bt O e Sfori € CY) D) o (LMD M2 fori € CY)

¢ pli) 4 ¢ Vd; v pli) 4 ¢ Vd;
N

Where Ci(] ) is the node subgroups with structural pattern with (p(j), q(j)) in label 7. To more
accurately assess the effectiveness of the aggregation mechanism, we execute the largest-margin
linear classifiers on nodes and evaluate their performance, to illustrate the linear separability. Notably,
linear separability depends on the distance between the mean features of different classes as well as
the standard deviations within each class. Typically, we focus on examining the linear separability on
(1) nodes from different classes with the same structural patterns (2) nodes from different classes
with different structural patterns, i.e., homophilic and heterophilic patterns.

We first examine the linear separability for nodes from different classes within the same structural
pattern. We can summarize the proposition as follows:

Lemma 2 (Linear separability on nodes with the same structural patterns ). Considering mean

aggregated features are from the same structural pattern fi(j ), fori € {1,2}. For any node i, the
largest-margin linear classifier on fi(] )

] (p(l)Jrq(l))Q
di > Gm—gm)?

will have a lower probability to misclassify than x;, when

The detailed proof can be found in Appendix D.3. The proposition suggests that aggregated features
f have better linear separability than the original feature = when the node i satisfies d; > (p*) +

g2/ (p™ —¢™M)2, For instance, when p") = 0.9 and ¢(!) = 0.1, the aggregated features are easier
show better linear separability with d; > 1.75, which are commonly met in real-world scenarios.
This indicates that aggregation is likely to contribute to improved feature separability within the same
node subgroup sharing a similar structural property.

We then examine the linear separability for nodes from different classes within different structural
patterns, e.g., hgl) and héz). Before diving deep into the rigorous analysis, we first illustrate a special
example to show how the structure can lead to worse linear separability. When p") = ¢(® and
¢V = p(M) | we can identify that the hgl) and hg) are exactly generated from the same distribution.

Such distribution can hardly be linearly separable. We then conduct a more rigorous analysis showing
a similar observation with the same pattern one. We can summarize the proposition as follows:

Lemma 3 (Linear separability on nodes with different structural patterns). Consider features are
from different structural patterns, where fi(l) fori € Cy and fi(z) fori € Co. For any node i, the
largest-margin linear classifier will have a lower probability to misclassify fi(l) fori € Cy and

fi(z) for i € Cy than x; when d; > %

we can find that aggregated feature show better separability when d; > (p™) + ¢(1))2/|p() — ¢(2)]2,
The detailed proof can be found in Appendix D.4. For instance, when p(") = 0.9, ¢() = 0.1 and
p® =0.2,¢? = 0.8, the aggregated features can only show better linear separability with d; > 100,
which are hardly met in real-world scenarios. Notice that the only difference with the one in the
same pattern one is that the denominator is [p(*) — ¢(?)|?, smaller than the [p™") — ¢(M|? since
¢ > ¢ It indicates that only nodes with higher degrees. e.g., d; = 100, can achieve improved
linear separability.

Based on our analysis, we can draw the conclusion that when nodes are in the same pattern,
aggregation can show improved linear separability on (p(t) + ¢()2/]pM) — (M2 < 4; <
(P + ¢™)2/]p™M) — ¢(2|2 while the ones in the different patterns cannot. It indicates that ag-
gregation can help when nodes are in the same pattern, however, show limitation when nodes are
from different patterns. Notice that, such linear separability can be evidence for different behavior
on nodes with different patterns. Nonetheless, it cannot directly indicate the performance disparity.
Feature separability is conducted based on the ideal classifier with the largest margin. Better feature
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separability does not necessarily result in better performance if the classifier is not well-trained with
biased training data.

D.2 Linear separability experiment on synthetic CSBM dataset

In this section, we aim to empirically examine the validity of the theoretical analysis results in
Section D.1. We generate graph with the CSBM model with the following detailed settings. The
class mean distance p = ||u1 — pe|| is set to 0.1. The feature dimension d and the number of nodes
n are set to 50, and 500, respectively. p and g correspond to probabilities of the intra-class and
inter-class probability, respectively. The mean aggregation is defined as F = D~'AX. It is the key
to generating graphs with different structural properties. To generate the homophilic node subgroup
with p > ¢, we utilize the following settings with (p = 0.01,¢ = 0.005), (p = 0.01, ¢ = 0.003), and
(p =0.01, ¢ = 0.001). To generate the heterphilic node subgroup with p < ¢, we utilize the following
settings with (p = 0.001, ¢ = 0.005), (p = 0.001, ¢ = 0.003), and (p = 0.001, ¢ = 0.002).

Experiments are conducted to examine how a linear model, logistic regression, fits effectively on the
aggregated features. Higher performance on logistic regression indicates better linear separability
of features. It is important to note that we focus on the fitting ability rather than the generalization
performance. Consequently, we do not evaluate with a test set; instead, we provide all labels for
training and assess the performance on all the nodes.

Experiments on the logistic regression are conducted on the homophilic nodes solely, heterophilic
nodes solely, and a mixture of homophilic and heterophilic nodes. Typically, we aim to show the
linear separability both within the same structural pattern and between homophilic and heterophilic
patterns. Experimental results are presented in Table 6. The following observations can be made:
(1) When considering nodes following the same structural pattern, either homophilic pattern or
heterophilic pattern, better performance can be observed when the probability difference |p — ¢|
between intra-class and inter-class probability is larger. (2) Comparing the performance considering
both structural patterns with the one on a single structural pattern, we reveal a noticeable performance
degradation on the one with mixture patterns. This suggests that the nodes with different structural
patterns results in decreased linear separability. (3) Comparing the performance among different
mixing structural patterns, it is evident that larger homophily ratio differences, e.g., (p=0.01, g=0.005)
compared to (p=0.001, g=0.005), yield poorer performance than those with smaller homophily ratio
differences. The above observations further supports the validity of Lemma 2 and 3, Theorem 1 .

Table 6: The performance of logistic regression algorithm on homophilic nodes, heterophilic nodes,
and a mixture of homophilic and heterophilic nodes. The results on the first row and first column
correpond to the performance on homophilic nodes and heterophilic nodes, solely.

Hete\Homo - p=0.01, g=0.005 p=0.01, g=0.003 p=0.01, g=0.001
- - 74.68+3.19 82.71+£1.86 92.08+1.13
p=0.001, g=0.005 | 79.64+2.11 60.84+0.64 62.08+0.59 81.38+1.02
p=0.001, g=0.003 | 70.08+1.71 59.7242.01 61.58+1.08 76.601+0.98
p=0.001, g=0.002 | 62.08+3.04 65.92+1.95 69.42+1.03 74.16£1.09

D.3 Proof details of linear seperability within the same pattern

In this section, we provide detailed proof of the improved linear separability on aggregated features
where nodes from different classes follow the same structural pattern. The following theoretical results
indicate that it is more difficult to have improved linear separability when nodes follow different
structural patterns. Notably, the following proof is derived based on [13]. For completeness,
we show the previous proof as follows, the difference is that we consider a more complicated
CSBM-S model with both homophilic and heterophilic patterns rather than the simple CSBM
model only describing either homophilic or heterophilic pattern.

Lemma 2 (Linear separability on nodes with the same structural patterns ). Considering mean
aggregated features are from the same structural pattern fi(j ), fori € {1,2}. For any node i, the

largest-margin linear classifier on fi(j ) will have a lower probability to misclassify than x;, when

d. (p(1)+q(1))2
7 (M —qM)?
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Notably, we only show the case p(*) > ¢(1) in Appendix D.1 for simplicity. It can be easily extend to
p® < ¢, Proof details can be found as follows.

Consider the vanilla mean aggregation as F = D' AX, the aggregated features with the same
structure patterns follow Gaussian distributions:

) (4) (4) I . . (4) (4) I )
£0) N (LT H2 fori € (Vg0 o N ((LHLED B2 , fori € C”
v p(J) +q(ﬂ) Vd; v p(ﬂ) +q(ﬂ) Vd;
®)

Then we denote the expectation of the original node features x in two classes as E.., [x;] and E., [x;].
Similarly, we denote the expectation of the aggregated features as E., [f;] and E,, [f;].

Proposition 2. (E., [x;],E., [x;]) and (E., [f;],E., [£;]) share the same middle point. E., [x;] —
E., [x;] and E., [f;] — E., [fi] share the same direction.

The proposition can be calculated through direct calculations. If we consider the feature distributions
of two classes, we can observe that both x and f exhibit a systematic relationship. As a consequence,
we can determine the optimal linear classifier for both x; and f;. We then define decision boundary
as the hyperplane that is orthogonal to the direction w = ﬁ and passes through the middle

point m = (pq + po) /2 as:
P = {x|wa—wT (p1 + p2) /2} 9

We then show the proof details on when f has a lower mis-classified probability than x with the same
decision boundary, indicating better linear separability.

Proof. We provide the proof only for nodes belonging to class cg, as the case for nodes from class c;
is symmetric and the proof follows the same logic. For a node % in C;, We have the following:

P (x; is mis-classified ) = P (w 'x; + b < 0) fori € Cy

P (f; is mis-classified ) = P (wai +b< 0) fori € Cq, (10)

we can then scale the decision boundary without changing the original meaning. Then we can have
P(w'f;+b<0)=P(/dw'f; + v/d;b < 0) We denote the scaled version of f; as f/ = \/d;f;.
Then, f follows:

oy (VAP + gD )

,I),foriGCl (11)

Given the scale in Eq. equation 11, the decision boundary for f/ is consequently shifted to w ' f’ +
Vd;b = 0. Now, considering that x; and fi’ have the same variance, we can compare the mis-
classification probabilities by merely comparing the distance from their expected values to their
corresponding decision boundaries. Specifically, the distances can be described as follows:

dis. — 1 — p2ly
X 2
_ , (12)
dise, — YilpY = gD |lp1 — pall
fi @)+ q0) 2 '

The larger the distance from the expectation to the decision boundary indicates a smaller the mis-
classification probability. Therefore, when disy; > disx,, f!/ has a lower probability of being
(P9 +q10)?
(p@)—q)*”’
mean aggregated feature f! exhibits a lower probability of misclassification compared to the original
node feature x;.

misclassified than x;. By comparing the two distances, we conclude that when d; > the

G) 4 g\ 2
pY) +q > (13)

P (f; is mis-classified ) < P (x; is mis-classified ) if d; > | ——+——
p(]) — q(J)

which completes the proof.
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D.4 Proof details of linear separability between different structural patterns

In this section, we provide detailed proof of the improved linear separability on aggregated features
where nodes from different classes follow different structural patterns. The following theoretical
results indicate that it is more difficult to have improved linear separability when nodes follow different
structural patterns. Notably, the following proof is derived based on [13]. For completeness,
we show the previous proof as follows, the difference is that we consider a more complicated
CSBM-S model with both homophilic and heterophilic patterns rather than the simple CSBM
model only describing either homophilic or heterophilic pattern

Lemma 3 (Linear separability on nodes with different structural patterns). Consider features are
from different structural patterns, where fi(l) fori € Cy and fi(2) fori € Co. For any node i, the
largest-margin linear classifier will have a lower probability to misclassify fi(l) fori € Cy and

) (1) 4 g(1y2
fi(z) fori € Cy than x; when d; > %

In the following discussion, we only focus on the scenario where nodes in class ¢; are in a homophilic
pattern with p(*) > ¢(!), and nodes in class ¢, are in a heterophilic pattern with p(®) < ¢(2). The
other scenario is symmetric and the proof follows the same logic.

