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Abstract

Graph Foundation Models (GFMs) are emerging

as a significant research topic in the graph domain,

aiming to develop graph models trained on exten-

sive and diverse data to enhance their applicabil-

ity across various tasks and domains. Developing

GFMs presents unique challenges over traditional

Graph Neural Networks (GNNs), which are typ-

ically trained from scratch for specific tasks on

particular datasets The primary challenge in con-

structing GFMs lies in effectively leveraging vast

and diverse graph data to achieve positive trans-

fer. Drawing inspiration from existing foundation

models in the CV and NLP domains, we propose

a novel perspective for the GFM development by

advocating for a “graph vocabulary”, in which the

basic transferable units underlying graphs encode

the invariance on graphs. We ground the graph

vocabulary construction from essential aspects

including network analysis, expressiveness, and

stability. Such a vocabulary perspective can poten-

tially advance the future GFM design in line with

the neural scaling laws. All relevant resources for

GFMs design can be found at here.

1. Introduction

Foundation models (Bommasani et al., 2021), which are

pre-trained on massive data and can be adapted to tackle

a wide range of downstream tasks, have achieved inim-

itable success in various domains, e.g., computer vision

(CV) (Radford et al., 2021) and natural language process-

ing (NLP) (Bubeck et al., 2023; Touvron et al., 2023). Typi-

cally, foundation models can effectively utilize both the prior

knowledge obtained from the pre-training stage and the data
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from downstream tasks to achieve better performance (Han

et al., 2021) and even deliver promising efficacy with few-

shot task demonstrations (Dong et al., 2022; Mao et al.,

2024).

Meanwhile, graphs are vital and distinctive data structures

that encapsulate non-Euclidean and intricate object relation-

ships. Since various graphs embody unique relations, most

graph learning approaches are tailored to train from scratch

for a single task on a particular graph. This approach ne-

cessitates separate data collection and deployment for each

individual graph and task. Consequently, an intriguing ques-

tion emerges: Is it possible to devise a Graph Foundation

Model (GFM) that benefiting from large-scale training with

better generalization across different domains and tasks?

Despite advanced foundation models in other domains, the

development of GFMs remains in the infant stage. Recent

research has demonstrated initial successes of GFMs in

specialized areas, such as knowledge graphs (Galkin et al.,

2023; 2024) and molecules (Beaini et al., 2023). Notably,

most of these models are built on principles specific to

their domains. For instance, ULTRA for knowledge graph

completion (Galkin et al., 2023) draws inspiration from

double equivariance for inductive link prediction (Gao et al.,

2023a). However, there is still a lack of general guidance

on how to build GFMs that can effectively cater to a broad

spectrum of graph-based applications.

The key difficulty in designing GFMs lies in finding the

invariance across diverse graph data, ranging from social

networks to molecular graphs with countless structural pat-

terns, into the same representation space to achieve positive

transfer. The answer from the CV and NLP domains is a

shared vocabulary. In the NLP foundation models, the text

is first broken down into smaller units based on the vocabu-

lary, which can be words, phrases, or symbols. In the CV

foundation models, the image is mapped to a series of dis-

crete image tokens (Yu et al., 2023; Bai et al., 2023) based

on the vision token vocabulary. The vocabulary defines the

basic units in the particular domain, transferable across dif-

ferent tasks and datasets. Therefore, the key challenges in

achieving the GFM narrow down to how we can find the

graph vocabulary, the basic transferable units underlying

graphs to encode the invariance on graphs.
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However, finding a suitable graph vocabulary that works

across diverse graphs is challenging, which is the primary

focus of this paper.

Our contributions: In this paper, we present a vocabu-

lary perspective to clearly state the position of the GFM.

In particular, we attribute the existing success of primitive

GFMs to the suitable vocabulary construction guided by the

particular transferability principle on graphs in Section 2.

A comprehensive review of the graph transferability prin-

ciples and corresponding actionable steps is illustrated in

Section 3, serving us the principle for future vocabulary

construction and the GFM design. In Section 4, we discuss

the potential for building the GFM following neural scal-

ing laws from several perspectives (1) building and training

vocabulary from scratch, and (2) leveraging existing LLM.

Finally, we introduce more insights and open questions to

inspire constructive discussions on the GFM in Section 5.

2. Existing GFMs and Key Designs

Existing GFMs (Galkin et al., 2023; Zheng et al., 2023a)

have achieved initial success, including promising zero-shot

generalization to unseen graphs. Based on model transfer-

ability, current GFMs can be categorized into task-specific,

domain-specific, and primitive GFMs. Definitions for all

categories can be found in Section 2.1. The key to a suc-

cessful GFM design is further discussed in Section 2.2. No-

tably, none of the current GFM have the capability to trans-

fer across all graph tasks and datasets from all domains,

despite such expectations being achieved in the NLP do-

main (Bubeck et al., 2023; Touvron et al., 2023) with long-

term effort. GFMs remain in a nascent stage with limited

development. Despite the gap compared to the success in

the NLP domain, GFMs have already achieved significant

improvement over existing GNNs with end-to-end training

on a single dataset. However, the feasibility of general GFM

remains unclear with unique graph challenges. Graphs are

abstract data structures which are more diverse than natural

language text and images grounded in the physical world

2.1. Existing GFM Categories

Based on the model transferability across domains and tasks,

we can roughly distinguish the existing primitive GFMs

into three categories: task-specific, domain-specific, and

primitive GFMs. We provide definitions and examples for

each category, with a more comprehensive illustration in

Appendix B.

A task-specific/domain-specific GFM should be transfer-

able across the specific task/domain and thus adapt to di-

verse downstream datasets and domain-specific tasks. A

notable example of a task-specific GFM is ULTRA (Galkin

et al., 2023), achieving superior zero-shot knowledge graph

completion performance across datasets from various do-

mains. A task-specific GFM shows great practical benefits,

as it can be trained on data-rich domains, e.g., Wikipedia

knowledge graphs, and subsequently improve effectiveness

in resource-limited domains, e.g., geography knowledge

graph. A domain-specific GFM instance, DiG (Zheng

et al., 2023a), learns universal representations across various

chemical tasks by leveraging domain-specific knowledge.

The domain-specific GFM is highly efficient, as one model

can serve all tasks while also delivering improved effective-

ness compared to single-task models.

A primitive GFM exhibits the capability to generalize to-

wards a limited number of datasets and tasks. A notable

example is OFA (Liu et al., 2023b), which is co-trained on

data ranging from citation networks and molecule graphs to

knowledge graphs via a unified task formation on node, link,

and graph level tasks. The OFA model can achieve compa-

rable or even better performance over the vanilla GNNs on

each task. Nonetheless, OFA requires transforming all node

features into text for co-training, which may not be conve-

nient for all types of data. This co-training paradigm may

also limit its generalization to unseen tasks and domains.

2.2. The Key to A Successful GFM Design.

Despite the empirical success achieved by existing GFMs,

most of them are inspired by domain/task-specific principles.

In this section, we aim to illustrate the common design

approach using ULTRA (Galkin et al., 2023) as a showcase.

ULTRA (Galkin et al., 2023) is a task-specific GFM focus-

ing on the knowledge graph completion (KGC) task. The

KGC task aims to infer the missing triplet (edge), denoted

as (h, r, t), where r is a query relationship, h and t are the

head and tail entities, respectively. The KGC model aims to

answer the query (h, r, ?) by predicting the tail entity t.

The first reason for its success is to utilize the NBFNet (Zhu

et al., 2021b) backbone model which enables the inductive

generalization to new graphs with an expressive relational

vocabulary. The NBFNet proposes a conditional message

passing that can learn the pairwise-node representation con-

ditioned on a head entity node and a query relation.

