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Abstract

Graph Neural Networks (GNN) have proven successful for graph-

related tasks. However, many GNNs methods require labeled data,

which is challenging to obtain. To tackle this, graph contrastive

learning (GCL) have gained attention. GCL learns by contrasting

similar nodes (positives) and dissimilar nodes (negatives). Current

GCL methods, using data augmentation for positive samples and

random selection for negative samples, can be sub-optimal due to

limited positive samples and the possibility of false-negative sam-

ples. In this study, we propose an enhanced objective addressing

these issues. We �rst introduce an ideal objective with all positive

and no false-negative samples, then transform it probabilistically

based on sampling distributions. We next model these distributions

with node similarity and derive an enhanced objective. Compre-

hensive experiments have shown the e�ectiveness of the proposed

enhanced objective for a broad set of GCL models1.
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1 Introduction

Graphs are regarded as a type of essential data structure to represent

many real-world data, such as social networks [9, 11] and trans-

portation networks [34] etc. Graph neural networks (GNNs) [21, 37,

39], which generalize deep neural networks to graphs, have demon-

strated their great power in graph representation learning, thus

facilitating many graph-related tasks from various �elds including

1Code is available at https://github.com/frankhlchi/SimEnhancedGCL
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recommendations [8, 43], drug discovery [25, 31], and computer

vision [10, 30]. Most GNN models are trained in a supervised set-

ting, which receives guidance from labeled data. However, in real-

world applications, labeled data are often di�cult to obtain while

unlabeled data are abundantly available [18]. Hence, to promote

GNNs’ adoption in broader real-world applications, it is of great

signi�cance to develop graph representation learning techniques

that do not require labels. More recently, contrastive learning tech-

niques [5, 13, 15], which are able to e�ectively leverage the unla-

beled data, have been introduced for learning node representations

with no labels available [41].

Graph contrastive learning (GCL) aims to map nodes into an

embedding space where nodes with similar semantic meanings

are embedded closely together while those with di�erent semantic

meanings are pushed far apart. More speci�cally, to achieve this

goal, each node in the graph is treated as an anchor node. Then,

nodes with similar semantics to this anchor are identi�ed as pos-

itive samples while those with di�erent semantic meanings are

regarded as negative samples. The commonly used objective for

GCL, based on InfoNCE, treats a single node as the positive sample,

typically generated through data augmentation that alters the orig-

inal graph, while negative samples are uniformly selected from the

graph. The goal is to bring the positive sample closer to the anchor

node and distance the negative samples from the anchor. However,

this objective has two main shortcomings: (1) The set of negative

samples often includes nodes that are semantically similar to the

anchor (false-negative samples). Minimizing the contrastive objec-

tive can undesirably push these nodes away, negatively a�ecting

the quality of the embeddings. Hence, removing false-negative sam-

ples has the potential to improve the performance of contrastive

learning, which is also demonstrated in [6]; (2) The contrastive

objective includes only a single positive sample derived from data

augmentation, limiting its ability to group similar nodes e�ectively.

Preferably, including more positive samples in the numerator bene-

�ts the contrastive learning process, which is veri�ed in [20].

An ideal contrastive objective would include all positive samples

and exclude any false-negative samples (see details in Section 3.1).

However, this is unattainable without ground truth labels. In our

study, we introduce an enhanced objective that approximates the

ideal objective. In particular, we �rst transfer the ideal objective

into a probabilistic form by modeling the anchor-aware distribu-

tions for sampling positive and negative samples. Intuitively, nodes

with higher semantic similarity to the anchor node should have a

higher probability to be selected as positive samples. Hence, we

estimate these anchor-aware distributions by theoretically relating

themwith node similarity. Measuring node similarity is challenging

since it involves both graph structure and node features, which

interact with each other in a complicated way. Correspondingly,

we propose a novel strategy to model the pairwise node similarity
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by e�ectively utilizing both graph structure and feature informa-

tion. With these estimated distributions, the probabilistic objective

is then empirically estimated with samples, which makes the en-

hanced objective applicable. Our key contributions are summarised

as follows:

• Introduction of an Ideal GCL Objective: We introduce an

ideal contrastive objective for GCL that e�ectively incorporates

all positive samples and eliminates false negatives.

• Derivation of an Enhanced GCL Objective: We probabilisti-

cally approximate the ideal objective, resulting in an enhanced

objective that requires fewer samples for practical estimation.

This enhancement is achieved through rigorous asymptotic anal-

ysis and by leveraging both graph and features information to

accurately model anchor-aware distributions.

• Comprehensive Experimental Validation: Extensive experi-

ments validate our enhanced objective’s e�ectiveness and con�rm

the importance of our enhanced objective’s two key components,

positive & negative weights, and also the necessity of dual graph

& feature information used in modelling anchor-aware distribu-

tions.

• Application Beyond GCL: We extend our methodology to en-

hance the neighborhood contrastive loss in the semi-supervised

Graph-MLP model, further validating the e�ectiveness of our ap-

proach.

2 Preliminary

This section introduces basic notations and key concepts founda-

tional to our discussions on GCL. Let G = {V, E} denote a graph

withV and E denoting its set of nodes and edges, respectively. The

edges describe the connections between the nodes, which can be

summarized in an adjacency matrix A ∈ {0, 1} |V |× |V | with |V|

denoting the number of nodes. The 8, 9-th element of the adjacency

matrix is denoted as A[8, 9]. It equals 1 only when the nodes 8 and

9 connect to each other, otherwise 0. Each node 8 ∈ V is associated

with a feature vector x8 .

GCL aims to learn high-quality node representations by contrast-

ing semantically similar and dissimilar node pairs. More speci�cally,

given an anchor node E ∈ V , those nodes with similar semantics

as E are considered positive samples, while those with dissimilar

semantics are treated as negative samples. The goal of GCL is to pull

the representations of those semantically similar nodes close and

push the semantically dissimilar ones apart. From the perspective

of a single anchor node E , the goal can be achieved by minimizing

the following objective L(E).