Consider the vanilla mean aggregation as F = D~'AX, the aggregated features with different
structure patterns follow Gaussian distributions:

1 1 (2 (2)
@ _ pp+q¢Vpe 1 , @ ¢“p+pTpy 1 . (2
f; N (p(l) FRE \/@) , fori € Cy;f; N <p(2> e ’7\/d7- , fori € G
(14)

Similar to the notation in Proposition 2, we denote the expectation of the original node features x in
two classes as E., [x;] and E,, [x;]. Similarly, we denote the expectation of the aggregated features
as E., [f;] and E., [f;].

Proposition 3. (E., [x;],E., [x;]) and (E., [f;],E, [fi]) share the same middle point. When
satisfying p > ¢, B, [x;] — B, [x;] and E., [f;] — E., [fi] share the opposite direction.
Specifically, the middle point m and the shared direction w are as follows: m = (u1 + p2) /2,
and w = (1 — p2)/ |1 — pally-  When satisfying ¢ > pM), E., [x;] — E., [x;] and
E., [h;] — E, [h;] are in same directions. It indicates that the largest-margin linear model still
shares the same discriminative boundary which flips the prediction on class c1 and c,.

Notably, with the assumption p(t) 4+ ¢ = p(2) 4 ¢(2)_ the linear classifier can be generally to
two cases according to whether the decision boundary direction flips: (1) The decision boundary
direction unchanged with ¢ > p(*) > p(®) > ¢(1) (2) The decision boundary direction flipped with
P > ¢ > ¢ > p3), Notably, the two cases are symmetric with the same conclusion and proof
logic. We will focus on the unchanged case with ¢ > p() > p®) > ¢(1) |

The proposition can be calculated through direct calculations. If we consider the feature distributions
of two classes, we can observe that both x and f exhibit a systematic relationship. As a consequence,
we can determine the optimal linear classifier for both x; and f;. We then define decision boundary

as the hyperplane that is orthogonal to the direction w = Hz ;ZEH and passes through the middle
point m = (g1 + po) /2 as:
P = {x|w—rx—w—r (p1 + p2) /2} (15)

We then show the proof details on when f has a lower mis-classified probability than x with the same
decision boundary, indicating better linear separability.

Proof. We provide the proof only for nodes belonging to class ¢y, as the case for nodes from class c;
is symmetric and the proof follows the same logic. For a node 7 in C;, We have the following:

P (x; is mis-classified ) = P (w ' x; + b < 0) fori € C;

P (f; is mis-classified ) = P (wai +b< 0) fori € Cq, (16)

we can then scale the decision boundary without changing the original meaning. Then we can have
P(w'fi+b <0) =P (Vdw'f; +/d;b < 0) We denote the scaled version of f; as f] = \/d,f;.
Then, f] follows:
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i p( + ¢ ) b p@ +¢®@

,I) , fori € Cy
(17)

Given the scale in Eq. equation 17, the decision boundary for f/ is consequently shifted to wf +
Vd;b = 0. Now, considering that x; and f/ have the same variance, we can compare the mis-
classification probabilities by merely comparing the distance from their expected values to their
corresponding decision boundaries. Specifically, the distances can be described as follows:

dis. — K1 = pafy

| (18)
disey = VAP —aV] = pally _ VEPD — gl — ol

k pW + ¢ 2 D+ ¢ 2

The larger the distance from the expectation to the decision boundary indicates a smaller the mis-
classification probability. Notably, ¢(*) —p®) = p(1) —¢(2) with the assumptin p(V) +p) = (V) 442
Therefore, when disg; > disy,, f/ has a lower probability of being misclassified than x;. By

(P +q™)?
m, the mean aggregated feature
P —q

f! exhibits a lower probability of misclassification compared to the original node feature x;.

comparing the two distances, we conclude that when d; >

(1) 4,2
'Y +gq ) (19)

PP (f; is mis-classified ) < P (x; is mis-classified ) if d; > | ——+
20— @

which completes the proof.

A comparison between linear separability within classes and between classes Notice that the
only difference with the one in the same pattern one is that the denominator is |p(1) —q¢® |2, smaller
than the |p(1) — q(1)|2 since ¢ > ¢, It indicates that only nodes with higher degrees. For
instance, when p(*) = 0.9, ¢(") = 0.1 and p® = 0.2, ¢(® = 0.8, the aggregated features can only
show better linear separability with d; > 100 when nodes are from different structural patterns. The
above condition can be hardly met in real-world scenarios. Based on our analysis, we can draw the
conclusion that when nodes are in the same pattern, aggregation can show improved linear separability
on (pM + ¢W)2/|pM) — ¢M 2 < q; < (pM) 4 ¢1)?/|p() — ¢(?|2 while the ones in the different
patterns cannot. It indicates that aggregation can help more when nodes are in the same pattern,
however, show limitation when nodes are from different patterns.

E Proof details of the conditional probability difference for nodes with the
same feature but different structural patterns

In section 3.1, we examine the discrepancy between nodes 1 and 2 with the same aggregated feature
f; = £5 but different structural patterns. Typically, we examine the discrepancy with the probability
difference of nodes 1 and 2 in class ¢y, denoted as |p1 (v, = c1|fu) — p2(y» = c1]f,)|- p1 and po
are the conditional probabilities of node labels in ¢ given the feature f for nodes on homophilic and
heterophilic structural patterns, respectively. The lemma is shown as follows:

Lemma 1. With assumptions (1) A balance class distribution with P(Y = 1) = P(Y = 0) and (2)
aggregated feature distribution shares the same variance cl. When nodes u and v have the same
aggregated features t, = £, but different structural patterns, (p(l), q(l)) and (p(Q), q(2)), we can
have:

2

V2o

p = |1 — p2|| is the original feature separability, independent with structure. P and P are the
conditional probability of y = ¢; given the feature f on structural patterns (p*), ¢()) and (p'?, ¢?)),

‘Pl(yu = Cllfu) - PQ(yv = Cl‘fv)‘ S

|hu - hv ‘ (20)
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respectively. Lemma 1 implies that nodes with a small homophily ratio difference |k — ho| are likely
to share the same class, and vice versa.

We first remind the assumptions of the CSBM-S model. There are two assumptions on the models:
(1) Nodes from different components share the same feature distribution. In other word, node features
within the same class are sampled from the same Gaussian distribution, regardless of different
structural patterns. (2) Nodes from different components share similar degree distribution with
pM + ¢ = p? 4 ¢(2) Notably, our conclusions are still valid without the above assumptions.
Those assumptions are not strictly necessary but employed for the elegant expression.

Based on the neighborhood distributions, the mean aggregated features F = D! AX obtained
follow Gaussian distributions on both homophilic and heterophilic node subgroups.

, ©) (€) N (4) ©)) .
() v (PR o) ori e st v (T 1) ori e )
p q p q
2D

Where Ci(j ) is the node subgroups with structural pattern with (p(j ), qU )) in label 7. Notably, there are
typically homophilic pattern with p") > ¢(!) and heterophilic pattern with p(2) < ¢(®). To simply
G )

. . )
the assumption for an elegant expression, we denote the aggregated feature mean, % a

W ;j» Where i and j correspond to the class and the structural pattern, respectively. For instance, i
represents the mean of nodes in class ¢; with the homophilic pattern. We then show the proof details
as follows:

Proof. The conditional probability of class ¢; given the aggregated feature f, P1(y = c1|f;) can be
derived with the Bayes theorem:

Pi(y. = cilf,) = Py (fulyn = c1)P(yu = 1)
“ “ Pl(fu|yu = Cl)P(Yu = Cl) + Pl(fu‘yu = CQ)P(YM = 62)

_ Pl(fu|y'u, = Cl)
(a) Pl(fu‘yu = Cl) + Pl(fu‘yu = 02) (22)

exp ()

exp ((fu,—aléil)Q) +exp ((fu_o-";’/12)2)

where (a) we utilize the assumption P(y = ¢1) = P(y = ¢2). Notably, such assumption aims to
simplify for an elegant expression and better understanding, which is not necessary in our proof.

Hence, we have:

P1(yu = c1lfu) — Pa(ys = c1lfu)]
exp (_ Hfu—alg’ul\z) exp (_ Hfu—gt;iz\\z)
e () 5] o [ )

[exp (_ Hff;;’ulw) +exp (_ Hfu;;;;llw)} [exp (_ Hf,uf;;’mlw) +exp (_ va;;gézw)}
23)

Notably, the denominator can be denoted as

fu_ /12 fu_ /12 fv_ 12 fv_ /112
m— {exp(_Il UI;HH )—I—eXp(—H JF2‘J21|| )} |:eXp(—| Ul;12|| )—l—exp(—” UlQLmH )}
(24)

. . £i—p | ? .
where each exponential component is in exp (— HG#) € [0,1]. Therefore, the denominator m

is in the range [0, 4]. We then denote m = exp(—A), where A is a constant, correspondingly. Hence,
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we can have:
|P1(Yu = Cl|fu) - P2(Yv = Cl|fv)|

’ 2 ’ 2 ’ 2 ’ 2
’exp (_%) exp (_%) — exp (_%) exp (_%)‘

exp(—A4)
(f, — f, — £, — )2 £ — h)2
exp( K1) ‘;( — h)? . A> —exp (_( Ki2) ";( 2 — K1) _ A)’
o)
1
S ) |[(fu H11 —(f, — H12) ] [(fu - H/21)2 — (f, — H22)2]|
2
e P4Vt PP+
“ p(l —+ q(l) v p(z) + q(z)
2 2
R ST R N P A
“ p(l) + q(l) v p(2) —+ q(2)
1 — paa| p p®
< W(Hfu - va + ‘p(l) i q(l) - p(g) + q(2) | ’ ”ll/l - /"'2”)

1
———|hy — hal - p?
| Tmr' 1—ha| p
(25)

p = |l1 — p2]| is the original feature separability, independent with structure. |h; — ho| is the
homophily ratio difference between node 1 and 2. We explain the key steps as follows: (a) is derived
from Lagrange’s mean value theorem. From the Lagrange mean value theorem we have,

exp(—z) —exp(—y) = —exp(—{)(y — z) (26)
where £ is between x and y. Therefore,
lexp(—z) — exp(—y)| = exp(=¢)|y — z| < |z — y| @27)
since exp(—¢) < 1.
Knowing that |P1(y, = ¢1|f,) — Pa(y, = c1/f,)| < 1, we can easily get
exp (_ (f'u_o-l';'/ll)z) exp (_ (f'u_;;/zz)z) _ eXp(B)
exp(—A)

(fu*N/11)2+2(fu*H/22)2
o

<1 (28)

where exp(B) > 0, we can get > A Similarly, with
IP1(yu = c1lf.) — Pa(yw = c1|f,)| > 0, we can get (fr“/lzf;(fz_“/?l)z > A.

