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average case analysis, where one shows that the condition holds

w.h.p. for a random choice of parameters from some distribution. On

the other hand, it provides quantitative, robust analogs of genericity

results in algebraic settings, which are needed in most algorithmic

applications.

Considering the �avor of the algebraic non-degeneracy condi-

tions, the problem of smoothed analysis boils down to the following:

given a matrixM whose entries are functions (typically polynomi-

als) of some base variables, does randomly perturbing the variables

result in M having a non-negligible least singular value with high

probability?

This question is non-trivial even in very specialized settings, as it

is a statement about anti-concentration — a topic that is less under-

stood in probability theory than concentration or large deviation

bounds. For example when the underlying variables form a matrix

* 2 R=⇥< , the structured matrix M = * � * =

�
D8 ⌦ D8

�
82 [<] ,

1

represents the Khatri-Rao product, and has been the subject of much

past work [4, 9, 11] that developed intricate arguments specialized

for this setting. Least singular value bounds ofM =
e* � e* for ran-

domly perturbed e* have lead to smoothed analysis guarantees for

several problems including tensor decomposition [9], recovering

assemblies of neurons [4], parameter estimation of latent variable

models like mixtures of Gaussians [13], hidden Markov models [11],

independent component analysis [15] and even learning shallow

neural networks [5]. Another approach is to use concentration

bounds to prove lower bounds on the least singular value [7, 22, 29?

] for analyzing random instances; these techniques based on con-

centration bounds cannot handle smoothed instances. We lack a

broader toolkit that allows us to analyze more general classes of ran-

dom matrices that arise in many other smoothed analysis settings

of interest.

Consider, for example the symmetric lift of the matrix e* repre-

sented by

e* ~2 B ((D̃8 ⌦ D̃ 9 + D̃ 9 ⌦ D̃8 ) : 1  8  9  <),

where the columns (up to reshaping) give a basis for the space of

all the symmetric matrices that are supported on the subspace *̃ .

Here ~ denotes the symmetrized Kronecker product.

Question 1.1. For a linear operator � acting on the space of sym-

metric = ⇥ = matrices (e.g., a projection matrix), can we obtain an

inverse polynomial lower bound with high probability on the least

singular value of the matrix

M = �(e* ~2) =
⇣
�(D̃8 ⌦ D̃ 9 + D̃ 9 ⌦ D̃8 ) : 1  8  9  <

⌘
,

when<  2= for a su�ciently small 2 2 (0, 1)?

The new techniques developed in this paper, to our knowledge,

give the �rst inverse polynomial lower bound on the least singular

value ofM, and its higher order generalizations; see Theorem 1.4.

As it turns out, this already captures the Khatri-Rao product e* � e*
setting as a special case by setting< = 1 and � appropriately. One

interpretation of the statement is that e* ~e* acts like “truly random”

subspace in the lifted space Sym(R=⌦R=) with the same dimension.

With high probability, a random subspace of Sym(R= ⌦ R=)2 with
1Here, ⌦ represents the standard tensor product or Kronecker product.
2Sym(R= ⌦ R= ) is the space of all symmetric = ⇥ = matrices.

dimension > (=2) will not contain any vector near the kernel of �.

The a�rmative answer to the above question shows that the lifted

space that corresponds to column space of (e* )~2 behaves similarly

and is far from the kernel of �! In other words, it is rotationally well-

spread; it is not too aligned with any speci�c subspace. Note that e*
only has about =< truly independent coordinates or “bits”, whereas

a random subspace of the same dimension has 2 ·=2<2 independent

coordinates. Hence the lift U~2 of a smoothed subspace U acts

“pseudorandom” – it acts like a random subspace in the lifted space

with respect to all linear operators of reasonable rank.

Matrices of this �avor arise in open questions about the smoothed

analysis of various algebraic algorithms for problems like robust

certi�cation of quantum entanglement in subspaces, certifying dis-

tance from varieties [19], and decomposition into sums of pow-

ers of polynomials [7, 12]. Speci�cally, rank-1 matrices (of unit

norm) correspond to separable or non-entangled states in bipartite

quantum systems. For a certain speci�c choice of �, the positive

resolution of Question 1.1 certi�es that a smoothed subspace of

=1 ⇥ =2 matrices of dimension 2=1=2 (for some 2 > 0) is far from

any rank-1 matrix of unit norm. Moreover, in the recent algebraic

algorithms of [7, 12], they consider generic or random subspaces

U1,U2, . . . ,UC ⇢ R= and they need to argue that the correspond-

ing 3th order liftsU~31 ,U~32 , . . . ,U~3C are far from each other.

Our results give a novel and modular way to analyze such matri-

ces. Our contributions are two fold:

• We give new tools for proving least singular value lower

bounds via Y-nets. This involves identifying a key property

that is su�cient for carrying forth net based arguments, and

giving a new tool for proving such a property.

• We consider matrices that have the structure of a linear

operator applied to higher-order lifts corresponding to the

Kronecker product, and give new techniques to reason about

the least singular value. This resolves open questions raised

in [7, 12, 19].

1.1 Our Results

1.1.1 Hierarchical Nets. Our �rst set of results focus on Y-net based

arguments for proving bounds for least singular values. Suppose

we have a random matrixM, the idea is to consider a �xed “test”

vector U , prove that kMU k is large enough with high probability,

and then take a union bound over “all possible vectors U”. As the set

of candidate U is in�nite, the idea is to take a �ne enough net over

possible vectors U . The challenge when dealing with structured

matrices (of the kind discussed above) is that for a single test vector

U , we do not obtain a su�ciently strong probability guarantee. This

is because the individual columns ofM may not have “su�cient

randomness”, and since we do not know how U spreads its mass

across columns, the bound will be weak. Our main observation is

that in the matrices we consider for our application, as long as U is

well spread, we can obtain a much stronger bound. We refer to this

as a “combination ampli�es anticoncentration” (CAA) property of

M.

CAA Property (Informal De�nition). We say thatM has the CAA

property if for every : � 1, for any test vector U that has : entries

of magnitude � X , we have that kMU k � ⌦(X), with probability

1 � exp(�l (:)).
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Formally, to capture the l (:) term, we have a parameter V . See

De�nition 4.1 for details. Our �rst result is that for any matrix with

this property, we have a bound on fmin (M).

Informal Theorem 1.2. Suppose M is a random matrix with<

columns and thatM satis�es the CAA property with parameter V > 0.

Then with high probability (indeed, exponentially small probability

of failure), we have fmin (M) > poly(1/<). (See Theorem 4.2 for the

formal statement.)

The proof uses a novel Y-net construction. Nets that use struc-

tural properties of the test vector U have been used in prior works

in the context of proving least singular value bounds, notably in

the celebrated work of Rudelson and Vershynin [24]. In proving

our result, the natural approach of constructing a hierarchy of nets

based on increasing : (and using some threshold X) does not work.

Informally, this is because the error from ignoring terms that are

slightly smaller than X can add up signi�cantly, causing the argu-

ment to fail. We introduce a new hierarchical construction that

overcomes this problem.

The next question we consider is how to prove that the CAA

property holds in a particular context. This can be shown via a direct

argument whenM is simple, e.g., a random matrix with indepen-

dent entries. However, for matrices with more structured entries, it

can need a careful analysis. To handle this, we develop a new tool

for proving anticoncentration that we believe is of independent

interest.

