
Approximation-Aware Bayesian Optimization

Natalie Maus
University of Pennsylvania
nmaus@seas.upenn.edu

Kyurae Kim
University of Pennsylvania

Geoff Pleiss
University of British Columbia

David Eriksson
Meta

John P. Cunningham
Columbia University

Jacob R. Gardner
University of Pennsylvania

Abstract

High-dimensional Bayesian optimization (BO) tasks such as molecular design often
require > 10,000 function evaluations before obtaining meaningful results. While
methods like sparse variational Gaussian processes (SVGPs) reduce computational
requirements in these settings, the underlying approximations result in suboptimal
data acquisitions that slow the progress of optimization. In this paper we modify
SVGPs to better align with the goals of BO: targeting informed data acquisition
rather than global posterior fidelity. Using the framework of utility-calibrated
variational inference, we unify GP approximation and data acquisition into a
joint optimization problem, thereby ensuring optimal decisions under a limited
computational budget. Our approach can be used with any decision-theoretic
acquisition function and is compatible with trust region methods like TuRBO.
We derive efficient joint objectives for the expected improvement and knowledge
gradient acquisition functions in both the standard and batch BO settings. Our
approach outperforms standard SVGPs on high-dimensional benchmark tasks in
control and molecular design.

1 Introduction

Bayesian optimization (BO; Frazier, 2018; Garnett, 2023; Jones et al., 1998; Mockus, 1982; Shahriari
et al., 2015) casts optimization as a sequential decision-making problem. Many recent successes of BO
have involved complex and high-dimensional problems. In contrast to “classic” low-dimensional BO
problems—where expensive black-box function evaluations far exceeded computational costs—these
modern problems necessitate tens of thousands of function evaluations, and it is often the complexity
and dimensionality of the search space that makes optimization challenging, rather than a limited
evaluation budget (Eriksson et al., 2019; Griffiths and Hernández-Lobato, 2020; Maus et al., 2022,
2023; Stanton et al., 2022). Because of these scenarios, BO is entering a regime where computational
costs are becoming a primary bottleneck (Maddox et al., 2021; Maus et al., 2023; Moss et al., 2023;
Vakili et al., 2021), as the Gaussian process (GP; Rasmussen and Williams, 2005) surrogate models
that underpin most of Bayesian optimization scale cubically with the number of observations.
In this new regime, we require scalable GP approximations, an area that has made tremendous
progress over the last decade. In particular, sparse variational Gaussian processes (SVGP; Hensman
et al., 2013; Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009) have seen an increase in
use (Griffiths and Hernández-Lobato, 2020; Maddox et al., 2021; Maus et al., 2022, 2023; Stanton
et al., 2022; Tripp et al., 2020; Vakili et al., 2021), but many challenges remain to effectively deploy
SVGPs for large-budget BO. In particular, the standard SVGP training objective is not aligned
with the goals of black-box optimization. SVGPs construct an inducing point approximation that
maximizes the standard variational evidence lower bound (ELBO; Jordan et al., 1999), yielding a
posterior approximation ��(�) that models all observed data (Matthews et al., 2016; Moss et al., 2023).

Preprint. Under review.

ar
X

iv
:2

40
6.

04
30

8v
1

 [c
s.L

G
]

6
Ju

n
20

24

However, the optimal posterior approximation �� is suboptimal for the decision-making tasks involved
in BO (Lacoste–Julien et al., 2011). In BO, we do not care about posterior fidelity at the majority
of prior observations; rather, we only care about the fidelity of downstream functions involving the
posterior, such as the expected utility. To illustrate this point intuitively, consider using the common
expected improvement (EI; Jones et al., 1998) acquisition function for selecting new observations.
Maximizing the ELBO might result in a posterior approximation that maintains fidelity for training
examples in regions of virtually zero EI, thus wasting “approximation budget.”
To solve this problem, we focus on the deep connections between statistical decision theory (Robert,
2001; Wasserman, 2013, §12) and Bayesian optimization (Garnett, 2023, §6-7), where acquisition
maximization can be viewed as maximizing posterior-expected utility. Following this perspective,
we leverage the utility-calibrated approximate inference framework (Jaiswal et al., 2020, 2023;
Lacoste–Julien et al., 2011), and solve the aforementioned problem through a variational bound (Blei
et al., 2017; Jordan et al., 1999)–the (log) expected utility lower bound (EULBO)—a joint function of
the decision (the BO query) and the posterior approximation (the SVGP). When optimized jointly,
the EULBO automatically yields the approximately optimal decision through the minorize-maximize
principle (Lange, 2016). The EULBO is reminiscent of the standard variational ELBO (Jordan
et al., 1999), and can indeed be viewed as a standard ELBO for a generalized Bayesian inference
problem (Bissiri et al., 2016; Knoblauch et al., 2022) where we seek to approximate the utility-weighted

posterior. This work represents the first application of utility-calibrated approximate inference towards
BO despite its inherent connection with utility maximization.
The benefits of our proposed approach are visualized in Fig. 1. Furthermore, it can be applied
to acquisition function that admits a decision-theoretic interpretation, which includes the popular
expected improvement (EI; Jones et al., 1998) and knowledge gradient (KG; Wu et al., 2017) acquisition
functions, and is trivially compatible with local optimization techniques like TuRBO (Eriksson et al.,
2019) for high-dimensional problems. We demonstrate that our joint SVGP/acquisition optimization
approach yields significant improvements across numerous Bayesian optimization benchmarks. As an
added benefit, our approach can simplify the implementation and reduce the computational burden of
complex (decision-theoretic) acquisition functions like KG. We demonstrate a novel algorithm derived
from our joint optimization approach for computing and optimizing the KG that expands recent work
on one-shot KG (Balandat et al., 2020) and variational GP posterior refinement (Maddox et al., 2021).
Overall, our contributions are summarized as follows:
� We propose utility-calibrated variational inference of SVGPs in the context of large-budget BO.
� We study this framework in two special cases using the utility functions of two common acquisition

functions: EI and KG. For each, we derive tractable EULBO expressions that can be optimized.
� For KG, we demonstrate that the computation of the EULBO takes only negligible additional

work over computing the standard ELBO by leveraging an online variational update. Thus, as a
byproduct of optimizing the EULBO, optimizing KG becomes comparable to the cost of the EI.

� We extend this framework to be capable of running in batch mode, by introducing q-EULBO
analogs of q-KG and q-EI as commonly used in practice (Wilson et al., 2018).

� We demonstrate the effectiveness of our proposed method against standard SVGPs trained with
ELBO maximization on high-dimensional benchmark tasks in control and molecular design,
where the dimensionality and evaluation budget go up to 256 and 80k, respectively.