In conclusion, we have:

A— (fQ*Nl12)2;F2(f2*N/21)2 <0 (29)
A— (F1—p11)° +(F1—phy)? <0

o2

Letz = A — (f2_“/12)2:2(f2_w21)2 andy = A — (fl_“,“)z;(fl_“/”)z in equation 27. The proof is
complete.

. ;o Dy 4ql D st
(b) we utilize p;; = oG §+q( £2 and pl, = 7p(j+q(i) L
- () . .
(c) we utilize f, = £, and h; = m. Notice that, (c) step can be easily generally to the case

that f,, # f, with ||f, — f,|| < e. We can easily proof with the same logis. The lemma is shown as
follows:

Lemma 2. With assumptions (1) A balance class distribution with P(Y = 1) = P(Y = 0) and (2)
aggregated feature distribution shares the same variance ol. When nodes have the same aggregated
features ||f, — £, || < € bur different structural patterns, (p(l) qM) and (p'?,¢?)), we can have:

IP1(yu = c1/fu) — Pa(yy = c1|fy)] < + [h1 — ha| - p) (30)

\/— (Gm
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p = |1 — p2]| is the original feature separability, independent with structure. Lemma 2 implies
that nodes with a small homophily ratio difference |h; — ho| are likely to share the same class, and
vice versa. O

F Proof details of PAC-Bayes Bound

In this section, we provide background knowledge, assumptions, and proof details on the PAC-Bayes
analysis. Our PAC-Bayes bound is derived based on [46], which is the first PAC-Bayesian analysis
for GNN on the semi-supervised node classification task. A details comparison between our bound
and [46] can be found in Appendix A.

F.1 Background Knowledge on PAC-Bayes Analysis

PAC-Bayes Analysis The Probably Approximately Correct-Bayesian (PAC-Bayes) analysis [48] is a
powerful theoretical framework utilizing Bayesian learning principles for analyzing the generalization
ability of machine learning models. Typically, PAC-Bayesian Analysis is to connect and bound the
difference between a training error of a machine learning model with its expected generalization
error. Various PAC-Bayes bounds [49, 95, 50, 51] are proposed for advanced Deep Learning models
in recent years. Such theoretical guidance shows practical success in many real-world applications
including pretraining model [96], medical image [97], and robustness [98].

PAC-Bayes analysis on Graph Neural Networks [90] is the first PAC-Bayesian generalization
bound for GNNs. Nonetheless, it focuses on the i.i.d. graph classification task, which is different
from the non-i.i.d. node classification task. [46] provides the first PAC-Bayesian generalization bound
for GNN on semi-supervised node classification task. Our following theorem is developed based on
it and generalized into more generalized scenarios. A more detailed discussion on the difference of
our work and [46] can be found in the Appendix A.

F.2 PAC-Bayesian Analysis on Subgroup Generalization bound of Deterministic classifier

In this section, we provide a more detailed discussion on the PAC-Bayesian analysis with the semi-
supervised subgroup Generalization bound of Deterministic classifiers proposed in [46], which serves
as the basis of proof. Notably, in the main content, we denote the training node subgroup as Vj;. As
we focus on the relationship between the train nodes and test subgroups V,,, with 0 < m < M, we
re-denote the train nodes as V|, . The PAC-Bayesian analysis on subgroup Generalization bound of
Deterministic classifiers, focusing on the deterministic classifiers h, a classifier drawn in the predictor
family H, learned on training nodes. The primary objective of the PAC-Bayesian analysis is to derive

bounds on the generalization gap between the empirical margin loss of h denoting as Eg(ﬁ) on the
train node subgroup V; and the corresponding expected margin loss £2 (h) on the test node subgroup
Vin. The empirical marginal loss £](h) on the train node subgroup Vj is defined as:

:—Z [ (X, Q)| yz]<’y+maxh(XG)[] (31)

zEV
where 1 [-] is the indicator function and -~y is the margin. Vj is the training node set. Ny = |Vj| is the
number of the training node. ¥; is the label corresponding to node i € Vj. h;(X,G) € R is the
predictor output, where h; (X, G)[k] refers to the prediction probability of class k on sample i € Vj.

The expected margin loss is the expectation of £9, (il) on the test node subgroup V,,, of the corre-
sponding empirical loss LY, (h).

L£3,(R) = Byprtylgs (x.0))sieVin Lon (B)- (32)
where Pr(y | g;(X, G)) is the conditional dlstrlbutlon. g(X,G) : RNXP x Gy — RV*D' s the
aggregation function, typically, ¢;(X,G) = i N(z) > JEN() X as default. G, is the space for all
undirected graphs with n nodes.

To bound the generahzatlon gap between the expected margin loss £2, (h) on test subgroup V;,, and
the empirical margin loss L’Y on train subgroup V. The theorem is shown as follows:
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Theorem 2 (Subgroup Generalization of Deterministic Classifiers [46]). Let h be any classifier in
H. Forany 0 < m < M, for any A > 0 and v > 0, for any “prior” distribution P on ‘H that is
independent of the training data on Vy, with probability at least 1 — & over the sample of y°, for any

Q on H such that Pry.q (maXiGVoUVm 1hi(X,G) = hi(X, @)oo < %) > 1

5, we have

+ D)3 (P;N) (33)

- - 1 1
0 < ry - _
L. (h) < LJ(h)+ \ 2(DkL(Q|IP) + 1) +1n 5 + N,
(@)

The generalization bound is typically related to the following four terms: (a) Dk (Q||P) =
[ In %d@ is the KL-divergence between the learned (posterior) predictor distribution () and the
predefined (prior) distribution P, independent of the training data. The generalization gap is bounded
by the discrepancy between P and Q. It is a general term in PAC-Bayes analysis considering as the

model complexity measurement. (2) ﬁ will vanish with larger number of training samples Ny
Notably, the above two common terms in PAC-Bayes analysis are not our focus. (3) In % is the term
related with the probability 1 — 4. (4) The expected loss Discrepancy between the training nodes V
and targeted test node subgroup V,,, is essential in our analysis, denoted as:

£/ (=% (n)

D}/3(P;)) =In g, pe (34)

where a prior distribution P over H, -y is the correponding loss margin, A > 0 is a parameter, reflects

the concentration of the learning distribution @. Intuitively speaking, the term D:n/ %(P; A) signifies
the difference in expected loss between V;,, and V{;, evaluated in an expectation with respect to the
prior distribution P.

The expected loss Discrepancy is typically for the non-i.i.d. semi-supervised setting, which trivially
comes true in i.i.d. setting. In the i.i.d. case, all samples in V,,, and V} are i.i.d., where £21/4(h) =
£ (h) < £2*(h) < 0 for any classifier &, leading to a trivial upper bound D;Yn/f)(P; A) <0. To
provide a meaningful upper bound, we are required to essentially assume there exists the relationship
between train node subgroup V| and test node subgroup V,,,. Typically, we expect the expected

margin loss ﬁZ{4(h) on V,,, is not much larger than Eg/ ?(h) on Vi when the number of samples

becomes large. Taking a further step, to bound the difference ﬁ%&(h) - Eg/ *(h), we should find
suitable assumptions and derive proof to bound on (1) the difference on P(g(X, G)) controlling with
the feature distance between V; and V;,,. (2) The differencce on P(Y|g(X, G)) controlling with the
homophily ratio as shown in Lemma 1.

F.3 Proof details of Expected Loss Discrepancy

To establish the generalization guarantee, it becomes necessary to provide an upper bound for
the expected loss discrepancy, DZLO(P; A), which is the main focus in the proof. It emerges that
certain assumptions about the data are required to derive a meaningful and useful upper bound. The
assumptions are shown as follows. Notably, the assumptions 2 and 3 are adapted from [46]. Remark:
Notably, the following proof is derived based on [46]. For completeness, we show the previous
proof as follows, the difference is that we consider a more complicated conditional probability
P(y; = klg:(X, G)), correlated with the homophily ratio difference, rather than consider the
conditional probability as c-Lipschitz continuous functions. In other words, our proof further
strengthens the effect of the structure disparity.

Definition 1 (Generalized CSBM-S model ). Each node subgroup V., follows the CSBM distribution
Vin ~ CSBM (1, ug,p(l), q(z)), where different subgroups share the same class mean but different

intra-class and inter-class probabilities p® and q"9. Moreover, node subgroups also share the same
degree distribution as p" + ¢ = pl) 4 ¢,

Instead of only considering one homophilic and one heterophilic pattern in CSBM-S model, the
generalized CSBM-S model allows more diverse structural patterns with different levels of homophily.

Assumption 1 (Data follows Generalized CSBM-S model assumption). The graph data is generated
from the Generalized CSBM-S model.
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Assumption 2 (Equal-Sized and Disjoint Near Sets ). For any 0 < m < M, assume the near sets of
each i € Vi with respect to Vy,, are disjoint and have the same size s, € NT.

Assumption 2 assumes that V,,, can be divided into equally sized partitions, each can be identified by
the corresponding training samples. It assumes that test nodes are closely aligned with the respective
training sample, while distant to the other training samples.

Definition 2 (Distance To Training Set and Near Set). For each 0 < m < M, define the distance
from the subgroup V,, to the training set Vy as

= i (X —g:(X .
ém = max min ||g;(X, G) — g;(X, G)|»

Further, for each i € Vo, define the near set of i with respect to Vyy, as
VD i 1 € Vin | I8(X, G) = g5(X, D)z < em}.

