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ABSTRACT
The rate at which humanity is producing data has increased sig-
ni�cantly over the last decade. As organizations generate unprece-
dented amounts of data, storing, cleaning, integrating, and ana-
lyzing this data consumes signi�cant (human and computational)
resources. At the same time organizations extract signi�cant value
from their data. In this work, we present our vision for develop-
ing an objective metric for the value of data based on the recently
introduced concept of data relevance, outline proposals for how to
e�ciently compute and maintain such metrics, and how to utilize
data value to improve data management including storage organi-
zation, query performance, intelligent allocation of data collection
and curation e�orts, improving data catalogs, and for making pric-
ing decisions in data markets. While we mostly focus on tabular
data, the concepts we introduce can also be applied to other data
models such as semi-structure data (e.g., JSON) or property graphs.
Furthermore, we discuss strategies for dealing with data and work-
loads that evolve and discuss how to deal with data that is currently
not relevant, but has potential value (we refer to this as dark data).
Furthermore, we sketch ideas for measuring the value that a query
/ workload has for an organization and reason about the interaction
between query and data value.
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1 INTRODUCTION
As organizations produce unprecedented amounts of data, manag-
ing that data and utilizing it to improve the operations of the organi-
zation has become a critical challenge.While data catalogs andmeta-
data management systems like Apache Atlas [1] and Goods [15]
enable organizations to track their data and its usage, these or-
ganizations still have to decide how to spend limited resources
(storage, compute, human time, . . . ) most e�ectively on what data.
For instance, data collection and curation require signi�cant manual
labor and, thus, should be focused on data that of high importance
to the operations of a business. What is missing, is an objective
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metric for the value that data has to an organization or, more
speci�cally, for a particular purpose within the organization (e.g.,
deciding what products to promote). Such a metric would allow
resources to be spent where they are most needed. For example, it
is sensible to spend human e�ort on cleaning and collecting data
that is important while data that is of little value can be subjected
to lossy compression, stored on slow storage media, and may not
need to be curated.

In this work, we present our vision for an objective metric of
data value. We argue that the only value of a piece of data is its
contribution to producing the results of queries (and other compu-
tations). Data that is only stored, but not used in computations in
any meaningful way, is unobservable to the user: deleting this data
would not a�ect the results of computations.

I������ 1. Data is typically accessed through some type of
interface, e.g., a declarative query language. Thus, data only has
value by contributing to a result returned through such an inter-
face.

We base our de�nition of data value on the notion of data rel-
evance that we recently introduced in [19]. Data relevance uses
provenance [9] to track which data is needed to produce the answer
of a computation. Note that this is di�erent from techniques that
track how “hot” data is: just because data is accessed by a query
that does not mean that the data is actually relevant for producing
the query result.

I������ 2. Data access is not the same as data relevance. Only
data that contributes to the result of a computation is of value to
this computation.

For instance, a database system may evaluate a selection query
using a full table scan as this can be more e�cient than using an
index, but data items not ful�lling the selection conditions of the
query do not contribute to the query’s result.

E������ 1. Consider the webshop database and workload shown
in Figure 1. The workload consists of two queries: &C>? (executed
daily) determines products that achieve signi�cant revenue.&?A>1;4<
(executed once per week) identi�es the product with the lowest average
rating of reviews from Europe that mention the word “problem”.&C>?
returns two products (with pid 1 and 3). The relevant data for this
query is highlighted in light blue. The product rows ?1 and ?3 and
all three order items for these products are needed to produce the
query’s result. As the reader may verify, any other product as well
as all review tuples can be deleted without changing the result. The
relevant data for &?A>1;4< for this database is the product with pid
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Qtop

SELECT pid , sum(quantity * price) AS rev

FROM products NATURAL JOIN orders

GROUP BY pid HAVING sum(quantity * price) > 1000

Qproblem

SELECT pid , name , avg(rating) AS avg_rating

FROM products NATURAL JOIN reviews

WHERE region = �Europe � AND review LIKE �%problem%�

GROUP BY pid , name

ORDER BY avg_rating ASC LIMIT 1;

products

pid name category price
?1 1 Asus S10 laptop 499
?2 2 Dell SP4400 desktop 1230
?3 3 Samsung T6 ssd 199

orders
oid pid quantity

>1 1 1 1
>2 2 1 3
>3 2 3 10

reviews
pid region rating review

A1 1 Europe 3.4 machine problems . . .
A2 1 Asia 4.0 problem with . . .
A3 3 Europe 1.3 problems after . . .
A4 3 Europe 3.8 the problem is . . .

Figure 1: Example workload and relevant subsets of the database for the queries of the workload. By aggregating the relevance
information we obtain an objective measure of the value of the data for the workload.

3 and the two ratings from Europe for this product that contain the
word “problem”.

As shown in this example, only a fraction of the data in the
database is needed to produce the results of the queries for the
example application and, thus, only this subset of the data is of
value to the organization.

I������ 3. By tracking what data is needed to answer a query,
relevance provides an objective framework for data value.