2 Background
Black-Box optimization refers to problems of the form: maximize��� � (�) , where � � �� is
some compact domain, and we assume that only zeroth-order information is available. Generally, we
assume that observations of the objective function (�� , �� = �� (��)) have been corrupted by Gaussian
noise �� (��) � �(��) + �, where � � �(0,�2�). The noise variance �2� is commonly unknown and
inferred from the training data.

Bayesian Optimization (BO) is and iterative approach to black-box optimization that utilizes the
following steps: ∂ At each step � � 0, we use a set of observations �� = {

�
�� , �� = ��(��)

�
}
��
�=1 of

�� to fit a surrogate supervised model �. Typically � is taken to be a Gaussian process, with the
function-valued posterior distribution � (� � �) as our surrogate model at step �. ∑ The surrogate

2

Figure 1: (Left.) Fitting an SVGP model with only � = 4 inducing points sacrifices modeling areas
of high EI (few data points at right) because the ELBO focuses only on global data approximation
(left data) and is ignorant of the downstream decision making task. (Middle.) Because of this,
(normalized) EI with the SVGP model peaks in an incorrect location relative to the exact posterior.
(Right.) Updating the GP fit and selecting a candidate jointly using the EULBO (our method) results in
candidate selection much closer to the exact model.

is then used to form a decision problem where we choose which point we should evaluate next,
��+1 = �� (��), by maximizing an acquisition function � � � � � as

�� (��) � argmax
���

� (�;��) . (1)

∏ After selecting ��+1, �� is evaluated to obtain the new datapoint (��+1, ��+1 = �� (��+1)). This is
then added to the dataset, forming ��+1 = �� � (��+1, ��+1) to be used in the next iteration.

Utility Perspective of Acquisition Functions. Many commonly used acquisition functions, includ-
ing EI and KG, can be expressed as posterior-expected utility functions

� (�;�) � �� (�,�;��)� (� � �) d�, (2)

where � (�,�;��) � � ◊ � � � is some utility function associated with � (Garnett, 2023, §6-7).
In decision theory, posterior-expected utility maximization policies such as �� are known as Bayes

policies. These are important because, for a given utility function, they attain certain notions of
statistical optimality such as Bayes optimality and admissibility (Robert, 2001, §2.4; Wasserman,
2013, §12). However, this only holds true if we can exactly compute Eq. (2) over the posterior. Once
approximate inference is involved, making optimal Bayes decisions becomes challenging.

Sparse Variational Gaussian Processes While the �(�3) complexity of exact Gaussian process
model selection and inference is not necessarily a roadblock in the traditional regression setting
with 10,000-50,000 training examples, BO amplifies the scalability challenge by requiring us to
sequentially train or update many large scale GPs as we iteratively acquire more data.
To address this, sparse variational GPs (SVGP; Hensman et al., 2013; Titsias, 2009) have become
commonly used in high-throughput Bayesian optimization. SVGPs modify the original GP prior
from �(�) to �(� � �)�(�), where we assume the latent function � is “induced” by a finite set of
inducing values � = (�1,… ,��) � �� located at inducing points �� � � for � = 1,… ,�. Inference
is done through variational inference (Blei et al., 2017; Jordan et al., 1999) the posterior of the
inducing points is approximated using �� (�) = � (�;� = (�, �)) and that of the latent functions
with � (� � �) = � (� � �). The resulting ELBO objective, which can be computed in closed form
(Hensman et al., 2013), is then

�ELBO (�;��) � ���(�)
����

�=1 log�(�� � � (��))
�
� DKL (�� (�) ,� (�)) , (3)

where �(�� � � (��)) = � (�� � � (��) ,��) is a Gaussian likelihood. The marginal variational
approximation can be computed as

��(�) =� ��(�,�) d� =��(� � �) ��(�) d�
such that

��(�(�)) =�
�
�(�); ��(�) � �����1

���, �2� (�) � ���� + �����
�1
����

�1
�����

�
, (4)

with ���� � � (�,�) � �����1
���

�
��, the vector ��� � �� is formed as [���]� = � (�� ,�), and the

matrix ��� � ��◊� is formed as [���]�� = �(�� , ��). Additionally, the GP likelihood and kernel

3

contain hyperparameters, which we denote as � � �, and we collectively denote the set of inducing
point locations as � = {�1,… , ��} � ���. We therefore denote the ELBO as �ELBO (�,�, �;��).

3 Approximation-Aware Bayesian Optimization
When SVGPs are used in conjunction with BO (Maddox et al., 2021; Moss et al., 2023), acquisition
functions of the form of Eq. (2) are naïvely approximated as

� (�;�) ��� (�,�;��) �� (�) d�,

where ��(�) is the approximate SVGP posterior given by Eq. (4). The acquisition policy implied by
this approximation contains two separate optimization problems:

��+1 = argmax
���

�� (�,�;��) ���ELBO (�) d� and ��ELBO = argmax
���

�ELBO (�;��) . (5)

Treating these optimization problems separately creates an artificial bottleneck that results in
suboptimal data acquisition decisions. Intuitively, ��ELBO is chosen to faithfully model all observed
data (Matthews et al., 2016; Moss et al., 2023), without regard for how the resulting model performs at
selecting the next function evaluation in the BO loop. For an illustration of this, see Figure 1. Instead,
we propose a modification to SVGPs that couples the posterior approximation and data acquisition
through a joint problem of the form:

(��+1, ��) = argmax
���,���

�EULBO (�,�;��) . (6)

This results in ��+1 directly approximating a solution to Eq. (2), where the expected utility lower-
bound (EULBO) is an ELBO-like objective function derived below.

3.1 Expected Utility Lower-Bound
Consider an acquisition function of the form of Eq. (2) where the utility � � � ◊� � �>0 is strictly
positive. We can derive a similar variational formulation of the acquisition function maximization
problem following Lacoste–Julien et al. (2011). That is, given any distribution �� indexed by � � �
and considering the SVGP prior augmentation �(�)� �(� � �)�(�), the acquisition function can be
lower-bounded through Jensen’s inequality as

log� (�;��) = log�� (�,�;��)� (� � ��) d�

= log�� (�,�;��)� (�,� � ��)
�� (�,�)
�� (�,�)

d� d�

= log�� (�,�;��) � (�� � �)� (� � �)� (�)
�� (�)� (� � �)
�� (�)� (� � �)

d� d� � log�

� � log �� (�,�;��)� (�� � �)� (�)
�� (�)

�� (� � �) �� (�) d� d� � log�, (7)

where � is a normalizing constant. Note that this derivation is similar to the derivation of expectation-
maximization (Dempster et al., 1977) and variational lower bounds (Jordan et al., 1999). Thus, this
lower bound implies that, by the minorize-maximize principle (Lange, 2016), maximizing the lower
bound with respect to � and � approximately solves the original problem of maximizing the (exact)
posterior-expected utility.