Clearly,
Vm = UiEVOV( )

i

m

Assumption 3 (Concentrated Expected Loss Difference). Let P be a distribution on ‘H, defined by
('Y/SEWL)Q/L

2b(AN; “+1In 2bL)

layer GNN classifier h € H with model parameters Wlh7 cee Wf, define Ty, := max;—1,.. 1, ||I/Vlh||2

Assume that there exists some 0 < a < i satisfying

sampling the vectorized MLP parameters from N (0, a%I) for some 0 < . Forany L-

Pr (/:7,{4(}1) — L(h) > Ny + cKem | Trem > %) < e NG

Assumption 3 postulates that the expected margin loss on the test node subgroup, V,,, is not sig-
nificantly larger that on the train node subgroup, Vj, as the number of training samples Ny = |Vj|
becomes larger. More discussions about this assumption can be found in Appendix A.5 of [46].

Lemma 4 (Bound for D ,(P; \) (Adaption of Lemma 6 in [46])). Under Assumption 1, 2 and 3,

m,0

forany 0 < m < M, any 0 < A < NZ% and v > 0, assume the “prior” P on H is defined by

2/L
sampling the vectorized MLP parameters from N (0, 02I) for some o < %. We have

AKp
V2o

We first present the following Lemma 5 that bounds the difference between the margin loss on V,,
and that on Vj.

Lemma 5 (Adaption of Lemma 5 in [46]). Suppose an L-layer GNN classifier h is associated with
model parameters W1, ..., Wr. Define T}, := maxj=1, .1, |Wi||2. Under Assumption 1 and 2, for
any 0 <m < M and~ >0, if e, T < 1, then

D)/5(P;A) <In3+ (e + |ho — hum) - p). (35)

K
Ly2(h) — LY (h) < \/ﬁm |ho — hn| - p) (36)

Proof. For simplicity in this proof, for any ¢ € Vo UV,, and £k = 1,..., K, we use h; to
denote h;(X,G) and use nx(i) to denote Pr(y; =k | ¢;(X,G)). And define £V (h;,y;) =
1 [h;[yi] < 7 + maxgy, hi[k]]. Then we can write

L2 (h) — £3(h)

1 1
=By | 5 Z L2 (hy, ;)| = Eyo lNO Z ‘C’Y(hiayi)‘|

M GeVm ieVp

1 1
= Yo | 2 M) | £y

ieVo " \jev®
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where in the last step we have used Assumption 2. Therefore,

L2 (h) = £3 ()
iev oM Jev®

NOZT@

1€V

> an VL2 (B ZPr i = k)L (hi, k)

ev”k 1

1 1
N Z — ( D By L7 (hy,yy) | = Ey L7 (hiyyi)

1 1 ‘ ,
T (nkmﬁ”(hj, B) = (D)L (i, )
NO Sm
i€V EV7EL) k=1

Z Z Z(nk ) (L7205, k) = £7(hiy ) ) + (e(5) = me (D) £7(his K)) - 37)

1EV0 ()k 1

T ZZ( (272 (hy k) = £7(hi b)) + () = () - 1) (39)

ieVy mjev(z)k 1

where the last inequality utilizes the facts that both 1 (j) and £ (h;, k) are upper-bounded by 1.
According to the lemma 2, we can get:

i (5) — (i) < \/2%0_<e+ ho — hunl - p) (39)

p = |0 — p1]| denotes the original feature separability, independent with structure.
Further, as h; = f(g;(X,G); W1, ..., W) where f is a ReLU-activated MLP, so

L
s = Bjlloe < l9s(X, Q) = g; (X Gllz [T IWll2 < en T < %-
=1

This implies that, forany k =1, ..., K,
L72(hy, k) < L (hi, k).
Detailed proof can be found in Lemma 5.

So we have

L£12(h) — L’Y(h)

S SR S Sl

iev, oM jevD k=1

€+|h0 m|'p)

Kp
- F o — B -
\/ﬁd(e | 0 ‘ p)

Then we can prove the Bound for D), ,(P; \).

Lemma 3 (Bound for DZ%O(P; A). Under Assumption 1, 2 and 3, for any 0 < m < M, any
0 <X < NZ“and~ > 0, assume the “prior” P on H is defined by sampling the vectorized MLP

2 2 (v/8em)*’*
parameters from N (0, 0%1) for some 0% < BN, ® 2L We have

MK
D)3 (P;A) <3+ \/%i (€ + [ho — hum| - p). (40)
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Y/ /2
Proof. Recall that DZ{%(P; A) =1In Eppe’ (exltm-c3
D?n/ ?)(P; A) by decomposing the space H into the two regimes: a regime with bounded spectral
norms of the model parameters required by Lemma 5, and its complement. Following Lemma 5, for
any classifier h with parameters Wy, ..., W, we define T}, := max;=1, 1. |[|Wi||2.

(h)). We prove the upper bound of

We first prove an upper bound on the probability Pr (T hL €m > %) over the drawing of i ~ P. For
any h, as its vectorized MLP parameters vec(W;), foreach [ = 1, ..., L, is sampled from A/(0, o%1),

we have the following spectral norm bound [99], for any ¢ > 0,
t2
Pr(||[Wi|lz > t) < 2be” 2007,

1/L
where b is the maximum width of all hidden layers of the MLP. Setting ¢t = (8%) and applying
a union bound, we have that

I y ¥ /L _ (v/8em)?/ L _AN—©
Pr(Th €m > g) =Pr| T} > 3 < 2bLe 2002 <e o

. . .. ... 2 (v/8em)¥
where the last inequality utilizes the condition 0 < BN L)

/A (R — /2
For any h satisfying Tj-e,, < %, by Lemma 5, we know that e)‘(@n (M—-£3"2(m)
KX
eVars (“Hho=hul) “Eor all h such that ThL €m > %, by Assumption 3, with probability at least

_ N2«
1—e Vo |

4 /2 _
MEHW=L32 W) o AN+ TR (o —hn )

Also note that £7n/4(h) - Eg/ ?(h) < 1 trivially holds for any h. Therefore we have

D}/(P; )

Ae(m-£3* )

:ln]EhNPe
<In (Pr(ThLem > 1) (engﬂ ce (1- enga) ) eANO_aJr\I/(%i (6+\h0*hm|-p))
B 8
+Pr(Tf e < 3 )evats (Hho—tnlo)
m = 8
K\
S1n3+ \/%Z(G—‘r |h0 - hm| 'p)

O

Lemma 5. Define L7 (hi,yi) = 1[hi[y:] < v+ maxgxy, hilk]], if ||hi — hjllec < 7§, for any
k=1,2,-- K, L7%(h;, k) < L7 (hi, k)

We need to proof from h;[k] < 2 4 maxj.x hy[l] to h;[k] < v + maxzx h;[l]

hylk] < g + ma 1]

Ukl + (halk] = By (K1) < 3+ mac 1)+ (hall] = By K]
halk] < g a1+ (halk] — iy [K])
lk] < S+ ma by
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Then we need to proof %'y + maxgzp, hj[l] < v+ maxp hi[l]

mac hy[I] — max hi[m] = max \h;{l] — max hifm]

< max [h; 1] — hy[l]

<
— 4
The proof complete.

F.4 Proof details of subgroup generalization Bound for GNNs

With the bound for D;Yn,o(P ; A), we can then derive the subgroup generalization Bound for GNNs.
Remark: Notably, the following proof is derived based on [46]. For completeness, we show the
previous proof as follows, the difference is that we consider a more complicated conditional
probability P(y; = k|g:(X, G)), correlated with the homophily ratio difference, rather than
consider the conditional probability as c-Lipschitz continuous functions. In other words, our

proof further strengthens the effect of the structure disparity.

Assumption 1 (GNN model). We focus on SGC [16] with the following components: (1) a one-hop
mean aggregation function g with g(X, G) denoting the output. (2) MLP feature transformation
flgi(X,G); Wy, Wy, -+ Wp,), where f is a ReLU-activated L-layer MLP with W1, --- Wy, as
parameters for each layer. The largest width of all the hidden layers is denoted as b.

Despite analyzing simple GNN architecture theoretically, similar with [46, 13, 47], our theory
analysis could be easily extended to the higher-order case with empirical success across different
GNN architectures shown in Section 3.4. Notably, the following assumptions 2 and 3 are adapted
from [46].

Assumption 2. Define B,, := max;cv,uv,, ||9:(X, G)||2. For any classifier h € H with parameters
{WiE |, assume |W||p < C forl=1,..., L. Assume B,,,C are constants with respect to Np.

Theorem 1 (Subgroup Generalization Bound for GNNs). Let h be any classifier in H with parameters

{Wl}le. forany 0 < m < M, v > 0, and large enough Ny, with probability at least 1 — § over the
sample of y°, we have

A 2¢} by iy Wil
L9 (h) < LI (h o) - ho — hol - _ YZa=1 1"VIHF . 2/L
(h) < £y () + ( g 0 =l =)+ G
1 L, LC(2B,,)Y*
+N572a + NZ® RSV

The proof of Theorem 1 relies on the combination of Theorem 2, Lemma 4, and an intermediate
result of the Theorem 1 in [100] (which we state as Lemma 6 below).

Lemma 6 ([100]). Let h be any classifier in H with parameters {ﬁ/ﬂ}le Define f =
 \1/L N

<H1L:1 ||VVl||2) . Let {U}t., be the random perturbation to be added to {W,}, and

vec({U}_,) ~ N(0,021). Define B, := max;ev,uv,, ||9:(X, G)|2- If

o< 2 )
84LB,,=1/bIn(4bL)

and 3 is any constant satisfying |3 — | < %, then with respect to the random draw of {U, }F_,,

Pr( g 100X, G) (W) — fl0:(X,G): (1 + Ul < 7 ) > 5.

Then we prove Theorem 1, a re-stata as Theorem 1 with replacing the notation of training node
subgroup Virin to Vo.
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Theorem 1 (Subgroup Generalization Bound for GNNs (Adaption of Theorem 3 in [46])). Let h be
any classifier in H with parameters {Wl}lel. Under Assumptions 1, 1, 2, and 3, forany 0 < m < M,
v > 0, and large enough Ny, with probability at least 1 — & over the sample of y°, we have

S Kp b E W12 1 11
EO Y o) hr—h . =1 F m 2/L In=
m( ) r( )+ (\/%0' (€m+‘ 1 m| p) + (’}//8)2/LNI(;‘ (6 ) +N&—2a N2a n )
(42)

Proof. Note that, the following proof is adopted from [46]. There are two main steps in the proof. In

the first step, for a given constant 5 > 0, we first define the “prior” P and the “posterior” () on # in

a way complying the conditions in Lemma 4 and Lemma 6. Then for all classifiers with parameters
~ . . ~— \1/L

satisfying |8 — 5] < % where 5 = (HzL:1 [lW, ||2) , we can derive a generalization bound by

applying Theorem 2 and Lemma 4. In the second step, we investigate the number of 5 we need to
cover all possible relevant classifier parameters and apply a union bound to get the final bound. The
second step is essentially the same as [100] while the first step differs by the need of incorporating
Lemma 4.