− log
4 5 (E)

¦ 5 (E′ )/g

4 5 (E)
¦ 5 (E′ )/g +

∑
Eĩ ∈N(E) 4

5 (E)¦ 5 (Eĩ )/g
, (1)

where g is the temperature hyper-parameter, E ′ is the positive sam-

ple, which is typically generated by data augmentation, 5 (·) is a

function that maps a node E to its low-dimensional representation,

andN(E) denotes the negative samples corresponding to the anchor

E . The overall objective for all nodes is a summation of L(E) over

all nodes in V . Next, we brie�y introduce the positive sample, the

5 (·) function, and the set of negative samples as follows. To create

positive samples, graph augmentations like topology and feature

transformations are employed. For example, GRACE [50] uses edge

removal and feature masking for augmentation. Advanced methods,

such as GCA [51], focus on adaptive augmentations prioritizing less

important features and edges.

Many GCL frameworks utilize two augmented graphs of the

original graph G as two views. Nodes from these views serve as

anchor nodes, with the corresponding node in the other view as

its positive sample. The negative sample set consists of nodes from

both views.

3 Methodology

The objective in Eq.(1), despite its widespread use and strong per-

formance, has inherent limitations. It only employs one positive

sample for each anchor node, potentially restricting the quality

of the learned representations. The uniform negative sampling

can also introduce “false-negative” samples, undermining repre-

sentation quality. To address these shortcomings, we introduce

an enhanced objective. We �rst describe an ideal objective in Sec-

tion 3.1, which incorporates more positive samples and eliminates

“false-negative” samples. We then detail a strategy for practically

estimating this ideal objective, emphasizing the need for modeling

anchor-aware distributions for both positive and negative sampling.

Using pairwise node similarity, we e�ectively model these distribu-

tions, as detailed in Section 3.3. Our proposed enhanced objective

is discussed further in Section 3.4.

3.1 The Ideal Objective for GCL

To address the limitations of the conventional objective in Eq. (1),

an ideal objective that enjoys the capability of learning high-quality

representations would include all positive nodes in the numerator

while only including true negative samples in the denominator.

More speci�cally, such an ideal objective L8340; (E) for an anchor

node E could be formulated as follows.

− log

∑
EĠ ∈V 1[~=~ Ġ ]4

5 (E)¦ 5 (EĠ )/g

4 5 (E)
¦ 5 (E′ )/g +

∑
EĠ ∈V 1[~≠~ Ġ ]4

5 (E)¦ 5 (EĠ )/g
, (2)

where ~ denotes the ground truth label for node E and ~ 9 is the

label of E 9 , and 1[0] is an indicator function, which outputs 1 if and

only if the argument 0 holds true, otherwise 0.

Nevertheless, the objective function in Eq. (2) is not achievable,

as it is impossible to know the semantic classes of the downstream

tasks in the contrastive training process, let alone the ground-truth

labels. Hence, to make the objective more practical, in this pa-

per, following the assumptions in [2, 6, 32], we assume there are

a set of discrete latent classes C standing for the true semantics

of each node. We use ℎ : V → C to denote the function map-

ping a given node to its latent class. For a node E ∈ V , ℎ(E) de-

notes its latent class. Then, we introduce two types of anchor-

aware sampling distributions over the entire node setV . Speci�-

cally, for an anchor node E , we denote the probability of observing

any node D sharing the same latent class (i.e., D is a positive sam-

ple corresponding to E) as ?+E (D) = ? (D | ℎ (D) = ℎ(E)). Similarly,

?−E (D) = ? (D | ℎ (D) ≠ ℎ(E)) denotes the probability of observing

D as a negative sample corresponding to E . Note that the subscript

in ?+E and ?−E indicates that they are speci�c to the anchor node E .

With these distributions, we estimate the objective in Eq. (2) with

positive and negative nodes sampled from the two distributions.
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Speci�cally, we estimate the objective L4BC (E) as follows.

E{E+Ġ }
ģ
Ġ=1∼?

+
Ĭ ,

{E−
ġ
}Ĥ
ġ=1

∼?−Ĭ



− log

;
<

∑<
9=1 4

5 (E)¦ 5
(
E+Ġ

)
/g

4 5 (E)
¦ 5 (E′ )/g +

@
=

∑=
:
4
5 (E)¦ 5

(
E−
ġ

)
/g



, (3)

where {E+9 }
<
9=1 and {E−

:
}=
:=1

denote the set of “positive nodes” and

“negative nodes” sampled following ?+E and ?−E , respectively; and<

and = denotes the number positive and negative samples, respec-

tively. As similar to [6], for the purpose of asymptotic analysis, we

introduce two weight parameters ; and @. When< and = are �nite,

we set ; = = and @ =<, which ensures that Eq. (3) follows the same

form as Eq. (2).

Though Eq. (3) is more practical than Eq. (2), its applicability is

hindered by two main challenges:

• Lack of Access to Anchor-Aware Distributions: We do

not have access to the two anchor-aware distributions ?+E
and ?−E

• High Sampling Complexity for Accurate Estimation:

Even if we were to know these distributions, accurately es-

timating the expectation in the enhanced objective would

require a signi�cant number of samples.

To e�ectively address the identi�ed challenges in estimating the

ideal objective our method incorporates the following strategies:

• Dual Information for Modeling Anchor-Aware Distri-

butions: To address the �rst issue, we propose leveraging

both graph structure and feature information. Since directly

modeling the distribution over all nodes in the graph is ex-

tremely di�cult, we propose to connect the probabilities

?+E (D) and ?
−
E (D) of a speci�c node D with node similarity

between node D and the anchor node E . This similarity is

modeled using dual graph and feature information. More

details on modeling anchor-aware distributions will be dis-

cussed in Section 3.3.