Huang et al. (2023c) demonstrates that this conditional mes-

sage passing, grounded in the relational Weisfeiler-Leman

algorithm, theoretically offers greater expressiveness in

KGC compared to standard, unconditional GNNs (Li et al.,

2022). Such expressiveness helps to distinguish the differ-

ence between knowledge graphs with different structural

features, leading to a suitable relational vocabulary. In con-

trast, Barcelo et al. (2022) indicates that those uncondi-

tional GNNs, e.g., R-GCN (Schlichtkrull et al., 2018) and

CompGCN (Vashishth et al., 2019), map non-isomorphic

node pairs into the same representation, leading to a con-
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tracted relational vocabulary. Such contracted vocabulary

may lead to negative transfer with inappropriately gener-

alizing knowledge across non-isomorphic node pairs with

inherent differences.

However, such expressive relational vocabulary only consid-

ers the pre-defined relation types which cannot generalize

to the scenario with new relation types during inference.

To extend the existing relational vocabulary including new

relationship type, Galkin et al. (2023) constructs a graph of

relations that captures fundamental interactions independent

from any graph-specific relation types, serving as the second

reason for its success. The graph of relations is theoretically

grounded (Gao et al., 2023b) which aims to learn the double

permutation-equivariant representations. Such representa-

tion is equivariant to permutations of both node entities and

edge relation types. Such equivariance can be an analogy

to a shared relational vocabulary. It connects the new un-

seen relationship types to the existing ones and maps the

equivariant node pairs into the same representation despite

different relation types, leading to the positive transfer.

In summary, we can conclude the key for ULTRA to achieve

good transferability is finding a suitable vocabulary for KGC

satisfying two principles: (1) The vocabulary should not

be compacted, which causes distinct node pairs to share

representations, leading to potential negative transfer. (2)

The vocabulary should be sufficiently inclusive to map new,

unknown relationships onto the existing vocabulary, poten-

tially enabling positive transfer. Notably, the vocabulary

design in GFMs does not necessarily correspond to a tok-

enizer or an embedding layer as in the NLP domain. Instead,

it can involve a model that maps graphs from different do-

mains into the same representation space, enabling positive

transfer and serving as a prerequisite for data-scaling.

The effectiveness of finding a suitable vocabulary for build-

ing the GFM can also be found in other existing primitive

GFMs with the following evidence. GraphGPT (Zhao et al.,

2023b) constructs a dataset-specific vocabulary where each

node corresponds to a unique node ID. Notably, GraphGPT

requires specific pre-training and fine-tuning on each dataset.

MoleBERT (Xia et al., 2023), the foundation model for

molecule graphs, manually designs a vocabulary that trans-

forms atom attributes into chemically meaningful codes.

3. Graph Transferability Principles with

Actionable Steps

In the last section, we investigate the key to building an

effective GFM, which lies in constructing a suitable graph

vocabulary to keep the essential invariance across datasets

and tasks. Despite existing successes, more graph trans-

ferability principles, identifying different invariances, can

serve as guidance for constructing new suitable graph vo-

cabulary for future GFMs. We present a few actionable

next steps inspired by these principles, highlighting their

potential benefits.

The following discussions are organized as follows: We first

provide a general introduction to the graph transferability

principles in Section 3.1. Detailed task-specific principles

on node classification, link prediction, and graph classi-

fication tasks can be found in Section 3.2, 3.3, and 3.4,

respectively. We finally discuss the principles for task trans-

ferability in Section 3.5. Notably, the following discus-

sions majorly concentrate on the transferability of the graph

structure. The discussion about techniques for aligning the

feature space can be found in Appendix C.

3.1. An overview on Graph transferability principles

In this subsection, we introduce principles that enable trans-

ferability on graphs, focusing on three key aspects: network

analysis, expressiveness, and stability. More discussion on

other principles revolving on deeper GNNs can be found in

Appendix D.

Network analysis provides a conventional understanding

of the network system by identifying fundamental graph

patterns, e.g., network motif (Menczer et al., 2020) and

establishing the key principles, e.g., triadic closure princi-

ple (Huang et al., 2015) and homophily principle, which

are generally valid across different domains. Those prin-

ciples have been generally utilized to guide the design of

advanced GNNs. For example, the state-of-the-art GNN for

link prediction (Wang et al., 2023b) is a Neural Common

Neighbor, inspired by the triadic closure principle. Despite

its effectiveness, network analysis heavily relies on expert

knowledge without a provable guarantee.

Expressiveness provides a theoretical background as to

which functions graph neural architectures can model in gen-

eral, e.g., a well-known connection that graph-level perfor-

mance of GNNs is bounded by Weisfeiler-Leman tests (Xu

et al., 2019; Morris et al., 2019; 2023). The most-expressive

structural representation (Srinivasan & Ribeiro, 2019) is

the key concept describing that the representation of two

node sets should be invariant if and only if the node sets

are symmetric with a permutation equivalence. Such most-

expressive structural representation serves as an important

principle to design a suitable graph vocabulary that per-

fectly distinguishes all non-isomorphic structural patterns

in multi-ary prediction tasks.

Stability (Ruiz et al., 2023) assesses the representation sen-

sitivity to graph perturbations. It aims to maintain a bounded

gap in predictions for pairs under minor perturbations, rather

than the expressiveness only distinguishing between isomor-

phic and non-isomorphic cases. The stability imposes a

stricter constraint leading to better generalization. It can be

3
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an analogy to the constraint on the graph vocabulary where

similar structure patterns should have similar representation.

3.2. Transferability Principles in Node Classification

Network analysis. Homophily (Khanam et al., 2020), which

describes the phenomenon of linked nodes often sharing

similar features (“birds of a feather flock together”), is a

longstanding principle in social science. It serves as the

principle guidance for methods ranging from conventional

pagerank (Chien et al., 2021) and label propagation (Chawla

& Karakoulas, 2005) to the recent advanced GNNs. Existing

GNN architectures, often crafted based on the homophily

principle, demonstrate strong performance on diverse ho-

mophilous graphs across various domains. This adherence

to homophily not only enhances model effectiveness but

also facilitates model transferability among homophilous

graph datasets. Notably, successful transfers among such

graphs are evidenced in Ying et al. (2018).

While homophily predominates in network analysis, it is

not a universal rule. In many real-world scenarios, “oppo-

sites attract”, resulting in networks characterized by het-

erophily—where nodes are more likely to link with dis-

similar nodes. GNNs built with the homophily principle

often struggle with heterophilious networks, except in cases

of “good heterophily” (Ma et al., 2021; Luan et al., 2021),

where GNNs can identify and leverage consistent patterns

in connections between dissimilar nodes. However, most

heterophilious networks are complex and varied, posing

challenges for GNNs due to their irregular and intricate in-

teraction patterns (Luan et al., 2023; Wang et al., 2024a;

Mao et al., 2023a). Consequently, GNNs’ transferability,

more assured in homophilous graphs, is facing significant

challenges in heterophilous ones.

Stability. You et al. (2023) theoretically establishes the

relationship between transferability and network stability,

demonstrating that graph filters with enhanced spectral

smoothness and a smaller maximum frequency response

exhibit improved transferability in terms of node features

and structure, respectively. In particular, spectral smooth-

ness, characterized by the Lipschitz constant of the graph

filter function of the corresponding GNN, indicates stabil-

ity against edge perturbations. The maximum frequency

response, reflecting the highest spectral frequency after ap-

plying a graph filter (essentially the largest eigenvalue of

the Laplacian matrix), describes stability against feature

perturbations.

Actionable steps inspired by principles. (Mao et al.,

2023a) illustrates the network analysis principle that a single

GNN can perform well on either homophily patterns or het-

erophily patterns, but not both. This principle provides the

actionable insight for GFM design, suggesting that the graph

vocabulary for homophily patterns and heterophily patterns

	��

	��

	��

	��

Figure 1. In this graph, nodes v1 and v4 are isomorphic; links

(v1, v2) and (v2, v4) are not isomorphic. However, vanilla GNN

with the same node representations v1 and v4 gives the same

prediction to links (v1, v2) and (v2, v4).

should be modeled separately. Consequently, the model

backbone for GFMs in node classification should not rely

on a single GNN, which only excels on either homophilic

graphs or heterophilic graphs. A better architecture design

choice could be (1) an adaptive GNN with different aggre-

gation filters for homophilic and heterophilic graphs, or (2)

a graph transformer without a fixed aggregation process.