We first show the first step. Given a choice of 8 independent of the training data, let

(v/8€m) " 8l
/26 (AN + In2br) BALBmBE/bIn(4bL)

Assume the “prior” P on H is defined by sampling the vectorized MLP parameters from A (0, 021);
and the “posterior” @ on H is defined by first samplmg a set of random perturbations {U, };~; with

vec({U;}-,) ~ N(0,0%I) and then addlng them to {Wl}l |, the parameters of h. Then for any h
with {W;}/, satisfying |3 — 8| < 2, by Lemma 6, we have

o = min

PEARG:
2 (g, 000 = RiX O <) >

Therefore, by applying Theorem 2, we know the bound (33) holds for h,ie., with probability at least
1-46,

L9, (h) — L3 (h)

1 A v/2
<(DKL(Q|P)+1)+IH(5+4]V+D P/\)

>/\'—‘ V\H

1 A2
< (DKL(QHP)'F].)‘FlHé'Fm'FI 3+\/—0

2 1 3 1 Kp
—N2()/ DKL(Q”P) N2a <1n6 + 2) + 4N1—2a + \/%O' (Em + |htr - hm| 'p)v (44)

(€m + |he — ] - p)) 43)

where in (43) we have applied Lemma 4 to bound DY/
in (44) we have set A = Nga.

Moreover, since both P and () are normal distributions, we know that

L~
Sl Wil
202 '

(P A) under Assumptions 1, 2, and 3; and

m,0

DxL(Q|IP) <

By Assumption 2, both B,,, and C' are constant with respect to Ny. Later we will show that we only
need 8 < C. Therefore, for large enough Ny, we can have

(v/8em) " < gl
2b(N§ +1n2bL)  84LB,,fL~1,/bIn(4bL)’

which implies,
(v/8em) "
26(N§ + In2bL)’
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and hence,

b(NG +1In2bL) Zz 1 ||VVI||F

(7/8)2/% COR (45)

Dxr(Q|IP) <

Therefore, with probability at least 1 — §,
£0,(h) = Ly ()

Kp 2 1 3 1
< A 170 = honl - p) + = DL (QIIP) + ~o (I 2 4+2) 4 ——
< (et o =)+ 5D Q1P+ (105 +2) 4

Kp N LI S SRS B
<0 m + [ho = B - p) + ==t 2 ULE 92/ — - 46
= (x/%a(e * Iho -0+ (7/8)2LNg (em)™ "+ Fr2a + 05 (46)

Then we show the second step, i.e., finding out the number of 8 we need to cover all possible
relevant classifier parameters. Similarly as [100], we will show that we only need to consider

(52— )VE < B < C (recall that |W;||z < C,1 = 1,...,L). For any j outside this range, the

m

bound (47) automatically holds. If 3 < (53— —)!/L, then for any node i € Vj, [7:(X, G |loo < L,
which implies £g(h) = 1 as the difference between any two output logits for any training node is
smaller than +. Also noticing that £, (h) < 1 by definition, so the bound (47) trivially holds. And

for 3 in this range, |8 — 8| < 7 (573—)"/* is a sufficient condition for 3 to satisfy |3 — | < B and

we need at most Lc(i?i/t) of 3 to cover all B in the above range. Taking a union bound on all

such f3, which is equivalent to replace ¢ with m in (46), it gives us the final result: with
1/L

probability at least 1 — 6,

h) < L7 Kp by, IIWill3
L (h) < LY(R) 4+ O | —=L—(ey + |ho — hun]| - p) + —==LIHE (o y2/L
rn( )— 0( ) (ma(e | 0 | p) (W/S)Q/LN(? (6 ) an
1 1| LO@B.)*
+N01’20‘ + NZa n J1Lg .
O

G Experiment details

G.1 Hardware & Software Environment

The experiments are performed on two Linux servers (CPU: Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60GHz, Operation system: Ubuntu 16.04.6 LTS). For GPU resources, four NVIDIA Tesla V100
cards are utilized The python libraries we use to implement our experiments are PyTorch 1.12.1 and
PyG 2.1.0.post1. The maximum time for training one epoch is no more than one minute.

G.2 Model details & hyperparameter settings & results

In this section, we provide details for baseline methods, hyperparameter search space, and the
accuracy results.

Details for baseline methods We provide details for baseline methods in this section. MLP, GCN
[2], GAT [11], and SGC [16] are classical baseline models, we directly adopt the implementation of
them from Pytorch Geometric. Notice that, SRGNN and EERM are two baseline method specifically
for the Graph OOD scenario.

* GLNN, as proposed by [29], address the scalability challenges faced by Graph Neural Net-

works (GNNs) in practical industry deployments due to their data dependency. By leveraging
the strengths of both GNNs and MLPs through knowledge distillation (KD), the authors
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demonstrate that MLP performance can be significantly improved. The authors’ code can be
found at https://github.com/snap-research/graphless-neural-networks. In
this work, we adopt GCN as the teacher model.

* APPNP, developed by [15], leverages the relationship between graph convolutional networks
(GCN) and PageRank to develop an enhanced propagation scheme based on personalized
PageRank. APPNP focuses on addressing the limitations of traditional neural message-
passing algorithms in graph-based semi-supervised classification, which only considers a
small, fixed neighborhood of nodes. The author’s code is available at https://github.
com/gasteigerjo/ppnp.

* GPRGNN, introduced by [53], aggregates features across multiple steps and subsequently
combines them linearly, with the weights of the linear combination being learned during
model training. The original features prior to aggregation are also incorporated into the
combination. The authors’ code is available at https://github.com/jianhao2016/
GPRGNN.

* GCNII, developed by [52], is a deep learning method for graph-structured data that extends
the traditional GCN model by incorporating two innovative yet straightforward techniques:
"Initial residual” and "Identity mapping." These techniques effectively address the over-
smoothing issue commonly encountered in shallow GCN models. The author’s code is
available at https://github. com/chennnM/GCNII.

* SRGNN, introduced by [63], is a novel framework incorporating a shift-robust regularizer
that encourages the learned representation to enhance the ood generalization capabilities of
GNNs and overcome the limitations posed by localized graph training data. The author’s
code is available at https://github.com/GentleZhu/Shift-Robust-GNNs.

* EERM, introduced by [62], proposes a principled methodology to identify and quantify
these factors in graph data and incorporate a novel invariance-inducing regularization term
into the GNN training objective. The author’s code is available at https://github. com/
qitianwu/Graph00D-EERM.

hyperparameter searching range For model-specific parameters, we use the same notations for the
following models considering brevity. Details are shown as follows.

* \: For GLNN, A refers to the weight of knowledge distillation loss. For GCNII, A refers to
the strength of identity mapping.

* a: For APPNP and GPRGNN, « refers to the teleport probability. For GCNII, « refers to
the strength of residual connection.

* K: For SGC, APPNP, and GPRGNN, K refers to the number of transformation layers.

In hyperparameter searching, we utilize the common range of hyperparameters for most models.
Notice that, there are particular models where the reported optimal parameters in their papers are
quite specific. In order to achieve better implementation results, we expand the search range on top

of the original reported set for these models.

Table 7: Hyperparameter searching range for baseline models on Cora, CiteSeer, PubMed

Hyperparameters for Baseline GNNs

Models\Hyperparameters | Ir

weight_decay

dropout

hidden

#layers

Gat heads

A @

K

GCN

{0, 5¢-4, 5e-5)
{0, 5e-4, 5e-5)
{0, 5e-4, 5e-5)
{0, 5e-4, 5e-5)
{0, 5e-4, 5e-5)
{0, 5e-4, 5e-5}

{0, 1e-3, 1e-5, le-4, Se-4, 5e-5)
{0, 5e-5, Se-4}

{0.,0.5,08}
{0..05.0.8)
{0.,0.5,0.6,0.8)

{0.,0.5,0.8)
{0.,0.5,08}
{0.,0.5, 0.8}

{0.,0.2,05,0.8)
{0.,0.1,02,0.4,0.5, 0.8}

(16,32, 64}

{16, 32, 64, 128}
{ 16,32, 64, 128, 256}

2
(1.2}
2

(1,2}
2
2

(2.3}
{2.4,8.16,32,64}

(I.-’-‘,

8}

{0.0-1.0)

- (0010}
{0.0-1.0}  {0.0-1.0}

(123)

(00-10)  (567.89.10)

(589.10)

Reimplementation experimental results We illustrate the experimental results with the above

hyperparameter search in Table 10 and 11 on homophilic and heterophilic datasets, respectively.

G.3 Dataset details

In this paper, we majorly focus on two homophilic datasets, PubMed and Ogbn-Arxiv and two het-
erophilic datasets, Squirrel and Chameleon. Moreover, we consider more datasets for comprehensive
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Table 8: Hyperparameter searching range for baseline models on Chameleon, Squirrel, Actor,
Amazon-ratings

Hyperparameters for Bascline GNNs

Models\Hyperparameters Ir weight_decay dropout hidden # layers Gat heads X o K
GCN {0.,0.2,0.5,0.8) (16,32, 64, 128,256} (2.34) -
SGC {0.0.2,0.5,0.8) {16, 32, 64, 128,256} 2.3) - - (123}
GAT {0.,0.2,0.5,0.6,0.8) (8. 16,32, 64, 128,256} (2.3) (1.4.8) - - -
GLNN {0.,0.2,0.5,0.8) {16, 32, 64, 128,256} {1.2) - {0.0-1.0} - -
APPNP {0..0.2,0.5,0.8) (8. 16,32, 64, 128} 2 - {0.0-1.0}  {5.6,7.8.9.10}
MLP {0.,0.2,0.5,0.8) {16, 32, 64, 128,256} 2 - -
GPRGNN {0.,0.2,0.5,0.8) {16, 32, 64, 128} (2.3) - (0.0-1.0) {58910}
GCNIT {0.,0.1,0.2,0.4,0.5,0.8)  { 16,32, 64,128,256}  {2.4,8, 16,32, 64} {0.0-1.0}  {0.0-1.0} -

Table 9: Hyperparameter searching range for baseline models on OGB-Arxiv, Twitch-gamer, IGB-tiny

Hyperparameters for Baseline GNNs

MMSMH):::L‘NIHMC“ ‘ {le-2, 5:2, (‘:ie‘ﬁg:l;d::d:) (llﬁ‘)’.z‘.‘:lx) (IZ:?::,“SIZ) #(121‘,}:;5 — - - A
SGC {le-2, 5 e-. {0, 5e-4, 5e-5} {0.,0.5,0.8} {64, 128, 256, 512} {2,3} - {1,2,3}
GAT {le-2,5 {0, 5e-4, 5e-5} {0.,0.5,0.6,0.8} {64, 128, 256,512} {2,3} {1.4,8} - - -

