PyOPIA: A Python Ocean Particle Image Analysis toolbox
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Introduction

Research questions concerning particles suspended in the ocean present a constant challenge:
what are they, how big are they and how do they move? These questions are difficult to address
due to the intricate and diverse structures of these particles which span a wide range of sizes,
concentrations, and movement characteristics. Whilst acoustic and optical scattering sensors
provide some insight into the distributions of size and relative abundance, in-situ imaging
systems can directly measure key characteristics of individual particles within their natural

environment with minimal disruption and disturbance.

In recent years, an expanding array of in-situ particle imaging systems have been developed and
routinely deployed within the ocean. These systems employ different methods to record focussed
images with varying resolution within different-sized sample volumes, with advantages and
disadvantages associated with each. Methods include macro-lens imaging of light-sheet
illuminated sections (e.g. The Underwater Vision Profiler [Picheral et al., 2022]), back-
illuminated telecentric imaging (e.g. SINTEF SilCam [Davies et al., 2017]), in-line digital
holography (e.g. Sequoia LISST-HOLO?2 derived from [Graham & Nimmo-Smith, 2010]), water
pump onboard imaging (e.g. Plankton Imager [Culverhouse et al. 2015]), lab-based flow imaging
microscopy (e.g. FlowCam [Jakobsen et al, 2011])] and its simplified version - PlanktoScope
[https://www.planktoscope.org/]), in-situ underwater imaging flow cytometer (e.g. CytoSub

[https://www.cytobuoy.com/products/cytosub/]). Whilst all these systems record digital images,
they are in different formats (colours or grayscale; resolution; noise types/sources) that are then
subject to different processing algorithms by different (sometimes proprietary, often closed-
source) software prior to the extraction of the actual particle characteristics that may then be
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further aggregated and analysed, and some specific software can only run on a certain operating
systems or in-cloud. In addition to the differences in hardware configuration, this diversity
within the processing software can lead to challenges in combining the outputs from different
systems to better address the overarching research question. These range from simple differences
in output data format and how particle data are presented, to fundamental discrepancies in how
accurately complex particles are segmented and how specific particle metrics (such as size) are
calculated. Furthermore, the exact image processing steps used by different software are not
always well documented and logged as metadata, making it often challenging to reproduce
results without significant user expertise. These differences make the incorporation of data from
the disparate instruments difficult or impossible when for example applying automated
classification to their outputs. Emerging challenges in the modern age of robotic adaptive
sampling also require particle image analysis software capable of rapid integration with robotics
control system software and needs the ability of running in real-time on offline (or edge)
computers.

The challenges mentioned here culminate to an ever-growing volume and range of particle
imaging datasets from around the world that are underutilised, both within the particle imaging
community, and by other researchers and users wishing to make use of data produced. This
underutilisation is due to one primary gap: the particle imaging community lacks common, open-
source, analysis workflows that produce an interoperable data format. The acoustics community
has experienced the same challenge, and promising initiatives such as EcoPype

(https://echopype.readthedocs.io) [Lee et al., 2021] are demonstrating how such challenges can

be overcome.

Therefore, we have begun development of PyOPIA, a Python Ocean Particle Image Analysis
(https://github.com/SINTEF/PyOPIA) toolbox, with the aim of providing the ocean research
community with an open software toolbox for the analysis of particle images from diverse

hardware systems. The design goals for PyOPIA are to:

be hardware agnostic (both from image acquisition and processing perspectives)
use free and open-source software to ensure accessibility and transparency

be robust, testable and clearly documented

be flexible and reconfigurable

generate interoperable data that are compatible with FAIR data principles

A o

be usable and trusted by non-experts, with opportunity to contribute and commit code
changes

support collaborative development by leading international experts

8. be capable of running offline and on edge hardware, with compatibility for Windows,
Linux, macOS
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Methods

PyOPIA aims to provide a pipeline-based workflow as a standard for analysis of images of
particles in the ocean. This pipeline should be consistent across different instruments (hardware),
and therefore has flexibility to adapt analysis steps to meet instrument-specific processing needs
(e.g. holographic reconstruction), while maintaining a traceable workflow that is attached as
metadata to a standard open-format output file that helps users follow FAIR data principles.
While the initial development of PyOPIA has targeted in-situ instruments with open-path
imaging, the aim is for this toolset to be widely applicable to in-situ and lab-based (e.g.
PlanktoScope) imagers.