• From Asymptotic Analysis to Practical Estimation: For

the second challenge, we adopt an asymptotic analysis, which

leads to a new objective requiring fewer samples for esti-

mation. The speci�cs of this analysis and the new objective

are discussed in Section 3.2. Next, we �rst discuss how we

address the second challenge assuming we are given the two

sets of anchor-aware distributions ?+E and ?−E in Section 3.2

and then discuss how we model the anchor-ware distribu-

tions ?+E and ?−E in Section 3.3. The enhanced objective will

be discussed in Section 3.4.

3.2 E�cient Estimation of the Objective

To allow a more e�cient estimation of Eq. (3), we consider its

asymptotic form by analyzing the case where< and = go to in�nity,

which is summarized in the following theorem.

Theorem 3.1. For �xed ; and @, as<,= → ∞, it holds that:

E{E+Ġ }
ģ
Ġ=1∼?

+
Ĭ

{E−
ġ
}Ĥ
ġ=1

∼?−Ĭ

[
− log

;
<

∑<
9=1 4

5 (E)¦ 5 (E+Ġ )/g

4 5 (E)
¦ 5 (E′ )/g +

@
=

∑=
:=1

4 5 (E)
¦ 5 (E−

ġ
)/g

]

→ − log
;EE+∼?+Ĭ (E+ ) [4

5 (E)¦ 5 (E+ )/g ]

4 5 (E)
¦ 5 (E′ )/g + @EE−∼?−Ĭ (E− ) [4

5 (E)¦ 5 (E− )/g ]
.

(4)

Proof. As g is a nonzero scalar, the contrastive objective is
bounded. Thus, we could apply the Dominated Convergence Theo-
rem to prove the theorem above as follows:

lim
ģ→∞

lim
Ĥ→∞

E



− log

Ģ
ģ

∑ģ
Ġ=1 4

Ĝ (Ĭ)¦ Ĝ (Ĭ+Ġ )/ă

4 Ĝ (Ĭ)
¦ Ĝ (Ĭ′ )/ă +

ħ
Ĥ

∑Ĥ
ġ=1 4

Ĝ (Ĭ)¦ Ĝ
(
Ĭ−
ġ

)
/ă



=E



lim
ģ→∞

lim
Ĥ→∞

− log

Ģ
ģ

∑ģ
Ġ=1 4

Ĝ (Ĭ)¦ Ĝ (Ĭ+Ġ )/ă

4 Ĝ (Ĭ)
¦ Ĝ (Ĭ′ )/ă +

ħ
Ĥ

∑Ĥ
ġ=1 4

Ĝ (Ĭ)¦ Ĝ
(
Ĭ−
ġ

)
/ă



=E


− log

;EĬ+∼Ħ+Ĭ (Ĭ+ ) [4
Ĝ (Ĭ)¦ Ĝ (Ĭ+ )/ă ]

4 Ĝ (Ĭ)
¦ Ĝ (Ĭ′ )/ă + @EĬ−∼Ħ−

Ĭ (Ĭ− ) [4
Ĝ (Ĭ)¦ Ĝ (Ĭ− )/ă ]



= − log
;EĬ+∼Ħ+Ĭ (Ĭ+ ) [4

Ĝ (Ĭ)¦ Ĝ (Ĭ+ )/ă ]

4 Ĝ (Ĭ)
¦ Ĝ (Ĭ′ )/ă + @EĬ−∼Ħ−

Ĭ (Ĭ− ) [4
Ĝ (Ĭ)¦ Ĝ (Ĭ− )/ă ]

.

□

As demonstrated in Theorem 1, the objective of Eq. (4) is an as-

ymptotic form of Eq. (3). In this work, we aim to empirically estimate

Eq. (4) instead of Eq. (3). Speci�cally, Eq. (4) contains two expecta-

tions to be estimated. Compared to Eq. (3), the sampling complexity

is signi�cantly reduced, as we disentangled the joint distribution in

Eq. (3), and only need to estimate these two expectations indepen-

dently. More speci�cally, to estimate EE+∼?+Ĭ (E+ ) [4
5 (E)¦ 5 (E+ )/g ], a

straightforward way is to randomly draw samples from ?+E and cal-

culate its empirical mean. However, it is typically ine�cient and in-

convenient to obtain samples directly from ?+E , since ?
+
E itself needs

to be estimated (this will be discussed in Section 3.3) and we cannot

obtain a simple analytical form to perform the sampling. The same

reason applies to the estimation ofEE−∼?−Ĭ (E− ) [4
5 (E)¦ 5 (E− )/g ]. There-

fore, in this work, we adopt the importance sampling strategy [12]

to estimate the two expectations using samples from the uniform

distribution ? as follows.

EE+∼?+Ĭ
[4 5 (E)

¦ 5 (E+ )/g ] = EE+∼?

[
?+E (E

+)

? (E+)
4 5 (E)

¦ 5 (E+ )/g

]

≈
1

"

∑

EĠ ∈Vĉ

[
?+E (E 9 )

? (E 9 )
4 5 (E)

¦ 5 (EĠ )/g
]
; (5)

EE−∼?−Ĭ [4
5 (E)¦ 5 (E− )/g ] = EE−∼?

[
?−E (E

−)

? (E−)
4 5 (E)

¦ 5 (E− )/g

]

≈
1

#

∑

EĠ ∈VĊ

[
?−E (E 9 )

? (E 9 )
4 5 (E)

¦ 5 (EĠ )/g
]
, (6)

where V" = {E 9 }
"
9=1 ∼ ? contains " nodes sampled from ? and

V# = {E 9 }
#
9=1 ∼ ? contains # nodes sampled from ? , which are

utilized for estimation. To obtain the �nal empirical form of Eq. (4),
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the two sets of anchor-aware distributions ?+E and ?−E remain to be

estimated, which is discussed in the next section.

3.3 Modeling and Estimating Anchor-Aware
Distributions

Here, we discuss the modeling details of the anchor-aware distribu-

tions ?+E and ?−E . As discussed earlier in Section 3.1, for an anchor

E , the positive sample distribution is a conditional distribution re-

lying on the agreement of the latent classes of E and any other

sample D, which can be formulated as ?+E (D) = ?E (D |ℎ(E) = ℎ(D)).

