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Abstract

Offline model-based optimization seeks to optimize against a learned surrogate
model without querying the true oracle objective function during optimization.
Such tasks are commonly encountered in protein design, robotics, and clinical
medicine where evaluating the oracle function is prohibitively expensive. However,
inaccurate surrogate model predictions are frequently encountered along offline
optimization trajectories. To address this limitation, we propose generative ad-

versarial model-based optimization using adaptive source critic regularization
(aSCR)—a task- and optimizer- agnostic framework for constraining the opti-
mization trajectory to regions of the design space where the surrogate function
is reliable. We propose a computationally tractable algorithm to dynamically ad-
just the strength of this constraint, and show how leveraging aSCR with standard
Bayesian optimization outperforms existing methods on a suite of offline generative
design tasks. Our code is available at https://github.com/michael-s-yao/gabo.

1 Introduction

In many real-world tasks, we often seek to optimize the value of an objective function over some
search space of inputs. Such optimization problems span across a wide variety of domains, including
molecule and protein design (Guimaraes et al., 2017; Brown et al., 2019; Maus et al., 2022), patient
treatment effect estimation (Kim & Bastani, 2021; Berrevoets et al., 2022; Xu & Bastani, 2023),
and resource allocation in public policy (Bastani et al., 2021; Ramchandani et al., 2021). A number
of algorithms have been explored for online optimization in these domains, including first-order
methods, quasi-Newton methods, and Bayesian optimization (Sun et al., 2020).

However, in many situations it may prove difficult or costly to estimate the objective function for any
arbitrary input configuration. Evaluating newly proposed molecules requires expensive experimental
laboratory setups, and testing multiple drug doses for a single patient can potentially be dangerous.
In these scenarios, the allowable budget for objective function queries is prohibitive, thereby limiting
the utility of out-of-the-box online policy optimization methods.

To overcome this limitation, recent work has investigated the utility of optimization methods in
the offline setting, where we are unable to query the objective function during the optimization
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process and instead only have access to a set of prior observations of inputs and associated objective
values; this problem can often be referred to as offline model-based optimization (MBO) (Trabucco
et al., 2021; Mashkaria et al., 2023). While one may naïvely attempt to learn a surrogate black-box
model from the prior observations that approximates the true oracle objective function, such models
can suffer from overestimation errors, yielding falsely promising objective estimates for inputs not
contained in the offline dataset. As a result, offline optimization against the surrogate objective may
yield low-scoring candidate designs according to the true oracle objective function—a key limitation
of traditional policy optimization techniques in the offline setting (Fig. 1).

Dn = {(xk, yk)}n
k=1

Figure 1: Naïve offline model-based optimization
(MBO) (Trabucco et al., 2021), which optimizes
against a learned surrogate model f✓ trained on
a fixed dataset Dn = {(xi, yi)}ni=1 (shaded re-
gion) without access to the true oracle f , often
yields candidate designs x⇤ (i.e., diamond) that
score poorly using the true oracle (i.e., cross). Our
method (aSCR) constrains optimization trajecto-
ries to avoid these extrapolated points, instead
proposing ‘in-distribution’ designs (i.e., star).

In this work, we propose a novel offline MBO
algorithm that leverages source critic models to
optimize a surrogate objective while simultane-
ously remaining in-distribution when compared
against a reference offline dataset. In this set-
ting, an optimizer is rewarded for proposing op-
tima that are “similar” to reference data points,
thereby minimizing overestimation error and al-
lowing for more robust oracle function optimiza-
tion in the offline setting. Inspired by recent
work on generative adversarial networks (Good-
fellow et al., 2014), we quantify design similar-
ity by proposing a novel method that regularizes
a surrogate objective model using a source critic
actor, which we call adaptive source critic regu-

larization (aSCR). We show how our algorithm
can be readily leveraged with optimization meth-
ods such as Bayesian optimization (BO) and
first-order methods.

Contributions: Our contributions are as fol-
lows: (1) We propose a novel approach for MBO
that formulates the task as a constrained primal
optimization problem, and we show how this
framework can be used to solve for the optimal
tradeoff between naïvely optimizing against the surrogate model and staying in-distribution relative
to the offline dataset. (2) We introduce a computationally tractable method—which we call adaptive
source critic regularization (aSCR)—to implement this framework with two popular optimization
methods: Bayesian optimization and gradient ascent. (3) We show that compared to prior methods,
our proposed algorithm with Bayesian optimization empirically achieves the highest rank of 3.8
(second best is 5.5) on top-1 design evaluation, and highest rank of 3.0 (second best is 4.6) on top-128
design evaluation across a variety of tasks spanning multiple scientific domains.

2 Related Work

Leveraging source critic model feedback for adversarial training of neural networks was popularized
by works such as Goodfellow et al. (2014), where a generator and adversarial discriminator “play”
a zero-sum minimax game to train a generative model. However, such discriminators often suffer
from mode collapse and training instability in practice. To overcome these limitations, Arjovsky
et al. (2017) introduced the Wasserstein generative adversarial net (WGAN), which instead utilizes a
source critic that learns to approximate the 1-Wasserstein distance between the generated and training
distributions. However, WGANs and similar networks primarily aim to generate samples that look
in-distribution from a latent space prior, rather than optimize against an objective function. In our
work, we adapt WGAN-inspired source critic models for Wasserstein distance estimation.

Separately in the field of optimization, Brookes et al. (2019) introduced a method for conditioning by
adaptive sampling (CbAS) that learns a density model of the input space that is gradually adapted
towards the optimal solution. However, such prior works have focused on solving low-dimensional,
online optimization tasks (Hansen & Ostermeier, 1996; Brookes et al., 2019). More recently, Trabucco
et al. (2021) introduced conservative objective models (COM) specifically for offline optimization
tasks; however, their method requires directly modifying the parameters of the surrogate function
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during optimization, which is not always feasible for any general task. Mashkaria et al. (2023) pro-
posed Black-box Optimization Networks (BONET) to learn the dynamics of optimization trajectories
using a causally masked transformer model, and Krishnamoorthy et al. (2023) introduced Denoising
Diffusion Optimization Models (DDOM) to learn the generative process via a diffusion model.
Furthermore, Yu et al. (2021) and Chen et al. (2022) describe Robust Model Adaptation (RoMA)
and Bidirectional learning via infinite-width networks (BDI), respectively. RoMA regularizes the
gradient of surrogate objective models by enforcing a local smoothness prior at the observed inputs,
and BDI learns bidirectional mappings between low- and high- scoring candidates. Finally, Nguyen
et al. (2023) introduce Experiment Pretrained Transformers (ExPT) to learn a general model for
optimization using unsupervised methods. While these recent works and others propose promising
algorithms for offline optimization tasks, they are often evaluated using expensive oracle query
budgets that are often not achievable in practice—especially for potentially dangerous tasks such as
patient care and other high-stakes applications.

3 Background

3.1 Offline Model-Based Optimization

In many real-world domains, we often seek to optimize an oracle objective function f(x) over a space
of design candidates X to solve for x⇤ = argmaxx2X f(x). Examples of such problems include
optimizing certain desirable properties of molecules in molecular design (Guimaraes et al., 2017;
Brown et al., 2019; Maus et al., 2022), and estimating the optimal therapeutic intervention for patient
care in clinical medicine (Kim & Bastani, 2021; Berrevoets et al., 2022; Xu & Bastani, 2023). In
practice, however, the true objective function f may be costly to compute or even entirely unknown,
making it difficult to query in optimizing f(x). Instead, it is often more feasible to obtain access
to a reference labeled dataset of observations from nature Dn = {(x1, y1), . . . , (xn, yn)} where
yi = f(xi). Optimization methods may use a variety of different strategies to leverage Dn in the
offline setting (Mashkaria et al., 2023; Krishnamoorthy et al., 2023; Chen et al., 2022); one common
approach used by Trabucco et al. (2021) and others is to learn a regressor model f✓ parametrized by

✓⇤ = argmin✓ E(xi,yi)⇠Dn
||f✓(xi) � yi||2 (1)

as a surrogate model for the true oracle objective f(x). Rather than querying the oracle f as in the
online setting, we can instead solve the related optimization problem

x⇤ = argmaxx2X f✓(x) (2)
with the hope that optimizing f✓ will also lead to desirable oracle values of f as well. Solving (2) is
one instantiation of offline model-based optimization (MBO) for which a number of techniques
have been developed, such as gradient ascent and Bayesian optimization (BO) (Sun et al., 2020).

Of note, it is difficult to guarantee the reliability of the model’s predictions for x /2 Dn that are almost
certainly encountered in the optimization trajectory. Thus, naïvely optimizing the surrogate objective
f✓ can result in “optima” that are low-scoring according to the oracle objective f .

3.2 Optimization Over Latent Spaces

In certain cases, the search space X for an optimization task may be discretized over a finite set of
structured inputs, such as amino acids for protein sequences or atomic building blocks for molecules.
However, many historical optimization algorithms do not generalize well to these settings for a
number of different reasons, such as the lack of gradients with respect to the input designs to guide the
optimization trajectory. Instead of directly optimizing over X , recent work leverages deep variational
autoencoders (VAEs) to first map the input space into a continuous, (often) lower dimensional latent
space Z and then performing optimization over Z instead (Tripp et al., 2020; Deshwal & Doppa,
2021; Maus et al., 2022). A VAE is composed of a two components: (1) an encoder with parameters
� that learns an approximated posterior distribution q�(z|x) for x 2 X , z 2 Z; and (2) a decoder
with parameters ' that learns the conditional likelihood distribution p'(x|z) (Kingma & Welling,
2013). The encoder and decoder are co-trained to maximize the evidence lower bound (ELBO)

ELBO = Ez⇠q� [log p'(x|z)] � DKL [q�(z|x) || pVAE(z)] (3)

where DKL is the Kullback-Leibler (KL) divergence and pVAE(z) is the prior distribution. A common
choice is to set pVAE = N (0, I) (i.e., the standard normal distribution). Optimization can then be
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performed over the continuous latent space Z of the VAE to propose ‘latent space designs’ that can
be readily decoded using the decoder ' back into the original input space.

One such optimization method over VAE latent spaces is Bayesian optimization (BO), a sample-
efficient framework for solving expensive black-box optimization problems (Mockus, 1982; Osborne
et al., 2009; Snoek et al., 2012). While the utility of BO has primarily been explored for expensive-
to-evaluate black-box functions in prior literature, recent work has shown that BO also outperforms
baseline optimization methods in offline tasks involving models that are relatively inexpensive to
evaluate, such as the neural network surrogates used in model-based optimization (MBO). Multiple
prior works have shown that BO and related methods consistently outperform both first-order gradient-
based and stochastic evolutionary methods (Eriksson et al., 2019b; Maus et al., 2022; Hvarfner et al.,
2024; Eriksson & Jankowiak, 2021; Astudillo & Frazier, 2019).