In Section 2 we will brie�y discuss how the notion of relevance
can be formalized and how it relates to provenance and attribution
measures for data. By aggregating the data relevance weighted by
query frequency, we obtain the expected / mean relevance of data
which we use as a metric of data value. Data 3 that is not relevant
for any query of the workload will have a value V(3) = 0 while
data that is needed for answering every query in the workload
will have the maximum achievable value of V(3) = 1. Note that
this de�nition of data value assumes that all queries are of equal
importance to the organization which may not be the case. Note
that our relevance-based metric does help us to identify data that is
irrelevant for the current workload, but that has potential value if the
workload were to be updated to use this data. We will discuss query
value and potential value in Section 1.4 and section 6, respectively.

E������ 2 (D��� V����). Recall that &C>? is executed once per
day and &?A>1;4< once per week. Thus, their relative frequencies
are �&C>? = 7

8 and �&?A>1;4< = 1
8 . Consider computing the value

V(?3) of tuple ?3 as shown below. As ?3 is relevant for both queries,
it has value 1. As another example consider tuple >1. This tuple is only
relevant for&C>? and, thus, its value is equal to&C>? ’s frequency ( 78 ).

V(?3) =
7
8
+ 1
8
= 1 V(>1) =

7
8

An important property of this metric of value is that under
certain assumptions it induces a monetary metric of data value. For
instance, assume that the monetary value of getting the correct
result for query & is $(&), the value of getting an incorrect result
is $0, and that missing any relevant input to a query will lead to
an incorrect result. Under these assumptions, if we additionally

weight each query by $(&), then the value V(C) of a row C has
a precise monetary interpretation: if we delete C , then we loose
$V(C)· | Q | because of incorrect query answers for a workload Q
which consists | Q | instances of queries.

E������ 3 (D��� V����). Let us assume the following monetary
bene�ts associated with receiving the correct answers to &C>? and
&?A>1;4< :

$(&C>? ) = $200 $(&?A>1;4<) = $300

By weighting the contribution of each query& by $(&) in the compu-
tation of the value for each row, we get the following value for rows
?3 and >1:

V(?3) =
7
8
· $(&C>? ) +

1
8
· $(&?A>1;4<)

=
7
8
· $200 + 1

8
· $300 = $212.5

V(>1) =
7
8
· $(&C>? ) =

7
8
· $200 = $175

Over the course of a week (7 instances of &C>? and 1 instance of
&?A>1;4<), we would loose 8 · $175 = $1400 if >1 is deleted, e.g., we
decide to save storage by deleting some rows or determine that getting
a cleaned version of >1 is not worth the e�ort.

Of course, the above example relies on several idealized assump-
tions that are unlikely to hold in the real world: (i) we are able
to determine the monetary value of a query result and (ii) query
results have zero value unless they are 100% correct. Assumption (ii)
can be relaxed if the value of partially incorrect answers is known
and using attribution metrics for facts like Shapley value [3] or
responsibility [6, 8] to measure the relative contribution of a row
towards a query result. Nonetheless, the example illustrates the
bene�ts of basing data value on an objective metric that models
relevance of rows for query results based on the well-established
concepts of data provenance [9] and/or responsibility notions.

I������ 4. A data value metric based on relevance extends
naturally to monetary metrics when the value of query results is
known.
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1.1 Utilizing Data Value
An objective metric for the data value has many potential appli-
cations in data management. It can be used to improve query per-
formance by restricting query evaluation to data that is relevant,
for informed allocation of resources for data curation, integration,
and collection based on how valuable data is, to enrich data dis-
covery and data catalogs, to make value-based data life-cycle and
self-tuning decisions, and to help buyers in data markets to decide
how valuable a dataset is to them.

E������ 4 (A����������� �� D��� V����). Observe that in our
running example roughly half of the data has zero value (all rows
without colored background). Such data could be heavily compressed
to save storage space. Using the techniques from [19], that we will
introduce in more detail in Section 2, we can �lter irrelevant data
early-on during query processing (while state-of-the-art DBMS can
only �lter data based on selection conditions). Furthermore, we can
adapt the physical design of the data to improve access to valuable
data, e.g., we could partition the data to cluster data based on their
value and index only partitions with high data value.

In summary, in any use case where decisions are based on how
frequently data is accessed, we can improve the decision-making
process by replacing data access frequency with our data value
metric. For instance, self-tuning physical design techniques, e.g.,
automatic data partitioning [20], typically rely on access patterns
ignoring whether the accessed data is relevant or not.

E������ 5 (S���������� � D��� L����C���� M���������).
Continuing with our running example, let us assume that we want to
implement an in-memory cache for data that is optimized wrt. our
workload (&C>? and &?A>1;4<). Let us assume that the DBMS uses
index nested-loop joins for both queries utilizing a primary key index
for table products on column pid. Query &?A>1;4< has to scan the
full reviews table even though only rows A3 and A4 are needed to
produce the query answer. An approach that makes caching decisions
based on data access would assume that caching any review row
has the same bene�t. However, when using provenance-based data
skipping to determine what irrelevant data can be skipped, we can
decide to only cache rows A3 and A4 as the other two rows of the review
table are not needed to produce the result of &?A>1;4< .

While we made some simplifying assumptions in the example
above, it nonetheless demonstrates how data relevance can be used
to optimize self-tuning decisions like caching, index andmaterialize-
view selection, automated partitioning and many others.