1.1.2 Anti-concentration of a Vector of Polynomials. Consider % (G) :=

(?1 (G), ?2 (G), . . . , ?# (G)), where each ?8 is a polynomial of = “base”

random variables. Suppose we wish to show anti-concentration

bounds for % (G̃), where G̃ is a perturbation of some G (i.e., we wish

to bound the probability that % (G̃) is within a small ball of a point ~

is small, for all ~). One hope is to use a coordinate-wise bound (e.g.,

using known results like [30]) and take the product over 1, 2, . . . ,# .

It is easy to see that this is too good to be true: consider an example

where ?8 are all equal; here having # coordinates is the same as

having just one. So we need a good metric for “how di�erent” the

polynomials ?8 are for a typical G . We capture this notion using

the Jacobian of the polynomial map % . Recall that in this case, the

Jacobian � (G) is a matrix with one column per ?8 , containing the

vector of partial derivatives, r?8 (G).
Jacobian rank property (Informal De�nition). We say that % (G)

has the Jacobian rank property if for every G , at a slightly perturbed

point G̃ , � (G̃) has at least : singular values that are large enough

(where : is a parameter).

We refer to De�nition B.1 for the formal statement. Our result

here is that this property implies anticoncentration:

Informal Theorem 1.3. Suppose % (G) de�ned as above satis�es

the Jacobian rank property with parameter : . Then for a perturbation

of any point G , we have that 8~, P[k% (G̃) � ~k < Y] < exp(�⌦(:)).
(Here, Y is a quantity that depends on the dimensions, : , the perturba-

tion, and the singular value guarantee; see Theorem 4.7 for the formal

statement.)

Intuitively, the Jacobian having several large singular values

must result in anticoncentration (because % (G) locally behaves lin-

early). However, the challenging aspect is that the Jacobian need

not always have many large singular values. Our assumption (Ja-

cobian rank property) is itself made for a perturbed vector, i.e., we

assume that � (G̃) has many high singular values with high proba-

bility. Further, the magnitude of these singular values will depend

on the perturbation: if a “bad” G was perturbed by d , � (G̃) will have

most of the large singular values being ⇡ d . Dealing with this issue

turns out to be the main challenge in proving the theorem (see

Theorem 4.7 for a formal statement).

As an application of the Jacobian rank method, we re-prove

the main result of [9] and [4]. They consider random matricesM

where the 8th column is D̃8 ⌦ Ẽ8 , and D̃8 , Ẽ8 are perturbed vectors

in R= . We show that thisM satis�es the CAA property, and thus

our �rst result (above) implies a condition number lower bound.

In order to prove the CAA property, we consider a combination of

the columns
Õ
8 U8 (D̃8 ⌦ Ẽ8 ) and prove that if U has : entries � X ,

then the Jacobian has =:/2 large singular values. Using our second

result, we obtain a strong anticoncentration bound, thus completing

the proof. This technique also lets us tackle Question 1.1 described

above, but in what follows, we describe a di�erent technique that

also generalizes to higher orders.

1.1.3 Structured Matrices from Kronecker Products. Next, we con-

sider a general class of structured matrices that are obtained by

taking the symmetrized Kronecker product of some d-perturbation

*̃ of an underlying matrix* and applying a linear operator �. Here,

*̃ is a d-perturbation of* means *̃ = * +N(0, d2). In other words,

the matrix of interest isM = �e* ~3 , where 3 is a constant. For such

a matrix, we can ask the question: are there conditions on � under

which we can prove that fmin (M) is large, with high probability

over the perturbation? We provide an a�rmative answer to this

question in terms of the rank of �.

This question captures a variety of settings studied previously.

For example, [11] studies matrices M whose columns are tensor

products of some underlying vectors (i.e., the columns have the

form D81 ⌦ D82 ⌦ · · · ⌦ D83 ). This turns out to be a special case of

our setting above. Likewise, in the work of [7], one of the matrices

they consider is an M formed by concatenating the Kronecker

products of a collection of underlying matrices, and the analysis of

their algorithm relies on fmin (M) being non-negligible. This also

falls into our setting by choosing � appropriately (as we show in

Corollary 5.3). Finally, as we discuss in our applications, the setting

M = �e* ~3 also directly appears in the work of [19].

The following is an informal statement of our result. Sym3 (R
=)

will refer to a symmetrization of (R=)⌦3 .3 Also, as before, fmin

corresponds to right singular vectors.

Informal Theorem 1.4. Suppose � is a matrix of rank X
�=+3�1

3

�

for some constant X > 0, and let * be any = ⇥< matrix. Let e* be a

d-perturbation of* . Then as long as<  2= for some constant 2 , we

have � 1 � exp(�⌦(=)),

fmin (�e* ~3 ) � poly

✓
d,

1

=

◆
.

(See Theorem 5.1 for a formal statement.)

3The latter can be viewed as having a coordinate for all “ordered” monomials of degree
3 in = variables (e.g., G8G 9 and G 9G8 correspond to di�erent coordinates), while the

former collects the terms with the same product. See Section 3 for a formal description.
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Note that the above Theorem 1.4 with 3 = 2 answers Ques-

tion 1.1 a�rmatively. It also proves a similar statement about how

the column space of a 3th order lift e* ~3 behaves like a random

subspace of the lifted space of the same dimension with respect to

linear operators in the lifted space of reasonable rank, even though

we have only 3=< random “bits” as opposed to ⌦3 ((<=)3 ). As

we describe in Section 2, the proof relies on �rst moving to non-

symmetric products via a new decoupling argument. In the case

of non-symmetric products, we end up having to analyze the least

singular value of a matrix of the form �(e* (1) ⌦ e* (2) ⌦ · · · ⌦ e* (3 ) ).

This can be interpreted as a “modal contraction” (or dimension re-

duction of the mode) de�ned by {e* (8 ) } applied to the tensor �. We

then show how to analyze such smoothed modal contractions, which

ends up being one of our technical contributions (see Section 2.3

and Theorem 5.2).

1.1.4 Applications.

Certifying distance from variety and quantum entanglement. Our

�rst application is to the problem of certifying that a variety is “far”

from a generic linear subspace. As a simple motivation, suppose

we have a linear subspace X of dimension X= in R= (assume X <

1/2). Then for a randomly d-perturbed subspace eU of dimension

< =/2, we can show that the two spaces have no overlap in a

strong sense: every unit vector D 2 X is at a distance ⌦(d) from
eU. It is natural to ask if a similar statement holds when X is an

algebraic variety (as opposed to a subspace). This problem also

has applications to quantum information (see [19] and references

therein). Furthermore, we can ask if there is an e�cient algorithm

that can certify that every unit vector in X is far from eU.

We answer both these questions in the a�rmative.

Informal Theorem 1.5. Suppose X ⇢ R= is an irreducible variety

cut out by X
�=+3�1

3

�
homogeneous degree 3 polynomials. There exists

a 2 > 0 such that for any d-perturbed subspace eU of dimension at

most 2=, with probability 1 � exp(�⌦(=)), every unit vector in X

has distance � poly
⇣
d, 1=

⌘
to eU. Further, this can be certi�ed by an

e�cient algorithm. (See Theorem D.1 for the formal statement.)