You et al. (2023) designs a spectral regularization term

inspired by the network stability to address the out-of-

distribution problem. Adapting spectral regularization for

GFMs could be a potential next step.

3.3. Transferability Principles in Link Prediction

Network Analysis. Important network analysis principles

(Mao et al., 2023b) fall into three primary concepts includ-

ing: (1) local structural proximity corresponding to the tri-

adic closure principle (Huang et al., 2015), where friends of

friends become friends themselves. It inspires well-known

conventional methods including CN, RA, AA (Adamic &

Adar, 2003). (2) global structural proximity corresponding

to the decay factor principle, where two nodes with more

short paths between them have a higher probability of being

connected. It inspires well-known conventional methods

e.g., Simrank and Katz (Katz, 1953; Jeh & Widom, 2002).

(3) feature proximity corresponding to the homophily princi-

ple (Murase et al., 2019) where shared beliefs and thoughts

can be found in connected individuals.

These principles guide the evolution of link prediction algo-

rithms, from basic heuristics to sophisticated GNNs (Cham-

berlain et al., 2022; Li et al., 2023a). GNNs, inspired by

these principles, perform well across diverse graphs in mul-

tiple domains. Moreover, Zheng et al. (2023b) provides

empirical evidence supporting the beneficial transferability

of these guiding principles.

Expressiveness. A vanilla GNN, equipped with only single-

node permutation equivalence, cannot achieve transferabil-

ity for the link prediction task due to its lack of expressive-

ness. An example to showcase such failure is shown in

Figure 1 with a featureless graph. v1 and v4 are represented

identically by the vanilla GNN, as they possess identical
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neighborhood structures.

Therefore, the similarity between v1 and v2 will be the

same as the one between v4 and v2, leading to identical

representations and predictions for both links (v1, v2) and

(v2, v4) However, according to the global structural proxim-

ity, (v1, v2), with a shorter distance of 1, should be more

likely to be connected. The vanilla GNN, computing v1’s

representation solely from its neighborhood, overlooks the

structural dependence with v2. As a result, this potentially

leads to negative transfer, where the GNN might erroneously

predict both or neither link to exist, whereas it’s more likely

that only (v1, v2) has a link.

To consider all the possible dependencies between node

pairs, we aim for the most expressive structural representa-

tion for the link prediction. This representation should be

invariant if and only if links are symmetric. Zhang & Chen

(2018) achieves such structural representation by incorpo-

rating node labeling features that depend on both the source

and target nodes in a link. Zhang et al. (2021) further high-

lights the key aspects of node labeling design, including:

(1) target-nodes-distinguishing, where the source and target

nodes have distinct labels compared to other nodes; and (2)

permutation equivariance. Node labeling methods that fulfill

these criteria, such as double radius node labeling (DRNL)

and zero-one (ZO) labeling, can produce the most expressive

structural representations. Many other GNNs (You et al.,

2021; 2019; Wang et al., 2021) can achieve similar expres-

siveness, serving as the potential backbone for GFM on the

link prediction task. The expressiveness representation can

find the complete set of distinct relations to differentiate all

non-isomorphic node pairs, thereby mitigating the risk of

negative transfer in standard GNNs. Huang et al. (2023c) ex-

tends the relational Weisfeiler-Leman framework (Barcelo

et al., 2022) to link prediction and incorporate the concept

of labeling tricks to multi-relational graphs.

Stability. For those equally expressive structural represen-

tations, there may still be a gap in terms of their stability.

For example, empirical evidence (Zhang et al., 2021) shows

that GNNs with DRNL labeling outperform those with ZO

labeling. From the perspective of stability, it is crucial to

maintain a bounded gap in predictions for pairs under minor

perturbations. Wang et al. (2021) provides a theoretical anal-

ysis identifying key properties of stable positional encod-

ing (GNNs should be rotation and permutation equivariant

to positional encodings) that enhance generalization. The

stable positional encoding may be directly applied towards

better GFMs.

Actionable step inspired by principles. (Mao et al., 2023b)

illustrates the network analysis principle concerning the

incompatibility between structural proximities and feature

proximity. Node pairs with high feature proximity are likely

to be with low local structural proximity and vice versa. This

incompatibility leads to over-emphasis on node pairs with

high structural proximity while neglecting those with high

feature proximity. This principle provides actionable insight

for GFM design, suggesting that the graph vocabulary for

feature proximity patterns and structural proximity patterns

should be modeled separately. Consequently, the model

backbone for GFMs in link prediction should separately

encode the pairwise structural proximity and the feature

proximity.

A GNN following the expressiveness principles could in-

clude all the important structural information relevant to

the link prediction (Zhang et al., 2021). Dong et al. (2024)

utilizes in-context learning to effective transfer expressive

GNN representations to new, unseen graphs. Satisfying per-

formance can be found across graphs from biology, trans-

port, web, and social domains. An actionable next step

could be to better utilize expressive representations for

downstream graphs from specific domains.

3.4. Transferability Principles in Graph Classification

Network Analysis. Network motifs, typically composed

of small and recurrent subgraphs, are often considered the

building blocks of a graph (Milo et al., 2002; Benson et al.,

2016). A proper selection of the motif set can cover most

essential knowledge on the specific datasets. Graph ker-

nels (Vishwanathan et al., 2010) are proposed to quantify

motif counts or other pre-defined graph structural features

and then utilize the extracted features to build a classifier

such as SVM. Despite the essential motif sets from differ-

ent domains being generally different, there could exist a

uniform set of motifs shared across different domains. In

such cases, the positive transfer can be found on the uni-

form sets, where Battiston et al. (2020) shows the positive

transfer across neuronal connectivity networks, food webs,

and electronic circuits. Therefore, we conjecture that the

network motif could be the base unit for the vocabulary (a

set of invariant elements) for the graph classification as it is

both explainable and potentially shared across graphs.

Expressiveness. Zhang et al. (2024) proposes a unified

framework to understand the ability of different GNNs to

detect and count graph substructures (motif). More ex-

pressive GNN which could detect more diverse motifs and

construct a richer graph vocabulary. In analogy with the

uniform motif sets, we conjecture that it is more possible

for the expressive GNN to find the uniform motif sets and

achieve better transferability.

Stability. Huang et al. (2023d) proposes a provably stable

position encoding that surpasses the expressive sign and in-

variant encoding (Kreuzer et al., 2021) and modeling (Lim

et al., 2022), enabling minimal changes to positional encod-

ings on the minor modifications to the Laplacian. The key

innovation is to apply a weighted sum of eigenvectors in-
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stead of treating each eigensubspace independently. Satisfy-

ing performance can be observed on the out-of-distribution

molecular graph prediction. Such stable positional encoding

may be directly applied towards better GFMs.

Actionable step inspired by principles. Inspired by the

network analysis with graph kernels, one concrete next step

towards GFMs could be revolving on how to identify fre-

quent network motif (Hočevar & Demšar, 2014; Ribeiro

et al., 2021) which should be transferable across all graphs.

Expressive GNNs with better network motif model capabil-

ity could be a suitable architecture towards GFMs.

Input nodes

Label nodes

?

?

(a) (b)

?

?

?

?

Figure 2. Unifying different task formulations: (a) Link view:

Given the target node, node classification is converted to the link

prediction between the target node and corresponding label nodes.

(b) Subgraph view: Node classification (orange node) is converted

to the (green) ego-graph classification. Link prediction (orange

nodes) is converted to the (green) induced-subgraph classification.

3.5. Transferability Principles across Tasks

A unified task formulation is generally employed to facil-

itate transferability across various tasks. The unified task

formulation enables (1) enlarging the dataset size via con-

verting datasets for different downstream tasks as one and

(2) utilizing one pre-training model to serve different tasks.