I������ 5. Many aspects of datamanagement can be improved
using an objective metric of data value. Virtually every self-tuning
approach that is based on data access can make more informed
decisions by utilizing data value.

1.2 Measuring and Managing Data Value
As our data value metric relies on tracking relevance instead of
tracking data access only, it is more challenging to compute as it re-
quires capturing data provenance. Extending the idea of provenance
sketches introduced in [19], we discuss strategies for measuring
data value at coarser granularity and outline our vision for e�cient

management of data value information. Furthermore, we discuss
the impact of such over-approximations on data value metrics and
applications of data value. Computing data value for each query in
a workload is often infeasible. We will discuss potential strategies
for reducing the overhead by measuring data value for a carefully
selected sample of queries, e.g., grouping queries based on similar
data relevance patterns.

Furthermore, we need to reason about whether the relevant data
for a query &1 can be utilized to answer a di�erent query &2. In
[19], we did discuss one such technique that determines statically
whether the set of data items that are relevant for &1 is su�cient
for answering &2. We can exploit such information to reuse data
relevance information across queries in a workload, thus, reduce
the cost of managing data value.

I������ 6. It is important to understand how the queries in a
workload relate to each other with respect to what data is relevant
for them. For instance, if the relevant data for one query &1 is
guaranteed to be a subset of the relevant data for another query
&2, then we can answer &2 over the relevant data for &1.

1.3 Maintaining Data Value
Our metric for data value is speci�c to a particular workload and
state of the database. However, data and workloads are typically
not static, but evolve over time. We will discuss in Section 4.3
how (approximate) data value metrics can be maintained when
the data and/or workload changes. Using standard provenance
techniques [9, 19], data value can be computed using queries. Thus,
standard incremental view maintenance techniques can be applied
to maintain data value metrics under data changes by maintaining
the results of the queries that compute these metrics. However,
novel optimizations are possible if data value is computed at a
coarser granularity or if we allow for approximation. To deal with
evolving workloads, wemay be able to exploit similarities of queries
wrt. their relevance “pro�les”.

I������ 7. Data value metrics have to be maintained when
the workload or the data evolve. Novel incremental maintenance
techniques are needed for the maintenance of approximate and
coarse-grained value information, and to handle changes in the
workload.

1.4 Query Value and Dealing with Dark Data
Initially, we make the simplifying assumption that all queries in a
workload are of equal importance. However, in practice this is often
not the case, e.g., queries for order processing and advertisement
may be more important for the operations of an online retailer
than queries that analyze the e�ectiveness of user support. We
discuss how to extend our data value metric to incorporate infor-
mation about the importance of queries and outline techniques for
determining data and query value if both are unknown upfront.
Furthermore, data value can identify data that is very infrequently
used or not used at all (we refer to this as dark data). We envision the
integration of data value into data discovery and recommendation
systems that systematically recommend data to users to identify
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whether data is dark because it is of no use what data has potential
value, but has been underutilized.

We make the following contributions in this work:
• We introduce an objective metric of data value based on
what data is relevant for which query of a given workload.

• We discuss strategies for e�ciently computing data value
and maintaining it when workloads and / or data evolve.

• We discuss several applications where an objective data value
metric brings signi�cant bene�ts including query process-
ing, resource allocation for data cleaning and preparation,
self-tuning and data life-cycle management, enriching data
catalogs, and assessment of data value in data markets

• We discuss how to extend our framework to also model the
value of queries.

• We sketch ideas for utilizing data value to address the prob-
lem of dark data, i.e., data that is not utilized or under-
utilized, and discuss potential techniques for measuring the
value of queries for an organization and how to integrate
this with data value metrics.

2 DATA RELEVANCE & PROVENANCE
We now brie�y review the concept of data relevance from [19].
Intuitively, a data item 3 from a database ⇡ is relevant for a query
& if “we need 3 to compute ⇡”. The notion of relevance is closely
related to data provenance and indeed we will use “belonging to the
provenance of some output of query &” as one way to determine the
relevance of a data item. We use R(& ;⇡) to denote the subset of
the database ⇡ that is relevant for answering & . At the minimum,
R(& ;⇡) needs to be su�cient for answering query, i.e., evaluating
& over R(& ;⇡) yields the same result as evaluating& over the full
database:

& (⇡) = & (R(& ;⇡)) (su�ciency)
Obviously, su�ciency is not a strict enough condition to ensure
that R(& ;⇡) contains only data that is needed to produce the result,
because su�ciency does not prevent us from including irrelevant
data in R(& ;⇡) that does not a�ect the result of & . While also
requiring necessity would seem to be the right approach for ex-
cluding irrelevant data, this fails in the presence of operators that
are disjunctive in nature, e.g., union. Indeed, this is a well-known
fact in database provenance. As standard notions of provenance
for databases, e.g., provenance polynomials or lineage [13] handle
this issue, we will assume here that R(& ;⇡) is computed using
one of these models. We do not introduce formal de�nitions of
provenance here, but refer the interested reader to a recent survey
on the topic [9].