3.3 Wasserstein Metric Between Probability Distributions

The Wasserstein distance is a distance metric between any two probability distributions, and is closely
related to problems in optimal transport. We define the p = 1 Wasserstein distance between a
reference distribution P and a generated distribution Q using distance metric d(·, ·) as

W1(P,Q) = inf
�2�(P,Q)

E(z0,z)⇠�d(z
0, z) (4)

where � is the set of all couplings between P and Q. For empirical distributions where pn (qn) is
based on n observations {z0j}nj=1 ({zi}ni=1), (4) can be simplified to

W1(pn, qn) = inf
�

1

n

nX

i=1

||z0�(i) � zi|| (5)

where the infimum is over all permutations � of n elements. Leveraging the Kantorovich-Rubinstein
duality theorem (Kantorovich & Rubinstein, 1958), (5) can be equivalently written as

W1(pn, qn) =
1

K
sup

||c||LK

h
Ez0⇠P [c(z

0)] � Ez⇠Q[c(z)]
i

(6)

where c(z) is a source critic and ||c||L is the Lipschitz norm of c(z). In the Wasserstein GAN
(WGAN) model proposed by Arjovsky et al. (2017), a generative network and source critic are co-
trained in a minimax game where the generator (critic) seeks to minimize (maximize) the Wasserstein
distance W1 between the training and generated distributions. Such an optimization schema enables
the generator policy to learn the distribution of training samples from nature.

4 A Framework for Generative Adversarial Optimization

In this section we describe our proposed framework for generative adversarial model-based optimiza-
tion using adaptive source critic regularization (aSCR). Our method uses a K-Lipschitz source
critic model to dynamically regularize the optimization objective to avoid extrapolation against the
proxy surrogate model f✓ in offline MBO.

4.1 Constrained Optimization Formulation

In offline generative optimization, we aim to optimize against a surrogate objective function f✓. In
order to ensure that we are achieving reliable estimates of the true, unknown oracle objective, we can
add a regularization penalty to keep generated samples “similar” to those from the training dataset
of f✓ according to an adversarial source critic trained to discriminate between generated and offline
samples. That is, in contrast to (2), aSCR instead considers a closely related constrained problem

minimizez2Z � f✓(z)

subject to Ez02P [c
⇤(z0)] � c⇤(z)  0

(7)

over some configuration space Z ✓ Rd, and where we define c⇤ as a source critic model that
maximizes Ez02P [c⇤(z0)] � Ez2Q[c⇤(z)] over all K-Lipschitz functions as in (6). We can think of
Ez02P [c⇤(z0)] � c⇤(z) as the contribution of a particular generated datum z to the overall p = 1
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Wasserstein distance between the generated candidate (Q) and reference (P ) distributions of designs
as in (6). In practice, we model c⇤ as a fully connected neural net. Intuitively, the imposed constraint
restricts the feasible search space to designs that score at least as in-distribution as the average sample
in the offline dataset according to the source critic. Therefore, c⇤ acts as an adversarial model to
regularize the optimization policy. Of note, this additional constraint in (7) may be highly non-convex
for general c⇤, and so it is often impractical to directly apply (7) to any arbitrary MBO policy.

4.2 Dual Formulation

To solve this implementation problem, we instead look to reformulate (7) in its dual space by first
considering the Lagrangian L of our constrained problem:

L (z;�) = �f✓(z) + � [Ez02P [c
⇤(z0)] � c⇤(z)] (8)

where � � 0 is the Lagrange multiplier associated with the constraint in (7). We can equivalently
think of � as a hyperparameter that controls the relative strength of the source critic-penalty term:
� = 0 equates to naïvely optimizing the surrogate objective, while � � 1 asymptotically approaches
a WGAN-like optimization policy. Minimizing L thus minimizes a relative sum of �f✓ and the
Wasserstein distance contribution from any particular generated datum z with relative weighting
dictated by the hyperparameter �. From duality, minimizing L over z and simultaneously maximizing
over � 2 R+ is equivalent to the original constrained problem in (7).

The challenge now is in determining this optimal value of �: if � is too small, then the objective
estimates may be unreliable; if � is too large, then the optimization trajectory may be unable to
adequately explore the input space. Prior work by Trabucco et al. (2021) has previously explored the
idea of formulating offline optimization problems as a similarly regularized Lagrangian (albeit with a
separate regularization constraint), although their method tunes a static hyperparameter by hand. In
contrast, aSCR treats � as a dynamic parameter that adapts to the optimization trajectory in real time.

4.3 Computing the Lagrange Multiplier �

Continuing with our dual formulation of (7), the Lagrange dual function g(�) is defined as g(�) =
infz2Rn L (z;�). The z = ẑ that minimizes the Lagrangian in the definition of g is evidently a
function of �. To show this, we use the first-order condition that rzL = 0 at z = ẑ. Per (8), we have

rzL(ẑ;�) = �rzf✓(ẑ) � �rzc
⇤(ẑ) = 0 (9)

In general, solving (9) for ẑ is computationally intractable—especially in high-dimensional problems.
Instead, we can approximate ẑ by relaxing the condition in (9) according to

ẑ(�) = argmin
z2Rn

1

2
||�rzf✓(z) � �rzc

⇤(z)||2 (10)

Our key insight is that although minimizing the loss term in (10) is not practical when the feasible set
is naïvely uniform over Rn, we can instead choose to focus our attention on latent space coordinates
with high associated probability according to the VAE prior distribution pVAE(z). This is because
in optimization problems acting over the latent space of any variational autoencoder, the majority
of the encoded information content is embedded according to pVAE(z) due to the Kullback-Leibler
(KL) divergence contribution to VAE training. Put simply, the encoder distribution q�(z|x) is trained
so that DKL[q�(z|x)||pVAE(z))] is optimized as a regularization term in (3). We argue that it is thus
sufficient enough to approximate ẑ(�) using a Monte Carlo sampling schema with random samples
ZN = (z1, z2, . . . , zN ) ⇠ pVAE(z):

ẑ(�) ⇡ argmin
ZN⇠pVAE(z)

1

2
||�rzf✓(z) � �rzc

⇤(z)||2 (11)

We can now concretely write an approximation of the Lagrange dual problem of (7):

maximize g(�) = �f✓(ẑ) + � [Ez02P [c
⇤(z0)] � c⇤(ẑ)]

subject to � � 0
(12)

where ẑ is as in (11). Defining the surrogate variable ↵ such that � = ↵
1�↵ , we can rewrite (12) as

maximize � (1 � ↵)f✓(ẑ) + ↵ [Ez02P [c
⇤(z0)] � c⇤(ẑ)]

subject to 0  ↵ < 1
(13)
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In practice, we discretize the search space for ↵ to 200 evenly spaced points between 0 and 1 inclusive.
From weak duality, finding the optimal solution to (12) provides a lower bound on the optimal solution
to the primal problem in (7). Algorithm 1 can now be used to choose the optimal ↵ (and hence �)
adaptively during offline optimization: we refer to our method as Adaptive SCR (aSCR).

4.4 Overall Algorithm

Using Adaptive SCR, we now have a proposed method for dynamically computing ↵ (and hence the
Lagrange multiplier �) of the constrained optimization problem in (7). Importantly, aSCR can be
integrated with any standard function optimization method by optimizing the Lagrangian objective
in (8) over the candidate design space as opposed to the original unconstrained objective f✓. We
refer to this algorithm as Generative Adversarial Model-Based Optimization (GAMBO). To evaluate
aSCR empirically, we instantiate two flavors of GAMBO: (1) Generative Adversarial Bayesian
Optimization (GABO, Algorithm 2); and (2) Generative Adversarial Gradient Ascent (GAGA).2

We implement GABO using a quasi-expected improvement (qEI) acquisition function, iterative
sampling budget of T = 32, sampling batch size of b = 64, and GAGA using a step size of ⌘ = 0.05,
T = 128, and b = 16. Of note, the optimization objective using aSCR is time-varying and causally
linked to past observations made during the optimization process via intermittent training of the
source critic c. Prior works from Nyikosa et al. (2018) and Aglietti et al. (2022) have examined
optimization against dynamic objective functions, although have either entirely disregarded causal
relationships between variables or only examined causality between inputs as opposed to inputs and
the objective. We leave such methods for future work given that aSCR works well in practice.

5 Experimental Evaluation

5.1 Datasets and Tasks

To evaluate our proposed algorithm, we focus on a set of eight tasks spanning multiple domains with
publicly available datasets in the field of offline model-based optimization. (1) The Branin function
is a well-known synthetic benchmark function where the task is to maximize the two-dimensional
Branin function fbr : [�5, 10] ⇥ [0, 15] ! R. (2) The LogP task is a well-studied optimization
problem (Zhou et al., 2019; Chen et al., 2021; Flam-Shepherd et al., 2022) where we search over
candidate molecules to maximize the penalized water-octanol partition coefficient (logP) score, which
is an approximate measure of a molecule’s hydrophobicity (Ertl & Schuffenhauer, 2009) that also
rewards structures that can be synthesized easily and feature minimal ring structures. We use the
publicly available Guacamol benchmarking dataset from Brown et al. (2019) to implement this task.

Tasks (3) - (7) are derived from Design-Bench, a publicly available set of MBO benchmarking
tasks (Trabucco et al., 2022): (3) TF-Bind-8 aims to maximize the transcription factor binding
efficiency of an 8-base-pair DNA sequence (Barrera et al., 2016); (4) GFP the green fluorescence
of a 237-amino-acid protein sequence (Brookes et al., 2019; Rao et al., 2019); (5) UTR the gene
expression from a 50-base-pair 5’UTR DNA sequence (Sample et al., 2019; Angermueller et al.,
2020); (6) ChEMBL the mean corpuscular hemoglobin concentration (MCHC) biological response
of a molecule using an offline dataset collected from the ChEMBL assay CHEMBL3885882 (Gaulton
et al., 2012); and (7) D’Kitty the morphological structure of the D’Kitty robot (Ahn et al., 2020).

Finally, (8) the Warfarin task uses the dataset of patients on warfarin medication from Consortium
(2009) to estimate the optimal dose of warfarin given clinical and pharmacogenetic patient data.
Of note, in contrast to tasks (1) - (7) and other traditional MBO tasks in prior literature (Trabucco
et al., 2022), the Warfarin task is novel in that only a subset of the input design dimensions may
be optimized over (i.e., warfarin dose) while the others remain fixed as conditioning variables (i.e.,
patient covariates). Such a task can therefore be thought of as conditional model-based optimization.

5.2 Policy Optimization and Evaluation

For all experiments, the surrogate objective model f✓ is a fully connected net with two hidden layers
of size 2048 and LeakyReLU activations. f✓ takes as input a VAE-encoded latent space datum and

2We detail the explicit algorithmic formulation for GAGA in Supplementary Algorithm 3.
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returns the predicted objective function value as output. The VAE encoder and decoder backbone
architectures vary by MBO task and are detailed in Supplementary Table A1. Following Gómez-
Bombarelli et al. (2018) and Maus et al. (2022), we co-train the VAE and surrogate objective models
together using an Adam optimizer with a learning rate of 3 ⇥ 10�4 for all tasks. For the optimization
tasks over continuous design spaces (i.e., Branin, Warfarin, and D’Kitty), we fix the VAE encoder
and decoders as the identity functions, such that the latent and input spaces are equivalent.