Expected Utility Lower-Bound Up to a constant and rearranging terms, maximizing Eq. (7) is
equivalent to maximizing
�EULBO (�,�;��) � ��(���)��(�) [log�(�� � �) + log� (�) � log ��(�) + log� (�,�;��)]

= ���(�)
����

�=1 log�(�� � �)
�
� DKL (��(�),�(�)) + ���(�) log� (�,�;��)

= �ELBO (�;��) + ���(�) log� (�,�;��) , (8)

which is the joint objective function alluded to in Eq. (6). We maximize EULBO to obtain (��+1,��) =
argmax���,��� �EULBO (�,�), where ��+1 corresponds our next BO “query”.

From Eq. (8), the connection between the EULBO and ELBO is obvious: the EULBO is now “nudging”
the ELBO solution toward high utility regions. An alternative perspective is that we are approximating

4

a generalized posterior weighted by the utility (Table. 1 by Knoblauch et al., 2022; Bissiri et al.,
2016). Furthermore, Jaiswal et al. (2020, 2023) prove that the resulting actions satisfy consistency
guarantees under assumptions typical in such results for variational inference (Wang and Blei, 2019).

Hyperparameters and Inducing Point Locations For the hyperparameters � and inducing point
locations �, we use the marginal likelihood to perform model selection, which is common practice in
BO (Shahriari et al., 2015, §V.A). (Optimizing over � was popularized by Snelson and Ghahramani,
2005.) Following suit, we also optimize the EULBO as a function of � and � as

maximize
�,�,�,�

�
�EULBO (�,�, �,�;��) � �ELBO (�,�, �;��) + ���(�) log� (�,�;��)

�
.

We emphasize here that the SVGP-associated parameters �, �,� have gradients that are determined
by both terms above. Thus, the expected log-utility term �����(�) log� (�,�;��) simultaneously
results in acquisition of ��+1 and directly influences the underlying SVGP regression model.

3.2 EULBO for Expected Improvement (EI)
The EI acquisition function can be expressed as a posterior-expected utility, where the underlying
“improvement” utility function is given by the difference between the objective value of the query,
�(�), and the current best objective value ��� = max�=1,…,� { �� � �� � �� }:

�EI (�,�;��) � ReLU
�
� (�) � ���

�
, (EI; Jones et al., 1998) (9)

where ReLU (�) � max (�, 0). Unfortunately, this utility is not strictly positive whenever � (�) � ��.
Thus, we cannot immediately plug �EI into the EULBO. While it is possible to add a small positive
constant to �EI and make it strictly positive as done by Kuśmierczyk et al. (2019), this results in a
looser Jensen gap in Eq. (7), which could be detrimental. This also introduces the need for tuning the
constant, which is not straightforward. Instead, define the following “soft improvement” utility:

�SEI (�,�;��) � sof tplus
�
� (�) � ���

�
,

where we replace the ReLU in Eq. (9) with sof tplus (�) � log (1 + exp(�)). sof tplus(�) converges
to the ReLU in both extremes of � � �� and � ��. Thus, �SEI behaves similarly to �EI, but will
be slightly more explorative due to positivity.
Computing the EULBO and its derivatives now requires the computation of �����(�) log�SEI (�,�;��),
which, unlike EI, does not have a closed-form. However, since the utility function only depends
on the function values of �, the expectation can be efficiently computed to high precision through
one-dimensional Gauss-Hermite quadrature.

3.3 EULBO for Knowledge Gradient (KG)
Although non-trivial, the KG acquisition is also a posterior-expected utility, where the underlying
utility function is given by the maximum predictive mean value anywhere in the input domain after

conditioning on a new observation (�, �):
�KG (�, �;��) � max

����
�
�
�(��) � �� � {(�, �)}

�
. (KG; Frazier, 2009; Garnett, 2023)

Note that the utility function as defined above is not non-negative: the maximum predictive mean of a
Gaussian process can be negative. For this reason, the utility function is commonly (and originally,
e.g. Frazier, 2009, Eq. 4.11) written in the literature as the difference between the new maximum
mean after conditioning on (�, �) and the maximum mean beforehand:

�KG (�, �;��) � max
����

�
�
�(��) � �� � {(�, �)}

�
� �+� ,

where �+� � max����� �
�
�(���) � ��

�
. Note �+� plays the role of a simple constant as it depends on

neither � nor �. Similarly to the EI acquisition, this utility is not strictly positive, and we thus define
its “soft” variant:

�SKG (�, �;��) � sof tplus
�
�KG (�, �;��) � �+

�
.

Here, �+ acts as �+� by making �KG positive as often as possible. This is particularly important when
the GP predictive mean is negative as a consequence of the objective values being negative. One
natural choice of constant is using �+� ; however, we find that simply choosing �+ = �+� works well
and is more computationally efficient.

5

One-shot KG EULBO. The EULBO using �SKG results in an expensive nested optimization problem.
To address this, we use an approach similar to the one-shot knowledge gradient method of Balandat
et al. (2020). For clarity, we will define the reparameterization function

�� (�; ��) � ��� (�) + ��� (�) �� ,

where, for an i.i.d. sample �� � � (0, 1), computing �� = �� (�, ��) is equivalent to sampling
�� ��

�
��� (�),��� (�)

�
. This enables the use of the reparameterization gradient estimator (Kingma

and Welling, 2014; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014). Now, notice that the KG
acquisition function can be approximated through Monte Carlo as

�KG(�;�) �
1
�

��

�=1
�KG(�, �� (�; ��) ;��) =

1
�

��

�=1
max
��

�
�
�(��) � �� � {�, �� (�; ��) }

�
,

where �� � �(0, 1) are i.i.d. for � = 1,… , �. The one-shot KG approach absorbs the nested
optimization over �� into a simultaneous joint optimization over � and a mean maximizer for each of
the S samples, ��1, ...,�

�
� such that max� �KG(�;��) � max�,��1,...,��� �1-KG(�;�), where

�1-KG(�;��) �
1
�

��

�=1
�1-KG(�,��� , �� (�; ��) ;��) =

1
�

��

�=1
�
�
�(���) � �� � {�, �� (�; ��)}

�
,

Evidently, there is no longer an inner optimization problem over ��. To estimate the �th term of this
sum, we draw a sample of the objective value of �, ��(�; ��), and condition the model on this sample.
We then compute the new posterior predictive mean at ��� . After summing, we compute gradients
with respect to both the candidate � and the mean maximizers ��1, ...,�

�
�. Again, we use the “soft”

version of one-shot KG in our EULBO optimization problem:

�1-SKG
�
�,��, �;��

�
= sof tplus

�
�
�
�(��) � �� � {(�, �)}

�
� �+

�
,

where this utility function is crucially a function of both � and a free parameter ��. As with �1-KG,
maximizing the EULBO can be set up as a joint optimization problem:

maximize
�,��1,...,�

�
� ,�,�,�

�ELBO(�,�, �) +
1
�

��

�=1
log�1-SKG

�
�,��� , �� (�; ��) ;��

�
(10)

Efficient KG-EULBO Computation. Computing the non-ELBO term in Equation 10 is dominated
by having to compute �

�
�(���) � �� � {(�, �� (�; ��))}

�
�-times. Notice that we only need to compute

an updated posterior predictive mean, and can ignore predictive variances. For this, we can leverage
online updating (Maddox et al., 2021). In particular, the predictive mean can be updated in �(�2)
time using a simple Cholesky update. The additional �(��2) cost of computing the EULBO is
therefore amortized by the original �(�3) cost of computing the ELBO.