Direct modeling this distribution is impossible, since we do not

have access to the latent semantic class. Here, we propose to model

?+E (D) with the node similarity between the anchor node E and a

given sample D (Section 3.3 and Section 3.3.2). We then discuss the

process to evaluate node similarity with both graph structure and

node feature information in Section 3.3.3.

3.3.1 Modeling Anchor-Aware Distributions with Node Similarity.

Based on Bayes’ theorem, we have

?+E (D) ∝ ?E (ℎ(E) = ℎ(D) |D)? (D), (7)

where ? is a uniform distribution over all nodes, and ?E (ℎ(E) =

ℎ(D)) is the probability that D shares the same latent semantic class

of E . Therefore, to obtain ?+E (D), it is essential to model ?E (ℎ(E) =

ℎ(D) |D) as ? is already known. Intuitively, if E and D are more

“similar” to each other, they are more likely to share the same

semantic class. Assuming that we are given a function sim(·, ·)

that measures the pair-wise similarity of any two nodes, then we

further assume that the probability ?E (ℎ(E) = ℎ(D) |D) is positively

correlated with sim(E,D), which can be formulated as

?E (ℎ(E) = ℎ(D) |D) ∝ T (sim(E,D)), (8)

where T is a monotonic increasing transformation. We will discuss

the details of the transformation and the similarity function in

Section 3.3.2 and Section 3.3.3, respectively. Together with Eq. (7),

we have

?+E (D) ∝ T (sim(E,D))? (D), (9)

which intuitively expresses that those samples that are more similar

to E are more likely to be sampled as positive samples. We then

formulate the probability ?+E (D) with sim(E,D) as follows.

?+E (D) =
T (sim(E,D))? (D)∫

T (sim(E, EB ))? (EB )3EB
=

T (sim(E,D))? (D)

EEĩ∼? [T (sim(E, EB ))]
. (10)

Note that, in practice, EEĩ∼? [T (sim(E, EB ))] can be empirically es-

timated using the set of samples V" in Eq. (5) as follows.

EEĩ∼? [T (sim(E, EB ))] ≈
1

"

∑

EĠ ∈Vĉ

T (sim(E, E 9 )) . (11)

Then, we can estimate ?+ (D) as follows

?̂+E (D) =
T (sim(E,D))? (D)

1
"

∑

EĠ ∈Vĉ

T (sim(E, E 9 ))
, (12)

where ?̂+E (D) is the empirical estimate of ?+E (D). Intuitively, given

?̂+E (D), we can directly estimate ?̂−E (D) as 1 − ?̂
+
E (D). However, this

is typically not optimal for the purpose of contrastive learning for

several reasons: 1) �rst, the samples in V" ( in Eq. (5)) and V# (in

Eq. (6)) are likely di�erent, which makes it infeasible to directly

model ?−E using 1 − ?+E for all selected nodes; 2) second, we prefer

di�erent properties of the estimations for the two distributions ?+E
and ?−E for the purpose of contrastive learning. Speci�cally, we

prefer a relatively conservative estimation for ?+E to reduce the

impact of “false positives” (i.e, avoid assigning high ?+E for real

negative samples). In contrast, a more aggressive estimation of ?−E
is acceptable. Modeling a conservative ?+E and aggressive ?−E at the

same time cannot be achieved if we constrain ?+E (D) + ?
−
E (D) = 1.

Due to the above reasons, in this work, we relax this constraint and

model ?−E �exibly using node similarity sim(·, ·) as follows.

?−E (D) =
D(sim(E,D))? (D)

EEĩ∼? [D(sim(E, EB ))]
, (13)

where D is a monotonic decreasing function, indicating that ?−E is

negatively correlated with the similarity. Similar to Eq. (12), ?−E (D)

can be empirically estimated with # samples inV# (described in

Eq. (6)) as follows.

?̂−E (D) =
D(sim(E,D))? (D)

1
#

∑

EĠ ∈N
D(sim(E, E 9 ))

. (14)

Next, we �rst discuss the details of the monotonic increasing trans-

formation functionT and themonotonic decreasing transformation

D in Section 3.3.2. We then discuss the similarity function sim(E,D)

in Section 3.3.3.

3.3.2 Transformations. To �exibly adjust the two estimated anchor-

aware distributions ?̂+E and ?̂−E between conservative estimation to

aggressive estimation, we utilize exponential function with temper-

ature [1] to model the transformation functions as follows

T (sim(E8 , E 9 )) = exp(sim(E8 , E 9 )/g? ) − 1; (15)

D(sim(E8 , E 9 )) = exp(−sim(E8 , E 9 )/g=), (16)

where g? and g= are two temperature parameters. We could adjust

the estimation of the two distributions ?̂+E in Eq. (12) and ?̂−E in

Eq. (14) by varying g? and g= , respectively. More speci�cally, for ?̂+E ,

we could make the distribution more conservative by decreasing g? ,

which increases the probability mass for those samples with high

similarity. In the extreme case, when g? goes to 0, the probability

mass concentrates in the sample with the largest similarity. On the

other hand, when g? reaches in�nity, ?̂+E converges to a distribution

proportional to similarity. Note that without the “−1” in Eq. (15),

?̂+E converges to a uniform distribution as g? goes to in�nity, which

leads to model collapse as all samples in Eq. (5) will be treated

equally (all treated as positive samples). Thus, we include “−1” in

Eq. (15) to avoid such cases. Similarly, ?̂−E can be adjusted from a

uniform distribution to a distribution with mass concentrated on

the sample with the smallest similarity by varying g= . Speci�cally,

when g= goes to 0, the estimated ?̂−E converges to the uniform

distribution and the estimation in Eq. (6) reduces to the same result

as the convectional negative sampling strategy.
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3.3.3 Modeling Node Similarity. Here, we delve intomodeling node

similarity, considering both graph structure and node features. We

�rst outline methods for capturing each type of similarity and then

detail their integration for a comprehensive similarity function.