GLNN {le-2, 5 } {0, 5e-4, 5e-3} {0.,0.5,0.8} {1024, 2048} {2,3} {0.0-1.0} - -
APPNP {le-2, 5 } {0,5e-3, le-2, 5e-4,5e-5)  {0.,0.2,0.3,0.5,0.8} {128,256, 512} (2.3} {0.0-1.0}  {5.6,7.8.9,10}
MLP {le-2, {0, Se-4, 5e-5} {0.,0.5,0.8} {256,512} {2,3} - -
GPRGNN {le-2, 5e-2, 5¢-3} {0, le-3, le-5, le-4, 5e-5} {0..0.2,05,0.8} {128,256, 512} (2.3} - {0.0-1.0} {58910}
GCNII {le-2, 5¢-3, le-3} {0, 5¢-5, Se-4} {0.,0.1,0.2,04,0.5,0.8)  {64,128,256,512} {2,4,8, 16,32, 64} {0.0-1.0}  {0.0-1.0} -
Table 10: The accuracy of GNN and MLP models on homophilic graphs
Dataset Cora Citeseer  Pubmed Arxiv IGB-tiny
MLP 61.1+1.2 60.0+1.4 69.0+2.3 54.0+0.1 73.2+0.1
GLNN 81.3x1.5 73.0£2.7 782+26 71.7+0.1 73.2+0.1
GCN 81.5x1.4 73.7¢1.6 779+2.0 71.4+0.1 70.7+0.1
SGC 81.7x1.4 72.7£22 77.0£2.7 68.0+0.1 71.0+0.1
GAT 82.2+1.1 73.6x1.6 77315 71.0+0.1 70.8+0.2
APPNP 83.1+x1.3 75.0«1.1 79.6+1.3 70.3+0.5 71.2+0.1
GCNII 82.8+x1.1 73.8%x1.7 79.0£2.5 71.7x0.5 73.5+0.1
GPRGNN | 82.9+1.4 724+1.8 783+2.1 72.3+0.3 73.9+0.1
Table 11: The accuracy of GNN and MLP models on heterophilic graphs
Dataset Chameleon  Squirrel  Twitch-gamers Actor Amazon-ratings
MLP 49.0+2.4 30.1%1.7 60.7+0.2 37.0£0.7 45.9+0.8
GLNN 39.2+2.7 52.3x1.4 61.1+0.1 37.3x1.0 54.0+0.7
GCN 68.0+2.0 54.7+1.4 62.2+0.2 30.7+0.9 49.0+0.6
SGC 69.1+1.8 53.0+1.1 62.0+2.0 30.0x1.5 46.5+0.6
GAT 67.0+1.9 53.2+1.7 59.9+0.3 30.7«1.0 48.0+0.5
APPNP 56.7£2.5 42.4+1.9 59.7+0.1 37.0x1.3 44.9+0.8
GCNII 64.7+1.8 44.0+1.5 64.5+0.3 36.0%1.2 50.0+0.5
GPRGNN 68.5+1.4 53.8x1.4 61.9+0.2 36.5¢1.4 49.8+0.5

experimental results including Cora, CiteSeer, IGB-tiny, Actor, Amazon-rating, and Twitch-gamers.
Dataset statistics details can be found in Tab. 13. The license of datasets can be found in Table 12.

Table 12: The lic

ense of datasets.

Dataset license
Cora NLM license
CiteSeer NLM license
PubMed NLM license
Ogbn-arxiv ODC-BY
IGB-tiny ODC-By-1.0
Chameleon MIT license
Squirrel MIT license
Actor MIT license
Amazon-ratings | MIT license
Twitch-gamers MIT license

We then provide a detailed description on those datasets and the corresponding data split as follows:
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Planetoid datasets include Cora, CiteSeer, and PubMed. They consist of scientific publi-
cations as nodes. The citation links between the papers create a graph structure, with
nodes representing papers and edges representing citations. We utilize the 10 fixed
splits in [101]. For each split, we have 20 nodes per class for training, 30 nodes per
class for validation, and all other nodes for testing. More details can be found on
https://github.com/BUPT-GAMMA/CPF/tree/master/data/npz

Ogbn-Arxiv dataset is based on a large-scale scholarly paper citation network, where nodes
represent papers and edges represent citation links between them. We utilize the default
fix split provided by [24]. More details can be found on https://ogb.stanford.edu/
docs/nodeprop/#ogbn-arxiv.

Wikipedia datasets include Chameleon and Squirrel, which are a collection of web pages
from Wikipedia. The node features correspond to several informative nouns in the respective
Wikipedia pages. The edge represents the link between node. We utilize the 10 fixed splits
in [25]. For each split, we have 48% nodes for training, 32% nodes for validation, and
20% for test. More details can be found on https://github.com/graphdml-uiuc-jlu/
geom-gcn

The Actor dataset [102] is a graph that represents the co-occurrence relationships between
actors. We utilize the 10 fixed splits in [25]. For each split, we have 48% nodes for
training, 32% nodes for validation, and 20% for test. More details can be found on https:
//github.com/graphdml-uiuc-jlu/geom-gcn

The Twitch-gamers dataset represents the relationships between accounts on the streaming
platform Twitch, where each node corresponds to a Twitch account, and edges are present
between accounts that are mutual followers. We utilize the 5 fixed splits in [21]. For each
split, we have 50% nodes for training, 25% nodes for validation, and 25% for test. More
details can be found on https://github.com/CUAI/Non-Homophily-Large-Scale

Amazon-ratings a new dataset derived from the Amazon product co-purchasing network
metadata dataset, which is part of the SNAP Datasets [103]. We utilize the 10 fixed splits
in [104]. For each split, we have 50% nodes for training, 25% nodes for validation, and
25% for test. More details can be found on https://github.com/yandex-research/
heterophilous-graphs/tree/main/data

IGB-tiny is a recent new citation graph dataset. It utilizes two publicly available datasets:
Microsoft Academic Graph (MAG) and SemanticScholar Corpus. We utilize the homo-
geneous setting with default fix split provide by [105]. More details can be found on
https://github.com/I1linoisGraphBenchmark/IGB-Datasets.

Details on Data distribution The node homophily ratio distribution for different datasets are
presented in Figure 13. The following observations can be made: (1) Cora, CiteSeer, PubMed, and
Ogbn-Arxiv are four homophilic datasets where most nodes have a homophily ratio & > 0.5. (2)
Chamaleon, Squirrel, and Actor are three heterophilic datasets where most nodes have a homophily
ratio b < 0.5. Nonetheless, the Actor dataset exhibits entirely different properties from Chamaleon
and Squirrel where graph structure information is barely useful, leading to performance degradation.
Empirical evidence can be found in Table 11 where the vanilla MLP outperforms all the GNN models.
(3) IGB-tiny [105] and Twitch-gamers [21] are two representative datasets with no apparent majority
structural pattern, exhibiting graph homophily ratios of 0.567 and 0.556, respectively. Specifically,
IGB-tiny contains both large numbers of homophilic and heterophilic nodes, respectively, whereas,
most nodes in the Twitch-gamers dataset do not show a clear homophilic nor heterophilic pattern with
a homophily ratio close to 0.5. Notably, the IGB-tiny is still recognized as a homophilic graph [105]
while Twitch-gamers is generally recognized as a homophilic graph [20, 21]. (4) Nodes in Amazon-
ratings [104] exhibit diverse structural patterns with multiple peaks observed for homophily ratios
0.0,0.2,0.4, 0.6, and 0.8.

G.4 OOD dataset statistics and details

We provide more analysis and statistics details about datasets with our proposed out-of-
distribution (OOD) data split for a more comprehensive analysis. The data split statistics can
be found in Table 14. 20% of the majority nodes are selected as the validation set. Notably, we
generally use nodes with h; < 0.5 and h; > 0.5 as the majority and minority on heterophilic graph.
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Table 13: Detailed dataset statistics

Dataset Cora CiteSeer PubMed  Arxiv IGB-tiny | Squirrel Chameleon Amazon-ratings Actor Twitch-gamers
Homo Ratio 0.814  0.714 0.792 0.631 0.567 0.216 0.247 0.376 0.221 0.556
Nodes 2485 2110 19717 169343 100000 5201 2277 24492 7600 249992
Edges 5069 3668 44324 583121 223538 | 198493 31421 93050 15009 93050
Features 1433 3703 500 128 1024 2089 2235 300 932 300
Classes 7 6 3 40 19 5 5 5 5 5
4 5
3 2 4
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Figure 13: Node homophily ratio distributions of different datasets. Both homophilic and heterophilic

nodes exist across all graphs
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Table 14: the numbers of train, validation, test nodes on OOD data split

Dataset Cora CiteSeer PubMed Arxiv | Squirrel Chameleon
#train 1599 1160 12466 85788 3709 1642
#valid 400 290 3117 21447 928 441
#test 486 660 4134 62108 564 564

Nonetheless, the Squirrel dataset only has 71 nodes with h; > 0.5. To ensure enough test nodes, we
adapt the nodes with h; > 0.4 as the minority nodes for test. We conduct experiments to measure
the distributional shift between train and test nodes. To further analysis on the distribution shift, we
employ Maximum Mean Discrepancy (MMD) [106] as a discrepancy metric. A large MMD dis-
tance indicates the covariate shift with P'"(X) # P (X). MMD measures the distance between
distributions as follows:

MMD?(X,Y) Z¢ () izfﬁ(yj) (48)

m <

where ¢ is a kernel function that maps the input samples into a higher-dimensional feature space, and
| || - ||2 denotes the Ly norm. Using the Gaussian kernel, we can define the kernel matrices as:

Kmm,ij :]f(l‘i,afj), Ky Y, :k(yiayj)7 (49)
Kmy,ij :k(xiayj)v Ky:c ij —k(yiax]’)y

where the kernel function is given by:

2
k(z,y) = exp <—ny”> (50)

202

and o is a parameter that controls the width of the kernel. In our experiment, we choose multiple o
including [0.01, 0.1, 1, 10, 100]. We average the MMD distance with different o for a more robust
distance measurement. The MMD distance can be computed using these kernel matrices:

1
MMDQ(X,Y) = m E Tx,ij T E xy,ij + E :Kyy,zja (51
i#j #J

where the first and third terms represent the within-set variations, and the second term represents the
between-set variations. We then conduct experiments to determine where the source of distribution
discrepancy from the covariate shift or concept shift. We measure the MMD distance between the train
set and validation set as the i.i.d. distribution distance, and the MMD distance between the training
set and test set as the OOD distribution distance. However, the in-distribution and out-distribution
distances may not be directly comparable due to potential estimation errors introduced by different
numbers of nodes in valid and test sets.