3.4 Extension to q-EULBO for Batch Bayesian Optimization
The EULBO can be extended to support batch Bayesian optimization by using the Monte Carlo batch
mode analogs of utility functions as discussed e.g. by Balandat et al. (2020); Wilson et al. (2018).
Given a set of candidates � =

�
�1, ...,��

�
, the �-improvement utility function is given by:

�q-I (�,�;��) � max
�=1...�

ReLU
�
�
�
��
�
� ���

�
(q-EI; Balandat et al., 2020; Wilson et al., 2018)

This utility can again be softened as:

�q-SI (�,�;��) � max
�=1…�

sof tplus
�
�
�
��
�
� ���

�

Because this is now a �-dimensional integral, Gauss-Hermite quadrature is no longer applicable.
However, we can apply Monte Carlo as

���(�) log��-SI (�,�;��) �
1
�

��

�=1
max
�=1...�

sof tplus
�
�� (�; ��) � ���

�
.

As done in the BoTorch software package (Balandat et al., 2020), we observe that fixing the set of
base samples �1, ..., �� during each BO iteration results in better optimization performance at the cost
of negligible q-EULBO bias. Now, optimizing the q-EULBO is done over the full set of � candidates
�1, ...,�� jointly, as well as the GP hyperparameters, inducing points, and variational parameters.

6

Knowledge Gradient. The KG version of the EULBO can be similarly extended. The expected log
utility term in the maximization problem Eq. (10) becomes:

maximize
�1,...,�� ,��1,...,�

�
� ,�,�,�

�ELBO(�,�, �) +
1
�

��

�=1
max
�=1..�

log�1-SKG(�� ,��� , �� (�; ��) ;��),

resulting in a similar analog to q-KG as described by Balandat et al. (2020).

3.5 Optimizing the EULBO
Optimizing the ELBO for SVGPs is known to be challenging (Galy-Fajou and Opper, 2021; Terenin
et al., 2024) as the optimization landscape for the inducing points is non-convex, multi-modal, and
non-smooth. Naturally, these are also challenges for EULBO. In practice, we found that care must be
taken when implementing and initializing the EULBO maximization problem. In this subsection, we
outline some key ideas, while a detailed description with pseudocode is presented in Appendix A.

Initialization and Warm-Starting. We warm-start the EULBO maximization procedure by solving
the conventional two-step scheme in Eq. (5): At each BO iteration, we obtain the “warm” initial
values for (�,�, �) by optimizing the standard ELBO. Then, we use this to maximize the conventional
acquisition function corresponding to the chosen utility function � (the expectation of � over ��(�)),
which provides the warm-start initialization for �.

Alternating Maximization Scheme. To optimize �EULBO (�,�,�, �), we alternate between opti-
mizing over the query � and the SVGP parameters �,�, �. We find block-coordinate descent to be
more stable and robust than jointly updating all parameters, though the reason why this is more stable
than jointly optimizing all parameters requires further investigation.

4 Experiments
We evaluate EULBO-based SVGPs on a number of benchmark BO tasks, described in detail in
Section 4.1. These tasks include standard low-dimensional BO problems, e.g., the 6D Hartmann
function, as well as 7 high-dimensional and high-throughput optimization tasks.

Baselines. We compare EULBO to several baselines with the main goal of achieving a high reward
using as few function evaluations as possible. Our primary point of comparison is ELBO-based SVGPs.
We consider two approaches for inducing point locations: 1. optimizing inducing point locations via
the ELBO (denoted as ELBO), 2. placing the inducing points using the strategy proposed by Moss
et al. (2023) at each stage of ELBO optimization (denoted as Moss et al.). The latter offers improved
BO performance over standard ELBO-SVGP in BO settings, yet—unlike our method—it exclusively
targets inducing point placement and does not affect variational parameters or hyperparameters of the
model. In addition, we compare to BO using exact GPs using 2, 000 function evaluations as the use
of exact GP is intractable beyond this point due to the need to repeatedly fit models.

Acquisition functions and BO algorithms. For EULBO, we test the versions based on both the
Expected Improvement (EI) and Knowledge Gradient (KG) acquisition functions as well as the
batch variant. We test the baseline methods using EI only. On high-dimensional tasks (tasks with
dimensionality above 10), we run EULBO and baseline methods with standard BO and with trust region
Bayesian optimization (TuRBO) (Eriksson et al., 2019). For the largest tasks (Lasso, Molecules) we
use acquisition batch size of 20 (� = 20), and batch size 1 (� = 1) for all others.

Implementation Details and Hyperparameters. We will provide code to reproduce all results
in the paper in a public GitHub repository. We implement EULBO and baseline methods using the
GPyTorch (Gardner et al., 2018) and BoTorch (Balandat et al., 2020) packages. For all methods, we
initialize using a set of 100 data points sampled uniformly at random in the search space. We use the
same trust region hyperparameters as in (Eriksson et al., 2019). In Appendix B.1, we also evaluate an
additional initialization strategy for the molecular design tasks. This alternative initialization matches
prior work in using 10, 000 molecules from the GuacaMol dataset Brown et al. (2019) rather than the
details we used above for consistency across tasks, but does achieve higher overall performance.

4.1 Tasks
Hartmann 6D. The widely used Hartmann benchmark function (Surjanovic and Bingham, 2013).

7

Figure 2: Optimization results on the 8 considered tasks. We compare all methods for both
standard BO and TuRBO-based BO (on all tasks except Hartmann). Each line/shaded region represents
the mean/standard error over 20 runs See subsection B.1 for additional molecule results.

Figure 3: Ablation study measuring the impact of EULBO optimization on various SVGP
parameters. At each BO iteration, we use the standard ELBO objective to optimize the SVGP
hyperparameters, variational parameters, and inducing point locations. We then refine some subset of
these parameters by further optimizing them with respect to the EULBO objective.

Lunar Lander. The goal of this task is to find an optimal 12-dimensional control policy that allows
an autonomous lunar lander to consistently land without crashing. The final objective value we
optimize is the reward obtained by the policy averaged over a set of 50 random landing terrains. For
this task, we use the same controller setup used by Eriksson et al. (2019).

Rover. The rover trajectory optimization task introduced by Wang et al. (2018) consists of finding
a 60-dimensional policy that allows a rover to move along some trajectory while avoiding a set of
obstacles. We use the same obstacle set up as in Maus et al. (2023).