Algorithm 1 Adaptive Source Critic Regularization (SCR)

Input: differentiable surrogate objective f✓ : Rd ! R,
differentiable source critic c : Rd ! R, reference dataset
Dn = {z0

j}nj=1, ↵ step size �↵, search budget B, norm
threshold ⌧
Sample candidates ZB  {zi}Bi=1 ⇠ N (0, Id)
Initialize ↵⇤  None and g⇤  �1
for ↵ in range(start = 0, end = 1, stepsize = �↵) do

z⇤  argminzi2ZB
||(1� ↵)rf✓(zi) + ↵rc(zi)||2

if ||(1� ↵)rf✓(z
⇤) + ↵rc(z⇤)||2 > ⌧ then

continue // Discard ↵ if best norm exceeds ⌧
end if
g  �(1� ↵)f✓(z

⇤) + ↵
⇥
EDn [c(z0

j)]� c(z⇤)
⇤

if g > g⇤ then
↵⇤  ↵ and g⇤  g // Implements (13)

end if
end for
return ↵⇤

Algorithm 2 Generative Adversarial BayesOpt (GABO)

Input: surrogate objective f✓ : Rd ! R, offline dataset
Dn = {z0

j}nj=1, acquisition function a, iterative sampling
budget T , sampling batch size b, number of generator steps
per source critic training ngenerator, oracle query budget k
AdaptiveSCR Input: ↵ step size �↵, search budget B,
norm threshold ⌧
Define: Differentiable source critic c : Rd ! R
Define: Lagrangian L(z; ↵) : Rd ⇥ R! R // Eq. (8)

L(z; ↵) = �f✓(z)+ ↵
1�↵ [Ez0⇠Dn [c(z0)]� c(z)]

Sample candidates Z1  {z1
i }bi=1 ⇠ SobolSequence

// Train the source critic per Eq. (6) to optimality:
c argmax||c||LKW1(Dn,Z1)

= argmax||c||LK [Ez0⇠Dn [c(z0)]� Ez⇠Z1 [c(z)]]
↵ AdaptiveSCR(f✓, c,Dn, �↵,B, ⌧) // Alg. (1)
Evaluate candidates Y1  {y1

i }bi=1 = {�L(z1
i ; ↵)}bi=1

Place Gaussian Process (GP) prior on f✓
for t in 2, 3, . . . , T do

Update posterior on f✓ with Dt�1 = {(Zm,Ym)}t�1
m=1

Compute acquisition function a using fitted posterior
Sample candidates Zt  {zt

i}bi=1 according to a
↵ AdaptiveSCR(f✓, c,Dn, �↵,B, ⌧)
Evaluate samples Yt  {yt

i}bi=1 = {�L(zt
i ; ↵)}bi=1

if t mod ngenerator equals 0 then
// Train the source critic per Eq. (6) to optimality:
c argmax||c||LKW1(Dn,Zt)

= argmax||c||LK [Ez0⇠Dn [c(z0)]� Ez⇠Zt [c(z)]]
end if

end for
return the top k samples from the T ⇥ b observations

DT = {{(zm
i , ym

i )}bi=1}Tm=1 according to ym
i

The source critic agent c in (7) is imple-
mented as a fully connected net with two
hidden layers with sizes equal to four (one)
times the number of input dimensions for
the first (second) layer. To constrain the
Lipschitz norm of c as in (6), we clamp the
weights of the model between [-0.01, 0.01]
after each optimization step as done by Ar-
jovsky et al. (2017). The model is trained
using gradient descent with a learning rate
of 0.001 to maximize the Wasserstein dis-
tance between the dataset and generated can-
didates in the VAE latent space.

During optimization, both GABO and
GAGA alternate between sampling new de-
signs and training the source critic actor c(z)
until there is no improvement to the Wasser-
stein distance W1 according to c after 100
consecutive weight updates. We find that
training c every ngenerator = 4 sampling steps
is a good choice across all tasks assessed,
similar to prior work Arjovsky et al. (2017).

All MBO methods were evaluated using a
fixed surrogate query budget of 2048. We
focus on two evaluation metrics: 100th per-
centile (1) top k = 1; and (2) top k = 128
oracle score. The top k = 128 evaluation
metric is commonly reported in prior offline
MBO literature (Mashkaria et al., 2023; Tra-
bucco et al., 2021; Yu et al., 2021); the top
k = 1 metric better accounts for the limited
oracle query budget of the real-world tasks
in which offline MBO would be of use. In
both settings, an optimizer selects the top k
design that minimize the Lagrangian func-
tion value in (8) from the 2048 assessed de-
signs to evaluate using the true oracle func-
tion, and the maximum score of those k de-
signs is reported across 10 random seeds.

We evaluate both GABO and GAGA against
a number of pre-existing baseline algorithms
on one internal cluster with 8 NVIDIA RTX
A6000 GPUs. We include vanilla Bayesian
Optimization (BO-qEI) and gradient ascent
(Grad.) in our evaluation to assess the
utility of our proposed aSCR algorithm.
Furthermore, we evaluate limited-memory
BFGS (L-BFGS) Liu & Nocedal (1989),
CMA-ES Hansen & Ostermeier (1996), and
simulated annealing (Anneal) Kirkpatrick et al. (1983). We also compare our method against the
more recently introduced algorithms TuRBO-qEI (Eriksson et al., 2019a), COM (Trabucco et al.,
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2021), RoMA (Yu et al., 2021), BDI (Chen et al., 2022), DDOM (Krishnamoorthy et al., 2023),
BONET (Mashkaria et al., 2023), ExPT (Nguyen et al., 2023), ROMO (Chen et al., 2023), and
BootGen (Kim et al., 2023). Because BootGen is proposed by Kim et al. (2023) as an optimization
method specifically for biological sequence design, we only assess this baseline method on the five
relevant tasks in our evaluation suite.

Conditional MBO Tasks. To our knowledge, prior work in conditional model-based optimization is
limited, and so previously reported algorithms are not equipped to solve such tasks out-of-the-box.
Chen et al. (2023) explore such tasks in their work, but primarily focus on conditional tasks that
are built by arbitrarily fixing certain design dimensions from unconstrained problems, which are
not representative of true conditional optimization problems in the real world. In our work, we
introduce the Warfarin task to assess methods on their ability to design an optimal therapeutic drug
regiment conditioned on a fixed patient state and lab values. To assess existing methods on this task,
we implement conditional proxies of all baselines employing a first-order optimization schema via
partial gradient ascent to only update the warfarin dose dimension while leaving the patient attribute
conditional dimensions unchanged. Conditional BO-based methods are implemented by fitting
separate Gaussian processes for each patient. In conditional DDOM, we exchange the algorithm’s
diffusion model-based backbone with a conditional score-based diffusion model (Gu et al., 2023).

Of note, the BONET algorithm (Mashkaria et al., 2023) requires multiple observations for any given
patient to construct synthetic optimization trajectories. However, the key challenge in conditional
MBO is that each condition (i.e., patient) has no past observations (i.e., warfarin doses), and instead
relies on learning from offline datasets constructed from different permutations of condition values
As a result, the BONET algorithm is unable to be evaluated on conditional MBO tasks.

5.3 Main Results

Scoring of one-shot optimization candidates is shown in Table 1. Across all eight assessed tasks
spanning a wide range of scientific domains, GABO with our aSCR algorithm achieved the best
average rank of 3.8 when compared to other existing methods (next best is 5.5). Furthermore, GABO
was able to propose top k = 1 candidate designs that outperform the best design in the pre-existing
offline dataset for 6 of the 8 tasks–greater than any of the other methods assessed. If a larger oracle
evaluation budget is available (i.e., k = 128), GABO with aSCR performs even better, achieving the
best average rank of 3.0 (next best is 4.6). GABO is also the best algorithm on 3 of the 8 tasks and
second best on 2 tasks according to this evaluation metric. Altogether, our results suggest that GABO
is a promising method for proposing optimal design candidates in offline MBO.

Importantly, our aSCR algorithm improves upon both the naïve BO-qEI and Grad. Ascent parent
optimizers assessed. GABO outperforms both baseline BO-based optimization methods in our
evaluation suite: BO (TuRBO) only achieves a rank of 8.8 (9.0) on the top k = 1 evaluation metric
and a rank of 6.6 (7.4) on the top k = 128 metric. Similarly, GAGA scores an average rank of 7.4
(7.6) on the top k = 1 (k = 128) evaluation metric; by leveraging aSCR, GAGA outperforms its base
parent optimizer (Grad. Ascent), which only achieves an average rank of 9.0 and 11.0 on the same
two evaluation metrics, respectively. Our results show that using aSCR to adaptively penalize the
objective of two popular optimization methods can improve their offline performance.

Qualitative Evaluation: Penalized LogP Task. We evaluate GABO against naïve BO-qEI for
the LogP task by inspecting the three-dimensional chemical structures of the top-scoring candidate
molecules. As a general principle, molecules that are associated with high Penalized LogP scores are
hydrophobic with minimal ring structures and therefore often feature long hydrocarbon backbones
(Ertl & Schuffenhauer, 2009). In Figure 2, we see that BO-qEI using the unconstrained surrogate
objective generates a candidate molecule of hydrogen and carbon atoms. However, the proposed
candidate includes two rings in its structure, resulting in a suboptimal oracle Penalized LogP score.

We hypothesize that this may be due to a lack of ring-containing example molecules in the offline
dataset, as only 6.7% (2.7%) of observed molecules contain at least one (two) carbon ring(s). As
a result, the surrogate objective model estimator returns more inaccurate Penalized LogP estimates
for input ring-containing structures (surrogate model root mean squared error (RMSE) = 25.5 for
offline dataset molecules with at least 2 rings; RMSE = 16.5 for those with at least 1 ring; and
RMSE = 4.6 for those with at least 0 rings), leading to sub-par BO-qEI optimization performance
as the unconstrained algorithm extrapolates against the surrogate to find “optimal” molecules that
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Table 1: Constrained Budget (k = 1) Oracle Evaluation Each method proposes a single design
that is evaluated using the oracle function to report the final score (higher is better) across 10 random
seeds reported as mean ± standard deviation. D (best) reports the top oracle value in the task dataset.
Each of the MBO methods are ranked by their mean one-shot oracle score, and the average rank
(lower is better) across all eight tasks is reported in the final table column. Bold (Underlined) entries
indicate the best (second best) entry in the column. ⇤Denotes the life sciences-related discrete MBO
tasks from Design-Bench (Trabucco et al., 2022).