The most basic pipeline consists of steps that cvTln
standardise tasks including: background correction, 1
segmentation, calculating of particle geometries,
output file formats, and a framework within which a A Image queue
particle classification algorithm can label particle T
types (e.g. using tensorflow). User setup of Get image
processing pipelines is also flexible, such that new Background Correct
X X B [(Holo Reconstruct/Focus)

steps can be added as required by specific hardware Segment
or uses (e.g. holographic reconstruction requires Mi:’:urle
setup of the reconstruction kernel, and focussing Classity

. . .. i
steps). In addition to th.e processm.g pipeline & @
philosophy, PyOPIA aims to provide a toolbox of v
high-level functions that can be used to perform 5 |Coliect particie statistics from processes
specific analysis or visualisation tasks. Such a Apperc dain o common-ouip e His
toolbox enables rapid prototyping and adaptation of L
data analysis tasks, while maintaining the ability to To disc

produce a consistent output data format.

Figure 1: Schematic of the basic PyOPIA pipeline
With the repository hosted on GitHub, users are able that after initialisation draws images
sequentially from the image queue (A), applies

to contribute their additions in the form of new help

. . . . background correction and particle processing
functions, or revisions to instrument- or use-specific steps (B), outputs particle ROIs (C) and then

pipelines. Changes to the source code are collates particle statistics (D) for saving and
automatically tested, using GitHub Actions, with a Jurther analyss.

set of fixed reference datasets. Such testing ensures that code changes do not introduce unwanted
outputs as enhancements are made. In-line documentation also allows updates to PyOPIA to be

rendered automatically at https://pyopia.readthedocs.io.
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Applications and examples
Measuring bubbles under breaking waves:

In this case, the goal of the experiments was to measure bubble size distributions, as a function
of depth and time, under breaking waves. The PyOPIA workflow here (Figure 2), takes a raw
image, applies a background correction, segmentation (producing the binary image), and then
regions of interest are extracted for each connected object in the binary image using
skimage.measure.regionprops (https://scikit-image.org/).
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Figure 2: Processing steps taking raw images (left), correcting to their background (middle), and segmenting them (right).

Given that the pixel size is known (in this case 20 um), the size of the detected objects can be
found. The example in Figure 3 shows all detected particles with an equivalent diameter larger
than 100 um outlined in red, with a fitted ellipse. Following this, bubbles size measurements
provided data on the time evolution of the particle counts, d50, and volume concentration during

breaking wave experiments.
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Figure 3: Fitted ellipses around bubbles following a basic PyOPIA analysis (left), and the time-series evolution of particle statistics

under breaking waves derived from these data (right).

Generalised particle measurements, classification, and visualisation capabilities:

In executing a standard pipeline (in this case for SilCam analysis), PyOPIA is able to take a
folder of raw images from the instrument, and produce particle data that can be utilised by the
available plotting and classification functions to produce a summary of a dataset (in this case,
following removal of bubbles near the surface), as the one shown in Figure 4.
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Figure 4. Example summary of particle images and statistics from a SilCam during profiling in Billefjorden, Svalbard, Jan 2020.
The volume distribution and number distribution of the measured particles after removing detected bubbles, is shown in the
upper and lower left panels, respectively. The montage of particle images shown in the middle panel is auto-generated from
material larger than 500 um, using a packaging algorithm in the ‘pyopia.statistics” module that attempts to represent the size
distribution of particles to correspond with what was measured, but in doing so, concentration (or separation between particles)
is not represented. The small montage to the right shows detected bubbles that were removed from the statistics presented.