Lasso DNA. We optimize the 180�dimensional DNA task from the LassoBench library (Šehić
et al., 2022) of benchmarks based on weighted LASSO regression (Gasso et al., 2009).

Molecular design tasks (x4). We select four challenging tasks from the Guacamol benchmark
suite of molecular design tasks (Brown et al., 2019): Osimertinib MPO, Fexofenadine MPO, Median
Molecules 1, and Median Molecules 2. We use the SELFIES-VAE introduced by Maus et al. (2022)
to enable continuous 256 dimensional optimization.

8

4.2 Optimization results

In Figure 2, we plot the reward of the best point found by the optimizer after a given number of function
evaluations. Error bars show the standard error of the mean over 20 replicate runs. EULBO with TuRBO
outperforms the other baselines with TuRBO. Similarly, EULBO with standard BO outperforms the
other standard BO baselines. One noteworthy observation is that neither acquisition function appears
to consistently outperform the other. However, EULBO-SVGP almost always dominates ELBO-SVGP
and often requires a small fraction of the number of oracle calls to achieve comparable performance.
These results suggest that coupling data acquisition with approximate inference/model selection
results in significantly more sample-efficient optimization.

4.3 Ablation Study

While the results in Fig. 2 demonstrate that EULBO-SVGP improves the BO performance it is not
immediately clear to what extent joint optimization modifies the posterior approximation beyond what
is obtained by standard ELBO optimization. To that end, in Fig. 3 we refine an ELBO-SVGP model
with varying degrees of additional EULBO optimization. At every BO iteration we begin by obtaining a
SVGP model (where the variational parameters, inducing point locations, and GP hyperparameters are
all obtained by optimizing the standard ELBO objective). We then refine some subset of parameters
(either the inducing points, the variational parameters, the GP hyperparameters, or all of the above)
through additional optimization with respect to the EULBO objective. Interestingly, we find that tasks
respond differently to the varying levels of EULBO refinement. In the case of Lasso DNA, there is not
much of a difference between EULBO refinement on all parameters versus refinement on the variational
parameters alone. On the other hand, the performance on Median Molecules 2 is clearly dominated by
refinement on all parameters. Nevertheless, we see that EULBO is always beneficial, whether applied
to all parameters or some subset.

5 Related Work
Scaling Bayesian optimization to the Large-Budget Regime. BO has traditionally been confined
to the small-budget optimization regime. However, recent interest in high-dimensional optimization
problems has demonstrated the need to scale BO to large data acquisition budgets. For problems
with �(103) data acquisitions, Hernández-Lobato et al. (2017); Snoek et al. (2015); Springenberg
et al. (2016) consider Bayesian neural networks (BNN; Neal, 1996), McIntire et al. (2016) use
SVGP, and Wang et al. (2018) turn to ensembles of subsampled GPs. For problems with � 1000
acquisitions, SVGP has become the de facto approach to alleviate computational complexity (Griffiths
and Hernández-Lobato, 2020; Maus et al., 2022, 2023; Stanton et al., 2022; Tripp et al., 2020; Vakili
et al., 2021). As in this paper, many works have proposed modifications to SVGP to improve its
performance in BO applications. Moss et al. (2023) proposed an inducing point placement based on a
heuristic modification of determinantal point processes (Kulesza and Taskar, 2012), which we used
for initialization, while Maddox et al. (2021) proposed a method for a fast online update strategy for
SVGPs, which we utilize for the KG acquisition strategy.

Utility-Calibrated Approximate Inference. This was first proposed by Lacoste–Julien et al. (2011),
where the authors use a coordinate ascent algorithm to perform loss-calibrated variational inference.
Since then, various extensions have been proposed: Kuśmierczyk et al. (2019) leverage black-box
variational inference (Ranganath et al., 2014; Titsias and Lázaro-Gredilla, 2014); Morais and Pillow
(2022) use expectation-propagation (EP; Minka, 2001); Abbasnejad et al. (2015) employ importance
sampling; Cobb et al. (2018) and Li and Zhang (2023) derive a specific variant for BNNs; and (Wei
et al., 2021) derive a specific variant for GP classification. Closest to our work is the GP-based
recommendation model learning algorithm by Abbasnejad et al. (2013), which sparsifies an EP-based
GP approximation by maximizing a utility similar to those used in BO.

6 Limitations and Discussion
The main limitation of our proposed approach is increased computational cost. While EULBO-SVGP
still retains the �(�3) computational complexity of standard SVGP, our practical implementation
requires a warm-start: first fitting SVGP with the ELBO loss and then maximizing the acquisition
function before jointly optimizing with the EULBO loss. Furthermore, EULBO optimization currently
requires multiple tricks such as clipping and block-coordinate updates. In future work, we aim

9

to develop a better understanding of the EULBO geometry in order to develop developing more
stable, efficient, and easy-to-use EULBO optimization schemes. Nevertheless, our results in Section 4
demonstrate that the additional computation of EULBO yields substantial improvements in BO data-
efficiency, a desirable trade-off in many applications. Moreover, EULBO-SVGP is modular, and
our experiments capture a fraction of its potential use. It can be applied to any decision-theoretic
acquisition function, and it is likely compatible with non-standard Bayesian optimization problems
such as cost-constrained BO (Snoek et al., 2012), causal BO (Aglietti et al., 2020), and many more.
More importantly, our paper highlights a new avenue for research in BO, where our paper is the first
to jointly consider surrogate modeling, approximate inference, and data selection. Extending this
idea to GP approximations beyond SVGP and acquisition functions beyond EI/KG may yield further
improvements, especially in the increasingly popular high-throughput BO setting.

10

References
Ehsan Abbasnejad, Justin Domke, and Scott Sanner. Loss-calibrated Monte Carlo action selection. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 29 of AAAI. AAAI Press,
March 2015. (page 9)

M. Ehsan Abbasnejad, Edwin V. Bonilla, and Scott Sanner. Decision-theoretic sparsification for
Gaussian process preference learning. In Machine Learning and Knowledge Discovery in Databases,
volume 13717 of LNCS, pages 515–530, Berlin, Heidelberg, 2013. Springer. (page 9)

Virginia Aglietti, Xiaoyu Lu, Andrei Paleyes, and Javier González. Causal Bayesian optimization. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, volume 108 of
PMLR, pages 3155–3164. JMLR, June 2020. (page 10)

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo
Bayesian optimization. In Advances in Neural Information Processing Systems, volume 33, pages
21524–21538. Curran Associates, Inc., 2020. (pages 2, 6, 7, 16)

P. G. Bissiri, C. C. Holmes, and S. G. Walker. A general framework for updating belief distributions.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 78(5):1103–1130, 2016.
(pages 2, 5)

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, April 2017. (pages 2, 3)

Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Benchmarking
models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3):
1096–1108, Mar 2019. (pages 7, 8)

Adam D. Cobb, Stephen J. Roberts, and Yarin Gal. Loss-Calibrated Approximate Inference in
Bayesian Neural Networks. arXiv Preprint arXiv:1805.03901, arXiv, May 2018. (page 9)

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22,
September 1977. (page 4)

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local Bayesian optimization. In Advances in Neural Information Processing

Systems, volume 32, pages 5496–5507. Curran Associates, Inc., 2019. (pages 1, 2, 7, 8)
Peter I Frazier. Knowledge-gradient methods for statistical learning. PhD thesis, Princeton University

Princeton, 2009. (page 5)
Peter I Frazier. A tutorial on Bayesian optimization. arXiv Preprint arXiv:1807.02811, ArXiv, 2018.