Method Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96 —

Grad. -245.1 ± 81.3 -5.37 ± 1.44 0.429 ± 0.023 3.18 ± 0.88 6.82 ± 0.21 -1.95 ± 0.00 0.57 ± 0.19 0.86 ± 1.09 9.0
L-BFGS -29.6 ± 0.0 3.82 ± 32.6 0.527 ± 0.140 3.51 ± 0.70 6.48 ± 1.20 -1.95 ± 0.00 0.31 ± 0.00 0.73 ± 1.83 8.5

CMA-ES -8.6 ± 3.6 5.04 ± 6.83 0.438 ± 0.131 1.43 ± 0.00 6.39 ± 0.11 -1.95 ± 0.00 0.31 ± 0.00 -25.0 ± 150 10.6
Anneal -9.6 ± 1.5 8.76 ± 0.15 0.807 ± 0.094 3.64 ± 0.03 5.01 ± 0.31 -1.95 ± 0.00 0.55 ± 0.18 0.91 ± 0.08 6.8

BO -11.0 ± 7.8 -52.5 ± 88.8 0.586 ± 0.193 1.43 ± 0.00 5.65 ± 1.30 0.59 ± 0.10 0.61 ± 0.15 0.16 ± 1.67 8.8
TuRBO -21.0 ± 5.1 -45.1 ± 93.8 0.564 ± 0.194 1.43 ± 0.00 6.53 ± 1.19 0.65 ± 0.00 0.44 ± 0.18 0.05 ± 0.11 9.0
BONET -26.1 ± 0.9 10.8 ± 0.33 0.282 ± 0.000 3.74 ± 0.00 9.12 ± 0.07 0.55 ± 0.13 0.78 ± 0.00 — 5.7
DDOM -6677 ± 6360 -4.23 ± 1.28 0.460 ± 0.030 1.43 ± 0.00 5.56 ± 0.02 0.54 ± 0.15 0.51 ± 0.20 -0.32 ± 0.40 11.1

COM -3099 ± 32.6 30.8 ± 19.5 0.439 ± 0.000 3.62 ± 0.00 6.65 ± 0.43 0.63 ± 0.01 0.90 ± 0.02 0.72 ± 0.97 5.5
RoMA -32.7 ± 18.4 6.37 ± 1.39 0.433 ± 0.040 3.37 ± 0.27 6.66 ± 0.98 0.50 ± 0.14 0.30 ± 0.27 -0.70 ± 0.02 9.4

BDI -1050 ± 0.0 -0.20 ± 0.00 0.311 ± 0.000 3.26 ± 0.82 5.61 ± 0.00 0.48 ± 0.00 0.67 ± 0.00 -24.8 ± 233 10.8
ExPT -57.2 ± 38.6 -15.9 ± 24.1 0.571 ± 0.076 1.43 ± 0.00 6.77 ± 1.38 0.56 ± 0.06 0.66 ± 0.20 -34.6 ± 61.4 9.1

BootGen — -13.0 ± 15.1 0.942 ± 0.022 3.10 ± 0.73 8.30 ± 0.93 0.59 ± 0.07 — — 6.2
ROMO -2614 ± 739.9 -20.5 ± 19.2 0.382 ± 0.203 3.55 ± 0.13 5.73 ± 1.42 0.65 ± 0.00 0.64 ± 0.27 -0.71 ± 2.10 9.6

GAGA -2.9 ± 2.2 -68.6 ± 109.8 0.571 ± 0.120 3.74 ± 0.00 5.89 ± 1.42 -1.95 ± 0.00 0.89 ± 0.00 0.01 ± 0.14 7.4
GABO -2.6 ± 1.1 21.3 ± 33.2 0.570 ± 0.131 3.60 ± 0.40 7.51 ± 0.39 0.60 ± 0.07 0.71 ± 0.01 0.60 ± 1.80 3.8

Table 2: Relaxed Budget (k = 128) Oracle Evaluation Each method now proposes 128 designs
that are evaluated using the oracle function, and maximum score out of these 128 designs is reported
below (averaged across 10 random seeds and reported as mean ± standard deviation). D (best)
reports the top oracle value in the task dataset. Each of the MBO methods are ranked by their mean
k = 128-shot oracle score, and the average rank (lower is better) across all eight tasks is reported in
the final table column. Bold (Underlined) entries indicate the best (second best) entry in the column.
⇤Denotes the life sciences-related discrete MBO tasks from Design-Bench (Trabucco et al., 2022).

Method Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96 —

Grad. -115.3 ± 20.8 -5.14 ± 1.70 0.977 ± 0.025 3.49 ± 0.69 7.38 ± 0.15 -1.95 ± 0.00 0.87 ± 0.02 0.86 ± 1.08 11.0
L-BFGS -4.0 ± 0.0 42.8 ± 9.44 0.633 ± 0.140 3.74 ± 0.00 7.51 ± 0.39 -1.95 ± 0.00 0.31 ± 0.00 0.75 ± 1.67 10.1

CMA-ES -4.3 ± 1.7 47.6 ± 5.46 0.810 ± 0.235 3.74 ± 0.00 7.40 ± 0.32 -1.95 ± 0.00 0.74 ± 0.00 -8.62 ± 63.8 9.8
Anneal -7.4 ± 2.8 11.3 ± 0.00 0.890 ± 0.035 3.72 ± 0.00 7.96 ± 0.22 -1.95 ± 0.00 0.88 ± 0.00 0.97 ± 0.08 9.3

BO -0.4 ± 0.0 135.3 ± 16.0 0.942 ± 0.025 2.26 ± 1.03 8.26 ± 0.09 0.67 ± 0.00 0.72 ± 0.00 0.93 ± 0.11 6.6
TuRBO -0.7 ± 0.4 59.7 ± 51.3 0.895 ± 0.049 1.89 ± 0.92 8.26 ± 0.11 0.67 ± 0.01 0.72 ± 0.00 0.99 ± 0.01 7.4
BONET -26.0 ± 0.9 11.7 ± 0.38 0.951 ± 0.035 3.74 ± 0.00 9.13 ± 0.08 0.67 ± 0.01 0.95 ± 0.01 — 5.6
DDOM -18.4 ± 29.8 -2.16 ± 0.60 0.936 ± 0.051 1.44 ± 0.00 8.30 ± 0.33 0.66 ± 0.01 0.89 ± 0.01 1.00 ± 0.00 8.4

COM -1981 ± 224.5 42.0 ± 16.9 0.902 ± 0.056 3.62 ± 0.00 8.18 ± 0.00 0.64 ± 0.01 0.95 ± 0.02 0.77 ± 0.86 8.5
RoMA -4.8 ± 3.0 10.8 ± 0.78 0.760 ± 0.113 3.74 ± 0.00 8.12 ± 0.09 0.69 ± 0.03 1.02 ± 0.04 0.67 ± 0.05 7.8

BDI -65.0 ± 51.3 1.52 ± 5.79 0.735 ± 0.086 3.61 ± 0.05 6.31 ± 0.00 0.50 ± 0.12 0.94 ± 0.01 -5.07 ± 21.0 11.8
ExPT -1.7 ± 1.0 -6.48 ± 4.58 0.927 ± 0.095 3.74 ± 0.00 8.13 ± 0.09 0.68 ± 0.04 0.97 ± 0.01 0.96 ± 0.05 6.5

BootGen — 8.10 ± 3.31 0.979 ± 0.002 3.74 ± 0.00 10.5 ± 0.95 0.68 ± 0.00 — — 4.6
ROMO -2367 ± 787.5 -6.05 ± 14.5 0.572 ± 0.202 3.67 ± 0.03 6.94 ± 1.07 0.65 ± 0.00 0.90 ± 0.02 0.76 ± 1.91 12.1

GAGA -1.0 ± 0.2 14.1 ± 25.0 0.722 ± 0.091 3.74 ± 0.00 7.98 ± 0.36 -1.95 ± 0.00 0.90 ± 0.01 0.95 ± 0.07 7.6
GABO -0.5 ± 0.1 122.1 ± 20.6 0.954 ± 0.025 3.74 ± 0.00 8.36 ± 0.08 0.70 ± 0.01 0.72 ± 0.00 1.00 ± 0.03 3.0

are out-of-distribution. In contrast, GABO generates a candidate molecule with a long hydrocarbon
backbone and no rings, resulting in a penalized logP score of 22.1—greater than the best observed
value in the offline dataset for the task.

Ablation Experiments. Taking inspiration from (Trabucco et al., 2021), it is possible to utilize our
SCR algorithm in GABO without dynamically computing ↵ (and hence the Lagrange multiplier
�). To better characterize the utility of aSCR, we ablate Algorithm 1 by treating � instead as a
hand-tunable constant hyperparameter, and test our method using different values of � = ↵/(1 � ↵)
(Table 3). Setting ↵ = 0 (i.e., � = 0) corresponds to naïve BO against the unconstrained surrogate
model, while ↵ = 1 (i.e., � ! 1) is equivalent to a WGAN-like policy. Evaluating constant
values of ↵ ranging from 0 to 1, we find that there is no consistently optimal constant value for all
eight optimization tasks. In contrast, our method achieves an average rank of 1.9 (2.4) on the top-1
(top-128) evaluation metric, and is one of the top two methods when compared to the ablations for at
least five of the eight tasks. These results suggest that the ‘adaptive’ nature of aSCR is an important
component in solving the constrained optimization problem in (7).
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Figure 2: Penalized LogP Score Maximization Sample Candidate Designs (Left) The molecule
with the highest penalized LogP score of 11.3 in the offline dataset. Separately, we show the 100th
percentile candidate molecules according to the surrogate objective generated from (Middle) vanilla
BO-qEI and (Right) GABO. Teal- (white-) colored atoms are carbon (hydrogen). Non-hydrocarbon
atoms are underlined in the SMILES (Weininger, 1988) string representations of the molecules.

Table 3: GABO Adaptive SCR Ablation Study One-shot (k = 1) and few-shot (k = 128) oracle
evaluations averaged across 10 random seeds reported as mean ± standard deviation. D (best) reports
the top oracle value in the task dataset.

Top-1 Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96 —

↵ = 0.0 -11.0 ± 7.8 -52.5 ± 88.8 0.586 ± 0.193 1.43 ± 0.00 5.65 ± 1.30 0.59 ± 0.10 0.61 ± 0.15 0.16 ± 1.67 4.5
↵ = 0.2 -9.8 ± 3.9 -4.39 ± 60.7 0.535 ± 0.110 1.43 ± 0.00 4.69 ± 1.44 0.63 ± 0.03 0.61 ± 0.15 0.16 ± 1.79 3.9
↵ = 0.5 -7.9 ± 6.6 -83.9 ± 166.3 0.601 ± 0.212 1.43 ± 0.00 5.69 ± 1.51 0.63 ± 0.04 0.66 ± 0.12 0.16 ± 1.79 3.6
↵ = 0.8 -5.2 ± 3.1 -43.3 ± 170.0 0.654 ± 0.218 1.66 ± 0.69 6.49 ± 1.20 0.64 ± 0.02 0.71 ± 0.01 0.16 ± 1.80 2.4
↵ = 1.0 -99.5 ± 61.2 -46.8 ± 114.3 0.454 ± 0.120 3.74 ± 0.01 5.26 ± 2.35 0.52 ± 0.16 0.62 ± 0.15 -9.04 ± 57.3 4.8

aSCR -2.6 ± 1.1 21.3 ± 33.2 0.570 ± 0.131 3.60 ± 0.40 7.51 ± 0.39 0.60 ± 0.07 0.71 ± 0.01 0.60 ± 1.80 1.9

Top-128 Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96 —

↵ = 0.0 -0.4 ± 0.0 135.3 ± 16.0 0.942 ± 0.025 2.26 ± 1.03 8.26 ± 0.09 0.67 ± 0.00 0.72 ± 0.00 0.93 ± 0.11 4.3
↵ = 0.2 -0.4 ± 0.1 121.8 ± 20.6 0.925 ± 0.029 3.01 ± 1.04 8.20 ± 0.10 0.67 ± 0.01 0.72 ± 0.00 1.00 ± 0.00 4.8
↵ = 0.5 -0.4 ± 0.0 127.7 ± 23.1 0.944 ± 0.040 3.49 ± 0.69 8.29 ± 0.08 0.67 ± 0.01 0.72 ± 0.00 1.00 ± 0.00 2.9
↵ = 0.8 -0.4 ± 0.0 104.5 ± 31.8 0.933 ± 0.036 3.74 ± 0.00 8.38 ± 0.11 0.67 ± 0.02 0.72 ± 0.00 1.00 ± 0.00 3.4
↵ = 1.0 -2.2 ± 1.4 142.3 ± 2.41 0.906 ± 0.061 3.74 ± 0.00 8.54 ± 0.08 0.68 ± 0.01 0.72 ± 0.00 0.99 ± 0.04 3.4

aSCR -0.5 ± 0.1 122.1 ± 20.6 0.954 ± 0.025 3.74 ± 0.00 8.36 ± 0.08 0.70 ± 0.01 0.72 ± 0.00 1.00 ± 0.03 2.4

Of note, the top designs found across different constant values of ↵ can be very similar for certain tasks.
This reflects the inherent challenge in developing task-agnostic methods for policy regularization—if
the magnitudes of the unconstrained objective and regularization function vastly differ, then constant
values of ↵ may over- or under- constrain the objective. Adaptive SCR overcomes this problem by
dynamically setting ↵ as an implicit function of prior observations.