E������ 6 (D��� R�������� ��� S����������). Revisiting Ex-
ample 1, as the reader can verify, the rows highlighted in blue (red) are
su�cient for producing the same result for &C>? (&?A>1;4<). Indeed,
these rows are the Lineage [9] for these two queries.

Database systems already make use of relevance information in a
limited way during query optimization. By analyzing the selection
conditions of queries, query optimizers determine statically what
data is relevant for answering a query. In the example above, any
reasonable query optimizer will determine that only reviews from
region “Europe” containing the word “problem” are relevant for

answering &?A>1;4< . The optimizer may then decide whether to
make use of the database’s physical design artifacts, e.g., indexes,
zone maps, or partitions, to �lter out irrelevant data early-on during
query processing.

I������ 8. Database systems statically analyze what data
is relevant for answering a query to determine how to �lter out
irrelevant data early-on. However, static analysis often yields a
coarse over-approximation of what data is relevant, because data
relevance is often data-dependent which necessitates dynamic
capture of relevance information at query runtime.

As mentioned before, “being accessed by a database system to
evaluate a query” in general does not imply data relevance. For
instance, the database may choose a full table scan even though
only a fraction of the data in a table may be actually relevant for
producing a query result. To see why this is the case, note that for
many provenance models, the provenance of a query is su�cient
for producing the query’s result and the provenance of a query is
typically only a fraction of the tables accessed by the query.

I������ 9. Data access is not the same as data relevance as
typically not all data accessed to answer a query a�ects the result
returned by the query.

For many use cases of data relevance, it is bene�cial to under-
stand the relationship of two queries wrt. their relevant data. We
write &1 vA4; &2 to denote that query &1 is relevance-contained
in &2 and formally de�ne relevance containment as shown below.

&1 vA4; &2 , 8⇡ : &1 (R(&2;⇡)) = &1 (⇡)
(relevance containment)

That is, relevance-containment implies that the relevant data for
&2 is su�cient for answering &1. Note that for monotone queries,
relevance containment is equivalent to containment of the relevant
data, i.e., containment of provenance [12, 19]:

&1 vA4; &2 , 8⇡ : R(&1;⇡) ✓ R(&2;⇡) (monotone queries)

In [19] we did present a static method that checks relevance
containment for two instances of the same query template, i.e.,
queries share the same structure and only di�er in constants used
in selection conditions. We will explain further in Section 5.1 how
this check is utilized when using relevance information for a query
to answer subsequent queries. This method relies on constraint
solvers and is similar in spirit to recent work for checking query
equivalence [24]. Checking relevance containment for queries with
di�erent structures remains an interesting open problem.

I������ 10. Relevance containment enables relevance infor-
mation for one query to be reused for another, similar query.

3 OBJECTIVE DATA VALUE METRICS
We argue that an objective metric for the value of data should not
assign some intrinsic value to the data, but rather should be based
on the actual bene�t to the organization gained by possessing the
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data. For instance, a dataset that is stored by an organization but
is not accessed by any query / computation has zero value to the
organization as deleting the data would not change the outcome of
any computations, i.e., whether the dataset exists or not has no bear-
ing on the operations of the organization. However, as discussed
in Section 2 being accessed by a computation is a necessary, but
not su�cient condition for data to be relevant and, thus, of value.
Put di�erently, data that is accessed by a query (or other type of
computation) but is not relevant to that query (computation) can
be deleted without a�ecting the outcome of the query.

So far we have argued that data that is not relevant to any com-
putation run by an organization is of zero value. Let us start by
de�ning a data value metric that assumes that data is immutable and
that the distribution of queries evaluated over this data is known
upfront. Assume a workload Q consisting of queries &8 :

Q = {&1, . . . ,&=}
where each query &8 is each associated with a frequency �&8 2
[0, 1] (out of all queries executed by the workload what is the
relative frequency of&8 ). This workload could constitute all queries
run by the organization or just the queries used by a particular set
of users or applications for which we want to understand the value
of data towards Q. The value V(3) of a data item 3 (e.g., we could
measure value at the granularity of rows or at a coarser granularity
such as fragments of a table) is de�ned as the fraction of queries
weighted by their frequency for which the data item is relevant:

V(3) =
’
&2Q

1[R(& ;3)] · �& (1)

As already discussed in Section 1, it would be possible to re-
place the binary indicator 1[R(& ;3)] with a metric that measures
the contribution of a data item to the result of the query. Several
such attribution measures have been discussed in related work in-
cluding Shapley values [3] and causal responsibility [8]. However,
these techniques are in general of high computational complexity.
It remains to be seen whether it is possible to develop e�cient ap-
proximations of such metrics for complex computations that could
be utilized for measuring data value.

3.1 Updates
Let us now relax the assumption that data is immutable. If data
is subject to change, then the value of data will change over time
too. For simplicity, we will assume a linear history D of database
versions:

D = ⇡1, . . . ,⇡=

Then the value of data is speci�c to a database version ⇡8 , i.e.,
V8 (& ;3) denotes the value of data item 3 wrt. query & evaluated
over database version⇡8 . For transactional histories executed under
weaker isolation levels, e.g., read-committed snapshot isolation [22],
data value becomes speci�c to a statement within a particular trans-
actions. However, it is probably sensible to restrict data value mea-
surements to committed data.