Graph Structure Similarity Personalized Page Rank (PPR) is a

widely adopted tool for measuring the relevance between nodes in

graph mining [24, 28, 29]. More recently, it has also been adopted

to improve graph representation learning [22, 23]. In this work,

we utilize the PPR score to model the structural node similarity.

Speci�cally, the personalized PageRank matrix is de�ned as P =

U (I− (1−U)Â)−1, where Â = D
−1/2

AD
−1/2,D is the degree matrix,

and U ∈ (0, 1) is a hyper-parameter. The 8, 9-th element of the

PPR matrix P denoting as P[8, 9] measures the structural similarity

between node E8 and node E 9 . However, calculating the matrix P

is computationally expensive, especially for large-scale graphs, as

it involves a matrix inverse. In this work, we adopt the iterative

approximation of the PPR matrix for measuring the node similarity

as P̂ = (1 − U) Â +
 −1∑

:=0
U (1 − U): Â: , where  is the number of

iterations. Note that, P̂ converges to P as  goes in�nity [22].

Feature Similarity. To better mine the pairwise node similar-

ity from features, we adopt the classic cosine similarity. Speci�-

cally, feature similarity between nodes E8 and E 9 is evaluated by

sim� (E8 , E 9 ) = cos(x8 , x9 ), where x8 , x9 are the original input fea-

tures of node E8 and E 9 , respectively.

Fusing Graph and Feature Similarity. Given the structure simi-

larity sim� (E8 , E 9 ) and feature similarity sim� (E8 , E 9 ), it is vital to

de�ne an adaptive function sim(·, ·) to fuse them and output a com-

bined similarity score capturing information from both sources.

Speci�cally, we propose to combine the two similarities to form

the overall similarity as sim(E8 , E 9 ) = V · sim� (E8 , E 9 ) · W + (1 −

V) · sim� (E8 , E 9 ), where W is the scaling factor to control the rel-

ative scale between the two similarity scores, and V is a hyper-

parameter balancing the two types of similarity. In general, W could

also be treated as a hyper-parameter. In this work, we �x W =∑
B8<� (E8 , E 9 )/

∑
B8<� (E8 , E 9 ) such that the two types of similarity

are at the same scale.

3.4 The Proposed Enhanced Objective

With the estimation of ?̂+E in Eq. (12) and ?̂−E in Eq. (14), we propose

an enhanced objective L�# (E) as follows.

− log

∑

EĠ ∈Vĉ

[
F+
E (E 9 )4

5 (E)¦ 5 (EĠ )/g
]

4 5 (E)
¦ 5 (E′ )/g +

∑

EĠ ∈VĊ

[
F−
E (E 9 )4

5 (E)¦ 5 (EĠ )/g
] , (17)

whereF+
E (E 9 ) andF

−
E (E 9 ) are de�ned as follows.

F+
E (E 9 ) =

T (sim(E, E 9 ))
1
"

∑

EĠ ∈Vĉ

T (sim(E, E: ))
;

F−
E (E 9 ) =

D(sim(E, E 9 ))

1
#

∑

EĠ ∈VĊ

D(sim(E, E: ))
.

(18)

V" and V# are the two sets of nodes introduced in Eq. (5) and

Eq. (6). If we setV" = V# = V , we can make a direct comparison

between the enhanced objective in Eq. (17) and the ideal objective

in Eq. (2). Speci�cally, the enhanced objective can be considered

as a soft version of the ideal objective, where the weightsF+
E (E 9 )

andF−
E (E 9 ) in Eq. (17) re�ect the likelihood of E 9 being a positive

sample or a negative sample, respectively.

4 Beyond Graph Contrastive Learning

The philosophy of contrastive learning has inspired other frame-

works for graph representation learning. In Graph-MLP [16], an

auxiliary neighborhood contrastive loss is proposed to enhance the

performance of MLP on the semi-supervised node classi�cation

task. As indicated by its name, the key idea of the neighborhood

contrastive loss is to treat the “neighboring nodes” as positive sam-

ples and contrast them with their corresponding anchor nodes.

Since the neighbors are de�ned through graph structure, such a

loss helps incorporate the graph information into the represen-

tation learning process of MLP. It has been shown that the MLP

model equipped with the neighborhood contrastive loss is capable

of achieving performance comparable to or even stronger than

graph neural network models. In this section, we brie�y describe

the Graph-MLP model with neighborhood contrastive loss and dis-

cuss how the proposed techniques discussed in Section 3 can be

utilized to further enhance this loss.

4.1 Neighborhood Contrastive Loss and
Graph-MLP

For an anchor node E8 ∈ V , the neighborhood contrastive loss is

de�ned as follows:

L#� (E8 ) = − log

∑

EĠ ∈VĘ

1[EĠ≠Eğ ]Â
A [8, 9]4 5 (Eğ )

¦ 5 (EĠ )/g

∑

Eġ ∈VĘ

1[Eġ≠Eğ ]4
5 (Eğ )¦ 5 (Eġ )/g

, (19)

where V1 is a set of nodes uniformly sampled from V , ÂA is the A -

th power of the normalized adjacency matrix Â. The 8, 9-th element

Â
A [8, 9] is only non-zero when node E 9 is within the A -hop neigh-

borhood of node E8 , otherwise Â
A [8, 9] = 0. Hence, in the numerator

of Eq. (19), only the A -hop neighbors are treated as positive samples.

The denominator is similar to that in contrastive learning. Overall,

the neighborhood contrastive loss for all nodes in the graph can be

formulated as follows.