(page 1)
Théo Galy-Fajou and Manfred Opper. Adaptive inducing points selection for Gaussian processes.

arXiv Preprint arXiv:2107.10066, arXiv, 2021. (page 7)
Jacob Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew G. Wilson. GPyTorch:

Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural

Information Processing Systems, volume 31, pages 7576–7586. Curran Associates, Inc., 2018.
(pages 7, 16)

Roman Garnett. Bayesian Optimization. Cambridge University Press, Cambridge, United Kingdom ;
New York, NY, 2023. (pages 1, 2, 3, 5)

Gilles Gasso, Alain Rakotomamonjy, and Stéphane Canu. Recovering sparse signals with a certain
family of nonconvex penalties and DC programming. IEEE Transactions on Signal Processing, 57
(12):4686–4698, 2009. (page 8)

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained Bayesian optimization for
automatic chemical design using variational autoencoders. Chemical Science, 11(2):577–586,
2020. (pages 1, 9)

James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Proceedings

of the Conference on Uncertainty in Artificial Intelligence, pages 282–290. AUAI Press, 2013.
(pages 1, 3)

11

José Miguel Hernández-Lobato, James Requeima, Edward O. Pyzer-Knapp, and Alán Aspuru-Guzik.
Parallel and distributed Thompson sampling for large-scale accelerated exploration of chemical
space. In Proceedings of the International Conference on Machine Learning, volume 70 of PMLR,
pages 1470–1479. JMLR, July 2017. (page 9)

Prateek Jaiswal, Harsha Honnappa, and Vinayak A. Rao. Asymptotic consistency of loss-calibrated
variational Bayes. Stat, 9(1):e258, 2020. (pages 2, 5)

Prateek Jaiswal, Harsha Honnappa, and Vinayak Rao. On the statistical consistency of risk-sensitive
bayesian decision-making. In Advances in Neural Information Processing Systems, volume 36,
pages 53158–53200. Curran Associates, Inc., December 2023. (pages 2, 5)

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998. (pages 1, 2, 5)

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction
to variational methods for graphical models. Machine Learning, 37(2):183–233, 1999. (pages 1, 2,
3, 4)

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proceedings

of the International Conference on Learning Representations, San Diego, California, USA, 2015.
(pages 15, 16)

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of the

International Conference on Learning Representations, Banff, AB, Canada, April 2014. (page 6)
Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. An optimization-centric view on Bayes’

rule: Reviewing and generalizing variational inference. Journal of Machine Learning Research, 23
(132):1–109, 2022. (pages 2, 5)

Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. Foundations and

Trends® in Machine Learning, 5(2–3):123–286, 2012. (page 9)
Tomasz Kuśmierczyk, Joseph Sakaya, and Arto Klami. Variational Bayesian decision-making for

continuous utilities. In Advances in Neural Information Processing Systems, volume 32, pages
6395–6405. Curran Associates, Inc., 2019. (pages 5, 9)

Simon Lacoste–Julien, Ferenc Huszár, and Zoubin Ghahramani. Approximate inference for the
loss-calibrated Bayesian. In Proceedings of the International Conference on Artificial Intelligence

and Statistics, volume 15 of PMLR, pages 416–424. JMLR, June 2011. (pages 2, 4, 9)
Kenneth Lange. MM Optimization Algorithms. Society for Industrial and Applied Mathematics,

Philadelphia, 2016. (pages 2, 4)
Bolian Li and Ruqi Zhang. Long-tailed Classification from a Bayesian-decision-theory Perspective.

arXiv Preprint arXiv:2303.06075, arXiv, 2023. (page 9)
Wesley J Maddox, Samuel Stanton, and Andrew G Wilson. Conditioning sparse variational Gaussian

processes for online decision-making. In Advances in Neural Information Processing Systems,
volume 34, pages 6365–6379. Curran Associates, Inc., 2021. (pages 1, 2, 4, 6, 9)

Alexander G. de G. Matthews, James Hensman, Richard Turner, and Zoubin Ghahramani. On
sparse variational methods and the Kullback-Leibler divergence between stochastic processes. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, volume 51 of
PMLR, pages 231–239. JMLR, May 2016. (pages 1, 4)

Natalie Maus, Haydn Jones, Juston Moore, Matt J. Kusner, John Bradshaw, and Jacob Gardner. Local
latent space Bayesian optimization over structured inputs. In Advances in Neural Information

Processing Systems, volume 35, pages 34505–34518, December 2022. (pages 1, 8, 9)
Natalie Maus, Kaiwen Wu, David Eriksson, and Jacob Gardner. Discovering many diverse solutions

with Bayesian optimization. In Proceedings of the International Conference on Artificial Intelligence

and Statistics, volume 206, pages 1779–1798. PMLR, April 2023. (pages 1, 8, 9)
Mitchell McIntire, Daniel Ratner, and Stefano Ermon. Sparse Gaussian Processes for Bayesian

Optimization. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, Jersey
City, New Jersey, USA, 2016. AUAI Press. (page 9)

Thomas P. Minka. Expectation propagation for approximate bayesian inference. In Proceedings of

the Conference on Uncertainty in Artificial Intelligence, pages 362–369, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc. (page 9)

12

Jonas Mockus. The Bayesian approach to global optimization. In System Modeling and Optimization,
pages 473–481. Springer, 1982. (page 1)

Michael J. Morais and Jonathan W. Pillow. Loss-calibrated expectation propagation for approximate
Bayesian decision-making. Technical Report arXiv:2201.03128, arXiv, January 2022. (page 9)

Henry B. Moss, Sebastian W. Ober, and Victor Picheny. Inducing point allocation for sparse Gaussian
processes in high-throughput Bayesian optimisation. In Proceedings of the International Conference

on Artificial Intelligence and Statistics, volume 206 of PMLR, pages 5213–5230. JMLR, April
2023. (pages 1, 4, 7, 9, 16, 17, 18)

Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statistics.
Springer New York, New York, NY, 1996. (page 9)

Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research, 6(65):1939–1959, 2005.
(page 1)

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Proceedings of

the International Conference on Artificial Intelligence and Statistics, volume 33 of PMLR, pages
814–822. JMLR, April 2014. (page 9)