3.2 Changes to the Workload
Note that when we also consider an evolving workload, then the
relevance of data items wrt. queries, i.e., R(& ;3), does not change.

However, we can no longer assume that the frequency of queries is
constant. One way to approach changing workloads is to weight
instances of a query& based on time, e.g., we could replace �& with
a weighted sum over weights that decrease over time. Let T& = g1,
. . . , g< denote the points in time when query & was executed and
letF () be is a function of the current time g=>F and a time point g
such that F (g=>F , g1) < F (g=>F , g2) if g1 < g2 (the weight is anti-
monotonic wrt. the temporal order, e.g.,F (g=>F , g) = 1

1+(g=>F�g ) ).
We can then rede�ne �& as a function of the current time g=>F as
shown below:

�& [g=>F] =
’
g2T&

F (g=>F , g)

Of course, one can imagine many other reasonable weight de�-
nitions. Putting this together with a temporal version of relevance
based on updates to the data, i.e., assuming that ⇡g is the data-
base version at time g , we get a de�nition of data value that takes
changes to both the data and workload into account:

V(3 ;g) =
’
&

’
g 0 2T& :g 0g

1[R(& ;3 ;g 0)] ·F (g, g 0)

That is, the value of data item 3 at time g is the contribution of 3
to each query at the time of the query’s execution (if that execution
happened before g ) weighted usingF (·, ·) based on how recent that
execution is. Note that here R(& ;3 ;g) denotes R(& ;3) computed
for ⇡g .

4 MEASURING AND MANAGING DATA VALUE
In this section, we discuss strategies for managing data value in-
formation e�ciently including capturing (approximate) data value
information at di�erent granularities, how to approximate data
value for workloads through sampling and clustering of queries,
and how to deal with evolving workloads and data.

4.1 Measuring (Approximate) Data Value
For now consider a static workload and data that is not subject to up-
dates. A naive way to measure data value according to Equation (1)
would be to capture provenance information for every query evalu-
ated over the data and maintain a counter for each tuple that tracks
the number of queries for which the tuple is relevant. However, this
would result in signi�cant runtime overhead and require additional
storage that is linear in the size of the database.
Data Granularity. Our value metric for data can be applied at any
level of granularity, e.g., rows, pages, or larger data chunks. Thus,
an obvious optimization is to record data value at a coarser granu-
larity at the cost of loosing some �delity of the value information.
In addition to reducing storage consumption, this also reduces the
overhead of capturing provenance for computing data value. For
instance, in [19] we did capture relevance information at the gran-
ularity of fragments of a horizontal partitioning of a table resulting
in provenance sketches which can be encoded compactly as bitvec-
tors (one bit per fragment that indicates whether the fragment is
relevant or not). Another alternative is to use approximate data
structures representing sets such as bloom �lters and store row-
level provenance using such a data structure. To give a concrete
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example, in [19] we did evaluate the storage requirements of prove-
nance sketches against materialized views for a given workload.
The total amount of storage required for all materialized views
required to support the workload e�ciently ranged between ⇠2GB
and ⇠44GB while the total size of provenance sketches was no more
than ⇠200KB. To capture data value instead of relevance we can
simply replace the bit vector with an array of counters (integer
values). Whenever a data item is found to be relevant for a query,
its counter is increased and we also maintain a global counter for
queries.

Example 4.1 (Provenance Sketches for Approximating Value). Con-
sider the provenance (relevant rows) in table products for our
running example query&C>? . Furthermore, consider the horizontal
partition � = {5;0?C>? , 534B:C>? , 5BB3 , . . .} of this table based on the
value of attribute category (a so-called range-partitioning):

5;0?C>? = {?1} 534B:C>? = {?2} 5BB3 = {?3}
Using this partition of table products, we can create a prove-

nance sketch P&C>? ,� , for &C>? by recording which of the three
fragments contain relevant rows (provenance). In our example,
these are fragments 5;0?C>? and 5BB3 . Thus,

P&C>? ,� = {5;0?C>? , 5BB3 }
The data in the sketch is su�cient for producing the result (it con-

tains all relevant rows). However, in general such a sketch will con-
tain some irrelevant data as typically not all data in a fragment will
belong to the provenance of the query. For instance, for a larger data-
base instance, there may be some laptops and ssds that do not have a
su�ciently high revenue (HAVING sum(quantity * price) > 1000).

Provenance sketches are very storage-e�cient: a provenance
sketch requires one bit of storage per fragment (is the fragment
in the sketch or not) in addition to storing information about the
partitioning, e.g., the ranges of domain values for a range-based hor-
izontal partitioning. However, note that partition information can
be shared across sketches that are based on the same partitioning.