6 Conclusion

We propose adaptive source critic regularization (aSCR) to solve the problem of off-distribution
objective evaluation in offline MBO. When leveraged with vanilla Bayesian optimization, aSCR
outperforms baseline methods to achieve an average rank of 3.8 (3.0) in one-shot k = 1 (few-shot
k = 128) oracle evaluation, and most consistently proposes designs better than the offline dataset.

Limitations. One limitation of aSCR is that our algorithm requires preexisting knowledge of the prior
distribution over the input space in order to be computationally tractable. While we have focused our
experimental evaluation on tasks amenable to imposed latent space priors, further work is needed
to adapt aSCR to any arbitrary configuration space. Future work may also extend aSCR to improve
parent optimization methods more sophisticated than BO-qEI and Gradient Ascent explored herein.

Impact Statement. Offline policy optimization methods, such as those discussed in this work, have
the potential to benefit society. Such examples may include helping develop more effective drugs and
individualizing patient therapies. However, as with any real-world algorithm, these methods can also
be leveraged to generate potentially harmful design candidates. Careful oversight by domain experts
and researchers is required to ensure that the contributions proposed herein are used for social good.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are supported by the
experimental results presented. The introduction includes the contributions made in the
paper, and important assumptions and limitations are included where relevant.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 6 in the main text for a focused ‘Limitations’ section and
relevant discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the relevant information needed to reproduce all
reported experimental results of the paper. We have made our code required to reproduce
our experimental results available in the Supplementary Material ZIP file.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All data and code associated with this paper is open access and includes
sufficient instructions to faithfully reproduce the experimental results reported herein. We
have made the data and code available in the Supplementary Material ZIP file. The public
link to the GitHub repository containing the code will be included in the Abstract in the
final version (currently not linked so as to comply with double-blind review). All datasets
used herein are publicly available without any limitations in public accessibility. Our data
and code adhere to the NeurIPS code and data submission guidelines.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is clearly described in Section 5.2 and Appendix
A, and is also reproducible via the code released alongside the paper in the Supplementary
Material ZIP file.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All statistics and results included in the paper are accompanied by confidence
intervals. We clearly describe the factors of variability in the confidence intervals in Section
5.2 and Appendix A. All additional details are included in relevant table captions.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information for the resources required to reproduce the experiments are
included in Section 5.2 in the main paper. More specifically, all experiments were performed
on a single internal cluster with 8 NVIDIA RTX A6000 GPUs. Any particular experimental
configuration required no more than 24 hours to complete using our setup. The full research
project did not require more compute than the experiments reported in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and assert that the
research described herein conforms with the Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see the conclusion (i.e. Section 6) in the main text for a focused ‘Impact
Statement’ subsection and relevant discussion on the potential societal impacts of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not introduce any assets that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: The only existing assets used in the paper are the seven MBO datasets used for
experimental evaluation as described in Section 5.1. All of the relevant datasets are publicly
available, and the references for each of the datasets are cited in the aforementioned section.
The licenses associated with each of the seven datasets made available in each of the relevant
citations are properly respected. There are no restrictions with respect to accessing any of
the datasets used in the paper. No scraped data was used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The only asset introduced in and released alongside the paper is the experimen-
tal code to reproduce the reported results. The repository containing the code is included in
the Supplementary Material ZIP file. All datasets used for the experiments discussed herein
are publicly available and available online via the appropriate references in this paper and
via online links included in the Supplementary Material ZIP file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research described herein does not involve crowdsourcing or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research described herein does not involve crowdsourcing or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Additional Implementation Details

Oracle Functions. All oracle functions for the tasks assessed are either exact functions or approximate
oracles developed by domain experts. Specifically, the Branin and TF-Bind-8 tasks utilize exact
oracles described in detail by Branin (1972) and Barrera et al. (2016), respectively. The oracle for the
Penalized LogP task is an approximate oracle from Wildman & Crippen (1999) that is the same oracle
used by domain experts in the Guacamol benchmarking study (Brown et al., 2019). The GFP, UTR,
and ChEMBL tasks feature approximate oracles from Snoek et al. (2012), Angermueller et al. (2020),
and Trabucco et al. (2022), respectively, that were trained on a larger, hidden datasets inaccessible
to us for the respective tasks. The D’Kitty morphology task uses a MuJoCo (Todorov et al., 2012)
simulation environment and learned control policy from Trabucco et al. (2022) to evaluate proposed
designs. Finally, the Warfarin task uses a linear model (Consortium, 2009) to estimate a patient’s
optimal warfarin dose given their pharmacogenetic attributes.

Data Preprocessing. (1) For the Branin task, we sample 1000 points from the square input domain
[�5, 10] ⇥ [0, 15] to construct the offline dataset, and remove the top 20%-ile according to the oracle
function to make the task more challenging in line with prior work (Mashkaria et al., 2023). In this
continuous task (along with the D’Kitty and Warfarin tasks), we treat input designs as their own
latent space mappings, such that the VAE encoder and decoder for this task are both the identity
function with zero trainable parameters. (2) The offline dataset of the Penalized LogP task is the
validation partition of the Guacamol dataset from Brown et al. (2019), which consists of 79,564 unique
molecules and their corresponding penalized LogP scores. The input molecules are represented as
SMILES strings (Weininger, 1988), which is a molecule representation format shown to frequently
yield invalid molecules in prior work (Krenn et al., 2020). Therefore, we encode the molecules
instead as SELFIES strings, an alternative molecule representation from Krenn et al. (2020) with
100% robustness.

(3) - (5) The TF-Bind-8, GFP, and UTR tasks are assessed as-released by Design-Bench from
Trabucco et al. (2022)—please refer to their work for task-specific descriptions. (6) - (7) In the
ChEMBL and D’Kitty tasks, we normalize all objective values y in the offline dataset to ŷ =
(y � ymin)/(ymax � ymin) as done in prior work (Mashkaria et al., 2023), where ŷ is the corresponding
normalized objective value and ymin (ymax) is the minimum (maximum) observed objective value
in the full, unobserved dataset. Because only the bottom 60%-ile (40%-ile) from the full dataset
is used in the available offline dataset for the ChEMBL (D’Kitty) task, the respective maximum ŷ
values are less than 1.0 (Supplementary Table A1). We also translate the original SMILES string
representations in the ChEMBL task into SELFIES strings (Krenn et al., 2020) as in the LogP task.

(8) Finally, the Warfarin task uses the dataset of pharmacogenetic patient covariates published by
Consortium (2009). We split the original dataset of 3,936 unique patient observations into training
(validation) partitions with 3,736 (200) datums. The patient attributes in the Warfarin dataset consist
of a combination of discrete and continuous values. All discrete attributes are one-hot encoded into
binarized dimensions, and continuous values are normalized to zero mean and unit variance using the
training dataset. Missing patient values were imputed following prior work (Truda & Marais, 2021).
We define the cost c(z|x) accrued by a patient with attributes x 2 R32 as a function of the input dose
z 2 R is c(z|x) = (z � doracle(x))2, where doracle : R32 ! R is the domain-expert oracle warfarin
dose estimator from Consortium (2009). The observed objective values y associated with each of the
training datums is calculated as y = [c(z̄|x) � c(z|x)]/c(z̄|x), where z̄ is the mean warfarin dose
over the training dataset and z is the true dose given to the patient. Using this constructed offline
dataset, our task is then to assign optimal doses to the 200 validation patients to maximize y with no

prior warfarin dosing observations.

B Additional Experimental Results

In this section, we provide additional experimental results that help better characterize both the
strengths and limitations of GABO and GAGA.

B.1 How do sub-optimal design candidates proposed by GABO and GAGA perform?

To evaluate the robustness of optimization methods, we report one-shot 90th percentile oracle scores
in Supplementary Tables B1 and B2. For each method, all proposed designs are ranked according
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Table A1: MBO Datasets and Tasks Implementation details for each of the seven MBO tasks
assessed in our work. ⇤Denotes the life sciences-related discrete MBO tasks offered by the Design-
Bench benchmarking repository (Trabucco et al., 2022).

Property Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin
Dataset Size 800 79,564 32,898 5,000 140,000 441 10,004 200
Input Shape 2 108 8 237 50 32 56 1 (33)
Vocab Size — 97 4 20 4 40 — —

VAE Backbone Identity Transformer ResNet ResNet ResNet Transformer Identity Identity
VAE Latent Shape 2 256 16 32 32 128 56 33

Oracle Exact Linear Exact Transformer ResNet Random Forest Exact Linear
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96

to the surrogate forward model ((8) for Generative Adversarial Bayesian Optimization (GABO) and
Generative Adversarial Gradient Ascent (GAGA)), and the single 90th percentile design according to
this ranking is selected and evaluated using the oracle function. We report the oracle score of this
suboptimal design averaged over 10 seeds.

Our results show that GABO and GAGA do not propose suboptimal designs that are better than
those proposed by other methods, such as BONET (Mashkaria et al., 2023), Simulated Annealing
(Kirkpatrick et al., 1983), L-BFGS (Liu & Nocedal, 1989), and ExPT (Nguyen et al., 2023). This
is not surprising, as aSCR is not designed to target this metric (and it is not our primary metric of
interest). Separately for GABO, we also hypothesize that the algorithm’s performance according to
this metric may partially be explained by the limitations of the underlying Bayesian optimization (BO)
optimization algorithm. Because BO is not an iterative first-order algorithm, the designs proposed by
any BO-based algorithm often have high variance in practice—this is indeed what we observe across
all of our experiments, including in Table 1 and Supplementary Tables B1 and B2.

Finally, we note that in most applications of offline optimization, the 90th percentile metric—or any
metric that does not use the best proposed design(s)—is not as useful as the other metrics assessed
where GABO does perform well. This is because in offline optimization tasks with a restricted budget
to query the hidden, expensive-to-evaluate oracle function, we are not interested in “wasting” this
limited budget on subpar design candidates. While the 90th percentile and similar metrics can be
helpful to understand the limitations of algorithms (as in this case), we believe that the alternative
evaluation metrics reported in the main text—namely, the 100th percentile top-1 and top-128 oracle
score metrics—are more useful and practical in assessing each of the optimization algorithms.

Table B1: Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation The oracle
score of the 90th percentile design candidate according to the surrogate across 10 random seeds is
reported as mean ± standard deviation. D (best) reports the top oracle value in the task dataset. The
average rank across all seven tasks is reported in the final table column. Bolded (Underlined) entries
indicate the best (second best) entry in the column. ⇤Denotes the life sciences-related discrete MBO
tasks from Design-Bench (Trabucco et al., 2022).