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, November 2005. (page 1)

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the International Conference

on Machine Learning, volume 32 of PMLR, pages 1278–1286. JMLR, June 2014. (page 6)
Christian P. Robert. The Bayesian Choice: From Decision-Theoretic Foundations to Computational

Implementation. Springer Texts in Statistics. Springer, New York Berlin Heidelberg, 2. ed edition,
2001. (pages 2, 3)

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015. (pages 1, 5)

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems, volume 18, pages 1257–1264. MIT Press,
2005. (page 5)

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25:2951–2959, 2012.
(page 10)

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian optimization using deep neural
networks. In Proceedings of the International Conference on Machine Learning, volume 37 of
PMLR, pages 2171–2180. JMLR, June 2015. (page 9)

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian Optimization
with Robust Bayesian Neural Networks. In Advances in Neural Information Processing Systems,
volume 29, pages 4134–4142. Curran Associates, Inc., 2016. (page 9)

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside,
and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence design
with denoising autoencoders. In Proceedings of the International Conference on Machine Learning,
volume 162 of PMLR, pages 20459–20478. JMLR, June 2022. (pages 1, 9)

Sonja Surjanovic and Derek Bingham. Virtual library of simulation experiments: Test functions and
datasets, 2013. (page 7)

Alexander Terenin, David R. Burt, Artem Artemev, Seth Flaxman, Mark van der Wilk, Carl Edward
Rasmussen, and Hong Ge. Numerically stable sparse Gaussian processes via minimum separation
using cover trees. Journal of Machine Learning Research, 25(26):1–36, 2024. (page 7)

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, volume 5 of
PMLR, pages 567–574. JMLR, April 2009. (pages 1, 3)

13

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes for non-conjugate
inference. In Proceedings of the International Conference on Machine Learning, volume 32 of
PMLR, pages 1971–1979. JMLR, June 2014. (pages 6, 9)

Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization
in the latent space of deep generative models via weighted retraining. In Advances in Neural

Information Processing Systems, volume 33, pages 11259–11272. Curran Associates, Inc., 2020.
(pages 1, 9)

Sattar Vakili, Henry Moss, Artem Artemev, Vincent Dutordoir, and Victor Picheny. Scalable
Thompson sampling using sparse Gaussian process models. In Advances in Neural Information

Processing Systems, volume 34, pages 5631–5643, 2021. (pages 1, 9)
Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-dimensional

hyperparameter optimization benchmark suite for LASSO. In Proceedings of the International

Conference on Automated Machine Learning, volume 188 of PMLR, pages 2/1–24. JMLR, 25–27
Jul 2022. (page 8)

Yixin Wang and David M. Blei. Frequentist consistency of variational Bayes. Journal of the American

Statistical Association, 114(527):1147–1161, July 2019. (page 5)
Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian

optimization in high-dimensional spaces. In Proceedings of the International Conference on

Artificial Intelligence and Statistics, volume 84 of PMLR, pages 745–754. JMLR, March 2018.
(pages 8, 9)

Larry Wasserman. All of statistics: a concise course in statistical inference. Springer Science &
Business Media, 2013. (pages 2, 3)

Yadi Wei, Rishit Sheth, and Roni Khardon. Direct loss minimization for sparse Gaussian processes.
In Proceedings of the International Conference on Artificial Intelligence and Statistics, volume 130
of PMLR, pages 2566–2574. JMLR, March 2021. (page 9)

James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for Bayesian
optimization. In Advances in Neural Information Processing Systems, pages 9884–9895. Curran
Associates, Inc., 2018. (pages 2, 6)

Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with
gradients. In Advances in Neural Information Processing Systems, volume 30, pages 5267–5278.
Curran Associates, Inc., 2017. (page 2)

14

A Implementation Details

We will now provide additional details on the implementation. For the implementation, we treat
the SVGP parameters, such as the variational parameters �, inducing point locations �, and
hyperparameters �, equally. Therefore, for clarity, we will collectively denote them as � = (�,�, �)
such that � �� = � ◊�� ◊ �, and the resulting SVGP variational approximation as ��. Then,
the ELBO and EULBO are equivalently denoted as follows:

�ELBO (�;�) � �ELBO (�,�, �;�)
�EULBO (�,�;��,��) � �����(�) log� (�,�;��) +�ELBO (�;��) .

Also, notice that the �EULBO separately denote the dataset to be passed to the utility and the ELBO.
(Setting �� = �� = �� retrieves the original formulation in Eq. (8).)

Alternating Updates We perform block-coordinate ascent on the EULBO by alternating between
maximizing over � as �. Using vanilla gradient descent, the �-update is equivalent to

�� � + �����EULBO (�,�;�) = � + ���������(�) log� (�,�;�) ,
where �� is the stepsize. On the other hand, for the �-update, we subsample the data such that we
optimize the ELBO over a minibatch � � � of size � = ��� as

�� � + �����EULBO (�,�; �,�) = � + ����
�
�����(�) log� (�,�;�) +�ELBO (�; �)

�
,

where �� is the stepsize. Naturally, the�-update is stochastic due to minibatching, while the �-update
is deterministic. In practice, we leverage the Adam update rule (Kingma and Ba, 2015) instead of
simple gradient descent. Together with gradient clipping, this alternating update scheme is much
more robust than jointly updating (�,�).

Algorithm 1: EULBO Maximization Policy
Input: SVGP parameters �0 = (�0,�0, �0), Dataset ��, BO utility function �,
Output: BO query ��+1

1
� Compute Warm-Start Initializations

2 �� argmax��� �ELBO (�;��) with �0 as initialization.
3 �� argmax��� �� (�,�;��) �� (�) d�
4
� Maximize EULBO

5 repeat
� Update posterior approximation ��

6 Fetch minibatch � from ��
7 Compute �� � ���EULBO (�,�; �,��)
8 Clip �� with threshold �clip
9 �� AdamStep�� (�,��)

10
� Update BO query �

11 Compute �� � ���EULBO (�,�; �,��)
12 Clip �� with threshold �clip
13 �� AdamStep�� (�,��)
14 �� proj� (�)
15 until until converged

16 ��+1 � �
17

Overview of Pseudocode. The complete high-level view of the algorithm is presented in Algorithm 1,
except for the acquisition-specific details. AdamStep� (�,�) applies the Adam stepsize rule (Kingma
and Ba, 2015) to the current location � with the gradient estimate � and the stepsize �. In practice,
Adam is a “stateful” optimizer, which maintains two scalar-valued states for each scalar parameter.
For this, we re-initialize the Adam states at the beginning of each BO step.

15

Initialization. In the initial BO step � = 0, we initialize �0 with the DPP-based inducing point
selection strategy of Moss et al. (2023). For the remaining SVGP parameters �0 and �0, we used the
default initialization of GPyTorch (Gardner et al., 2018). For the remaining BO steps � > 0, we use �
from the previous BO step as the initialization �0 of the current BO step.