The recent work of [19] gave an algorithm that we also use, but

our new least singular value bounds imply the quantitative distance

lower bound stated above. Applying this theorem with the variety

of rank-1 matrices gives the following direct corollary.

Corollary 1.6. There is a polynomial time algorithm that given a

random d-perturbed subspace eU of =1 ⇥ =2 matrices of dimension

<  2=1=2 (for some universal constant 2 > 0) certi�es w.h.p. that eU
is at least poly(d, 1/=) far from every rank-1 matrix of unit norm.

The above theorem also has a direct implication to robustly

certifying entanglement of di�erent kinds, which we describe in

Section D.

Decomposing sums of powers of polynomials. Our second applica-

tion is to the problem of “decomposing power sums” of polynomials,

a question that has applications to learning mixtures of distribu-

tions. In the simplest setting, [12] and [7] consider the following

problem: given a polynomial ? (x) that can be expressed as

? (x) =
’

C 2 [<]

0C (x)
3 + 4 (x)

where 0C are quadratic polynomials and 4 (x) is a small enough error

term, the goal is to recover {0C (x)}C 2 [<] .
4 The work of [7] gave an

algorithm for this problem, but their analysis relies on certain non-

degeneracy conditions, which can be formulated as a lower bound

on the least singular value of appropriate matrices. They prove that

these conditions hold if the instances (i.e., the polynomials 0C ) are

random, using the machinery of graph matrices [1]. However, the

question of obtaining a smoothed analysis guarantee is left open. As

discussed earlier, a smoothed analysis guarantee is much stronger

than a guarantee for random instances, as it shows that even in the

neighborhood of hard instances, most instances are easy.

Their analysis requires least singular value bounds for various

matrices that arise from higher order lifts and polynomials of some

underlying random variables. For example, they require least singu-

lar value bounds on matrices of the form �(*̃ ~3), for a speci�c sym-

metrization operator � that acts on the lifted space. Another type of

matrix that they analyze are block Kronecker products, of the form

+ = [*̃ ~21 . . . *̃ ~2< ] that arise from di�erent partial derivatives.5

These kinds of matrices are ideal candidates for our techniques.

Informal Theorem 1.7. For the matricesM arising in the analysis

of [7], a d-perturbation of the parameters of 0C results in fmin (M) �
poly(d, 1/=), with probability 1 � exp(�poly(<,=)). (This corre-

sponds the formal statements of propositions E.1, E.2, and E.3.)

These least singular bounds allow us to conclude that the al-

gorithm of [7] indeed has a smoothed analysis guarantee. In Sec-

tion E, we outline the algorithm of [7], identify the di�erent non-

degeneracy conditions required and show that each of these condi-

tions holds for smoothed/perturbed polynomials 0C . Interestingly,

we can avoid the technically heavy machinery of graph matrices,

while obtaining stronger (smoothed) results. We hope our new tech-

niques can also help obtain smoothed analysis guarantees for other

algebraic methods like the framework of [12].

2 PROOF OVERVIEW AND TECHNIQUES

2.1 Improved Net Analyses

Y-Nets and limitations. The classic approach to proving least

singular value bounds is an Y-net argument. The argument proceeds

by trying to prove that kMU k is large for all U in the unit sphere. It

does so by constructing a �ne “net” over points in the sphere with

the properties that (a) the net has a small number of points, and

hence a union bound can establish the desired bound for points

in the net, and (b) for every other point U in the sphere, there is a

point U 0 in the net that is close enough, and hence the bound for

U 0 “translates” to a bound for U . However, in settings where the

columns e-8 ofM have “limited randomness”, this approach cannot

be applied in many parameter regimes of interest. The simplest

example is one where each e-8 is of the form D̃8 ⌦ D̃8 , where D̃8 2 R=
and we have around< = =2/4 such vectors. In this case, (a) above

4This corresponds to the setting  = 2,⇡ = 1 in their framework. We focus only on
this setting, as it turns out to be representative of their techniques.
5The actual matrix is slightly di�erent, and is described in detail in Section E.
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causes a problem: the size of a net for unit vectors in a sphere in

R
< is exp(<) = exp(=2/4). This is much too big for applying a

union bound, since each column only has “= bits” of randomness,

so the failure probability we can obtain for a general U is exp(�=).
For this speci�c example, the works [4, 9] overcome this limitation

by considering more ad-hoc methods for showing least singular

value bounds, not based on Y-nets.

Main idea from Section 4.1. As described above, the limited ran-

domness in each column e-8 limits the probability with which we

can show that P[kMU k] is large. However, we observe that in many

settings, as long as we consider an U that is spread out, we can show

that P[kMU k] is large with a signi�cantly better probability. Infor-

mally, in this case, the randomness across many di�erent columns

gets “accumulated”, thus amplifying the resulting bound. We re-

fer to this phenomenon as combination ampli�es anticoncentration

(CAA) (described informally in Section 1.1; see De�nition 4.1). Our

�rst theorem states that the CAA property automatically implies a

lower bound on fmin (M) with high probability.

To outline the proof of the theorem, let us consider some unit

vector U 2 R< . If U has say</2 “large enough” entries, then the

CAA property implies that kMU k is non-negligible with probability
1 � exp(�<) (roughly), and so we can take a union bound over a

(standard) Y-net, and we would be done. However, suppose U had

only : entries that are large enough (de�ned as > X for some

threshold), and : ⌧<. In this case, the CAA property implies that

kMU k � 2X with probability roughly 1 � exp(�:). While this is

large enough to allow a union bound over just the large entries of

U (placing a zero in the other entries), the problem is that there can

be many entries in U that are just slightly smaller than X . In this

case, having kMU�X k � 2X (where U�X is the vector U restricted

to the entries � X in magnitude, and zeros everywhere else) does

not let us conclude that kMU k > 0, unless 2 is very large. Since we

cannot ensure that 2 is large, we need a di�erent argument.

The idea will be to use the fact that our de�nition of the CAA

comes with a slack parameter V . In particular, for U as above with

: values of magnitude � X , it allows us to take a union bound over

: ·<V parameters. Thus, if we knew that there are at most : ·<V

entries that are “slightly smaller” (by a factor roughly \ ) than X ,

we can include them in the Y-net. De�ning \ appropriately, we can

ensure that the problem described above (where the slightly smaller

entries cancel out the MU�X ) does not occur. The problem now is

when U has > : ·<V entries of magnitude between \X and X . While

this is indeed a problem for this value of X , it turns out that we

can try to work with \X instead. Now the problem can recur, but it

cannot recur more than (1/V) times (because each time, : grows

by an<V factor). This allows to de�ne a hierarchical net, which

helps us identify the threshold X for which the ratio of the number

of entries � \X and � X is smaller than<V .

By carefully bounding the sizes of all the nets and setting \

appropriately, Theorem 4.2 follows.

2.2 Jacobian Based Anticoncentration

As described in Section 1.1, proving smoothed analysis bounds

often requires dealing with a vector of polynomials

% (G) = (?1 (G), . . . , ?# (G))

in some underlying variables G . The goal is to show that for every G ,

evaluating % at a d-perturbed point G̃ gives a vector that is not too

small in magnitude. (A slight generalization is to show that % (G̃) is

not too close to any �xed ~.)