While most provenance models have been shown to produce
provenance that is su�cient, this often only holds for the gran-
ularity (most often rows) for which the model was designed for.
Thus, one challenge with recording data relevance at coarser gran-
ularity is that we need to ensure that the over-approximation of
row-level provenance encoded by a sketch is su�cient which is
guaranteed for monotone queries, but requires more care for non-
monotone queries (e.g., negation or aggregation). We envision an
approach that statically analyzes queries to determine whether
an over-approximation is safe (preserves su�ciency). In [19], we
did introduce a sound safety check that can determine statically
whether a provenance sketch based on range-partitioning a table
on a set of attributes � is su�cient for the query it was produced
for. We plan to extend this technique to other types of partitioning
of input tables. One challenge with using provenance sketches to
measure data value is that the accuracy of the over-approximation
of relevant data for a query is quite sensitive to the choice of par-
tition. That is, to get an accurate estimate of data value we may
have to choose di�erent partitions for di�erent queries. It not clear

immediately how to combine sketches that are based on di�erent
partitions without loosing accuracy.

I������ 11. Tracking approximate data value at a coarser
granularity can signi�cantly improve the cost of measuring data
value.

Sampling & Clustering Queries.We demonstrated in [19] that
capturing provenance sketches is signi�cantly faster than capturing
full provenance, but still has non-trivial overhead compared to
regular query execution. Piggy-backing provenance capture onto
regular query processing [9] can further reduce the overhead, but
requires extensions to the query engine. To further reduce the
cost of measuring data value, we can avoid capturing relevance
information for every query of a workload. A straight-forward
strategywould be to just compute relevance for a randomly sampled
subset of queries to approximate data value for a workload. The
problem with this approach is that it ignores that some queries may
be quite similar in terms of their relevance pro�les and that the
amount of relevant data per querymay be skewed, e.g., it is common
that heavy analytical queries are executed less frequently than
OLTP queries, but access signi�cantly more data. Such infrequent
queries can easily be missed by a naive sampling mechanism.

One possible strategy for addressing this problem is to cluster
queries in a workload based on having similar data relevance pro-
�les. Prior work on clustering queries could be of use here, e.g.,
see [17] for a comparison of similarity metrics for clustering queries.
However, most prior work tries to cluster queries based on similar
structure while for our use case we need to cluster queries based
on what subset of the data is relevant for the query. Assuming
such a similarity metric, we could cluster queries in the workload
and then sample data relevance strati�ed by cluster to get a good
approximation of data value for the whole workload. An alternative
to using clustering is to train embeddings for queries and data [23]
and use similarity in the embedding space instead. A generalization
of the notion of relevance containment discussed in Section 3 to a
relevance overlap measure could be the basis of a distance metric
for queries.

4.2 Non-relational Data
While we have only discussed data value for relational data so far,
the concept of data value extends to non-relational data models
such as semi-structured data models like JSON, graph data, and
potentially vector databases. Speci�cally, for semi-structured data
it is common to ingest raw data produced by applications, e.g.,
logs of web API requests, directly into a database or key-value
store. Relevant parts of the data are then extracted at query time.
Such applications would bene�t signi�cantly from data relevance
tracking to prune irrelevant data early-on during query process-
ing. Furthermore, data relevance information could be used to en-
rich structure-based data guides [11] to guide users in formulating
queries based on summarized information about data content in
addition to information about the data’s structure.

4.3 Dealing with Evolving Workloads and Data
For many applications, data and workloads are not static, but evolve
over time. Thus, data value information has to be maintained to
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re�ect these changes to the workload and the data. As relevance
information can be computed using queries, existing incremental
view maintenance techniques [14] are applicable to maintain data
value metrics when data changes. However, as we would typically
want to approximate data value for performance reasons, the main
di�erence to classical incremental maintenance is that we may be
able to trade accuracy of the data value metric for improved perfor-
mance. For instance, we may optimistically assume that data that
is inserted contributes to a query result without actually incremen-
tally maintaining the result.

Example 4.2 (Approximate IncrementalMaintenance of Data Value).
Continuing with Example 4.1, assume that a new product of cat-
egory ssd with pid 4 got inserted into the table products. As the
fragment 5BB3 for this category value is already part of the prove-
nance sketch we have the choice to compute the aggregation result
for the group pid = 4 if the new row has any join partners in
table orders. Alternatively, we can skip this step as 5BB3 is already
part of the sketch. Choosing the second option would result in an
approximate sketch on which we can no longer process deletions
accurately: if the group ?83 = 3 is deleted, then we do not know
whether 5BB3 will be still part of the sketch.

I������ 12. Data value needs to be incrementally maintained
when data or workloads evolve. If tracked through provenance
sketches, novel optimizations are possible that trade maintenance
performance for size of the maintained sketches.

To maintain data value under evolving workloads, we have to
maintain the clustering of queries taking also the changes to data
into account as cluster membership may change depending on the
data distribution.

4.4 Legal Requirements
Organizations may be subject to legal requirements about how
long they have to retain data. As we will discuss in Section 5, data
value will be used to make data management decisions, e.g., we
may delete or compress irrelevant data. To ensure that legal require-
ments about data retention are ful�lled we could assign in�nite
value to data that should be retained to ensure it will not be deleted.
However, such data may no longer be in use and, thus, could be of
low value otherwise. An alternative is to track retention require-
ments in addition to tracking data value and always ensure that
data management decisions do not violate retention requirements.

5 UTILIZING DATA VALUE
We now discuss how data value information can be leveraged to
improve many aspects of data management for improving query
performance by �ltering irrelevant data, over informed allocation
of resources (both human and computational), enriching metadata
management, and improving data markets.