To enable a fair comparison, we also measure in-distribution and out-distribution distances on the
i.i.d. data split as a control group. The MMD distances are measured on the last hidden representation
of a well-trained GCN. The experiment results are provided in Table 15. Focusing on the i.i.d setting,
we observe an MMD distance difference on the validation set and test set to the training set, induced
by the difference in node counts between the validation and test set. Comparing the OOD setting
with the i.i.d one no significant MMD differences are found, except for PubMed. This suggests that
the primary factor driving the distribution shift is not the covariate shift with Pi"(X) = Pts{(X),
but the concept shift with P™"(Y|X) # P'*!(Y|X). The above observations further indicate the
existence of the concept shift in our proposed OOD scenario.

Additional OOD results: We show additional experimental results on Cora and CiteSeer datasets
in Table 16 with a consistent observation. Notice that, all experimental results are average with 10
random seeds including (1, 3, 5, 7, 11, 13, 17, 19, 23, 29).
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Table 15: MMD distance between train and validation, test sets on both i.i.d. and ood settings.

Dataset Cora CiteSeer PubMed Arxiv | Chameleon Squirrel
IID valid 0.565 0.345 0.082  0.149 0.951 1.04
IID test 0.610  0.600 0.050  0.276 0.882 0.92
OOD valid 0.564  0.233 0.127  0.211 0.977 1.192
OOD test  0.597 0.598 0.442 0420 0.854 0.92

Table 16: Additional performance with OOD data split on Cora and CiteSeer.

Dataset Cora CiteSeer
GCN (i.i.d) 87.53+£0.35  77.30+1.26
GCN 51.05£0.58  43.74+0.88
MLP 51.09+0.74  45.26+0.62
GLNN 54.14+£0.89  47.21+0.33
GCNII 55.33+0.41  46.47+0.59
GPRGNN 55.16£0.51  45.76+0.50
SRGNN 62.79+£0.87  49.62+0.96
EERM 54.34+£0.78  47.72+0.50
EERM(I)  70.91+1.89 51.12+0.82
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Figure 14: Performance comparison between GCN and MLP-based models on more datasets. Each
bar represents the accuracy gap on a specific test node subgroup exhibiting a local homophily ratio
within the range specified on the x-axis.

H Additional results on performance comparison between GCN and

MLP-based models

In Section 3, we conduct a performance comparison between GCN with two MLP-based models, i.e.,
MLP and GLNN, on test nodes with different structural patterns. In this section, we provide more
elaboration on why using GLNN and conduct additional experiments on more datasets.

We first provide more elaborations on why using GLNN. The experiment is to examine the effec-
tiveness of GCN on utilizing different structural patterns. Therefore, we compare GCN and MLP
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architectures as GCN utilizes graph structure during inference while MLP cannot, serving as a
structure-agnostic baseline. When GCN surpasses MLP.it indicates GNN benefits from structural
patterns effectively, and vice visa. Notably, GLNN can be viewed as a better-trained MLP model.
GLNN also utilizes the same MLP model architecture as vanilla MLP, the only difference between
vanilla MLP and GLNN is that GLNN is trained in an advanced distillation manner while vanilla
MLP is trained with cross-entropy loss The reason why we utilize GLNN rather than only comparing
GCN with vanilla MLP is that MLP meets optimization issue on training. Such an obstacle leads to a
large performance gap (more than 20%) between under-trained vanilla MLP and well-trained GCN.
Consequently, a large performance gap induced by training difficulty hinders the potential for MLP
architecture. Contrastly, GLNN enjoys a better training process leads to a more clear comparison
between well-trained GNN and well-trained MLP(GLNN) architecture with a convincing conclusion

Additional experiments are illustrated in Fig 14. Cora and CiteSeer are two Planetoid datasets,
showing similar properties as PubMed. Observations on Cora and CiteSeer are consistent with those
in Section 3, further substantiating our conclusions. It should be noted that our paper primarily focuses
on homophilic graphs and heterophilic graphs with a clear major structural pattern. Nonetheless, there
exists more complicated real-world graphs with more diverse structural properties, as demonstrated
in Figure 13. We conduct further investigations on these datasets, including IGB-tiny, Twitch-
gamers, Amazon-ratings, and Actor. A comprehensive discussion on those datasets can be found
in Appendix G.3. Experimental results are depicted in Figure 14. We make initial observations as
follows: (1) IGB-tiny is a homophilic dataset exhibiting consistent observations in line with the
main analysis in Section 3, where the MLP-based models outperform GCN on the heterophilic
nodes and underperform on homophilic nodes. (2) Twitch-gamers and Amazon-ratings are two
heterophilic datasets exhibiting consistent observations in line with the main analysis in Section 3,
where the MLP-based models outperform GCN on the homophilic nodes while falling short on
the heterophily nodes. (3) Actor is a heterophilic dataset where graph information is of limited
utility. Empirical evidence shows that MLP-based models show an overall better performance than
GCN. From a local perspective, the MLP-based models outperform GCN on the heterophilic nodes
while underperforming on the homophily nodes. Those observations indicate our conclusion can be
extended on most datasets with diverse structural patterns Nonetheless, it still remains a mystery on
the Actor dataset. We leave a more comprehensive investigation especially on the Actor dataset as
the future work.

I Additional results on performance comparison between GCN and deeper
GNN models

In Section 4.1, we conduct a performance comparison between GCN with deeper GNN models,
on test nodes with different structural patterns. In this section, we conduct additional experiments
on more datasets, correspondingly. Cora and CiteSeer are two Planetoid datasets, showing similar
properties as PubMed. Notably, deeper GNNs generally show better performance across different
structural patterns, where the improvement still primarily lies in the minority groups, Observations
on Cora and CiteSeer are consistent with those in Section 3, further substantiating our conclusions.

It should be noted that our paper primarily focuses on homophilic graphs and heterophilic graphs with
a clear major structural pattern. Nonetheless, there exist more complicated real-world graphs with
more diverse structural properties, as demonstrated in Figure 13. We conduct further investigations
on these datasets, including IGB-tiny, Twitch-gamers, Amazon-ratings, and Actor. A comprehensive
discussion on those datasets can be found in Appendix G.3. New experimental results are depicted in
Figure 15. We observe that deeper GNNs generally outperform GCN on the heterophilic node while
underperforming on the homophilic nodes on those datasets with diverse structural properties. We can
conclude that the effectiveness of GNN on those datasets with no clear majority structural patterns
primarily from the improvement from the heterophilic nodes. We leave a more comprehensive
investigation as the future work.

J Additional Experiment on performance disparity across subgroups

In Section 3.4, we conduct experiments to empirically examine the effects of two-hop aggregated-
feature distance and the homophily ratio difference on the test performance of different GNN models.
Despite the empirical success on the second hop, we conduct additional experiment results focusing
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Figure 15: Performance comparison between GCN and deeper GNN models on more datasets. Each
bar represents the accuracy gap on a specific test node subgroup exhibiting a local homophily ratio
within the range specified on the x-axis.

on observations on higher-order homophily ratios, higher-order aggregated feature distance, and more
datasets in this section. Notably, despite more complicated datasets, our theoretical analysis can still
achieve empirical success.
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Figure 16: Test accuracy disparity across node subgroups by aggregated-feature distance and higher-
order homophily ratio differences to training nodes. Each figure corresponds to a dataset, and each
bar cluster corresponds to a GNN model. Bars labeled 1 to 5 represent subgroups with increasing
differences to training set.
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Figure 17: Test accuracy disparity across node subgroups by higher-order aggregated-feature
distance and homophily ratio differences to training nodes. Each figure corresponds to a dataset,
and each bar cluster corresponds to a GNN model. Bars labeled 1 to 5 represent subgroups with
increasing difference to training set.
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Figure 18: Test accuracy disparity across node subgroups by higher-order aggregated feature
distance and higher-order homophily ratio differences to training nodes. Each figure corresponds
to a dataset, and each bar cluster corresponds to a GNN model. Bars labeled 1 to 5 represent
subgroups with increasing difference to training set.

J.1 Additional investigation on higher-order neighborhood

Our theory 1 in Section 3.3 focuses on the one-hop aggregation while it could be easily extended
to the higher-order aggregation case in the real-world scenario. More experiments revolving on
higher-order homophily ratio and aggregated features are shown in this subsection. In particular, the
k-hop node homophily ratio can be calculated as:

oo _ Hu € Ni(i) - yu = yo}|
’ i (v3)]

where N (v;) denotes the k-hop neighbor node set of v;. We then sort test nodes in terms of the
disparity score and split them into 5 equal-size. Figures 16 and 17 illustrate results on higher-
order (third hop) homophily ratio difference and higher-order aggregated feature distance (third hop),
respectively while Figure 18 illustrates on the result on higher-order homophily ratio difference and
higher-order aggregated feature distance.

(52)

A similar phenomenon can be found with the expected trend of test accuracy in terms of increasing
differences on the aggregated feature distance and homophily ratio differences in different scenarios.
Exceptional observation can be found in the following scenarios: (1) Squirrel dataset with higher-
order aggregated feature. It may be because such higher-order feature aggregation leads to more
distribution overlapping between different categories. (2) PubMed with both higher-order aggregated
features and homophily ratio. The potential reason is that the PubMed dataset does not rely on
higher-order information. Overall speaking, those results further indicate that for the generalization
of our theory in the real-world scenario.

J.2 Additional results on more datasets

In this subsection, we conduct more experimental results on the datasets with more complicated
with more diverse structural patterns, including Cora, CiteSeer, IGB-tiny, Twitch-gamers, Amazon-
ratings, and Actor. A comprehensive discussion can be found in Appendix G.3. The performance
on different node subgroups is presented in Figure 19. A consistent observation can be found with
the expected test accuracy degradation trend in terms of larger feature distance and homophily ratio.
the difference in most datasets, except for the Actor. The potential reason is that its structure could
hardly provide useful information. The key evidence is that the vanilla MLP model outperforms
all the GNN models shown in Table 11. The actor dataset shows entirely different properties with
other datasets. Furthermore, we investigate on the individual effect of aggregated feature distance
and homophily ratio difference in Figure 20 and 21, respectively. An overall trend of performance
decline with increasing disparity score is evident though some exceptions are present. When only
considering the aggregated feature distance to training nodes, the accuracy in Twitch-gamers exhibits
an opposite increasing tendency along with the increasing difference to train nodes. Notably, when
considering only the homophily ratio difference, the decreasing tendency is clear across datasets
exception Actor. We can observe even better phenomenon on the Amazon-ratings dataset than
combining both homophily ratio difference and the aggregated feature distance. It indicates that the
homophily ratio difference w.r.t structural disparity significantly contributes to those datasets with
more diverse structural patterns. We make the above initial observations showing the practicability of
our theoretical analysis on more datasets with more diverse structural patterns. Moreover, exception
can still be found on the Actor dataset. We leave a more comprehensive discussion on the Actor, as
the future work.
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Figure 19: Test accuracy disparity across node subgroups by aggregated-feature distance and
homophily ratio differences to training nodes on more datasets. Each figure corresponds to a dataset,
and each bar cluster corresponds to a GNN model. Bars labeled 1 to 5 represent subgroups with
increasing difference to training set. A clear performance decrease tendency can be found from
subgroups 1 to 5 with increasing differences to the training set except the Actor dataset.
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Figure 20: Test accuracy disparity across node subgroups by aggregated-feature distance to training
nodes on more datasets. Each figure corresponds to a dataset, and each bar cluster corresponds to a
GNN model. Bars labeled 1 to 5 represent subgroups with increasing differences to the training set.