We �rst observe that such a statement is not hard to prove if we

know that the Jacobian � (G) of % (G) has many large singular values

at every G , and if the perturbation d is small enough. This is because

around the given point G , we can consider the linear approximation

of % (G̃) given by the Jacobian. Now as long as the perturbation

has a high enough projection onto the span of the corresponding

singular vectors of � (G), % (G̃) can be shown to have desired anti-

concentration properties (by using the standard anticoncentration

result for Gaussians). Finally, if � (G) has : large singular values, a

random d-perturbation will have a large enough projection to the

span of the singular vectors with probability 1 � exp(�:).
Now, in the applications we are interested in, the polynomials %

tend to have the Jacobian property above for “typical” points G , but

not all G . Our main result here is to show that this property su�ces.

Speci�cally, suppose we know that for every G , the Jacobian at a d

perturbed point has : singular values of magnitude � 2d with high

probability. Then, in order to show anticoncentration, we view the

d perturbation of G as occurring in two independent steps: �rst

perturb by d
p
1 � I2 for some parameter I, and then perturb by

dI. The key observation is that for Gaussian perturbations, this is

identical to a d perturbation!

This gives an approach for proving anticoncentration.We use the

fact that the �rst perturbation yields a point with su�ciently many

large Jacobian singular values with high probability, and combine

this with our earlier result (discussed above) to show that if I is

small enough, the linear approximation can indeed be used for the

second perturbation, and this yields the desired anticoncentration

bound.

Applications. The simplest application for our framework is the

settingwhereM has columns being D̃8⌦Ẽ8 , for some d-perturbations

of underlying vectors D8 , E8 . (This setting was studied in [4, 9] and

already had applications to parameter recovery in statistical mod-

els.) Here, we can show thatM has the CAA property. To show this,

we consider some combination
Õ
8 U8 (D̃8 ⌦ Ẽ8 ) with : “large” coe�-

cients in U , and show that in this case, the Jacobian property holds.

Speci�cally, we show that the Jacobian has ⌦(:=) large singular

values. This establishes the CAA property, which in turn implies

a lower bound on fmin (M). This gives an alternative proof of the

results of the works above.

2.3 Structured Matrices from Kronecker
Products and Higher-Order Lifts

Our second set of techniques allow us to handle structured matrices

that arise from the action of a linear operator on Kronecker products,

as described in Question 1.1. For simplicity let us focus on the

setting when 3 = 2, and let � : Sym(R= ⌦ R=) ! R
: be an

(orthogonal) projection matrix of rank ' � 0.01=2 acting on the

space of symmetric matrices Sym(R= ⌦ R=) (in general � can also

be any linear operator of large rank). Let< = > (=) and e* 2 R=⇥<
be a small random d-perturbation of arbitrary matrix * 2 R=⇥< .

The columns of the matrix e* ~2 are linearly independent with high

probability, and span the symmetric lift of the column space of e* .
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An arbitrary subspace of Sym(R= ⌦R=) of the same dimension may

intersect non-trivially, or lie close to the kernel of �. Theorem 1.4

shows that the column space of e* ~2 for a smoothed e* is in fact far

from the kernel of � with high probability. Note that e* only has

about=< truly independent coordinates or “bits”, whereas a random

subspace (matrix) of the same dimension has 2 · =2<2 independent

coordinates.

Challenge with existing approaches. This setting captures many

kinds of randommatrices that have been studied earlier including [4,

9, 11]. For example, [11] studies the setting when a �xed polynomial

map 5 : R= ! R
: applied to a randomly perturbed vector D̃8 to

produce the 8th column 5 (D̃8 ). It turns out to be a special case

of our setting above when < = 1. These works use the leave-

one-out approach to lower bound the least singular value, where

they establish that every column has a non-negligible component

orthogonal to the span of the rest of the columns (see Lemma 3.1).

However this approach crucially relies on the columns bringing in

independent randomness.6 This does not hold in our setting, since

every column share randomness with ⌦(<) other columns.

In the recent algebraic algorithms of [7, 12] for decomposing sum

of powers of polynomials, the analysis of the algorithm involves

analyzing the least singular value of di�erent random matrices.

One such matrix M is formed by concatenating the Kronecker

products of a collection of underlying matrices. This allows us to

reason about that the non-overlap or distance between the lifts

of a collection of subspaces. The work of [7] analyzed the fully

random setting and proves least singular value boundswith intricate

arguments involving graph matrices, matrix concentration, and

other ideas. Speci�cally, like in [29], they show that E[M] has good

least singular value, and then prove deviation bounds on the largest

singular value ofM�E[M] to get a bound of fmin (E[M])�kM�
E[M]k. But this approach does not extend to the smoothed setting,

since the underlying arbitrary matrix* makes it challenging to get

good bounds for kM � E[M]k.
For the smoothed case, when 3 = 2, it turns out that we can

use ideas similar to those described in Sections 2.1 and 2.2 to show

Theorem 1.4. However, the approach runs into technical issues for

larger 3 . Thus, we develop an alternate technique to analyze higher-

order lifts that proves Theorem 1.4 for all constant 3 . In order to

prove Theorem 1.4 we �rst move to a decoupled setting where we

are analyzing the action of a linear operator on decoupled products

of the form

�(e* ⌦ e+ ),

where e+ has a random component that is independent of e* . This

new decoupling step leverages symmetry and the Taylor expan-

sion and carefully groups together terms in a way that decouples

the randomness. The main technical statement we prove is the

following non-symmetric version of Theorem 1.4 which analyzes a

linear operator acting on a Kronecker product of di�erent smoothed

matrices.

Informal Theorem 2.1 (Non-symmetric version for 3 = 2 and

modal contractions). Suppose � 2 R'⇥=3 is a matrix with at least

6The work of [11] also handles some speci�c settings with a small overlap across
columns, but these specialized ideas do not extend more generally to our setting.

Figure 1: The �gure shows the setting of Theorem 2.1 with

3 = 2. Le�: The linear operator � : R=⇥= ! R
' interpreted

as a tensor consisting of a = ⇥ = array of '-dimensional vec-

tors. There are smoothed or random contractions applied

using matrices e* ,
e+ 2 R=⇥< . Right: The operator �(e* ⌦ e+ ) :

R
<⇥< ! R

' interpreted as an <2 array of '-dimensional

vectors. Theorem 2.1 shows that under the conditions of the

theorem, with high probability the robust rank is<2.

⌦(=2) singular values larger than 1, and let e* ,
e+ be random d-

perturbations of arbitrary matrices * ,+ . Then if <  2= for an

appropriate small constant 2 > 0, we have with probability � 1 �
exp(�⌦(=)) that

fmin

⇣
�(e* ⌦ e+ )

⌘
� poly

✓
d,

1

=

◆
.

(See Theorem 5.2 for the formal statement for general 3 .)