The significance of aligning task formulations is evident in

the following example: Jin et al. (2020b) shows that using

link prediction directly as a pretext task leads to negative

transfer for node classification. However, by reformulating

node classification into a link prediction problem (Sun et al.,

2022; Huang et al., 2023a), where a node’s class member-

ship is treated as the link likelihood between the node and

label nodes, positive transfer is achieved. Liu et al. (2023f);

Sun et al. (2023) further propose a sub-graph view to adapt

the node classification as an ego graph classification, and

link prediction as a binary classification on the induced sub-

graph of the target node pair. Figure 2 provides illustrative

examples for these two unified views. More recently, Liu

et al. (2023b) unifies node-level, link-level, and graph-level

tasks via (1) adding a virtual prompt node and (2) connect-

ing the virtual nodes to nodes of interests, i.e., the center

node for node classification, source and target nodes for link

prediction, and all nodes for graph classification.

A unified formulation provides the possibility for co-training

all tasks together while it remains unknown whether this can

be done without negative transfer. Moreover, the unified task

formulation may not be necessary to achieve transfer across

tasks. It is generally utilized for supervised co-training and

prompt-based prediction as discussed above. A GFM can be

(1) pre-trained with self-supervised tasks and (2) adapted to

downstream tasks via fine-tuning without requiring specific

task formulations. The success is due to the transferability

principles across different tasks. However, there remains

limited study in this direction. We list a few existing princi-

ples as follows. (1) Node classification and link prediction

tasks share the feature homophily as an important principle.

(2) Liu et al. (2023c) indicates that the global structural prox-

imity principle on the link prediction can improve the node

classification performance on the non-homophilous graph.

(3) The triadic closure in the link prediction is a particular

network motif utilized in the graph classification. There

are more shared motifs (Hibshman et al., 2021; Dong et al.,

2017; AbuOda et al., 2020; Kriege et al., 2020) on both

graph classification and link prediction tasks. We empha-

size the importance of cross-task transferability principles

as an important future direction.

4. Neural Scaling Law on GFMs

The success of the foundation model can be attributed to

the validity of the neural scaling law (Kaplan et al., 2020)

which shows performance enhancement with increasing

model scale and data scale. In this section, we first dis-

cuss when the neural scaling law happens in Section 4.1

from a graph vocabulary perspective. We then discuss tech-

niques towards successful data scaling and model scaling

in Section 4.2 and 4.3, respectively. We finally discuss the

potential on leveraging large-scale LM on the graph domain

in Section 4.4. More discussions on technical details can be

found in Appendix C.

4.1. When Neural Scaling Law Happens

In section 3, we discuss the underlying transferable princi-

ples guiding future vocabulary construction. Such princi-

ple guidance has led to the successful scaling behavior in

the material science domain (Shoghi et al., 2023; Zhang

et al., 2023a; Batatia et al., 2023) with the help of the

geometric prior. Nonetheless, we are still cautious about

whether the existing success can be extended to the graph

domain. The key concern is whether graphs can strictly

follow those principles. Uncertainty can be found on the

human-defined graph construction criteria (Brugere et al.,

2018). For instance, the construction knowledge relying

on expert knowledge may lead to uncertainty in edges (Ye

et al., 2022). Chen et al. (2023b); Li et al. (2023c) observe

that the mislabeled samples widely exist across datasets,

where the popular CITESEER dataset has more than 15%

wrongly labeled data. Despite the above uncertainty, dif-

ferent graph constructions with manual design can follow

opposite principles. For instance, OGBN-ARXIV (Hu et al.,

6
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2020) and ARXIV-YEAR (Lim et al., 2021) are two node

classification datasets with identical graph information. The

only difference lies in the label where OGBN-ARXIV em-

ploys paper categories, and ARXIV-YEAR uses publication

years as labels, resulting in conflicting homophily and het-

erophily properties (Mao et al., 2023a). Therefore, when

uncertainties and opposite graph constructions exist, the

scaling behavior may not happen as the data does not obey

the graph transferable principles.

4.2. Data Scaling

Data scaling refers to the phenononmon that the perfor-

mance consistently improves with the increasing data scale.

Chen et al. (2023a); Huang et al. (2023a) initially validate

that GNNs trained in both supervised and self-supervised

manners follow data scaling law on molecular property pre-

dictions, and node classification on text-attributed graphs.

Cao et al. (2023) further exhibits that the similarity between

pre-training data and downstream task data serves as a pre-

requisite for the data scaling on graphs. Specifically, Cao

et al. (2023) provides concrete guidance on how to select

the pre-training data via the graphon signal analysis and

the essential network property, i.e. network entropy, respec-

tively. Notably, all principles mentioned in Section 3 can

be applied to facilitate positive transfer with data scaling

phenomena.

A limitation in current research on data scaling is graph

data insufficiency, in contrast to the readily available trillion-

level real-world data in CV and NLP domains. The key

reasons are two-fold: (1) constructing graphs requires ex-

pert intervention e.g., defining relationships (2) intellectual

property issues. We endeavour to collect all the open-source

graph datasets with details in Appendix A.

Synthetic graph generation can be utilized to alleviate the

data insufficiency issue, enableing more comprehensive

training. Traditional graph generative models (Albert &

Barabási, 2002; Robins et al., 2007; Airoldi et al., 2008;

Leskovec et al., 2010) are capable of generating graphs sat-

isfying some certain statistical properties, which still plays

an important role on node-level and link-level tasks. Deep

generative models on graph (Jin et al., 2020a; Luo et al.,

2021; Jo et al., 2022; Vignac et al., 2023; Liu et al., 2023a)

have shown great success in generating high-quality syn-

thetic graphs which helps graph-level tasks by providing a

more comprehensive description of the graph distributions

space. With successful evidence of pre-training on syn-

thetic data from other domains (Mishra et al., 2022; Trinh

et al., 2024), we anticipate the potential on benefits from

high-quality synthetic graphs.

4.3. Model Scaling

Model scaling refers to the phenomenon that the perfor-

mance consistently improves with the increasing model

scale. Previous research in NLP indicates that apart from

data, the backbone model constitutes a fundamental for

scaling (Kaplan et al., 2020). Liu et al. (2024a) primarily

validates the neural scaling law on various graph tasks and

model architectures under the supervised setting.

However, Kim et al. (2022) demonstrates that the

GAT (Veličković et al., 2017) with a larger number of param-

eters underperforms on the graph regression tasks compared

to the smaller-sized counterparts. As a comparison, geomet-

ric GNNs scale well to predict atomic potentials in material

science (Shoghi et al., 2023; Zhang et al., 2023a; Batatia

et al., 2023). Observations indicate that geometric GNNs

with a good geometric-prior vocabulary design can help

achieve model scaling over the vanilla GNN.

Graph transformer is another popular choice for the model

architecture, where geometric-prior graph vocabulary design

is explicitly modeled through either a GNN encoder or posi-

tional encoding (Müller et al., 2023). Masters et al. (2022);

Lu et al. (2023) show that graph transformers show positive

scaling capabilities for molecular data under a supervised

setting. More recently, Zhao et al. (2023b) demonstrates

vanilla transformer’s effectiveness in protein and molecu-

lar property prediction. Particularly, it views the graph as

a sequence of tokens forming an Eulerian path (Edmonds

& Johnson, 1973), which ensures the lossless serialization,

and then adopts next-token prediction to pre-train transform-

ers. After fine-tuning, it achieves promising results on the

protein association prediction and molecular property pre-

diction and shows that vanilla transformers also follow the

model scaling law (Kaplan et al., 2020). Nonetheless, the

effectiveness of transformers on other tasks remains unclear.

4.4. Leveraging Large-scale LMs for Graphs

LLMs with successful scaling behavior have achieved

tremendous success in the NLP domain. Surprisingly, well-

trained LLMs can be applied to other domains with sat-

isfying performance such as time series forecast (Gruver

et al., 2024a) and material science (Gruver et al., 2024b).

Larger-scale LLMs can even capture key symmetries of crys-

tal structures, suggesting that LLMs may posses a strong

simplicity bias (Panwar et al., 2023) across domains by im-

plementing Bayesian model averaging algorithm (Zhang

et al., 2023c).

A recent line of research on GFMs focuses on leveraging

strong capabilities of LLMs on graph tasks. Our discus-

sions can be roughly categorized on LLM applications (i)

conventional graph tasks (such as node, edge, and graph

classification), and (ii) language-driven tasks like Graph

7
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Question Answer (GQA).