Method Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96 —

Grad. -94.4 ± 20.9 -5.47 ± 1.32 0.429 ± 0.023 3.43 ± 0.67 7.16 ± 0.21 -1.95 ± 0.00 0.53 ± 0.20 0.87 ± 1.08 9.1
L-BFGS -4.0 ± 0.0 4.96 ± 6.64 0.547 ± 0.163 3.50 ± 0.70 7.36 ± 0.92 -1.95 ± 0.00 0.31 ± 0.00 0.75 ± 1.66 6.9

CMA-ES -10.4 ± 3.0 -4.35 ± 6.18 0.448 ± 0.068 3.74 ± 0.00 6.95 ± 1.13 -1.95 ± 0.00 0.60 ± 0.29 -4.02 ± 21.8 7.1
Anneal -13.2 ± 0.0 9.57 ± 0.66 0.439 ± 0.000 3.65 ± 0.04 7.41 ± 0.22 -1.95 ± 0.00 0.56 ± 0.00 0.96 ± 0.08 6.0

BO -11.5 ± 2.3 -56.2 ± 91.9 0.552 ± 0.152 1.42 ± 0.00 5.80 ± 1.71 0.64 ± 0.01 0.46 ± 0.18 -36.9 ± 205 9.6
TuRBO -16.3 ± 10.2 -24.3 ± 66.3 0.563 ± 0.087 1.42 ± 0.00 6.79 ± 1.25 0.65 ± 0.00 0.71 ± 0.01 -32.3 ± 94.9 7.9
BONET -29.2 ± 2.2 10.8 ± 0.43 0.324 ± 0.041 3.74 ± 0.00 8.70 ± 0.32 0.56 ± 0.11 0.78 ± 0.00 — 6.0
DDOM -1870 ± 2693 -7.10 ± 1.42 0.386 ± 0.224 1.43 ± 0.00 7.91 ± 0.29 0.65 ± 0.01 0.50 ± 0.19 -56.6 ± 79.6 9.6

COM -3468 ± 679 -37.4 ± 23.0 0.346 ± 0.093 3.62 ± 0.00 5.26 ± 1.01 0.60 ± 0.04 0.90 ± 0.01 0.80 ± 0.93 9.6
RoMA -18.5 ± 8.2 5.21 ± 1.39 0.500 ± 0.153 3.58 ± 0.11 6.94 ± 1.11 0.43 ± 0.18 0.41 ± 0.21 -2.44 ± 2.16 8.1

BDI -109 ± 0.0 0.93 ± 0.88 0.471 ± 0.000 3.58 ± 0.05 5.62 ± 0.00 0.49 ± 0.00 0.76 ± 0.00 -24.8 ± 233 9.0
ExPT -23.1 ± 11.3 -16.7 ± 25.1 0.480 ± 0.091 3.74 ± 0.00 6.70 ± 0.39 0.62 ± 0.04 0.75 ± 0.07 -0.40 ± 1.61 6.9

BootGen — -116.8 ± 85.7 0.388 ± 0.007 3.60 ± 0.04 7.74 ± 0.56 0.61 ± 0.03 — — 8.8
ROMO -3142 ± 330 -25.6 ± 23.1 0.354 ± 0.247 3.59 ± 0.08 5.49 ± 1.38 0.62 ± 0.04 0.42 ± 0.17 -2.77 ± 5.21 11.1

GAGA -14.2 ± 15.2 -16.7 ± 81.1 0.546 ± 0.148 3.22 ± 0.86 6.40 ± 1.13 -1.95 ± 0.00 0.89 ± 0.01 0.24 ± 0.20 8.5
GABO -12.7 ± 10.0 -12.2 ± 46.1 0.467 ± 0.066 3.56 ± 1.66 6.12 ± 1.22 0.61 ± 0.08 0.57 ± 0.17 0.02 ± 5.77 7.9
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Table B2: GABO Adaptive SCR Ablation Study—Constrained Budget (k = 1) Suboptimal
(90%-ile) Oracle Evaluation The oracle score of the 90th percentile design candidate according
to the surrogate across 10 random seeds reported as mean ± standard deviation. D (best) reports the
top oracle value in the task dataset. Average method rank across all seven tasks reported in the final
column. ⇤Denotes the life sciences-related discrete MBO tasks Design-Bench (Trabucco et al., 2022).

GABO ↵ Value Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96 —

↵ = 0.0 -11.5 ± 2.3 -56.2 ± 91.9 0.552 ± 0.152 1.42 ± 0.00 5.80 ± 1.71 0.64 ± 0.01 0.46 ± 0.18 -36.9 ± 205 3.3
↵ = 0.2 -9.0 ± 2.6 -40.2 ± 77.4 0.612 ± 0.114 1.42 ± 0.00 5.81 ± 1.83 0.59 ± 0.13 0.49 ± 0.18 -51.7 ± 265 2.9
↵ = 0.5 -8.6 ± 4.4 -90.1 ± 107.2 0.501 ± 0.109 1.65 ± 0.69 6.64 ± 1.42 0.52 ± 0.15 0.41 ± 0.16 -63.5 ± 336 3.9
↵ = 0.8 -10.9 ± 2.1 -41.9 ± 82.5 0.433 ± 0.158 1.97 ± 0.88 4.89 ± 1.23 0.56 ± 0.15 0.38 ± 0.15 -48.5 ± 265 4.4
↵ = 1.0 -104.6 ± 68.9 -77.1 ± 146.1 0.452 ± 0.179 2.05 ± 0.98 5.15 ± 1.51 0.60 ± 0.08 0.41 ± 0.16 -82.1 ± 552 4.5

aSCR -12.7 ± 10.0 -12.2 ± 46.1 0.467 ± 0.066 3.56 ± 1.66 6.12 ± 1.22 0.61 ± 0.08 0.57 ± 0.17 0.02 ± 5.77 2.1

To further characterize the distribution of designs and their associated oracle scores proposed by
GABO, Figure B1 plots a histogram of the oracle scores of (1) all 2,048 oracle scores, and (2) the
oracle scores of the top 256 designs according to the penalized surrogate objective in (8) for the LogP
task. Compared with the other optimization methods assessed, we notice that the range of oracle
scores is larger for BO-based optimization methods compared with the baseline methods assessed.
This helps motivate our design choice to leverage aSCR and Algorithm 1 with BO-qEI, as BO is
able to explore a larger region of the design space and is an effective parent optimizer for complex
design spaces. Secondly, we also find that the distribution of scores is similar between BO-qEI and
GABO, even though the performance of these two methods is remarkably different in Tables 1 and
2. This is likely due to the fact that while BO enables us to explore a larger effective region of the
design space (compared with first-order iterative methods), aSCR more accurately ranks proposed
designs using the penalized surrogate so that we can identify promising candidates even in the
low-budget oracle evaluation regime.

B.2 Are offline objectives and oracle function values correlated?

A key component of GABO with Adapative SCR critical to the above discussion in Section B.1 is
that generated designs score similarly according to the hidden oracle function and the regularized
Lagrangian objective as in (8) in order to solve the problem of surrogate objective overestimation
encountered in traditional offline optimization settings (Fig. 1). To assess this quantitatively, we
computed the distance covariance dCovn[{L(xk;�⇤)}nk=1, {f(xk)}nk=1] between the oracle scores
f(xk) and the constrained Lagrangian scores L(xk;�⇤) with � = �⇤(t) computed using our Adaptive
SCR algorithm. The empirical distance covariance metric is computed over the n = 2048 design
candidates generated using our GABO algorithm. Briefly, the distance covariance is a nonnegative
measure of dependence between two vectors which may be related nonlinearly; a greater distance
covariance implies a greater degree of association between observations (Székely et al., 2007). We
focus our subsequent discussion on the Penalized LogP task.

Across five random seeds, GABO with Adaptive SCR achieves a distance covariance score of 0.535
± 0.067 (mean ± standard deviation). In contrast, naïve BO-qEI (i.e., � = 0) only achieves a
distance covariance score of 0.392 ± 0.040. Using p < 0.05 as a cutoff for statistical significance,
the distance covariance scores are significantly different between these two methods (p ⇡ 0.006,
unpaired two-tailed t-test). These results help support our conclusion that GABO with Adaptive SCR
is able to provide better estimates of design candidate performance according to the hidden oracle
function when compared to the corresponding unconstrained BO policy.

B.3 Is adaptively computing ↵ in aSCR important for the performance of GAGA?

In our ablation experiments presented in Table 3, we showed how that ‘adaptive’ nature of aSCR
is an important component in solving the constrained optimization problem in (7) for GABO,
and outperforms alternative approaches that manually hand-tune ↵ (and hence �) as a constant
hyperparameter. We explore whether this conclusion also applies for GAGA as well here.

For clarity, we first offer the explicit formulation of GAGA in Supplementary Algorithm 3. We
ablate Algorithm 1 in GAGA by instead evaluating our method using different values of � =
↵/(1 � ↵). As a reminder, setting ↵ = 0 (i.e., � = 0) corresponds to naïvely performing gradient
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Figure B1: Distribution of Oracle Penalized LogP Scores We plot the distribution of oracle
scores for the top 128 surrogate model-ranked designs in black, and the distribution for all 2,048
generated designs in light gray for each of the offline model-based optimization methods assessed in
our work across 10 random seeds. While GABO and BO-qEI have similar distributions, GABO is
able to more reliably rank top-performing designs higher, such that these designs can be identified
even under limited oracle query budgets.
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ascent against the unconstrained surrogate model; setting ↵ = 1 (i.e., � ! 1) is equivalent to a
WGAN-like generative policy.

Algorithm 3 Generative Adversarial Gradient Ascent (GAGA)

Input: surrogate objective f✓ : Rd ! R, offline dataset Dn = {z0
j}nj=1, iterative sampling budget T ,

sampling batch size b, number of generator steps per source critic training ngenerator, oracle query budget k,
step size ⌘
AdaptiveSCR Input: ↵ step size �↵, search budget B, norm threshold ⌧
Define: Differentiable source critic c : Rd ! R
Define: Lagrangian L(z; ↵) : Rd ⇥ R! R = �f✓(z) + ↵

1�↵ [Ez0⇠Dn [c(z0)]� c(z)] // Eq. (8)
Sample Z1  {z1

i }bi=1 as the top b designs in Dn according to their previously observed oracle scores
// Train the source critic per Eq. (6) to optimality:
c argmax||c||LKW1(Dn,Z1) = argmax||c||LK [Ez0⇠Dn [c(z0)]� Ez⇠Z1 [c(z)]]
↵ AdaptiveSCR(f✓, c,Dn, �↵,B, ⌧) // Alg. (1)
Evaluate candidates Y1  {y1

i }bi=1 = {�L(z1
i ; ↵)}bi=1

for t in 2, 3, . . . , T do
Zt  {zt

i}bi=1 = {zt�1
i � ⌘rzt�1

i
L(zt�1

i ; ↵)}bi=1

↵ AdaptiveSCR(f✓, c,Dn, �↵,B, ⌧)
Evaluate samples Yt  {yt

i}bi=1 = {�L(zt
i ; ↵)}bi=1

if t mod ngenerator equals 0 then
// Train the source critic per Eq. (6) to optimality:
c argmax||c||LKW1(Dn,Zt) = argmax||c||LK [Ez0⇠Dn [c(z0)]� Ez⇠Zt [c(z)]]

end if
end for
return the top k samples from the T ⇥ b observations DT = {{(zm

i , ym
i )}bi=1}Tm=1 according to ym

i

Our results are shown in Supplementary Table B3: similar to the analogous ablation results for
GABO in Table 3, dynamically adjusting the strength of source critic regularization using our aSCR
algorithm outperforms manually setting the value of ↵ to a constant in both the one-shot k = 1 and
few-shot k = 128 evaluation settings.