L#� =

∑

8∈V

L#� (E8 ) . (20)

In Graph-MLP, the neighborhood contrastive loss is combined

with the cross-entropy loss for conventional semi-supervised node

classi�cation as LCA08= = L�� + UL#� , where U > 0 is a hyper-

parameter that balances the cross-entropy loss L�� and the neigh-

borhood contrastive loss L#� . When the graph is large, the neigh-

borhood contrastive loss can be calculated in a batch-wise way,

where L#� can be calculated over a batch of nodes as L#� =
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∑

Eğ ∈B
L#� (E8 ) with B denoting a speci�c sampled batch. Corre-

spondingly, in this scenario,V1 in Eq. (19) can be replaced by B.

4.2 Enhanced Objective for Graph-MLP

Following the same philosophy as in Section 3, we propose the

following enhanced neighborhood contrastive loss.

L�#−#� (E8 ) = − log

∑

EĠ ∈VĘ

1[EĠ≠Eğ ]F
+
Eğ (E 9 )4

5 (Eğ )
¦ 5 (EĠ )/g

∑

Eġ ∈VĘ

1[Eġ≠Eğ ]F
−
Eğ (E: )4

5 (Eğ )¦ 5 (Eġ )/g
, (21)

whereF+
Eğ (E 9 ) andF

−
Eğ (E: ) are the positive weight between nodes

E8 , E 9 and negative weight between nodes E8 , E: as de�ned in Eq. (18).

We can replace L#� (E8 ) in Eq. (20) with L�#−#� (E8 ) to form an

enhanced training framework for MLP models. We name such a

framework as Graph-MLP+. Its superiority is empirically veri�ed in

the experiments section (Section 5.3).

5 Experiment

In this section, we conduct experiments to verify the e�ectiveness

of the enhanced objectives. We also perform an ablation study to

provide a deep understanding of the proposed objectives. Speci�-

cally, we �rst introduce the datasets we adopt for experiments in

Section 5.1. Then, we present the signi�cant enhanced results for

GRACE, GCA, and Graph-MLPwith discussions in Section 5.2 and Sec-

tion 5.3, respectively. The ablation study is presented in Section 5.4.

5.1 Datasets

Here, we introduce the datasets we adopt for the experiments. Fol-

lowing previous papers [50, 51, 51], we adopt 8 datasets including

Cora [33], Citeseer [33], Pubmed [33], DBLP [44], A-Photo [35],

A-Computers [35], Co-CS [35], and Wiki-CS [26] for evaluating the

performance. The details of the dataset statistics are shown in the

Table 1.

Table 1: Summary of Datasets.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6

Pubmed 19,717 44,338 500 3

DBLP 17,716 105,734 1,639 4

A-Computers 13,752 245,861 767 10

A-Photo 7,650 119,081 745 8

Wiki-CS 11,701 216,123 300 10

Co-CS 18,333 81,894 6,805 15

5.2 Performance of Enhanced GCL models

The enhanced objective proposed in Eq. (17) is quite �exible and can

be utilized to improve the performance of various frameworks that

adopt the conventional graph contrastive learning objective. In this

work, we adopt GRACE [50], a recently proposed representative GCL

framework and its updated version, GCA [51], as base models (check

Section 2 for a brief description of GRACE and GCA). We denote the

GRACE framework with the enhanced objective as GRACE+ and use

GCA+ to represent the enhanced GCA. Next, we �rst present results

for GCA and then describe results for GCA.

5.2.1 GRACE. Following [50], we conduct the experiment with

GRACE and GRACE+ on the �rst 4 citation datasets as introduced

in Section 5.1. To evaluate the e�ectiveness of GRACE+, we adopt

the same linear evaluation scheme as in [38, 50].

Here, the experiments are conducted in two stages. In the �rst

stage, we learn node representations with the graph contrastive

learning frameworks (GRACE and GRACE+) in a self-supervised fash-

ion. Then, in the second stage, we evaluate the quality of the learned

node representations through the node classi�cation task. Speci�-

cally, a logistic regression model with the obtained node represen-

tations as input is trained and tested. To comprehensively evalu-

ate the quality of the representations, we adopt di�erent training-

validation-test splits. Speci�cally, we �rst randomly split the node

sets into three parts: 80% for testing, 10% for validation, and the

rest of 10% is utilized to further build the training sets. With the re-

maining 10% of nodes, we build 5 di�erent training sets that consist

of 2%, 4%, 6%, 8%, 10% of nodes in the entire graph. The training set

is randomly sampled from the 10% of data for building the training

subset. In each setting, following the o�cial published code of [50],

the logistic regression model is trained for 3 runs with di�erent

random initializations. Furthermore, we repeat the entire exper-

iment including both stages for 30 times and report the average

performance of 90 runs with standard deviation.

The results of GRACE and GRACE+ are summarized in Figure 1.

From these �gures, it is clear that GRACE+ consistently outperforms

GRACE on all datasets under various training ratios. These results

validate the e�ectiveness of the proposed enhanced objective.

Table 2: Node classi�cation results (%) of GCA (original model),

ProGCL (advanced baseline method) and GCA+.

Model A-Computers A-Photo Wiki-CS Co-CS

GCA 87.49±0.39 92.03±0.39 76.46±1.30 92.73±0.21

ProGCL 87.58±0.55 92.36±0.33 76.40±0.73 93.00±0.21

GCA+ 88.15±0.40 92.52±0.45 78.64±0.18 92.82±0.29

5.2.2 GCA. Following [51], we evaluate GCA and GCA+ on 4 datasets

including A-Photo, A-Computers, Co-CS, and Wiki-CS. In addition,

we also compare GCA+ with ProGCL [42], which is a recent solid

GCL baseline aiming to enhance the loss of GCA by addressing the

issue of “false negative” samples. We adopt the hyper-parameters

provided in [42] for running ProGCL.

In our experimental setup, we randomly split the nodes into

three parts: 80% for testing, 10% for validation, and 10% for training.

We train the logistic regression classi�er for 20 runs. Furthermore,

we repeat the experiment including both stages for 10 times with

di�erent random seeds. We report the average performance of the

200 runs together with the standard deviation in the performance

table in the main body of the paper. For GCA, we adopt the GCA-DE

variant since it achieves the best performance overall among the

three variants proposed in [51]. The results of GCA are produced

using the o�cial code and exact parameter settings provided in [51].
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Figure 1: Node classi�cation results of GRACE and GRACE+ with various training ratios.
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Figure 2: Node classi�cation results of Graph-MLP and Graph-MLP+ with limited training samples.