LLMs on conventional graph tasks. One natural way to

utilize LLMs is as textual feature encoders (Chen et al.,

2023b). Despite original node features may not be text,

Liu et al. (2023b) manually converts them into knowledge-

enhanced text descriptions and then encodes features into

textual embedding. This LLM embedding approach of-

fers the following benefits. (i) High feature quality helps

achieve satisfying performance with vanilla GCN (Chen

et al., 2023b). (ii) LLMs encode diverse original features

into an aligned feature space, enabling training and infer-

ence across graphs from different domains without the fea-

ture heterogeneity problem. Notably, when LLMs are uti-

lized as feature encoders for textural understanding, the

scaling law does not happen (BehnamGhader et al., 2024),

meaning that a larger model does not necessarily lead to

better performance.

Another approach is to utilize LLMs as predictors which

first fine-tunes LLM and then generate predictions in a nat-

ural language form. Chen et al. (2023b); He et al. (2023)

treats node classification as text classification on the tar-

get node feature, illustrating promising results in the zero-

shot setting. However, simply flattening graph structures

into prompts does not yield additional improvement, re-

maining a large performance gap compared to well-trained

GNNs (Chen et al., 2023b). To better encode the graph struc-

ture knowledge, methods such as GNN (Tang et al., 2023),

graph transformer (Chai et al., 2023), and non-parametric

aggregation (Chen et al., 2024b) are utilized as structure

encoders. The encoded structural embeddings are then lin-

early mapped into text space as prompt tokens. LLMs gen-

erate predictions based on a concatenation of the prompt

token and the textual instruction. Instead of additional graph

modeling, Zhao et al. (2023a) employs a novel tree-based

prompt design that transforms the graph into sequence while

retaining important structural semantics. This approach indi-

cates the potential for LLMs to understand particular graph

structures. Overall speaking, a proper LLM fine-tuning can

achieving satisfying graph performance while the efficiency

may be a potential issue.

LLMs on language-driven graph tasks. Instead of adapt-

ing LLM for conventional graph tasks, LLMs can also be

applied to language-driven tasks they originally skilled in,

for example, Graph Question Answer (GQA). Fatemi et al.

(2023); Wang et al. (2023a) apply LLMs on various GQA

tasks, e.g, cycle check, and maximum flow, by describing

graph structure with natural language. More recently, Per-

ozzi et al. (2024) incorperates an external GNN tokenizer

to encode graph information, achieving satisfying out-of-

domain generalization to unseen graph tasks. Interestingly,

Perozzi et al. (2024) illustrates that equivariance is not neces-

sary when equipped with LLMs. (He et al., 2024) proposes

new real-world challenging GQA tasks and a corresponding

LLM-based conversational framework. This framework in-

tegrates GNNs and retrieval-augmented generation (RAG)

to improve graph understanding and mitigate issues like

hallucination, demonstrating effectiveness across multiple

domains. Until now, most GQA challenges have focused on

the abstract graphs without concrete descriptions for each

node, creating to obstacle to o leveraging the extensive inter-

nal knowledge in LLMs. We call for more real-world GQA

challengesm enabling better leverage LLM capabilities.

Despite the above successes, it remains concerns on the

LLM’s capability on understanding the essential graph struc-

tures. Saparov & He (2022); Dziri et al. (2023) theoretically

observe that the LLM is required to tackle problems sequen-

tially greedily (McCoy et al., 2023), leading to a shortcut

solution rather than a formal analysis on the graph struc-

ture. A more comprehensive discussion can be found in

Appendix E.1.

5. Insights & Open Questions

In this section, we explore key insights gained from recent

advancements in GFMs and highlight open questions that

remain to be addressed in this evolving field. More compre-

hensive discussions can be found in Appendix E

5.1. Potential Redundancy on Pretext Task and

Architecture Design

There are mainly two approaches to achieving transferabil-

ity: (1) designing GNNs with specific geometric properties

for transfer, e.g., ULTRA (Galkin et al., 2023), and (2) cre-

ating pretext tasks to automatically learn these properties.

(Jin et al., 2020b) suggests an overlap between these ap-

proaches, indicating that pretext tasks targeting local struc-

tural information might be unnecessary, given that GNNs

often inherently encode this information. Investigating the

strengths and limitations of these techniques, along with

providing practical guidance for their selection, could be

a valuable research direction. A hypothesis might be that

model design methods are more suitable for data that strictly

adheres to geometric priors, while pretext task designs are

more effective in the opposite scenario.

5.2. The Feasibility of GFMs

Graphs can be defined in different ways based on dif-

ferent criteria like similarity or influence between node

pairs (Brugere et al., 2018). We can then categorize graphs

based on the observability of the criteria. The observ-

able graph is unambiguously known, e.g., whether one

paper cites another paper in a citation graph. Text and

images can also be viewed as a specific case of observable

graphs. In contrast, the unobservable ones are manually

8
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conducted with ambiguous descriptions of the relationship,

e.g., whether one gene regulates the expression of another

in a gene-regulate graph. These graphs may not naturally

exist in the world, leading to uncertainty with a lack of in-

variant principle. It remains unknown whether GFMs can

learn shared knowledge while avoiding manually introduced

noisy patterns.

There are concerns about the benefit of training a GFM on

graphs that are neither from the same domain nor share

the same downstream task. On the one hand, it seems that

training on them simultaneously shows no positive transfer

benefit while increasing the risk of the negative transfer.

On the other hand, there may be potential undiscovered

transferable patterns that could lead to success. Therefore,

we pose an open question whether there exists a universal

structural representation space that can benefit all the graph

tasks?

5.3. Broader Usage of GFM

In this paper, we majorly focus on building GFM for con-

ventional graph-focused tasks. Notably, graph formula-

tion provides the universal representation ability, which

has a broader usage in other domains, e.g., scene graphs

for Computer Vision (CV) (Zhai et al., 2023; Zhong et al.,

2021), bipartite graphs for linear programming (Chen et al.,

2022), and physical graphs for understanding physical mech-

anisms (Shi et al., 2022). To emphasize more broader usage

of GFMs, we illustrate the potential advantaged usage of

GFMs over existing foundation models in reasoning, com-

puter vision, and code intelligence domains domains. De-

tails can be found as follows.

Reasoning. Ibarz et al. (2022) proposes a task-specific

GFM, focusing on neural algorithmic reasoning tasks. A

strong reasoning capability can be found with effectiveness

across sorting, searching, and dynamic programming tasks.

We argue that this GFM following the theory of algorithmic

alignment (Xu et al., 2020) may achieve better reasoning

capability than the LLM merely relying on the textual in-

puts via retrieving concepts co-occur frequently in training

data (Prystawski & Goodman, 2023).

Computer Vision. Scene graph is a data structure repre-

senting objects, their attributes, and the relationships be-

tween them within an image, facilitating CV tasks such as

image understanding and visual reasoning. However, cur-

rent research remains a naive scene graph modeling with

vanilla GNNs with more emphasis on image modeling. We

argue that the GFM on the scene graph may help to pre-

serve global and local scene-object relationships (Zhai et al.,

2024), avoiding the potential conflict or redundancy be-

tween multiple objectives which frequently appears on the

recent popular Sora model (Brooks et al., 2024).

Code Intelligence. Graphs, e.g., code property graph (Liu

et al., 2024b), control flow graph, and program dependency

graph, play an important role in code-relevant tasks, e.g.,

vulnerability detection (Liu et al., 2024b), fault localiza-

tion (Rafi et al., 2024), and code search (Ling et al., 2021).

Compared to sequence-based modeling with LLMs, graphs

can provide a complementary perspective on the overlooked

essential code attributes such as syntax, control flow, and

data dependencies. However, the graph modeling remains

naive with unknown transferability across different program

languages.

Overall speaking, GFMs demonstrate unique value com-

pared to foundation models in other domains. However,

they are limited to applications involving graph structure

data. An exciting future topic is how to adaptively combine

GFM with other foundation models across different modal-

ity towards a powerful Artificial General Intelligence (AGI).