K Additional investigation on the discriminative ability of GCN

In Section 3.2, we examine discriminative ratios on input features and multiple hops aggregated
features for homophilic and heterophilic test nodes, respectively. Nonetheless, those experiments only
focus on feature aggregation while ignoring the feature transformation and the training procedure.
In this section, we further explore the discriminative ratios on well-trained GCNs with both feature
aggregation and transformation. Typically, we utilize the hidden representation trained with the
best hyperparameter as shown in Appendix G. Experimental results can be found in Figure 22.
Observations on GCN are consistent with those in Section 3.2 focusing on aggregation, where
majority nodes generally show a larger discriminative improvement than the minority nodes along
with more aggregation layers, indicating a better discriminative ability on majority nodes than the
minority ones. Those observations further substantiate our conclusions in a more general setting.
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Figure 21: Test accuracy disparity across node subgroups by homophily ratio differences to training
nodes on more datasets. Each figure corresponds to a dataset, and each bar cluster corresponds to a
GNN model. Bars labeled 1 to 5 represent subgroups with increasing differences to the training set.
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Figure 22: Tllustration of the change on relative discriminative ratio along with the aggregation. The
x-axis represents the number of aggregations and the y-axis represents the relative discriminative
ratio.

L. Significant test between GCN and MLP-based models

We conduct the performance comparison between GCN with MLP-based models, on test nodes with
different homophily ratios, as shown in Fig 3. In the corresponding, we include the p-values of a
paired t-test and confidence intervals between GCN and MLP-base models in Table 23, to determine
whether the performance difference is statistically significant. The z-axis corresponds to the node
homophily ratio range. The y-axis corresponds to p-values of whether the performance of GCN
is significantly better or worse than the corresponding MLP model. Typically, p < 0.05 indicates
statistical significance.

M Significant test between GCN and deeper GNN models

We conduct the performance comparison between GCN with deeper GNNs, on test nodes with
different homophily ratios, as shown in Fig 8. In the corresponding, we include the p-values of a
paired t-test and confidence intervals between GCN and deeper GNN models in Table 24, to determine
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Figure 23: p-value of the paired t-test between GCN and MLP-based models with respect to accuracy
on nodes with different homophily ratios.

whether the performance difference is statistically significant. The z-axis corresponds to the node
homophily ratio range. The y-axis corresponds to p-values of whether the performance of GCN is
significantly better or worse than the corresponding deeper model. Typically, p < 0.05 indicates
statistical significance.

N Limitation

It is important to acknowledge certain limitations in our work despite our research providing valuable
insights into the effectiveness of GNN on structural disparity. In order to facilitate a more feasible
theoretical analysis, we have made several assumptions, the most significant of which is the use of the
generalized CSBM-S model assumption in our theoretical analysis. This CSBM assumption, although
prevalent in graph analysis, is subject to a notable drawback as the CSBM assumption postulates
that feature dimensions are independent and identically distributed. It restricts the generality of our
analysis.

Our current findings lay a strong foundation for further exploration. It is worth mentioning that
our theoretical analysis predominantly focuses on simple aggregation techniques. We hope that
these efforts will contribute significantly to the Graph Neural Network research community. Moving
forward, we aspire to broaden our findings to encompass more advanced message-passing neural
networks, with particular emphasis on deeper GNN models. Currently, there is only empirical
evidence showing the effectiveness of the deeper GNN models. Besides, the node homophily ratio is
calculated on the undirected graph while the one on the directed graph is still under exploration. More
comprehensive analyses on the higher-order aggregated feature and higher-order homophily ratio
are still under-explored. Moreover, We aim to utilize our understanding to mitigate the performance
difference induced by the structural disparity in the future.
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Figure 24: p-value of the paired t-test between GCN and deep GNN models with respect to accuracy
on nodes with different homophily ratios.

O Broader Impact

Graph Neural Networks (GNNs) have emerged as a powerful architecture for modeling graph-
structured data across a wide range of practical applications [2, 5, 3, 6-8, 73, 107]. A key aspect of
GNNss is the inductive bias on leveraging neighborhood information. However, such characteristics
may lead to a biased test prediction, particularly when majority neighborhood patterns are prevalent.
For example, a scenario in which we are required to predict the gender of individuals with a dating
network. GNN may excessively rely on the pattern that when all neighboring nodes are female, the
center node should be male. This approach disregards the minority group of individuals who are
more likely to date others of the same gender. This overlooked drawback in GNN may lead to ethical
concerns.

In this study, we reveal the potential for performance disparity inherent in Graph Neural Networks
and propose a novel OOD scenario for exploring methods to mitigate such issues. It is important
to emphasize that our research offers an understanding of these limitations rather than introducing
a new methodology or approach. We only identify the problem and show the potential solution to
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address this issue. Consequently, we do not foresee any negative broader impacts stemming from
our findings. We expect our work to contribute significantly to the ongoing research efforts aimed at
enhancing the versatility and fairness of GNN models when applied to diverse data settings.

Our findings can also help to boost different graph domains. In section 4, we show how our
understanding can help to elucidate the effectiveness of deeper GNN, reveal an overlooked OOD
factor, and propose a new Graph out-of-distribution scenario. It is worth noting that our findings can
derive new understandings of more graph applications and inspire us to identify new problems in
graph domains. We further illustrate more understanding on the robustness of GNN and more initial
understanding on Graph out-of-distribution problem as follows.

Graph Robustness. Recent studies have exposed the susceptibility of GNNs to graph adversarial
attacks [108—112], where small perturbations can mislead GNNs into making incorrect predictions.
several literature [113—115] reveals that increasing the heterophily of the homophily graph could be a
key factor contributing to a successful attack. More recently, [116] observes that (1) learning-based
attacks [114] tend to increase the heterophily in the smaller of train and test sets. (2) Directed attacks
on particular nodes can outperform the undirected attack on the whole graph. Those observations
are aligned with the understanding in our paper that (1) Increasing the heterophily of the homophilic
graph enlarges the homophily ratio difference, leading to performance degradation. (2) Perturbations
lying in the smaller set can efficiently enlarge the homophily ratio difference between training and
test nodes with minimal perturbation budgets. (3) Undirected attack on the whole graph may not lead
to a larger homophily ratio difference between the train and test nodes with permutation on both train
and test nodes, leading to performance degradation.

Understanding on Graph out-of-distribution problem. Despite the new proposed Graph Out-
Of-Distribution (OOD) scenario, our findings can further inspire a new understanding of existing
graph OOD problems. We provide an initial discussion as follows. The uniqueness challenge of the
OOD problem in the graph domain is that the discrepancy in graph structure can also lead to test
performance degradation, in addition to node feature differences. There exists various graph OOD
scenarios[62-64, 24, 66, 46], e.g., graph density, biased training labels, time shift, and popularity shift.
Nonetheless, despite various graph OOD scenarios with different qualitative concepts, it still lacks
of quantitative graph metrics to measure how the distribution shift happens, causing performance
degradation. Inspired by our finding, We can roughly recognize the main reasons as graph covariate
shift and concept shift [68—70, 117] in a graph context: (1) Graph covariate shift [118] is defined
as P"™"(X) #£ P*'Y(X) where P"™"(.) and P*(.) are training and test distribution, respectively.
Such graph covariate shift corresponds to the large feature distance ||f, — f,|| between train and test
nodes. (2) Graph concept shift is defined as P™"(Y|X) # P'*!(Y|X). Such graph concept shift
corresponds to the homophily ratio difference |k, — h,,| between train and test nodes. We leave a
more detailed discussion and a careful design on the graph OOD quantative metrics as a further work.

P Future work

Further investigation on Deeper GNN In section 4, we conduct experiments on the effectiveness
of deeper GNNSs, indicating the performance gain is majorly from the improved discriminative ability
on nodes in minor patterns. It could be a good direction to further explain and understand why
such phenomenon happens. A potential reference for conducting discriminative analysis of deeper
GNN is [39], aims to theoretically quantify the discriminative ability on deeper GNNs with more
aggregations. Nonetheless, their analysis uses the vanilla CSBM model as the data assumption,
denoted as CSBM (1, 2, p, ¢). The CSBM model presumes that all nodes follow either homophilic
with p > ¢ or heterophilic patterns with p < g exclusively. However, this assumption conflicts with
real-world scenarios as homophilic and heterophilic patterns coexist across different graphs, as shown
in Figure 2. As far as we can see, conducting a similar discriminative analysis as [1] on our proposed
CSBM-M model considering both homophily and heterophily patterns could be a good solution.

Other factors on performance disparity Existing literature [63, 46, 86, 87] shows that some other
structural information, e.g., degree, geodesic distance to the training node, and Personal Pagerank
score, could lead to a performance disparity. Nonetheless, all those analyses and conclusions are
conducted on homophilic graphs, e.g., PubMed and ogbn-arxiv, while ignoring the heterophilic
graphs e.g., Chameleon and Squirrel, which also broadly exist in the graph domain. It could be a good
new research direction to see how the above factors, focus on the homophilic pattern in the context
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of both homophilic and heterophilic properties. Another one could be how to find other important
factors on both homophilic and heterophilic graphs.

Solutions on performance disparity In this paper, we propose and analyze the importance of the
performance disparity problem without no explicit solution. We provide two potential solution as
follows:

* Combining MLP and GNN in an adaptive approach since MLPs can achieve better perfor-
mance on minority nodes and GNNs better on majority nodes. Ideally, we can adaptively se-
lect MLP for minority nodes and GNN for majority nodes, using an adaptively gated function
to control the proportion of MLP and GNN. Our findings suggest the homophilic/heterophilic
pattern selection can serve as a guide for learning the gate function.

» Utilizing global structural information, as the global pattern is more robust, showing less
disparity than the local structural pattern. Empirical evidence can be found in Figure 9 that
the higher-order homophily ratio differences are smaller than the local structure disparity.
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