5.1 Filtering Irrelevant Data
An important application of data value is provenance-based data
skipping (PBDS), i.e., �ltering irrelevant data early-on during query
processing to improve query performance. We have explored this
use case of data relevance / value in [19]. In this work, we capture

provenance sketches, compact over-approximations of what data
is relevant for a query & . A provenance sketch P encodes a subset
of the database ⇡P that is guaranteed to be su�cient, i.e., evalu-
ating the query over ⇡P yields the same result as evaluating the
query over the full database. For example, consider the case of our
running example query &C>? from Figure 1. Without a provenance
sketch, evaluating this query requires computing the revenue for
each product in the database. However, only data for products with
a revenue above $1,000 are relevant for producing &C>? ’s result. A
provenance sketch records data relevance at the granularity of frag-
ments of a horizontal partitioning of the input tables. For instance,
we may build a sketch on the product table’s category attribute. As
explained in Example 4.1, only the fragments for categories laptop
and ssd do contain relevant data and, thus, belong to the sketch.
Capturing a provenance sketch for a query requires instrumenting
the query to generate the sketch: we spend time to create the sketch.
Once a sketch for a query& has been created it can be used to speed-
up future executions of & and queries similar to & . For example,
the sketch for &C>? based on product category could be used to
answer a variant of &C>? with a more restrictive HAVING clause con-
dition, say HAVING sum(quantity * price) > 2000. To use a sketch
P to answer a query & , we add additional WHERE clause conditions
to the query to �lter out data that does not belong to the sketch.
For instance, to use the sketch for &C>? on product category we
would add the following �lter condition:
WHERE product.category IN (�laptop �, �ssd�)

We present in [19] techniques for generating sketches, using
sketches, and discuss how to determinewhen a sketch can be reused.
Furthermore, we demonstrated that query performance can be
signi�cantly improved with PBDS, even for standard benchmark
workloads for which database systems are heavily optimized for.
By capturing relevance information, PBDS is also a main enabler
for many of the advanced applications of data value discussed in
the following.

5.2 Information Life-cycle Management &
Adaptive Physical Design

Information life-cycle management decides what where to store
data (what device) and what format to use as well as what data
to cache when and in which format. Typically, information life-
cycle management decisions are based on tracking data access. For
instance, infrequently accessed data can be heavily compressed
to save storage space without much e�ect on query performance.
We argue that decisions on where to place data and whether to
compress it should be based on data value instead. This has the po-
tential to signi�cantly improve life-cycle management as only data
that is actually needed to answer queries will be placed on faster
storage or will be cached in-memory. For example, consider again
the running example query &C>? . We explained above that without
data value, &C>? has to compute the revenue for every product
in the database. However, as only products with a revenue above
1,000 are relevant for producing the result of this query, it is more
e�cient to prune irrelevant data before computing aggregation
results. Furthermore, data that is not relevant for the two queries
of our example workload could be compressed (or even deleted)
while data that is relevant for these two queries should be cached
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in memory. Additionally, data value information can be utilized for
adaptive physical design and other self-tuning tasks. For example,
instead of indexing full tables, we can only build indexes over data
that is relevant for a signi�cant fraction of queries executed as part
of a workload to reduce index storage size and improve look-up
performance.

5.3 Intelligent Resource Allocation
Data collection and curation requires extensive human and compu-
tational resources, but is critical for maintaining data quality and,
thus, trustworthy analysis results. As the resources of an organiza-
tion are limited, it is important to allocate resources where they are
most needed. While this idea has been explored in on-demand data
curation / integration, we argue for the use of data value as a means
for selecting how to spend resources most e�ectively. Speci�cally,
resources should be allocated to the most valuable data. However,
additional challenges have to be overcome for this to be e�ective
as the impact of spending a given amount of resources may not be
uniform across di�erent parts of the data and the improvement in
data quality gained may not be linear in the amount of resources
spent on curating a subset of the data. We envision that curation
e�orts can be monitored to learn over time how much e�ort is
required for certain curation tasks. Furthermore, techniques like
reinforcement learning could be applied to explore the impact of
data curation e�orts and then optimize for curation e�orts that
e�ectively improve the quality of the most valuable data.

5.4 Enriching Metadata Management
Metadata management systems like Goods [15] and Apache At-
las [1] enable users to keep track of data in their data lakes, record
provenance information, and facilitate dataset discovery. We argue
that data value information should be also managed by such sys-
tems. For facilitating data discovery, data value should be recorded
for several representative workloads to enable users to select data
that is relevant for their tasks. For instance, an organization may
de�ne a set of use cases (e.g., HR, advertizing, or logistics) each
associated with a workload for which data value is tracked. When
a user is searching for data that may be used for a particular task,
we could then determine which workload is most similar to the
user’s task and then use the value of a dataset for this workload as
an estimate for the relevance of the data for the user’s task. Query
similarity metrics and clustering of workload queries as explained
in Section 4.1 could be utilized to identify which workload is most
similar to the user’s task.