For ProGCL, we adopt the ProGCL-reweight variant. The results of

ProGCL are produced using the o�cial code and exact parameter

settings provided in [42]. The results of GCA and ProGCL are di�er-

ent from those reported in [42, 51] as the experiment settings are

di�erent. In particular, we repeat the entire process of experiments

for 10 times resulting a total of 200 runs, while, in [51], the entire

process was executed once with 20 runs.

The performances of GCA, GCA+, and ProGCL are reported in

Table 2. As demonstrated in the Table, GCA+ surpasses GCA on all

datasets, which further illustrates the e�ectiveness of the proposed

enhanced objective. Also, it suggests that the enhanced objective

is general and can be utilized to advance various GCL methods.

Furthermore, GCA+ outperforms the advanced ProGCL on 3 out of 4

datasets, which further illustrates the e�ectiveness of the proposed

enhanced objective.

5.3 Graph-MLP

Here, we investigate how the enhanced objective helps improve

the performance of Graph-MLP by comparing its performance with

Graph-MLP+. A brief introduction of Graph-MLP and Graph-MLP+

can be found in Section 4.

Table 3: Node classi�cation results of Graph-MLP and Graph-MLP+.

Model Cora Citeseer Pubmed

Graph-MLP 79.7± 1.15 72.99±0.54 79.62±0.67

Graph-MLP+ 80.51±0.69 74.03±0.51 81.42±0.92

Following [16], we adopt three datasets including Cora, Citeseer,

and Pubmed for comparing Graph-MLP+ with Graph-MLP. As de-

scribed in Section 4, Graph-MLP runs in a semi-supervised setting.

The classi�cation model is trained in an end-to-end way. We adopt

the conventional public splits of the datasets [21] to perform the

experiments. The experiments are repeated for 30 times with di�er-

ent random initialized parameters, and the average performance is

reported in Table 3. As shown in Table 3, Graph-MLP+ outperforms

Graph-MLP by a large margin on all three datasets. Graph-MLP+

even outperforms message-passing methods such as GCN by a

large margin, especially on Citeseer and Pubmed, which indicates

that the proposed objective can e�ectively incorporate the graph

structure information and improve the performance of MLPs. Note

that, in the Graph-MLP+ framework, only the MLP model is utilized

for inference after training, which is more e�cient than message-

passing methods in terms of both time and complexity.

We further compare Graph-MLP+ with Graph-MLP under the set-

ting where labeled nodes are extremely limited. Speci�cally, we

keep the test and validation set �xed, and only use ĩ samples per

class for training, where ĩ is set to 1, 3, 5, 7, and 9. When creating

these various training sets, the ĩ samples per class are sampled

from the training set in the public split setting. The results are pre-

sented in Figure 2. Graph-MLP+ achieves stronger performance than

Graph-MLP under all settings over all three datasets. Furthermore,

Graph-MLP+ performs extremely well when labels are limited. This

indicates that the proposed enhanced objective can more e�ectively

utilize the graph structure and feature information, which leads to

high-quality node representations even when labels are scarce.

5.4 Ablation Study

We assess the impact of key elements in our enhanced objective

through ablation studies. We �rst evaluate the contributions of the

positive weights ĭ+
Ĭ (Ĭ Ġ ) and negative weights ĭ−

Ĭ (Ĭ Ġ ). Then, we

analyze the in�uence of both graph and feature similarities on the
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model’s performance. We only conduct ablation studies based on

GRACE and Graph-MLP as GCA is a variant of GRACE. For GRACE, we

adopt the 10%/10%/80% training, validation, and testing split. For

Graph-MLP, we use the conventional public splits.

5.4.1 Positive and Negative Weights in the Enhanced Objective. In

Section 3.4, two weightsĭ+
Ĭ (Ĭ Ġ ) andĭ

−
Ĭ (Ĭ Ġ ) are introduced to in-

crease the variety of positive samples and alleviate the e�ect of

false negative samples, respectively. Here, we aim to investigate

how these two kinds of weights contribute to the model perfor-

mance. For this investigation, we introduce two variants of the

proposed objective that only incorporate the positive weights or

negative weights. The results for GRACE+ and Graph-MLP+ and their

corresponding variants are summarized in Table 4 and Table 5, re-

spectively. Speci�cally, in Table 4, we denote the variant of GRACE+

with only ĭ+
Ĭ (Ĭ Ġ ) as GRACE+(P) and the one with only ĭ−

Ĭ (Ĭ Ġ ) is

denoted as GRACE+(N). Likewise, the two variants for Graph-MLP+

are denoted as Graph-MLP+(P) and Graph-MLP+(N) in Table 5. In

Table 4, both GRACE+(P) and GRACE+(N) consistently outperform

GRACE on all datasets. Similarly, in Table 5, both Graph-MLP+(P) and

Graph-MLP+(N) consistently outperform Graph-MLP on all datasets.

These results clearly illustrate that both positive weights and nega-

tive weights are important for improving the enhanced objectives.

Furthermore, these two types of weights contribute to the objec-

tives in a complementary way since Graph-MLP+ outperforms all

variants on most datasets.

Table 4: Node classi�cation results (%) of GRACE+ and its variants (↑:

increase ≤ 0.5%; ↑↑: increase > 0.5%).