6. Conclusion

From the transferability principles of graphs, we review

existing GFMs and ground their effectiveness from a vocab-

ulary view to find a set of basic transferrable units across

graphs and tasks. Our key perspectives can be summarized

as follows: (1) Constructing a universal GFM is challenging,

but domain/task-specific GFMs are approachable with the

usual availability of a specific vocabulary. (2) One challenge

is developing GFMs following the neural scaling law, which

requires more data collection, suitable architecture design,

and properly leveraging LLMs. This paper summarizes the

current position of GFMs and challenges toward the next

step, which may be a blueprint for GFMs to inspire relevant

research.

Acknowledgement

We want to thank Yanqiao Zhu at the University of Califor-

nia, Los Angeles, and Yuanqi Du at Cornell University for

their constructive comments on this paper.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, and Jiliang Tang

are supported by the National Science Foundation (NSF) un-

der grant numbers CNS 2246050, IIS1845081, IIS2212032,

IIS2212144, IOS2107215, DUE 2234015, DRL2025244

and IOS2035472, the Army Research Office (ARO) under

grant number W911NF-21-1-0198, the National Telecom-

munications and Information Administration (NTIA), the

Home Depot, Amazon Faculty Award, JP Morgan Faculty

Award, Microsoft Research, Meta, and SNAP. Yao Ma is

supported by the National Science Foundation (NSF) under

grant numbers NSF-2406648 and NSF-2406647.

9



Position: Graph Foundation Models are Already Here

Impact Statements

In this paper, we provide principle guidance for the devel-

opment of graph foundation models, which can be a pivotal

infrastructure empowering diverse applications like nature

science and E-commerce. The graph foundation model may

reduce the resource consumption associated with training

numerous task-specific models. Moreover, it may substan-

tially curtail the requirement for manual annotation, particu-

larly in domains such as molecular property prediction. We

anticipate that our contributions will advance the ongoing ef-

forts aimed at developing next-generation graph foundation

models with better versatility and fairness.
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A. A Collection of Datasets to Support Pre-training

In this section, we show a collection of large-scale graph datasets from various fields to support pre-training massive-scale

graph foundation models. We highly suggest using NetworkRepository (Rossi & Ahmed, 2015) for large-scale pretaining,

which is the largest graph database presently available. Notably, burdensome pre-processing is required to clean those noisy

and disordered data.

Table 1. A collection of datasets together with their URL and descriptions to support larger-scale pre-training
Name URL Description

TU-DATASET (MORRIS ET AL., 2020) https://chrsmrrs.github.io/datasets/ A collection of graph-level prediction datasets

NETWORKREPOSITORY (ROSSI & AHMED, 2015) https://networkrepository.com/ The largest graph datasets, with graphs coming from 30+ different domains

OPEN GRAPH BENCHMARK (HU ET AL., 2020) https://ogb.stanford.edu/ Contains a bunch of large-scale graph benchmarks

PYG (FEY & LENSSEN, 2019) https://pytorch-geometric.readthedocs.io Official datasets provided by PYG, containing popular datasets for benchmark

SNAP (LESKOVEC & KREVL, 2014) https://snap.stanford.edu/data/ Mainly focus on social network

AMINER (TANG, 2016) https://www.aminer.cn/data/ A collection of academic graphs

OAG (ZHANG ET AL., 2023B) https://www.aminer.cn/open-academic-graph A large-scale academic graph

MALNET (FREITAS ET AL., 2021) https://www.mal-net.org/#home A large-scale function calling graph for malware detection

SCHOLKG (DESSÍ ET AL., 2022) https://scholkg.kmi.open.ac.uk/ A large-scale scholarly knowledge graph

GRAPHIUM (BEAINI ET AL., 2023) https://github.com/datamol-io/graphium A massive dataset for molecular property prediction

LIVE GRAPH LAB (ZHANG ET AL., 2023E) https://livegraphlab.github.io/ A large-scale temporal graph for NFT transactions

TEMPORAL GRAPH BENCHMARK (HUANG ET AL., 2023B) https://docs.tgb.complexdatalab.com/ A large-scale benchmark for temporal graph learning

MOLECULENET (RAMSUNDAR ET AL., 2019) https://moleculenet.org/ A benchmark for molecular machine learning

RECSYS DATA (PROJECT) https://cseweb.ucsd.edu/˜jmcauley/datasets.html A collection of datasets for recommender systems

LINKX (LIM ET AL., 2021) https://github.com/CUAI/Non-Homophily-Large-Scale A collection of large-scale non-homophilous graphs

CLRS (VELIČKOVIĆ ET AL., 2022) https://github.com/google-deepmind/clrs A collection of algorithmic reasoning datasets.

GRAPHQA (HE ET AL., 2024) https://github.com/XiaoxinHe/G-Retriever A collection of graph question answer datasets.

B. Existing GFMs

In this section, we demonstrate existing representative GFMs and categorize them into primitive GFM, domain-specific

GFM, and task-specific GFM, as shown in Table 2.

Table 2. A collection of existing GFMs.

Name Domain Task

Primitive

GFM

PRODIGY (HUANG ET AL., 2023A)
Text-attributed graph,

Knowledge graph

Node classification,

Knowledge graph reasoning

ONEFORALL (LIU ET AL., 2023B)
Text-attributed graph,

Knowledge graph, Molecule

Node classification,

Knowledge graph reasoning,

Graph classification

LLAGA (CHEN ET AL., 2024B) Text-attributed graph

Node classification,

Link Prediction,

Graph classification

Domain-specific

GFM

DIG (ZHENG ET AL., 2023A) Molecule
Molecular sampling,

Property-guided structure generation.

MACE-MP-0 (BATATIA ET AL., 2023) Material Science
Property predictions of solids,

liquids, gases, and chemical reactions.

JMP-1 (SHOGHI ET AL., 2023) Material Science Atomic property prediction

DPA-2 (ZHANG ET AL., 2023A) Material Science Molecular simulation

MOLEBERT (XIA ET AL., 2023) Molecule Molecule property prediction

Task-specific

GFM

ULTRA (GALKIN ET AL., 2023) Knowledge graph Knowledge graph reasoning

ULTRAQUERY (GALKIN ET AL., 2024) Knowledge graph Knowledge graph reasoning

TRIPLET-GMPNN (IBARZ ET AL., 2022) General graph algorithm reasoning

G-RETRIEVER (HE ET AL., 2024) General graph Graph Question Answer

GRAPHTOKEN (PEROZZI ET AL., 2024) General graph Graph Question Answer

C. Practical Recipes for GFM Applications

We primarily emphasize the graph principles revolving on transferability and neural scaling law in Section 3, and 4,

respectively. In this section, we provide a comprehensive application discussion with more technical details. Specifically,

we introduce the feature heterogeneity issue, pretext task design, and efficiency issues in subgraph-based methods in

Appendix C.1, C.2, and C.3, respectively.
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C.1. Tackling the Feature Heterogeneity Issue

Existing graph datasets cannot be uniformly utilized for pre-training due to the feature heterogeneity issue induced by

missing features or different semantic spaces. Feature imputation techniques (Taguchi et al., 2021; Um et al., 2023; Gupta

et al., 2023) are generally adapted to predict the missing attributes based on neighboring features. However, those techniques

require each feature dimension to share the same semantic meaning. When features are from different semantic spaces,

OFA (Liu et al., 2023b) manually converts the original features with text descriptions and then encodes the embedding with

LLMs. Liu et al. (2023b) demonstrates the effectiveness and generality of using LLM embeddings to align heterogeneous

node features in the text space. First, it shows that a large portion of feature heterogeneity is caused by the feature engineering

process. For example, encoding text using Word2Vec (e.g. OGBN-Arxiv) and TF-IDF (e.g. Pubmed) results in different

feature dimensions, leading to heterogeneity. If a unified LLM is utilized for encoding, feature heterogeneity can be solved.

Second, for attributes without text attributes, OFA leverages multi-modal models to project them into textual descriptions.