Smoothed modal contractions. While � is speci�ed as a linear

operator or a matrix of dimension ' ⇥ =2 in Theorem 2.1, one can

alternately view � as a order-3 tensor of dimensions ' ⇥ = ⇥ =

as shown in Figure 1. Theorem 2.1 then gives a lower bound for

the multilinear rank7 (or its robust analog) under smoothed modal

contractions (dimension reduction) along the modes of dimension

= each. The proof of this theorem is by induction on the order 3 . We

perform each modal contraction one at a time. As shown in Figure 2,

we �rst do modal contraction by e+ to obtain a ' ⇥ = ⇥< tensor,

and then by e* to form the �nal ' ⇥< ⇥< tensor. We need to argue

about the (robust) ranks of the matrix slices (we also call them

blocks) and tensors obtained in intermediate steps. For any matrix

" (potentially a matrix slice of the tensor �) of large (robust) rank

: > 1.1<, a smoothed contraction "*̃ has full rank< (i.e., non-

negligible least singular value) with probability 1 � exp(�⌦(:)).
To argue that the �nal tensor (when �attened) has full rank<2, we

need to argue that for the tensor in the intermediate step, , each of

the< slices (along the contracted mode) has rank at least ⌦(=). The

original rank of � was large, so we know that a constant fraction

of the slices �1, . . . ,�= must have rank ⌦(=). But this alone may

not be enough since many of the slices can be identical, in which

case the< slices are not su�ciently di�erent from each other.

We can use the large rank of � to argue that a constant fraction

of the matrix slices should have large “marginal rank” i.e., they have

large rank even if we project out the column spaces of the slices

7The multilinear rank(s) of a tensor is the rank of the matrix after �attening all but
one mode of the tensor.
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that were chosen before it. While this strategy may work in the

non-robust setting, this incurs an exponential blowup in the least

singular value. Instead we use the following randomized strategy of

�nding a collection of blocks or slices (1 ⇢ [=], each of which has

a large “relative rank”, even after we project out the column spaces

of all the other blocks in (1 (we show these statements in a robust

sense, formalized using appropriate least singular values).

Finding many blocks with large relative rank. We note that while

the idea is quite intuitive, the proof of the corresponding claim

(Lemma 5.4) is non-trivial because we require that in any selected

block, there must be many vectors with a large component orthog-

onal to the entire span of the other selected blocks. As a simple

example, consider setting =2 = 2C and

�1 = {41, 42, . . . , 4C , Y4C+1, Y4C+2, . . . , Y42C },

and �2 = {Y41, Y42, . . . , Y4C , 4C+1, 4C+2, . . . , 42C }.

In this case, even if Y is tiny, we cannot choose both the blocks,

because the span of the vectors in �2 contains all the vectors in �1.

The proof will proceed by �rst identifying a set of roughly

' = ⌦(=2) vectors (spread across the blocks) that form a well

conditioned matrix, followed by randomly restricting to a subset of

the blocks. We start with the following claim, which gives us the

�rst step.

Claim 2.2 (Same as Lemma C.2). Suppose � is an < ⇥ = matrix

such that f: (�) � \ . Then there exists a submatrix �( with |( | = :

columns, such that f: (�( ) � \/
p
=: .

The lemma is a robust version of the simple statement that if

f: (�) > 0, then there exist : linearly independent columns. The

proof of the claim is elegant and uses the choice of a so-called

Auerbach basis or a well-conditioned basis for the column span.

The outline of the main argument is as follows:

(1) First �nd a submatrix" of ' = X=2 columns of � such that

f' (") is large

(2) Randomly sample a subset ) ✓ [=] of the blocks.

(3) Discard any block 9 2 ) that has fewer than X=/6 vectors

with a non-negligible component orthogonal to the span of

[A 2 () \{ 9 })�A ; argue that there are ⌦(X=) blocks remaining.

We remark that the above idea of a random restriction to obtain

many blocks with large relative rank (in a robust sense) seems of

independent interest and also comes in handy in the application to

power sum decompositions (Claim E.5).

Finishing the inductive argument. As shown in Figure 2, after

modal contraction along +̃ 2 R=⇥< , we get, 2 R'⇥=⇥< with

slices,1, . . . ,,= .

Now we would like to argue that when we perform a smoothed

contraction with e* , the contracted slices have large rank, while

simultaneously preserving the relative rank across the slices. Let

,(1 2 R'⇥(1⇥< represent the subtensor corresponding to the slices

obtained from the “good” blocks (1 ⇢ [=] (which have large relative

rank), and let,[=]\(1 2 R'⇥ ( [=]\(1 )⇥< represent the remaining

slices. Also let, ( 9 ) 2 R'⇥= denote the matrix slices along the

alternate mode for each 9 2 [<]. We can show that the randomly

contracted matrices,
( 9 )
(1

have large relative rank with respect

to each other. The random modal contraction e* can also now be

Figure 2: Le�: The setting of 3 = 2 with linear operator

� : R=⇥= ! R
' having slices �1, . . . ,�= 2 R'⇥= . The modal

contractions e* ,
e+ 2 R=⇥< have not yet been applied. Right:

After modal contraction along e+ 2 R=⇥< , we get, 2 R'⇥=⇥<
with slices,1, . . . ,,= .,(1 2 R'⇥(1⇥< represents the slices

obtained from the “good” blocks (1 ⇢ [=], and ,[=]\(1 2
R
'⇥ ( [=]\(1 )⇥< represents the remaining slices. The random

modal contraction e* is also split into e*(1 2 R(1⇥<, e* [=]\(1 2
R
[=]\(1⇥< .

split into e*(1 2 R(1⇥<, e* [=]\(1 2 R[=]\(1⇥< . The �nal matrix slice

obtained for each 9 2 [<3�1] can be written as

" ( 9 )
=,

( 9 )
(1

e*(1 +,
( 9 )

[=]\(1
e* [=]\(1 ,

where the randomness in the two summands is independent. Argu-

ing that the high relative rank across the slices is preserved involves

some work, and this is achieved in Lemma 5.5. The lemma proves

that with high probability, every test unit vector U 2 R< ·< has

non-negligible value of k"U k2. A standard argument would con-

sider a net over all potential unit vectors U 2 R< ·< . However this

approach fails here, since we cannot get high enough concentration

(of the form 4�⌦ (<2 ) ) that is required for this argument. Instead,

we argue that if there were such a test vector U 2 R< ·< , there exists

a block 9⇤ 2 [<] where we get a highly unlikely event. This allows

us to conclude the inductive proof that establishes Theorem 2.1.

3 PRELIMINARIES

We now introduce our basic de�nitions and notation. For a matrix

* 2 R=⇥< , let k* k and k* k� denote the operator and Frobenius

norms of * , respectively. Central to the paper are d-smoothed

matrices. In particular, given a matrix* 2 R=⇥< , we let *̃ = * + ⇢

where ⇢ 2 N(0, d2). We commonly call *̃ a d-smoothing of * or

a d-perturbation of * . Similar notation is used for vector inputs

G = (G1, . . . , G=) to a polynomial ? : R= ! R< . I.e., G̃ = G +[ where

[ 2 N(0, d2). Thus, for example, ? (G̃) is the evaluation of ? on a

d-smoothed G .

Products. We also frequently use the Kronecker product, denoted

⌦, and the Khatri-Rao product, denoted �. Given matrices, � 2
R
=⇥< and ⌫ 2 R:⇥✓ , the Kronecker product � ⌦ ⌫ is the block
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matrix

� ⌦ ⌫ =

2666664

011⌫ . . . 01<1⌫
.