Hardware-agnostic analysis:

Using the same analytical approach on multiple hardware configurations allows side-by-side
comparisons, and eventual merging, of multiple instruments’ measurements. In the case shown
in Figure 5, below, both a SINTEF SilCam and UVP-6 were deployed alongside each other on a
profiling frame in June 2022 on the Norwegian shelf. A comparison of both instruments’ vertical
particle volume distributions is demonstrated, together with depth-integrated montages that
visualise the particle populations imaged by the two instruments. It is also possible to pinpoint
locations of each unique particle, where, for example the two copepods expanded are from a
denser region of zooplankton in the surface region indicated by the blue ovals.

STNO3 SilCam 0-50m STNO3 UVP 0-50m
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Figure 5: Example depth-integrated montages and particle volume distribution profiles from SilCam and UVP-6 (inverted

intensities) using PyOPIA analysis functions. ECD is Equivalent Circular Diameter.
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Holographic imaging reconstruction and analysis — LISST-HOLO2:

The example in Figure 6 shows a particle montage generated from the PyOPIA toolbox. As set

out in Figure 1B, additional processing steps are activated to reconstruct, clean (de-noise) and

then localise (focus) the particles within the 3D sample volume using functions within the

pyopia.instrument.holo subpackage. Additional instrument-specific parameters for the LISST-

HOLO2, such as laser wavelength and sample-volume dimensions are used during the pipeline

initialisation to generate the required reconstruction kernel. All identified particles are displayed

T
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<

after performing segmentation, from which statistics are generated as above.

Figure 6: Example PyOPIA-generated montage from a LISST-HOLO2

Holographic imaging reconstruction and analysis — iCPRholo:
As a further example of the application of PyOPIA to holographic images, Figure 7 shows a

particle montage and volume distribution collected using an iCPRholo — a bespoke in-line

holographic camera with different resolution and sample volume size to the LISST-HOLO —
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Figure 7: Example PyOPIA-generated montage and volume distribution of all particles (23,435) within a 1

nautical mile segment of an 85 nautical mile long iCPRholo tow across the Irish Sea, November 2022.
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mounted on a Continuous Plankton Recorder (CPR) tow-body on a routine 85 nautical mile tow
across the Irish Sea in November 2022. Here, all particles from a 1 nautical-mile segment are
shown, with a prevalence of small (~90mm equivalent circular diameter, ECD) flocs.

Flexibility in operational data pipelines:

Edge computing is becoming a vital component in operational monitoring and adaptive sampling
[Fossum et al., 2019]. In the context of operational ocean monitoring, edge computing would
mean the data processing (classification of particles into different types) could happen onboard a
glider or AUV. This both reduces the amount of data that needs to be transmitted back to the
surface, and allows for real-time or near real-time processing of data. The real-time results (as
outlined in Figure 8) can directly be reused for either data-driven sampling based on previous
results (‘follow the particles’) or in an immediate and targeted response to the particles to

minimise their impact on the environment, should they be pollutants such as oil, gas, or plastic.

Integrated real-time
PyOPIA analysis
from SilCam on

mooring
forecast of
measured particles
& ADCP data
Data-driven ==, N
targetted sampling e i s |

Figure 8: Example operational use of PyOPIA for data-driven adaptive sampling of zooplankton in OceanLab,
Trondheim.

With the advent of digital twins of the ocean, that aim to create a digital replica of the physical
ocean which can be used to model, analyse, and predict the behaviour in an ocean area,
operational modelling with flexible data pipelines (Figure 8) can become an integral part of the
twin for observations, model validation as well as event detection and responses [Bronner et al.,
2023].

Outlook

PyOPIA represents the start of a standardised open framework for particle image processing in
the ocean community. For development to continue, wider community adoption, feedback and
input is needed. We encourage researchers in the community to start using this toolbox to
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analyse their own unique research images and to contribute refinements, new code
developments, and new pipeline suggestions as they see fit to reach broad applicability. In
particular, refinements of processing methods for new instruments and challenging imaging
cases (e.g. high particle densities, particle aggregates, highly transparent particles, etc.) are
encouraged. It is our aim to implement these varied processing options as different pipeline steps
or user-defined input choices to maximise functionality and flexibility while retaining
standardised and documented data processing standards.
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