Specifically, OFA utilizes GIMLET (Zhao et al., 2024) to generate high-quality text descriptions for chemical molecules, and

preliminarily shows that positive transferring can be achieved across diverse domains like text-attributed graphs, knowledge

graphs, and molecule graphs after projecting heterogeneous features into text space. However, LLM embeddings still have

limitations and their performance highly depends on the prompts provided to the LLM text encoder, remaining ample room

for exploration in this area. One potential way is to borrow ideas from the CV domain. Yu et al. (2023) shows that after

using LLMs to unify the feature space, further using discrete tokenization for the image can create a better latent space to

further improve performance.

Feature misalignment can also be found in the inference stage between the pre-training model input and the test data. Jing

et al. (2023) concatenates a learnable padding feature on the downstream task feature to align with the pre-trained GNN.

However, such a technique cannot adapt to the case when the feature space is not aligned. Zhao et al. (2023a) directly

abandons the original feature and utilizes the feature similarity as guidance.

C.2. Pretext Task Design

Given the scarcity of labeled data, a pretext task that can effectively utilize unsupervised data is the cornerstone for

larger-scale neural scaling. We provide a brief review of the representative pretext designs.

Graph contrastive learning designs the pretext tasks (Sun et al., 2019; Veličković et al., 2018; Hassani & Khasahmadi, 2020;

You et al., 2020) to obtain the equivalence via contrasting original and augmented views of the graph without materially

changing the semantic content of the input. An initial unified understanding (Liu et al., 2022) on those pre-text tasks

illustrates that existing pretext tasks focus on preserving the invariance with the low frequency on the graph spectrum.

Nonetheless, different pretext tasks remain different where Zhu et al. (2021a) observes that satisfactory performance requires

pretext tasks and downstream tasks share similar philosophies, such as homophily. To obtain a pre-training model that

benefits different downstream tasks, Ju et al. (2023) adaptively combined pretext tasks with different philosophies via a

multi-task learning framework.

The generative self-supervised learning designs the pretext tasks (Hou et al., 2022; Hu et al., 2019; Kipf & Welling, 2016) to

capture the shared data generation process among different tasks. Particularly, they attempt to predict the masked portions of

the graph using the remaining structure and features. Liu et al. (2023e); Xia et al. (2023) further observe that task granularity

also plays an important role in generative modeling. Specifically, employing node-level pretext tasks may lead the model to

learn only low-level features (Liu et al., 2023e) while ignoring the global information essential for graph-level tasks. To

address this issue, they adopt a GNN-based tokenizer to explicitly model high-level information in the pre-training stage and

thus improve the downstream task performance.

More recently, the next token prediction (NTP) pretext task (Zhao et al., 2023b) achieves initial success in the molecular

graph. Notably, this is the first pretext task demonstrating empirical evidence of model scaling. The potential reason for its

success may be (1) the construction of a fixed token set, narrowing down the problem space in a finite set to only predict a

discrete token and (2) choosing transformers as the backbone model. However, it remains unclear whether the success can

be easily extended to more tasks.

C.3. Efficiency Issues in Subgraph-based Methods.

Subgraph-based extraction is a widely adopted technique in GFM to achieve inductive inference (Zeng et al., 2021) and

unify different task formulations (Sun et al., 2023; Liu et al., 2023b). Nonetheless, the subgraph-based extraction leads to
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the following issues: (1) information loss in high-order neighborhoods; (2) duplicate sub-graph information with excessive

memory consumption; (3) the time complexity of vanilla subgraph extraction grows exponentially with the number of hops,

and (4) the online sub-graph sampling on the fly is also in non-acceptable inference latency (Yin et al., 2022).

Moreover, the subgraph-based method will increase the number of forward processes for a link-level task, leading to

limited efficiency. Typically, for each node pair, we will extract a sub-graph based on them, and apply the forward process.

Therefore, the number of forwards increases from O(|N |) to O(|E|), where |N | and |E| are the number of nodes and the

number of edges. In practice, the subgraph-based method like SEAL[1] cannot be directly applied to the larger OGB-graph

due to such efficiency issues. Those issues hinder the applicability of subgraph-based methods.

Designing an effective and efficient sampling method remains a major challenge in building GFM. Graph sampling

techniques like (Zeng et al., 2019) and global state vectors (Fey et al., 2021) can help to alleviate these issues.

1. Existing GFM such as PRODIGY (Huang et al., 2023a) and OneForAll (Liu et al., 2023b) based on a subgraph-based

view suffers from severe efficiency issues, especially on the link-level tasks. (1) For each node pair, those methods will

extract a subgraph based on them, and apply the forward process. Therefore, the number of forwards increases from

O(|N |) to O(|E|), where |N | and |E| are the number of nodes and the number of edges. (2) Moreover, the sampling

subgraph may also introduce an efficiency problem (Yin et al., 2022). Subgraph-based methods sample subgraphs in

either an offline or online manner. For offline sampling, they need to store subgraph patches for all possible queries,

which introduces enormous memory overhead for large graphs. For online sampling, it samples subgraphs on the fly

and results in non-acceptable inference latency.

2. To solve these efficiency issues, a potential approach is to convert GNN computing to feature precomputation (Cham-

berlain et al., 2022). This works for node-level and link-level tasks, but extending it to graph-level tasks is still

challenging.

D. Additional Principles

D.1. Principles on deeper GNN design

In section 3, we emphasize principles revolving on the transferability across datasets. Besides, another line of principles

focuses on tackling the model limitation towards building effectiveness deeper GNN to capture higher-order structural

information.

Principles can tell why vanilla GNNs suffer from performance degradation when increasing the number of layers and

provide guidance for solutions. The principles can be majorly categorized into the following three perspectives: (i) The

over-squashing problem (Topping et al., 2021) illustrates that the node representation is insensitive to information from

important but distant nodes. (ii) The over-smoothing problem (Oono & Suzuki, 2019; Cai & Wang, 2020) illustrates that

more aggregations lead to the node representations converging to a unique equilibrium, which loses the distinction between

different nodes. (iii) The underreaching (Barceló et al., 2020) illustrates the failure to explore, cover, or affect all relevant

nodes in the graph, leading to information loss. Various techniques are proposed to identify the root causes (Di Giovanni

et al., 2023; Wu et al., 2023) and solve the expressiveness issues via new GNN (Yang et al., 2021) and graph transformer (Wu

et al., 2022; Müller et al., 2023) architecture designs.

Despite those principles are well-studied, they can have a different position and challenges when moving from end-to-end

training GNNs to the GFM requiring models to apply across different tasks and datasets. Instead of only emphasizing the

effectiveness on a single dataset, building GFM raises a novel challenge for us to get good performance with a unified

model backbone on diverse datasets. The GNN backbone should be able to simultaneously capture discriminative low-order

neighborhood information for homophily graphs and high-order neighborhood information for heterophily graphs while the

low-order ones may be noisy. Current GFMs like OneForAll (Liu et al., 2023b) empirical solve such a problem via adding

virtual nodes with proper prompt designs. Nonetheless, there remains a gap between building effective and adaptive deeper

GNN for GFM and the current theoretical principles.

D.2. Additional Description on the Relational Graph Vocabulary of ULTRA

Typically, the relational vocabulary of ULTRA (Galkin et al., 2023) is inspired by the graph expressiveness theory in (Gao

et al., 2023b). A concrete example of the relation representation can be found in Figure 2(a) in (Galkin et al., 2023). The

relation vocabulary will provide the same embedding for the following two subgraphs with the same relational structure.
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Michael Jackson
authored
−−−−→ Thriller

genre
−−−→ disco seamlessly transfers to new entities Beatles

authored
−−−−→ Let It Be

genre
−−−→ rock at

inference time. They have the same relational structure with invariant representations regardless of permutations on different

node types. Interpreting with the graph vocabulary perspective, those two subgraphs should be mapped into the same token.

Whether the relational vocabulary is suitable or not is according to the graph expressiveness theory. Typically, if two

subgraphs are invariant with the same relational structure, i.e., isomorphic to the node type permutation, they will be

mapping into the same token with the same representation. In contrast, if two nodes are not invariant, i.e., non-isomorphic to

the node type permutation, they will be mapped into different tokens with different representations. Overall, the criterion for

relational vocabulary is that two sub-structures can be mapped into the same token if and only if two sub-structures are

isomorphic.