.

.

.

.

.

.

.

.

0=11⌫ . . . 0=1<1⌫

3777775

2 '=:⇥<✓ .

We let �⌦3 2 '=
3⇥<3

denote the Kroncker product of a total of 3

copies of �. In the case that< = ✓ , the Khatri-Rao product � � ⌫ is

de�ned by

� � ⌫ =

266664

" "
01 ⌦ 11 . . . 0< ⌦ 1<

# #

377775
2 R=:⇥< .

Here 0 9 and 1 9 denote the 9 th column of � and ⌫, respectively, and

0 9 ⌦ 1 9 is the Kronecker product (or simply the tensor product) of

these columns.

For vector spacesU,V , the tensor product spaceU⌦V = {D⌦E :

D 2 U, E 2 V}. When U = V , we also call U⌦2
= U ⌦ U a lift

of the space U (of degree/order 2). This can also be generalized

to 3-wise products and lifts. When U = R
= , the space (R=)⌦3

corresponds to the space of all 3-th order tensors of dimensions

= ⇥ = · · · ⇥ =. This is isomorphic to the space R=
3
; each tensor can

be �attened to form a vector in =3 dimensions i.e., (R=)⌦3 � R=
3
.

Symmetrized products. Weare often concernedwith symmetrized

versions of matrix products. To handle these, we introduce a (par-

tially) symmetrized Kronecker product ~ which is de�ned for tu-

ples of matrices (* (1)
, . . . ,* (3 ) ) where* ( 9 ) 2 R= 9⇥< . We de�ne

* (1)
~ * (2)

~ . . . ~ * (3 ) 2 R⇧3
8=1= 9⇥(<+3�1

3 ) to be the matrix with

columns indexed by tuples (81, 82, . . . , 83 ) with 1  81  82  · · · 
83  < where the column corresponding to (81, 82, . . . , 83 ) is

1

|(3 |

’

c2(3
D
(1)
8c (1)

⌦ D
(2)
8c (2)

⌦ · · · ⌦ D
(3 )
8c (3 )

.

Here (3 denotes the symmetric group on [3] and D
( 9 )
8c ( 9 )

denotes the

8c ( 9 ) th column of * ( 9 ) . For example, for matrices * ,+ 2 R=⇥< ,

the column of* ~ + corresponding to a tuple (8, 9) with 8  9 is

1

2
(D8 ⌦ E 9 + D 9 ⌦ E 9 ) .

In the case that 8 = 9 , this reduces toD8 ⌦E8 . For a matrix* 2 R=⇥< ,

we let * ~3 2 R=3⇥(
<+3�1

3 ) denote the ~ product of a total of 3

copies of* . The product ~ can be viewed as a partially symmetrized

version of the Kronecker product since all columns of * ~3 are

symmetric with respect to the natural symmetrization of R=
3
�

(R=)⌦3 .
Along these lines, we introduce the operator Sym3 : R=

3 ! R=3

which symmetrizes elements of R=
3
with respect to the identi�ca-

tion R=
3
� (R=)⌦3 . With this notation, we have that

Sym3 (*
~3 ) = * ~3 .

Moreover, the columns of the matrix* ~3 are precisely the unique

columns of the matrix Sym3 (*
⌦3 ).

Finally, for a vector space U, we have that U~3 = Sym3 (U
⌦3 )

is the space of symmetric 3th tensors over the spacd U. We also

call this the symmetric 3th order left of the spaceU.

Leave-one-out distance. The leave-one-out distance of a matrix*

is a useful tool for analyzing least singular values. Given* 2 R=⇥< ,

de�ne the leave-one-out distance ✓ (* ) by

✓ (* ) = min
8

dist
�
D8 , Span{D 9 : 9 < 8}

�
.

The least singular value of* is related to the leave-one-out distance

of* through the following lemma [24].

Lemma 3.1 (Leave one out distance). Let* 2 R=⇥< . Then

✓ (* )
p
<

 fmin (* )  ✓ (* ) .

See also Lemma A.2 for a block-version of leave-one-out singular

value bounds.

In our work we also encounter the Jacobian of a polynomial map.

Given a vector valued function % (G) = (?1 (G), ?2 (G), . . . , ?# (G))

over underlying variables G = (G1, G2, . . . , G=), the Jacobian is de-

�ned as the (= ⇥ # ) matrix of partial derivatives where the (8, 9)th

entry is
m? 9
mG8

. Thus, the linear approximation of % (G) around a point

G is simply % (G + [) = % (G) + � (G))[.

4 HIERARCHICAL NETS AND
ANTICONCENTRATION FROM JACOBIAN
CONDITIONING

A complete version of this section, including all deferred proofs, can

be found in Appendix B. In this section, we will primarily deal with

a matrix M of dimensions # ⇥< where< < # . The columns will

be denoted by e-8 , and we wish to show a lower bound on f< (M).

In this section, we describe the �ner Y-net argument outlined in

Section 2. We begin with a formal de�nition of the CAA property.

De�nition 4.1 (CAA property). We say that a random matrix M

with< columns has the CAA property with parameter V > 0, if for

all : � 1, for all test vectors U 2 R< with at least : coordinates of

magnitude X , there exist _ > 0 and 2 � 8
V
(dependent only onM)

such that

8⌘ 2 (0, 1), P[kMU k < X⌘/_]  exp
⇣
�2 min(<,:<V ) log(1/⌘)

⌘
.

Remark. We note that the condition 2 � 8/V may seem strong;

however, as we will see in applications, it is satis�ed as long as<

is small enough compared to # , the number of rows of the matrix.

4.1 Hierarchical Nets

The following shows that the CAA property implies a least singular

value guarantee.

T������ 4.2. Suppose M is a random matrix with< columns

and thatM satis�es the CAA property with some parameter V > 0.

Suppose additionally that we have the spectral norm bound kMk  !

with probability 1�[. Then with probability at least 1�exp(�<V )�[,
we have

f< (M) � 1

(!<_)
2d 1

V e
,

where _ comes from the CAA property.

As discussed in Section 2, the natural approach to proving such a

result would be to take nets based on the sparsity of the test vector

U . In other words, if there are : nonzero values of magnitude X > 0,
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the CAA property yields a least singular value lower bound of X/_

(choosing ⌘ to be a small constant), and we can take a union bound

over a net of size exp(:). The issue with this argument is that U

might have many other non-zero values that are slightly smaller

than X , and these might lead to a zero singular value (unless it so

happened that _ < 1/<, which we do not have a control of). Of

course, in this case, we should have worked with a slightly smaller

value of X , but this issue may recur, so we need a more careful

argument.

The rest of this subsection will focus on proving Theorem 4.2. For

de�ning the nets, we will use threshold values g1 = 1/<, g2 = \/<,

and so on (more generally, g 9 = \ 9�1/<). \ is a parameter that will

be chosen appropriately; for now we simply use \ 2 (0, 1/<).

We construct a sequence of nets N1,N2, . . . ,NB�1 as follows.

