

Bulletin of the American Physical Society**77th Annual Meeting of the Division of Fluid Dynamics**
Sunday–Tuesday, November 24–26, 2024; Salt Lake City, Utah**Session L39: Turbulence: Geophysical Fluid Dynamics**

8:00 AM–10:36 AM, Monday, November 25, 2024

Room: 355 E

Chair: Dhiraj Kumar Singh, University of Utah

Abstract: L39.00009 : Detecting Coherent Turbulence Structures in Planetary Boundary Layers via Koopman Mode Decomposition and Data-Driven Methods*

9:44 AM–9:57 AM

[← Abstract](#) [→](#)**Presenter:**Milad Rezaie
(University of Houston)**Authors:**Milad Rezaie
(University of Houston)Mostafa Momen
(University of Houston)**Collaboration:**

EFM Lab

The planetary boundary layer (PBL) exhibits highly nonlinear dynamics, which stems from its turbulent and chaotic nature. While many studies attempted to characterize coherent turbulence structures in PBLs, there is currently no overarching data-driven method for detecting such structures under different PBL regimes. This study aims to bridge this gap by using Koopman mode decomposition (KMD), unsupervised clustering, and large eddy simulations (LES). To this end, eight LESs of convective, neutral, and unsteady PBLs are conducted. The LES results show that increasing the buoyancy-to-shear ratio alters roll vortices to convective cells in PBLs. KMD was shown to detect non-trivial dynamical modes of such PBLs. Using timescale and quadrant analyses, we attributed these modes to pressure gradient, Coriolis, and buoyancy forces. It is found that only ~5% of the Koopman modes can reconstruct the primary PBL flow field compared to the actual LES data even under unsteady conditions. Furthermore, we combined convolutional neural networks with K-means clustering to efficiently classify Koopman modes according to their intrinsic dynamics. This study offers new insights into the PBL dynamics and presents a data-driven framework for characterizing complex spatiotemporal turbulence structures.

*We acknowledge support from the Physical and Dynamic Meteorology Program of the National Science Foundation (NSF) under grant AGS-2228299 and the Department of Civil and Environmental Engineering at the University of Houston via startup funds. We also acknowledge computational resources support from the University of Houston's computing clusters (Carya and Sabine), the National Center for Atmospheric Research (NCAR) under project number UHOU0002, and NSF's allocation EES230054 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program.