Warm-Starting. Due to the non-convexity and multi-modality of both the ELBO and the acquisition
function, it is critical to appropriately initialize the EULBO maximization procedure. As mentioned
in Section 3.5, to warm-start the EULBO maximization procedure, we use the conventional 2-step
scheme Eq. (5), where we maximize the ELBO and then maximize the acquisition function. For
ELBO maximization, we apply Adam (Kingma and Ba, 2015) with the stepsize set as �� until the
convergence criteria (described below) are met. For acquisition function maximization, we invoke the
highly optimized BoTorch.optimize.optimize_acqf function (Balandat et al., 2020).

Minibatch Subsampling Strategy. As commonly done, we use the reshuffling subsampling strategy
where the dataset�� is shuffled and partitioned into minibatches of size �. The number of minibatches
constitutes an “epoch.” The dataset is reshuffled/repartitioned after going through a full epoch.

Convergence Determination. For both maximizing the ELBO during warm-starting and maximizing
the EULBO, we continue optimization until we stop making progress or exceed �epochs number of
epochs. That is if the ELBO/EULBO function value fails to make progress for �fail number of steps.

Table 1: Configurations of Hyperparameters used for the Experiments

Hyperparameter Value Description
�� 0.001 ADAM stepsize for the query �
�� 0.01 ADAM stepsize for the SVGP parameters �
� 32 Minibatch size

�clip 2.0 Gradient clipping threshold
�epochs 30 Maximum number of epochs
�fail 3 Maximum number of failure to improve
� 100 Number of inducing points

�0 = ��0� 100 Number of observations for initializing BO
quad. 20 Number of Gauss-Hermite quadrature points

optimize_acqf: restarts 10
optimize_acqf: raw_samples 256
optimize_acqf: batch_size 1�20 Depends on task, see details in Section 4

Hyperparameters. The hyperparameters used in our experiments are organized in Table 1. For
the full-extent of the implementation details and experimental configuration, please refer to the
supplementary code.

16

B Additional Plots

We provide additional results and plots that were omitted from the main text.

B.1 Additional Results on Molecule Tasks

In Fig. 4, we provide plots on additional results that are similar to those in Fig. 2. On three of the
molecule tasks, we use 10,000 random molecules from the GuacaMol dataset as initialization. This is
more consistent with what has been done in previous works and achieves better overall optimization
performance.

Figure 4: Additional optimization results on three molecule tasks using 10,000 random molecules
from the GuacaMol dataset as initialization. Each line/shaded region represents the mean/standard
error over 20 runs. We count oracle calls starting after these initialization evaluations for all methods.

B.2 Separate Plots for BO and TuRBO Results

In this section, we provide additional plots separating out BO and TuRBO results to make visualization
easier.

Figure 5: BO-only optimization results of Fig. 2. We compare EULBO-SVGP, ELBO-SVGP,
ELBO-SVGP with DPP inducing point placement (Moss et al., 2023), and exact GPs. These are a
subset of the same results shown in Fig. 2. Each line/shaded region represents the mean/standard
error over 20 runs.

17

Figure 6: TuRBO-only optimization results of Fig. 2. We compare EULBO-SVGP, ELBO-SVGP,
ELBO-SVGP with DPP inducing point placement (Moss et al., 2023), and exact GPs. These are a
subset of the same results shown in Fig. 2. Each line/shaded region represents the mean/standard
error over 20 runs.

B.3 Effect of Number of Inducing Points

For the results with approximate-GPs in Section 4, we used � = 100 inducing points. In Fig. 7, we
evaluate the effect of using a larger number of inducing points (� = 1024) for EULBO-SVGP and
ELBO-SVGP.

Figure 7: Ablating the number of inducing points used by EULBO-SVGP and ELBO-SVGP.
As in Fig. 2, we compare running TuRBO with EULBO-SVGP and with ELBO-SVGP using � = 100
inducing points used for both methods. We add two additional curves for TuRBO with EULBO-SVGP
and TuRBO with ELBO-SVGP using � = 1024 inducing points. Each line/shaded region represents
the mean/standard error over 20 runs.

Fig. 7 shows that the number of inducing points has limited impact on the overall performance of
TuRBO, and EULBO-SVGP outperforms ELBO-SVGP regardless of which the number of inducing
points used.

18

C Compute Resources

Table 2: Internal Cluster Setup

Type Model and Specifications
System Topology 20 nodes with 2 sockets each with 24 logical threads (total 48 threads)
Processor 1 Intel Xeon Silver 4310, 2.1 GHz (maximum 3.3 GHz) per socket
Cache 1.1 MiB L1, 30 MiB L2, and 36 MiB L3
Memory 250 GiB RAM
Accelerator 1 NVIDIA RTX A5000 per node, 2 GHZ, 24GB RAM

Type of Compute and Memory. All results in the paper required the use of GPU workers (one
GPU per run of each method on each task). The majority of runs were executed on an internal
cluster, where details are shown in Table 2, where each node was equipped with an NVIDIA RTX
A5000 GPU. In addition, we used cloud compute resources for a short period leading up to the
subsmission of the paper. We used 40 RTX 4090 GPU workers from runpod.io, where each GPU
had approximately 24 GB of GPU memory. While we used 24 GB GPUs for our experiments, each
run of our experiments only requires approximately 15 GB of GPU memory.

Execution Time. Each optimization run for non-molecule tasks takes approximately one day to
finish. Since we run the molecule tasks out to a much larger number of function evaluations than
other tasks (80000 total function evaluations for each molecule optimization task), each molecule
optimization task run takes approximately 2 days of execution time. With all eight tasks, ten methods
run, and 20 runs completed per method, results in Fig. 2 include 1600 total optimization runs (800
for molecule tasks and 800 for non-molecule tasks). Additionally, the two added curves in each
plot in Fig. 3 required 160 additional runs (120 for molecule tasks and 40 for non-molecule task).
Completing all of the runs needed to produce all of the results in this paper therefore required roughly
2680 total GPU hours.

Compute Resources used During Preliminary Investigations. In addition to the computational
resources required to produce experimental results in the paper discussed above, we spent approximately
500 hours of GPU time on preliminary investigations. This was done on the aforementioned internal
cluster shown in Table 2.

19

	Introduction
	Background
	Approximation-Aware Bayesian Optimization
	Expected Utility Lower-Bound
	EULBO for Expected Improvement (EI)
	EULBO for Knowledge Gradient (KG)
	Extension to q-EULBO for Batch Bayesian Optimization
	Optimizing the EULBO

	Experiments
	Tasks
	Optimization results
	Ablation Study

	Related Work
	Limitations and Discussion
	Implementation Details
	Additional Plots
	Additional Results on Molecule Tasks
	Separate Plots for BO and TuRBO Results
	Effect of Number of Inducing Points

	Compute Resources