The net N1 is a set of vectors parametrized by pairs (A1, A2) 2 N2,
where: (a) 1  A1  <1�V , (b) A2  <VA1. For each pair (A1, A2), we

include all the vectors whose entries are integer multiples of \
<

with have exactly (A1 + A2) non-zero entries, of which A1 entries are

in (g1, 1] and A2 entries are in [g2, g1]. Thus, the number of vectors

in N1 for a single pair (A1, A2) is bounded by:
✓
<

A1

◆ ✓
<

A2

◆ ⇣<
\

⌘A1 ⇣<
\

⌘A2
<

⇣<
\

⌘2(A1+A2 )
.

The next net N2 has vectors parametrized by (A1, A2, A3) 2 N3,
where (a) A2  <1�V , (b) A3  <VA2, and additionally, (c) A2 � <VA1.

For each such tuple, we include vectors that have exactly (A1+A2+A3)

non-zero entries (in the corresponding g ranges as above), and have

values that are all integer multiples of \2/<.

More generally, the vectors of N9 will be parametrized by

(A1, A2, . . . , A 9+1) 2 N9+1, where (a) A 9  <1�V , (b) A 9+1  <VA 9 , and

additionally, (c) for 1  8 < 9 , we have A8+1 > <VA8 . In other words,

A 9+1 is the �rst value that does not grow by a factor<V . For every

such tuple,N9 includes all vectors that have exactly (A1 + · · · +A 9+1)

non-zero entries, each of which is an integer multiple of \
9

< , and

exactly A8 of them in the range (g8 , g8�1] for all 8  9 + 1.

We have nets of this form for 9 = 1, 2, . . . , B � 1, where B = d 1
V
e.

We now have the following claim.

Claim 4.3. Fix any 1  9 < B . We have

P

"
9U 2 N9 , kMU k < \ 9�

1
2

<_

#
< exp

⇣
� 1
22<

9V
⌘
.

Finally, we have a bigger net for all “dense” vectors U , that have

at least<1�V coordinates of magnitude � \B�1
< . This net consists of

vectors 2 R< for which (a) every coordinate is an integer multiple

of \B/< (between 0 and 1), and (b) at least<1�V coordinates are

� \B�1
< . Call this net N0. An easy upper bound for the size is

|N0 | 
⇣<
\B

⌘<
.

Using this, we have the following:

Claim 4.4.

P

"
9U 2 N0 : kMU k < \B�

1
2

<_

#
< exp

⇣
�2
2
<
⌘
.

One of the advantages of our Y-net argument is that if we only

care about “well spread” vectors, we can obtain a much stronger

concentration bound (Eq (10)).

Observation 4.5. Suppose M is a random matrix that satis�es the

CAA property with parameter V . Let us call a test vector U (of length

 1) “dense” if it has at least<1�V coordinates of magnitude > X .

Then

P

"
9 dense U : kMU k < 1

(!<_)
2d 1

V e

#
< exp

⇣
� 1
22<

⌘
.

Note that in the above claim,< could be quite large compared

to =. The observation follows immediately from (10), but we will

use it later in Section 4.3.

4.2 Anticoncentration of a Vector of
Homogeneous Polynomials

We consider the following setting: let ?1, ?2, . . . , ?# be a collection

of homogeneous polynomials over = variables (G1, G2, . . . , G=), and

de�ne

% (G) =

266666664

?1 (G)

?2 (G)
.

.

.

?# (G)

377777775

(1)

Our goal will be to show anticoncentration results for % . Specif-

ically, we want to prove that P[k% (G̃) � ~k < Y] is small for all ~,

where G̃ is a perturbation of some (arbitrary) vector G 2 R= . We

give a su�cient condition for proving such a result, in terms of the

Jacobian of % . (See Section 3 for background.)

De�nition 4.6 (Jacobian rank property). We say that % has the

Jacobian rank property with parameters (:, 2,W) if for all d > 0 and

for all G , the matrix � (G̃) has at least : singular values of magnitude

� 2d , with probability at least 1 � W . Here, G̃ = G + [, where [ ⇠
N(0, d2) is a perturbation of the vector G .

Comment. Indeed, all of our results will hold if we only have the

required condition for small enough perturbations d . To keep the

results simple, we work with the stronger de�nition.

For many interesting settings of % , the Jacobian rank property

turns out to be quite simple to prove. Our main result now is that

the property above implies an anticoncentration bound for % .

T������ 4.7. Suppose % (G) de�ned as above satis�es the Jacobian

rank property with parameters (:, 2,W), and suppose further that the

Jacobian % 0 is "-Lipschitz in our domain of interest. Let G be any

point and let G̃ be a d-perturbation. Then for any ⌘ > 0, we have

8~ 2 R# , P

k% (G̃) � ~k < 2d2⌘

64"=:

�
 W + exp(�1

4
· : log(1/⌘)) .

A key ingredient in the proof is the following “linearization”

based lemma.

Lemma 4.8. Suppose G is a point at which the Jacobian � (G) of a

polynomial % has at least : singular values of magnitude � g . Also

suppose that the norm of the Hessian of % is bounded by " in the
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domain of interest. Then, for “small” perturbations, 0 < d <
g

4"=:
,

we have that for any Y > 0,

8~, P[k% (G̃) � ~k < Y] <

✓
2Y

gd

◆:
+

✓
2"d=:

g

◆:/2
.

We remark that the lemma does not imply Theorem 4.7 directly

because it only applies to the case where the perturbation d is much

smaller than the singular value threshold g .

4.3 Jacobian Rank Property for Khatri-Rao
Products

As the �rst application, let us use the machinery from the previous

sections to prove the following.

T������ 4.9. Suppose* ,+ 2 R=⇥< and suppose their entries are

independently perturbed (by Gaussians N(0, d2)) to obtain *̃ and +̃ .

Then whenever<  =2/⇠ for some absolute constant ⇠ , we have

fmin (*̃ � +̃ ) � poly

✓
d,

1

=

◆
,

with probability 1 � exp(�⌦(=)).

Note that the result is stronger in terms of the success probabil-

ity than the main result of [9] and matches the result of [4]. The

following lemma is the main ingredient of the proof, as it proves

the CAA property for *̃ �+̃ . Theorem 4.9 then follows immediately

from Theorem 4.2.

Lemma 4.10. Suppose U 2 R< be a unit vector at least : of whose

coordinates have magnitude � X . Let * ,+ be arbitrary (as above),

and let *̃ and +̃ be d perturbations. De�ne % (*̃ , +̃ ) =
Õ
8 U8D̃8 ⌦ Ẽ8 .

Then for" = (< + =)2 and all ⌘ > 0, we have

P


k% (*̃ , +̃ )k < X⌘ ·

d2

64"=:

�
< exp

✓
� 1

16
:= log(1/⌘)

◆
.

Remark. To see why this satis�es the CAA property (hypothesis

of Theorem 4.2), note that as long as< < =2/⇠ for a su�ciently

large (absolute) constant ⇠ , the term :=
16 � 16min(<,:<1/2), thus

it satis�es the condition with V = 1/2.

The Jacobian property used to show Lemma 4.10 can be extended

to higher order Khatri-Rao products. We give details in Section B.3.

5 HIGHER ORDER LIFTS AND STRUCTURED
MATRICES FROM KRONECKER PRODUCTS

A complete version of this section, including all deferred proofs

can be found in Appendix C. We provide the following theorem.