E. Discussions & Open questions

E.1. More discussions on LLMs and Graphs

In this section, we provide an extended discussion on leveraging LLMs for graph-related tasks, building on the concepts

introduced in Section 4.4. We provide a more comprehensive discussion on the interaction between LLMs and Graphs.

Specifically, the current integration of graph and foundational models follows two primary pathways. The first involves

using graphs to augment the capabilities of other foundational models. The second employs foundational models to address

challenges encountered in graph machine learning. The first type of work focuses on enhancing the capabilities of foundation

models by graphs. Yasunaga et al. (2022a;b); Jin et al. (2023b); Xie et al. (2023) further pre-train LLMs on text-attributed

graphs with a structure-aware pretext task. For example, Yasunaga et al. (2022b) trains an LLM to predict masked edges,

which is formalized as pair classification on two end nodes’ attributes. Structure-aware training can effectively enhance

language models’ capability on those tasks requiring structure reasoning, such as multi-hop reasoning. These works still

view the graph as a second-class citizen providing auxiliary information and put more emphasis on text-centric tasks like

question answering (Yasunaga et al., 2022a;b).

The second line of work adopts LLMs’ capabilities to solve challenges in the graph domain. Luo et al. (2024); Chen et al.

(2024a); Wang et al. (2024b); Li et al. (2024); Ye et al. (2024) utilize the instruction fine-tuning the LLM for various

capabilities including zero-shot (Li et al., 2024), link prediction (Ye et al., 2024), graph reasoning (Luo et al., 2024; Chen

et al., 2024a; Wang et al., 2024b). Surprisingly, Wang et al. (2024b) observes that graph fine-tuning can even help those

tasks irrelevant with graphs, e.g., mitigate hallucination, logic reasoning, and question answering. LLMs can also be utilized

for graph generation (Yao et al., 2024; Wang et al., 2024c) where Wang et al. (2024c) finds that the graph generated by

LLMs is biased towards more triangles and alternating 2-paths, leading to worse performance on the graph recall task.

Potential drawback on GNN-enhenced LLM Although these models can perform well, they still have two shortcomings:

(1) The ability to process structures is bounded by the capabilities of GNN; (2) The instruction tuning can be costly while

the tuned model can only tackle the corresponding downstream task and is not transferable to other tasks and datasets, which

makes their capabilities distant from a GFM. We agree that LLM illustrates superior performance on textual node feature

understanding. Nonetheless, it remains unclear whether LLM should play a key role in building GFM or just serve as a better

textual feature encoder. Moreover, Stechly et al. (2023) observes that LLMs are bad at solving graph coloring instances even

with multiple-round prompt. Yue et al. (2023) points out the efficiency issue of utilizing LLM on the recommendation, the

downstream link prediction task. The effectiveness and efficiency of LLMs remains unclear.

E.2. Whether There exists a General Graph Vocabulary?

A shared graph vocabulary that is effective in transferability across domains and tasks remains an open question. In the

current stage, we do not speculate the most ideal form of such vocabulary both across tasks and domains. Instead of

transferring both across tasks and domains, the current vocabulary design can either transfer across tasks or domains.

There is no unified graph vocabulary design at the current research state, as most of the graph vocabulary is either task or

domain-specific, e.g., relational vocabulary in ULTRA (Galkin et al., 2023).

Despite the general graph vocabulary is challenging and not yet realized, we want to introduce one potential way toward it

via graph tokenizer training, which is proposed in VQGraph (Yang et al., 2023). Specifically, it tokenizes nodes with similar

structural properties into discrete codes using variants of VQ-VAE (Van Den Oord et al., 2017). After pre-training the

tokenizer with a graph reconstruction objective, the discrete codes contained in the codebooks can represent typical structural
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patterns. The properties of the learned codes will be based on two factors: (1) the encoder and decoder architecture; and

(2) the pre-training objective. The current design is still under the guidance of graph principles, remaining not generalized

across all the graphs. We leave the open question whether there is a universal structure space on graph as the future work

Is it possible for GFM to transfer across different domains? For instance, can a model trained on molecular data

positively transfer to KG data? The answer to this question is initially yes, where we utilize the OneForAll model (Liu

et al., 2023b) as a successful showcase on cross-domain transferring. The OneForAll model unifies feature spaces from

different domains by using LLM embeddings, map features, and labels into a unified text space with better transferability.

Such a unified space thereby serves as the basis for GFM that can transfer across citation networks, Wikipedia knowledge

graphs, and molecular graphs. In the zero-shot setting, OneForAll shows that models trained on citation networks with the

node classification task can show positive transfer on molecular graphs, even surpassing the performance on foundation

models specific for the science domain like Galactica (Taylor et al., 2022). We hypothesize the potential reason is the

existence of transferrable patterns among domains, e.g., shared motifs. Such transferrable patterns could be modeled by the

ability to recognize cycles. For example, 6-cycles are seen in molecules while 3-cycles (triangles) are critical for social

networks (Granovetter, 1973). Moreover, (Ribeiro et al., 2009) indicates that there are shared patterns between the electronic

circuit, the transcriptional network, and the social network despite a severe domain shift. More investigations are needed to

verify whether models can effectively utilize those transferrable patterns. For the transferability between knowledge graphs

and molecular graphs, we do not have empirical evidence so far. We hypothesize that if the knowledge graph involves

chemistry-related knowledge, positive transferability can be achievable.

E.3. Deeper GNNs as the Backbone of GFMs

The development of deep learning generally believes the benefit from deeper Neural Network (He et al., 2016), where

the worst case of deeper Neural Networks should be degraded to a shallow solution. Notably, we want to emphasize the

difference between the general deeper Neural Network design and the deeper GNN design. In general deeper Neural

Network design, e.g., ResNet (He et al., 2016), Transformer (Vaswani et al., 2017), a deeper Neural Network naturally

leads to larger parameter scaling. However, a deeper GNN does not necessarily lead to larger parameter scaling. The key

reason is that the GNN is composed of two different components including (1) the feature transformation layer and (2) the

aggregation layer. Many deeper GNNs focus on increasing the non-parametric aggregation layer while the number of feature

transformation layers remains small. For instance, the APPNP (Klicpera et al., 2018) on Planetoid datasets generally only

utilizes two feature transformation layers with a number of parameters less than 10,000. It remains skeptical whether deeper

GNNs with careful aggregation function design can achieve similar success in other domains without scaling parameter size.

E.4. Is Invariance a Necessarity for Building GFM?

We propose a graph vocabulary perspective emphasizing the invariance among graphs is essential for building Graph

Foundation Model. However, it remains a mystery whether we should implicitly keep such invariance via specific Message

Passing Neural Network (MPNN) design with equivariance. On the one hand, (Galkin et al., 2023; 2024) indicates the

effectiveness of building GFM with equivariance. On the other hand, (Abramson et al., 2024; Wang et al., 2023c) finds that

it is unnesserary to ensure invariance or equivariance with respect to global rotations and translation of the molecule. Instead,

data argumentation with random rotating and translating is utilized as an implicit regularization during training. (Perozzi

et al., 2024), which first encodes graph with GNNs to conduct prompts and then utilizes LLM for prediction, observes

that better performance when breaking the necessary equivariance. So far there is no agree on how to preserve geometric

equivariance while LLMs also demonstrate potential . In additional to geometric Neural Network design, data augmentation,

loss functions, and the potential expressiveness of LLM may also provide effective solution.

E.5. Comparison with Past Relevant Literature.

Concurrent to our position paper, Jin et al. (2023a); Li et al. (2023b); Zhang et al. (2023d) reviews those methods adapting

large language model (LLM) for graph, which haven’t shown transferring capabilities and thus diverge from our scope to

build a graph-centric GFM. Liu et al. (2023d) further discusses existing graph pre-training and adaption techniques with a

focus on their implementations. Instead of technical details, our work focuses more on the fundamental principles, e.g.,

geometric invariance across datasets. With principle guidance, we depict the promising and relatively elusive directions for

the development of GFMs.
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