5.5 Data Markets
Data markets [2, 7] enable data owners to generate revenue from
their data by making it available for purchase to buyers who ben-
e�t by gaining access to the data they need. The price of data in
data markets is subject to economic forces and considerations (e.g.,
ensuring arbitrage-free pricing [16]). Nonetheless, we argue that
our data value metric could be critical for buyers and sellers to
make informed decisions. Assuming that data value is tracked for
representative workloads as outlined above, data buyers can take
the value of data for workloads similar to the workload they want
to purchase data for into account to decide how valuable the data

would be to them and, thus, how much they are willing to spend
on the data. Furthermore, organizations running data marketplaces
can measure data value for representative workloads on the data
uploaded to their platform to enable their buyers to make informed
choices which increases the utility of the market place.

6 DARK DATA AND QUERY VALUE
6.1 Dealing with Dark Data
With growing amount of data, it also becomes harder for users in an
organization to identify which data is relevant for their use. While
our data value metrics can identify which data is most relevant
for an application, this only works under the assumption that the
datasets containing the data are already used by this application.
That is, some datamay have currently no value as it is not relevant in
the context of a workload, but has potential value, i.e., it has intrinsic
value for an application, but this value has not been realized yet
as the application did not make use of the data. We refer to data
that currently has no / low value, but may have signi�cant value
if utilized for the right application as dark data. We envision a
dataset discovery system that helps users to distinguish between
not valuable and potentially valuable dark data through controlled
recommendations [18]. That is, a dataset discovery system would
recommend dark data to users and then measure data value of this
data for the queries run by users over the recommended data. This
would enable the system to discover over time which data is useful
and which data is of no potential value.

6.2 The Value of Computations / Queries
So far we assumed that the results of all queries / computations
have equal value to an organization. Of course, this assumption may
not be realistic. In this section we consider how data value metrics
are a�ected by dropping this assumption. Furthermore, we outline
strategies for measuring the value of a query either by assuming it
as input given by the user (if there is a feasible way for the users to
assign value to their queries which may or may not be realistic) or
how to automatically compute it.

6.2.1 Modelling�ery Value. To model the value of a query for an
organization we associate a numeric valueV(&) 2 [0, 1] to each
query & of a workload Q. Intuitively, a value of zero indicates that
the query’s result is of no value to the organization while a value of
one indicates that the result of the query is of maximal importance.
These values are used as weights to adjust the value of a data item
3 2 ⇡ for a database ⇡ . Thus, the de�nition of the value of 3 is
updated as follows:

V(3) =
’
&2Q

�& · V(&) · R(& ;3)

Query Value as User Input. In the simplest possible case, the
value for queries in a workload Q is provided as input by the user.
In this case we can directly apply the formula shown above to
compute the value of a data item 3 .

6.2.2 Automatically Determining �ery Value. Even if the value
of a query is not known apriori, we can still make progress based
on the following observations: (i) query value depends on valuable
data being relevant. When a highly valuable data item is relevant
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to a query & , then this increases the value of the query; and (ii)
being relevant to valuable queries increases data value. If data is
relevant to an important query, then this increases the value of
the data as this data is used to compute query results that are
important to the organization. To summarize, data and query value
are intrinsically connected. However, in the absence of ground
truth information about either query or data value, we are facing
the following dilemma: to compute data value we need to know
the value of queries and vice versa! To overcome this dilemma, we
envision to adapt techniques, e.g., PageRank [4], which compute
(approximate) solutions for �xpoint equations similar to ours.

7 RELATEDWORK
Data value is also an important concept in data markets [2, 7, 16].
However, that line of work has focused more on economic aspects
of data pricing rather than on providing an objective metric for how
valuable data is for an organization. The approximation techniques
we propose for approximating data value in addition to their basis in
provenance sketches [19] are also closely related to data summariza-
tion techniques for explanations [10]. The problem of determining
query and data value that are mutually depend is similar to other
problems for computing �xpoints for recursive equation systems
such as PageRank [4] and related algorithms such as detecting spam
reviews based on trust [21] (both the trustworthiness of reviewers
and quality of items is not known upfront). Automated techniques
for physical design and data life-cycle management [5, 20] are often
based on data access patterns. Any such technique can be improved
by using data value to ignoring data that is not relevant for generat-
ing query results. To selectively measure data value for only some
queries, we need techniques for clustering queries and computing
similarity between queries. Existing techniques [17] for measuring
query similarity could be applied to this problem. However, for our
use case, query similarity should be based on what data is relevant.

8 CONCLUSIONS
In this work, we have introduced an objective metric for data value
based on provenance [9] and the recently introduced concept of data
relevance [19]. We argue that data is only of value by being used to
generate results of queries (or more generally computations). These
results, and not the raw data, are what is observed by applications
and users of a database (or data lake). As data relevance recordswhat
data is required to answer a query, relevance provides us with the
means to determine the value of data based on its role of generating
query results. We discuss the signi�cant bene�ts of objective data
value metrics in improving various aspects of data management
like data life-cycle management, pruning of irrelevant data during
query execution (we explored this aspect in detail in [19]), and for
self-tuning. We also present possible strategies for measuring and
managing data value and how to approximate value to reduce the
overhead of measuring and maintaining these metrics. In future

work, we plan to integrate data value management into database
(and data lake) systems, investigate techniques for measuring query
value, and explore additional use cases of data value to improve
data management operations.
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