B.4 What is the impact of dynamic updates to the source critic over the optimization
trajectory?

In Algorithm 2 and Supplementary Algorithm 3, we describe how generative adversarial opti-
mization alternates between batched acquisition steps according to the optimizer and re-training
the source critic on the newly sampled trajectory points. To better interrogate the significance of
dynamically re-training the source critic during optimization, we compare the performance of the
default GABO and GAGA algorithms (with ngenerator = 4 as the number of acquisition steps per critic
retraining step) against the respective methods without source critic re-training (i.e., ngenerator = 1)
in Supplementary Table B4. Across all three evaluation metrics and all eight tasks, dynamically
retraining the source-critic improves upon the performance of the GABO when ngenerator = 1 by
67.4% in the top-1 evaluation metric; 0.0% in the top-128 evaluation metric; and 33.5% in the 90%-ile
evaluation metric. Intuitively, these results align with the value of the source critic in being able to
implicitly set the value of the regularization strength ↵ in (8) according to the sampled trajectory
points—especially in the constrained budget oracle evaluation setting.

Interestingly, we do not observe similar performance improvements with dynamic re-training of the
source critic in GAGA. Qualitatively, we find that this is because of the iterative first-order nature of
the parent gradient ascent algorithm—because the sampled designs are clustered in the same regions
of the design space over the course of optimization, the energy landscape of the penalized surrogate
(i.e., the negative of the Lagrangian expression in (8)) does not change significantly during source
critic re-training. This further reinforces the optimizer to stay roughly in the same regions of the
design space. As a result, it is likely that no major updates are often made to the source critic when
aSCR is used in conjunction with a first-order optimization method, and so the benefit of using a
finite ngenerator hyperparameter value is largely reduced when compared to its utility in GABO.
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Table B3: GAGA Adaptive ACR Ablation Study We ablate the dynamic computation of ↵ (and
hence � in (8)) by instead choosing to manually fix ↵ to a constant value. A value of ↵ = 0.0
corresponds to naïve gradient ascent, and a value of ↵ = 1.0 corresponds to a WGAN-like generative
policy. Oracle values are averaged across 10 random seeds and reported as mean ± standard deviation.
In each evaluation setting, we rank all 2,048 proposed designs according to the penalized surrogate
forward model in (8) and evaluate the top k designs using the oracle function, reporting the maximum
out of the k oracle values. In the suboptimal evaluation setting, we report the oracle score of the
single 90th percentile design according to the penalized surrogate ranking. Bold (Underlined) entries
indicate the best (second best) entry in the column for the particular evaluation metric. ⇤Denotes the
life sciences MBO tasks offered by Design-Bench (Trabucco et al., 2022).

Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96 —

Constrained Budget (k = 1) Oracle Evaluation
↵ = 0.0 -245.1 ± 81.3 -5.37 ± 1.44 0.429 ± 0.023 3.18 ± 0.88 6.82 ± 0.21 -1.95 ± 0.00 0.57 ± 0.19 0.86 ± 1.09 3.6
↵ = 0.2 -13.7 ± 0.0 -70.3 ± 115.8 0.439 ± 0.000 3.74 ± 0.00 7.73 ± 0.46 -1.95 ± 0.00 0.88 ± 0.00 -0.17 ± 0.00 2.5
↵ = 0.5 -13.7 ± 0.0 -70.3 ± 114.7 0.439 ± 0.000 3.74 ± 0.00 6.75 ± 0.72 -1.95 ± 0.00 0.88 ± 0.00 0.44 ± 0.00 2.4
↵ = 0.8 -13.7 ± 0.0 -84.6 ± 115.8 0.439 ± 0.000 3.74 ± 0.00 6.75 ± 0.72 -1.95 ± 0.00 0.88 ± 0.00 0.44 ± 0.00 2.6
↵ = 1.0 -14.4 ± 1.5 -27.8 ± 99.8 0.439 ± 0.000 3.74 ± 0.00 5.88 ± 1.04 -1.95 ± 0.00 0.89 ± 0.00 -8.61 ± 6.15 3.4

aSCR -2.9 ± 2.2 -68.6 ± 109.8 0.571 ± 0.120 3.74 ± 0.00 5.89 ± 1.42 -1.95 ± 0.00 0.89 ± 0.00 0.01 ± 0.14 2.3

Relaxed Budget (k = 128) Oracle Evaluation
↵ = 0.0 -115.3 ± 20.8 -5.14 ± 1.70 0.977 ± 0.025 3.49 ± 0.69 7.38 ± 0.15 -1.95 ± 0.00 0.87 ± 0.02 0.86 ± 1.08 4.8
↵ = 0.2 -13.2 ± 0.0 4.70 ± 10.3 0.439 ± 0.000 3.74 ± 0.00 7.92 ± 0.24 -1.95 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 2.4
↵ = 0.5 -13.2 ± 0.0 5.07 ± 4.56 0.439 ± 0.000 3.74 ± 0.00 7.77 ± 0.21 -1.95 ± 0.00 0.95 ± 0.01 1.00 ± 0.00 2.9
↵ = 0.8 -13.2 ± 0.0 5.13 ± 4.28 0.439 ± 0.000 3.74 ± 0.00 7.44 ± 0.30 -1.95 ± 0.00 0.95 ± 0.01 1.00 ± 0.00 2.9
↵ = 1.0 -13.1 ± 0.0 5.11 ± 4.11 0.445 ± 0.017 3.74 ± 0.00 7.40 ± 0.28 -1.95 ± 0.00 0.90 ± 0.01 0.96 ± 0.05 3.0

aSCR -1.0 ± 0.2 14.1 ± 25.0 0.722 ± 0.091 3.74 ± 0.00 7.98 ± 0.36 -1.95 ± 0.00 0.90 ± 0.01 0.95 ± 0.07 2.1

Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation
↵ = 0.0 -94.4 ± 20.9 -5.47 ± 1.32 0.429 ± 0.023 3.43 ± 0.67 7.16 ± 0.21 -1.95 ± 0.00 0.53 ± 0.20 0.87 ± 1.08 3.6
↵ = 0.2 -18.1 ± 0.5 -10.9 ± 14.9 0.439 ± 0.000 3.74 ± 0.00 6.57 ± 0.94 -1.95 ± 0.00 0.89 ± 0.02 0.97 ± 0.04 2.5
↵ = 0.5 -16.2 ± 0.6 -15.2 ± 14.4 0.445 ± 0.017 3.74 ± 0.00 6.75 ± 1.18 -1.95 ± 0.00 0.90 ± 0.02 0.93 ± 0.18 2.4
↵ = 0.8 -15.7 ± 1.0 -12.7 ± 13.8 0.439 ± 0.000 3.74 ± 0.00 6.84 ± 1.29 -1.95 ± 0.00 0.88 ± 0.01 -0.24 ± 2.89 3.1
↵ = 1.0 -14.6 ± 1.4 -16.9 ± 13.1 0.439 ± 0.000 3.74 ± 0.00 6.82 ± 1.01 -1.95 ± 0.00 0.89 ± 0.01 -2.71 ± 7.71 3.3

aSCR -14.2 ± 15.2 -16.7 ± 81.1 0.546 ± 0.148 3.22 ± 0.86 6.40 ± 1.13 -1.95 ± 0.00 0.89 ± 0.01 0.24 ± 0.20 3.5

B.5 How does initialization affect the performance of GABO?

Per Algorithm 2, GABO is based on the BO-qEI baseline optimization policy, which involves
initializing the gaussian process (GP) to approximate the offline surrogate model. Consistent with
prior work (Eriksson et al., 2019a; Maus et al., 2022), we initialize the GP using the pseudo-random
Sobol sequence (Sobol, 1967) at the beginning of the optimization procedure. However, an alternative
approach is to instead initialize the GP using the top ninit samples from the offline dataset. In particular,
this strategy is already employed in both related work describing the baseline first-order optimization
methods assessed herein, with the idea that better designs can be generated by initializing from better
designs. We compare these two GP initialization strategies in Supplementary Table B5.

Interestingly, our results show that initializing the GABO GP from the Sobol sequence consistently
outperforms initialization from the top candidates in offline dataset. We hypothesize that this may
be due to the fact that top-scoring candidates likely lie in similar regions of the input space, which
significantly alters the ability of the optimizer to explore other regions of the design space over the
course of the optimization process. Future work may help better interrogate the relationship between
GP initialization and offline optimization, which is outside the scope of this work.

B.6 Can the Gaussian process (GP) in GABO be directly used as the surrogate forward
model?

In Algorithm 2, we leverage a surrogate forward model f✓ in model-based optimization and a separate
GP to acquire samples in the Bayesian optimization framework. However, it may be possible to use
the GP directly as the surrogate forward model. Our results in Supplementary Table B6 suggest that
this is not an effective strategy with which to use GABO—using even the simple neural-network as
the surrogate function (as done in our approach in Algorithm 2) outperforms the alternative GP-based
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Table B4: Ablating Dynamic Updates to the Source Critic We study the effect of training the
source critic model exactly once (i.e., setting ngenerator = 1 in Algorithm 2 and Supplementary
Algorithm 3) as opposed to re-training the source critic model every ngenerator = 4 acquisition steps
on the newly sampled designs. Oracle values are averaged across 10 random seeds and reported as
mean ± standard deviation. In each evaluation setting, we rank all 2,048 proposed designs according
to the penalized surrogate forward model in (8) and evaluate the top k designs using the oracle
function, reporting the maximum out of the k oracle values. In the suboptimal evaluation setting,
we report the oracle score of the single 90th percentile design according to the penalized surrogate
ranking. Bold entries indicate the best entry in the column for the particular optimizer and evaluation
metric. ⇤Denotes the life sciences MBO tasks offered by Design-Bench (Trabucco et al., 2022).