Cora Citeseer Pubmed DBLP

GRACE 82.56±1.21 71.23±0.86 86.12±0.23 84.43±0.25

GRACE+(P) 83.59±0.98 ↑↑ 71.53±0.97 ↑ 86.41±0.29 ↑ 84.76±0.23 ↑

GRACE+(N) 83.20±1.26 ↑↑ 72.19±0.78 ↑↑ 86.31±0.22 ↑ 84.89±0.26 ↑

GRACE+(G) 83.19±1.31 ↑↑ 71.40±1.03 ↑ 86.34±0.23 ↑ 84.55±0.26 ↑

GRACE+(F) 82.71±1.29 ↑ 71.90±0.87 ↑↑ 86.11±0.26 84.65±0.26 ↑

GRACE+ 83.62±1.13 ↑↑ 72.26±0.82 ↑↑ 86.45±0.29 ↑ 84.77±0.27 ↑

Table 5:Node classi�cation results (%) of Graph-MLP+ and its variants

(↑: increase ≤ 0.5%; ↑↑: increase > 0.5%).

Cora Citeseer Pubmed

Graph-MLP 79.7 ± 1.15 72.99 ± 0.54 79.62 ± 0.67

Graph-MLP+(P) 80.33 ± 0.96 ↑↑ 73.69 ± 0.45 ↑↑ 79.79 ± 0.89 ↑

Graph-MLP+(N) 79.80 ± 0.86 ↑ 73.41 ± 0.44 ↑ 79.76 ± 0.82 ↑

Graph-MLP+(G) 80.32 ± 0.73 ↑↑ 73.4 ± 0.36 ↑↑ 79.96 ± 0.94 ↑

Graph-MLP+(F) 61.80 ± 0.61 64.04 ± 0.73 75.92 ± 0.90

Graph-MLP+ 80.51±0.69 ↑↑ 74.03±0.51 ↑↑ 81.42±0.92 ↑↑

5.4.2 Similarity Measure. We examine the impact of graph and

feature similarities detailed in Section 3.3.3. Two enhanced objec-

tive variants are introduced: one using only graph similarity and

the other, only feature similarity. Results for GRACE+, Graph-MLP+

and their variants are presented in Tables 4 and 5. In these ta-

bles, GRACE+(G) represents the GRACE+ variant using only graph

similarity, and GRACE+(F), the one using only feature similarity.

For Graph-MLP+, the variants are denoted as Graph-MLP+(G) and

Graph-MLP+(F). Our observations are as follows:

• In Table 4, both GRACE+(G) and GRACE+(F) outperforms

GRACE on most datasets, which demonstrates that both graph

and feature similarity contain important information about

node similarity and they can be utilized for e�ectively model-

ing the anchor-aware distributions. GRACE+ outperforms the

two variants and the base model GRACE on all datasets, which

indicates that the graph similarity and feature similarity are

complementary to each other, and properly combining them

results in better similarity estimation leading to strong per-

formance.

• In Table 5, Graph-MLP+(G) signi�cantly outperforms Graph-MLP

while Graph-MLP+(F) does not perform well. This is poten-

tially due to the lack of graph information in MLP mod-

els. Di�erent from GRACE+(F) which incorporates graph

information in the encoder, Graph-MLP+(F) only utilizes fea-

ture information, which leads to inferior performance. On

the other hand, the strong performance of Graph-MLP+ sug-

gests that the enhanced objective e�ectively incorporates the

graph structure information. However, this does not mean

the feature similarity is not important. Graph-MLP+ outper-

forms Graph-MLP+(G) on all three datasets, which suggests

that the feature similarity brings additional information than

graph similarity, and properly combining them is important.

6 Related Work

Contrastive Learning. Contrastive learning (CL) aims to learn

latent representations by discriminating positive from negative sam-

ples. The instance discrimination loss is introduced in [41] without

data augmentation. In [3], it is proposed to generate multiple views

by data augmentation and learn representations by maximizing

mutual information. Momentum Contrast (MoCo) [15] maintains a

memory bank of negative samples, which signi�cantly increases

the number of negatives used in the contrastive loss. In [5], it is dis-

covered that the composition of data augmentations plays a critical

role in CL. BYOL and Barlow Twins [45] [13] achieves strong CL

performance without using negative samples. Recently, a series of

tricks such as debiased negative sampling [6], and hard negative

mining [19, 32, 40], positive mining [7] have been proved e�ective.

E�orts have also been made to extend CL to supervised setting [20].

Graph Contrastive Learning. Deep Graph Infomax (DGI) [38]

takes a local-global comparison mode by maximizing the mutual

information between patch representations and high-level sum-

maries of graphs. MVGRL [14] contrasts multiple structural views

of graphs generated by graph di�usion. GRACE [50] utilizes edge

removing and feature masking to generate two views for node-level

contrastive learning. Based upon GRACE, GCA [51] adopts adap-

tive augmentations by considering the topological and semantic

aspects of graphs. Several works investigate the bias in the negative

sampling [42, 49]. MERIT [17] leverages Siamese GNNs to learn

high-quality node representations. Most of these contrastive learn-

ing frameworks utilize negative samples in their training. BGRL [36]



Enhancing Contrastive Learning on Graphs with Node Similarity KDD ’24, August 25–29, 2024, Barcelona, Spain

and Graph Barlow Twins [4] are GCL methods without requiring

negative samples. CCA-SSG [46] leverages Canonical Correlation

Analysis to optimize correlation between two views. COSTA [47]

tackles biases inherent in graph augmentation through the imple-

mentation of feature augmentation. SUGRL [27] is designed to

enhance di�erences between classes while minimizing di�erences

within the same class. Recently, SFA [48] leverages spectral feature

augmentation as its augmentation scheme.

7 Conclusion

In this paper, we propose an e�ective enhanced contrastive ob-

jective to approximate the ideal contrastive objective for graph

contrastive learning. The proposed objective leverages node simi-

larity to model the anchor-aware distributions for sampling positive

and negative samples. Also, the objective is designed to be �exible

and general, which could be adopted for any graph contrastive

learning framework that utilizes the traditional InfoNCE-based

objective. Furthermore, the proposed enhancing philosophy gener-

ally applies to other contrasting-based models such as Graph-MLP

which includes an auxiliary contrastive loss. Extensive experiments

have demonstrated the signi�cant improvement on various GCL

models with the application of the enhanced objectives.
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