T������ 5.1. Suppose3 2 N, and let � : Sym3 (R=) ! R⇡ be an

orthogonal projection of rank ' = X
�=+3�1

3

�
for some constant X > 0,

and let Sym3 : (R=)⌦3 ! Sym3 (R=) be the orthogonal projection on

to the symmetric subspace of (R=)⌦3 . Let* = (D8 : 8 2 [<]) 2 R=⇥<
be an arbitrary matrix, and let *̃ be a random d-perturbation of * .

Then there exists a constant 23 > 0 such that for <  23X=, with

probability at least 1 � exp
�
� ⌦3,X (=)

�
, we have the least singular

Figure 3: Le�: The linear operator  : R=⇥= ! R' interpreted

as a tensor consisting of a = ⇥ = array of '-dimensional vec-

tors. There are smoothed or random contractions applied

using matrices *̃ , +̃ 2 R=⇥< . Right: The operator  (*̃ ⌦ +̃ ) :

R
<⇥< ! R

' interpreted as an <2 array of '-dimensional

vectors. Theorem 5.2 shows that under the conditions of the

theorem, with high probability the robust rank of this op-

erator is<2 i.e, the least singular value of ' ⇥<2 matrix is

inverse polynomial.

value

f
(<+3�1

3 )
(�*̃ ~3 ) � d3

=$ (3 )
, where

*̃ ~3 B
⇣
Sym3 (D̃81 ⌦ D̃82 · · · ⌦ D̃83 ) : 1  81  82  · · ·  83  =

⌘
.

(2)

In the above statement, one can also consider an arbitrary linear

operator � and su�er an extra factor of f' (�) in the least singular

value bound (by considering the projector onto the span of the top

' singular vectors). In the rest of the section, we assume that � is

an orthogonal projector of rank ' without loss of generality.

Theorem 5.1 follows from the following theorem (Theorem 5.2)

which gives a non-symmetric analog of the same statement. The

proof of Theorem 5.1 follows from a reduction to Theorem 5.2 that

is given by Lemma C.4. In what follows,  2 R'⇥=3 denotes the

natural matrix representation of � such that  G⌦3 = �(G⌦3 ) for
all G 2 R= .

T������ 5.2. Suppose ✓ 2 N, ' = X
�=+3�1

3

�
for some constant

X > 0 and let  : (R=)⌦✓ ! R⇡ be a linear operator with f' ( ) � 1.

Suppose random matrices *̃ (1)
, . . . , *̃ (3 ) 2 R=⇥< are generated as

follows:

89 2 [3], *̃ ( 9 )
= * ( 9 ) + / ( 9 )

, where / ( 9 ) ⇠8 .8 .3 N(0, d2)=⇥<

and is independent of* ( 9 )
, (3)

while* ( 9 ) 2 R=⇥< is arbitrary and can also depend on

*̃ ( 9+1)
, . . . , *̃ (3 ) . Then there exists constants 23 , 2

0
3

> 0 and an

absolute constant 20 � 1 such that for<  23X=, with probability at

least 1 � exp
�
� ⌦3,X (=)

�
, we have

f<3

⇣
 
�
*̃ (1) ⌦ · · · ⌦ *̃ (3 ) � ⌘ �

20
3
d3

=203
. (4)

While  is speci�ed as a matrix of dimension ' ⇥ =3 in Theo-

rem 5.2, one can alternately view  as a (3 + 1)-order tensor of
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dimensions ' ⇥ = ⇥ = ⇥ · · · ⇥ = as shown in Figure 4. Theorem 5.2

then gives a lower bound for the multilinear rank (in fact, for its

robust analog) under smoothed modal contractions along the 3

modes of dimension = each.

Applying Theorem 5.1 along with the block leave-one-out ap-

proach (see Lemma A.2) we arrive at the following corollary.

Corollary 5.3. Suppose 3, C 2 N and let 1 � X1 > X2 > 0 be given.

Also let � : Sym3 (R=) ! R⇡ be an orthogonal projection of rank

' � X1
�=+3�1

3

�
. Let {* 9 }

C
9=1 ⇢ R=⇥< be an arbitrary collection of

= ⇥< matrices, and for each 9 , let *̃ 9 be a random d-perturbation

of * 9 . Then there exists a constant 23 > 0 such that if C
�<+3�1

3

�


X2
�=+3�1

3

�
and <  23 (X1 � X2)=, then with probability at least

1 � exp
�
� ⌦3,X1,X2 (=)

�
, we have the least singular value

f
C (<+3�1

3 )

⇣
�
⇥
*̃ ~31 *̃ ~32 . . . *̃ ~3C

⇤ ⌘
� d3

p
C=$ (3 )

. (5)

5.1 Proof of Theorem 5.2

We will prove Theorem 5.2 for general 3 by induction on 3 . The

following crucial lemma considers a linear operator  acting on

the space R=1 ⌦ R=2 , and shows that if  has large rank ⌦(=1=2),

then it has many “blocks” of large relative rank as described in

Section 2.3.

Lemma 5.4. Let  2 R'⇥ (=1=2 ) be a projection matrix of rank

' = X=1=2 for some constant X > 0, and let  = [ 1  2 . . .  =1 ]

where the blocks  8 2 R'⇥=2 88 2 [=1]. Then there exists constants

21, 22, 23 > 0 and a subset (1 ⇢ [=1] with |(1 | � 21X=1 such that

88 2 (1, f22X=2

⇣
⇧
?
(1\{8 }

 8

⌘
� 1

(=:)23
, (6)

where ⇧?
(
is the projection orthogonal to span

�
[82( colspan( 8 )

�
.

We note that while the statement of Lemma 5.4 is quite intuitive,

the proof is non-trivial becausewe require that in any selected block,

there must be many vectors with a large component orthogonal to

the entire span of the other selected blocks. We prove this lemma in

Section C.2 by restricting to randomly chosen columns as described

in the overview (Section 2.3).

The following lemma will be important in the inductive proof

of the theorem. It reasons about the robust rank (also called multi-

linear rank) after the modal contraction by a smoothed matrix along

a speci�c mode. The lemma is proved in slightly more generality;

we will use it for the theorem with Y = 1.

Lemma 5.5 (Robust rank under random contractions). Suppose

Y 2 (0, 1] is a constant. For every constant W,⇠ > 0, there is a constant

2 2 (0, 1) such that the following holds for all B = 2> (: ) . Consider

matrices �1,�2, . . . ,�B 2 R'⇥: , ⇠1, . . . ,⇠B 2 R'⇥< and 89 2 [B]

let ⇧?
� 9 denote the projector orthogonal to the span of the column

spaces of {� 9 0 : 9
0
< 9, 9 0 2 [B]}. Suppose the following conditions

are satis�ed:

89 2 [B], fY: (⇧
?
� 9� 9 ) � :�W (7)

and f1 (� 9 ),f1 (⇠ 9 )  :⇠ . For a random d-perturbed matrix *̃ 2
R
:⇥< with<  2Y: , we have with probability at least 1�exp(�⌦(Y:))

that

if 89 2 [B], " 9 = ⇠ 9 +� 9*̃ , then fB<

⇣
"1 | · · · | "B

⌘
� d

2:W+1
p
B
.

Finally, we reduce the the setting of symmetric products to that

of non-symmetric products. We provide details in Section C.3.
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