GABO Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96

Constrained Budget (k = 1) Oracle Evaluation
ngenerator =1 -3.5 ± 2.5 -55.6 ± 52.1 0.577 ± 0.151 3.74 ± 0.00 6.73 ± 1.10 0.65 ± 0.00 0.46 ± 0.18 -0.27 ± 13.7
ngenerator = 4 -2.6 ± 1.1 21.3 ± 33.2 0.570 ± 0.131 3.60 ± 0.40 7.51 ± 0.39 0.60 ± 0.07 0.71 ± 0.01 0.60 ± 1.80

Relaxed Budget (k = 128) Oracle Evaluation
ngenerator =1 -0.5 ± 0.1 128.0 ± 19.5 0.946 ± 0.035 3.74 ± 0.00 8.38 ± 0.11 0.67 ± 0.01 0.72 ± 0.00 1.00 ± 0.00
ngenerator = 4 -0.5 ± 0.1 122.1 ± 20.6 0.954 ± 0.025 3.74 ± 0.00 8.36 ± 0.08 0.70 ± 0.01 0.72 ± 0.00 1.00 ± 0.03

Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation
ngenerator =1 -8.9 ± 6.6 -54.1 ± 62.6 0.471 ± 0.061 3.06 ± 1.04 6.02 ± 1.41 0.63 ± 0.07 0.26 ± 0.62 -5.32 ± 4.59
ngenerator = 4 -12.7 ± 10.0 -12.2 ± 46.1 0.467 ± 0.066 3.56 ± 1.66 6.12 ± 1.22 0.61 ± 0.08 0.57 ± 0.17 0.02 ± 5.77

GAGA Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96

Constrained Budget (k = 1) Oracle Evaluation
ngenerator =1 -14.6 ± 0.8 -1.87 ± 14.9 0.439 ± 0.000 3.74 ± 0.00 6.45 ± 0.54 -1.95 ± 0.00 0.88 ± 0.00 -0.17 ± 0.29
ngenerator = 4 -2.9 ± 2.2 -68.6 ± 109.8 0.571 ± 0.120 3.74 ± 0.00 5.89 ± 1.42 -1.95 ± 0.00 0.89 ± 0.00 0.01 ± 0.14

Relaxed Budget (k = 128) Oracle Evaluation
ngenerator =1 -13.3 ± 0.2 50.2 ± 2.48 0.439 ± 0.000 3.74 ± 0.00 7.38 ± 0.31 -1.95 ± 0.00 0.90 ± 0.01 0.99 ± 0.01
ngenerator = 4 -1.0 ± 0.2 14.1 ± 25.0 0.722 ± 0.091 3.74 ± 0.00 7.98 ± 0.36 -1.95 ± 0.00 0.90 ± 0.01 0.95 ± 0.07

Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation
ngenerator =1 -17.0 ± 1.6 5.88 ± 4.88 0.439 ± 0.000 3.74 ± 0.00 7.08 ± 0.73 -1.95 ± 0.00 0.89 ± 0.01 -1.38 ± 1.68
ngenerator = 4 -14.2 ± 15.2 -16.7 ± 81.1 0.546 ± 0.148 3.22 ± 0.86 6.40 ± 1.13 -1.95 ± 0.00 0.89 ± 0.01 0.24 ± 0.20

approach in six of the eight tasks in the top-1 evaluation setting, and is non-inferior to the alternative
GP-based approach in all eight tasks in the top-128 evaluation setting. These results suggest that
using a more complex neural-network surrogate function for GABO leads to better optimization
results than directly using the GP as the surrogate function.

B.7 What is the computational cost of running aSCR (i.e., Algorithm 1)?

At first glance, Adaptive SCR may appear to be a computationally expensive algorithm: it requires us
to dynamically re-train a source critic neural network and compute the Lagrangian hyperparameter
at each step through a grid search. However, in the implementation used for our experiments, the
grid search to compute ↵ is highly vectorized, and the source critic re-training patience and learning
rate are such that the computational cost from re-training is not too significant. As a result, we
are able to run Adaptive SCR with both Bayesian Optimization (BO) and Gradient Ascent (GA)
using an experimental setup with one 24-core Intel Xeon CPU and one NVIDIA RTX A6000
GPU. To benchmark our implementation, we evaluate BO and GA both with and without our
Generative Adversarial (GA) source critic regularization algorithm on the Branin and Penalized
LogP optimization tasks. As a reminder, the Branin task is a standard benchmarking task for offline
optimization, and the Penalized LogP task is subjectively the most challenging task assessed in our
manuscript with the highest dimensional design space out of the eight assessed tasks.

Our results are shown in Supplementary Table B7. On the Branin toy task, aSCR increases the
compute time by 257% for BO and 680% for GA, which is a significant computational cost. However,
on the more challenging LogP task more representative of the tasks encountered in the applications
of offline optimization, aSCR only introduces a 6.9% increase in compute time for GA and 28.9%
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Table B5: GABO GP Initialization Ablation Study We investigate the effect of initializing
the Gaussian process (GP) in GABO using the best ninit points from the offline dataset (i.e., Best
initialization strategy) versus our method in Algorithm 2 where the GP is initialized using the first
ninit points from the Sobol sequence from (Sobol, 1967) (i.e., Sobol initialization strategy). Oracle
values are averaged across 10 random seeds and reported as mean ± standard deviation. In each
evaluation setting, we rank all 2,048 proposed designs according to the penalized surrogate forward
model in (8) and evaluate the top k designs using the oracle function, reporting the maximum out of
the k oracle values. In the suboptimal evaluation setting, we report the oracle score of the single 90th
percentile design according to the penalized surrogate ranking. Bold entries indicate the best entry in
the column for the particular optimizer and evaluation metric. ⇤Denotes the life sciences MBO tasks
offered by Design-Bench (Trabucco et al., 2022).

Strategy Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96

Constrained Budget (k = 1) Oracle Evaluation
Best -3.6 ± 4.1 14.0 ± 18.4 0.504 ± 0.117 2.97 ± 1.02 5.36 ± 1.24 0.61 ± 0.00 0.50 ± 0.19 -2.97 ± 9.03

Sobol -2.6 ± 1.1 21.3 ± 33.2 0.570 ± 0.131 3.60 ± 0.40 7.51 ± 0.39 0.60 ± 0.07 0.71 ± 0.01 0.60 ± 1.80

Relaxed Budget (k = 128) Oracle Evaluation
Best -0.5 ± 0.0 118.9 ± 19.5 0.918 ± 0.034 3.74 ± 0.00 8.37 ± 0.09 0.66 ± 0.01 0.87 ± 0.05 0.99 ± 0.09

Sobol -0.5 ± 0.1 122.1 ± 20.6 0.954 ± 0.025 3.74 ± 0.00 8.36 ± 0.08 0.70 ± 0.01 0.72 ± 0.00 1.00 ± 0.03

Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation
Best -11.8 ± 6.4 -85.9 ± 124 0.382 ± 0.106 3.45 ± 0.77 6.28 ± 1.70 0.60 ± 0.03 0.64 ± 0.23 -0.65 ± 3.97

Sobol -12.7 ± 10.0 -12.2 ± 46.1 0.467 ± 0.066 3.56 ± 1.66 6.12 ± 1.22 0.61 ± 0.08 0.57 ± 0.17 0.02 ± 5.77

Table B6: GABO Neural Network Surrogate Ablation Study Instead of using a neural network
(NN) as our surrogate forward model, we explore if the Gaussian process (GP) employed by the
parent BO optimizer can directly be used as the surrogate model in GABO’s framwork. Oracle values
are averaged across 10 random seeds and reported as mean ± standard deviation. In each evaluation
setting, we rank all 2,048 proposed designs according to the penalized surrogate forward model in
(8) and evaluate the top k designs using the oracle function, reporting the maximum out of the k
oracle values. In the suboptimal evaluation setting, we report the oracle score of the single 90th
percentile design according to the penalized surrogate ranking. Bold entries indicate the best entry in
the column for the particular optimizer and evaluation metric. ⇤Denotes the life sciences MBO tasks
offered by Design-Bench (Trabucco et al., 2022).

Surrogate Branin LogP TF-Bind-8⇤ GFP⇤ UTR⇤ ChEMBL⇤ D’Kitty Warfarin
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 ± 1.96

Constrained Budget (k = 1) Oracle Evaluation
GP -37.4 ± 4.4 -57.9 ± 159.2 0.576 ± 0.058 3.51 ± 0.69 6.84 ± 1.24 0.65 ± 0.01 0.42 ± 0.17 -0.28 ± 2.13
NN -2.6 ± 1.1 21.3 ± 33.2 0.570 ± 0.131 3.60 ± 0.40 7.51 ± 0.39 0.60 ± 0.07 0.71 ± 0.01 0.60 ± 1.80

Relaxed Budget (k = 128) Oracle Evaluation
GP -1.5 ± 0.5 119.9 ± 20.1 0.755 ± 0.071 3.74 ± 0.00 8.34 ± 0.07 0.67 ± 0.01 0.72 ± 0.00 -0.27 ± 2.13
NN -0.5 ± 0.1 122.1 ± 20.6 0.954 ± 0.025 3.74 ± 0.00 8.36 ± 0.08 0.70 ± 0.01 0.72 ± 0.00 1.00 ± 0.03

Constrained Budget (k = 1) Suboptimal (90%-ile) Oracle Evaluation
GP -10.1 ± 10.6 -51.5 ± 108.8 0.562 ± 0.091 2.62 ± 1.13 6.54 ± 1.56 0.65 ± 0.00 0.50 ± 0.19 -0.27 ± 2.13
NN -12.7 ± 10.0 -12.2 ± 46.1 0.467 ± 0.066 3.56 ± 1.66 6.12 ± 1.22 0.61 ± 0.08 0.57 ± 0.17 0.02 ± 5.77

increase for BO. Furthermore, while there are evidently additional compute costs associated with
running our aSCR algorithm, we note that in most applications of offline optimization, obtaining
labeled data is the main bottleneck in many practical applications. Thus, it is often worth spending
this extra compute to ensure the best results for a given evaluation budget using aSCR.

B.8 How do the performance of GABO and other optimization methods vary with the
allowed oracle query budget k?

To investigate this question, we vary the number of allowed k-shot oracle calls in the Penalized LogP
task (Supplementary Fig. B2). While the majority of first-order optimization methods we evaluated
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Table B7: Computational Tractability Runtimes on a single node using one NVIDIA RTX A6000
GPU are averaged across 10 random seeds and reported as mean ± standard deviation.

Time (sec) Branin LogP Time (sec) Branin LogP
Grad. 9.68 ± 0.23 765 ± 6.64 BO 92.1 ± 10.2 965 ± 16.8

GAGA 75.6 ± 25.4 818 ± 10.5 GABO 329 ± 146 1245 ± 55.2

% Increase 680% ± 259% 6.9% ± 1.6% % Increase 257% ± 157% 28.9% ± 4.5%

are able to reach local optima rapidly, the proposed designs from such approaches are suboptimal
compared to those from GABO (and GAGA) with Adaptive SCR as the oracle query budget size
increases. Separately, comparing the curves for GABO and vanilla BO-qEI, we see that GABO with
Adaptive SCR is able to propose consistently superior design candidates in the small query budget
regime often encountered in real-world settings. This is due to the fact that GABO regularizes the
surrogate function estimates such that the proposed candidates are both high-scoring according to
the surrogate objective and relatively in-distribution. Our results demonstrate that especially for
real-world tasks like molecule design with complex objective function landscapes, methods such as
GABO with Adaptive SCR are able to explore diverse, high-performing design candidates effectively
even in the setting of small oracle query budgets.

Figure B2: 100th Percentile Oracle Scores versus k-Shot Oracle Budget Size We plot the 100th
percentile oracle Penalized LogP score averaged across 10 random seeds as a function of the number
of allowed oracle calls k.

B.9 Is the optimization budget sufficient for optimization convergence?

For all of our experimental results, we restrict the surrogate query budget to a total of 2048 allowed
offline surrogate model queries in order to ensure a fair comparison between different optimization
methods. To ensure that such a budget is sufficient for optimizer convergence across different
optimization methods, we plot the best achieved oracle Penalized LogP value (i.e., assuming an
unlimited oracle evaluation budget) as a function of the number of optimizer surrogate queries
(Supplementary Fig. B3) for the Penalized LogP task. These results show that our methods are
indeed able to converge over the course of the optimization trajectory.
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Figure B3: Best Oracle Penalized LogP Value versus Optimization Step Count We plot the
best Penalized LogP score averaged across 10 random seeds as a function of the number of surrogate
queries made over the optimization trajectory. All offline model-based optimization (MBO) methods
assessed consistently converge within the allowed oracle query budget used in our experimental setup
as described in Section 5.1.
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