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Introduction  

Research questions concerning particles suspended in the ocean present a constant challenge: 

what are they, how big are they and how do they move? These questions are difficult to address 

due to the intricate and diverse structures of these particles which span a wide range of sizes, 

concentrations, and movement characteristics. Whilst acoustic and optical scattering sensors 

provide some insight into the distributions of size and relative abundance, in-situ imaging 

systems can directly measure key characteristics of individual particles within their natural 

environment with minimal disruption and disturbance. 

In recent years, an expanding array of in-situ particle imaging systems have been developed and 

routinely deployed within the ocean. These systems employ different methods to record focussed 

images with varying resolution within different-sized sample volumes, with advantages and 

disadvantages associated with each. Methods include macro-lens imaging of light-sheet 

illuminated sections (e.g. The Underwater Vision Profiler [Picheral et al., 2022]), back-

illuminated telecentric imaging (e.g. SINTEF SilCam [Davies et al., 2017]), in-line digital 

holography (e.g. Sequoia LISST-HOLO2 derived from [Graham & Nimmo-Smith, 2010]), water 

pump onboard imaging (e.g. Plankton Imager [Culverhouse et al. 2015]), lab-based flow imaging 

microscopy (e.g. FlowCam [Jakobsen et al, 2011])] and its simplified version - PlanktoScope 

[https://www.planktoscope.org/]), in-situ underwater imaging flow cytometer (e.g. CytoSub 

[https://www.cytobuoy.com/products/cytosub/]). Whilst all these systems record digital images, 

they are in different formats (colours or grayscale; resolution; noise types/sources) that are then 

subject to different processing algorithms by different (sometimes proprietary, often closed-

source) software prior to the extraction of the actual particle characteristics that may then be 
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further aggregated and analysed, and some specific software can only run on a certain operating 

systems or in-cloud. In addition to the differences in hardware configuration, this diversity 

within the processing software can lead to challenges in combining the outputs from different 

systems to better address the overarching research question. These range from simple differences 

in output data format and how particle data are presented, to fundamental discrepancies in how 

accurately complex particles are segmented and how specific particle metrics (such as size) are 

calculated. Furthermore, the exact image processing steps used by different software are not 

always well documented and logged as metadata, making it often challenging to reproduce 

results without significant user expertise. These differences make the incorporation of data from 

the disparate instruments difficult or impossible when for example applying automated 

classification to their outputs. Emerging challenges in the modern age of robotic adaptive 

sampling also require particle image analysis software capable of rapid integration with robotics 

control system software and needs the ability of running in real-time on offline (or edge) 

computers. 

The challenges mentioned here culminate to an ever-growing volume and range of particle 

imaging datasets from around the world that are underutilised, both within the particle imaging 

community, and by other researchers and users wishing to make use of data produced. This 

underutilisation is due to one primary gap: the particle imaging community lacks common, open-

source, analysis workflows that produce an interoperable data format. The acoustics community 

has experienced the same challenge, and promising initiatives such as EcoPype 

(https://echopype.readthedocs.io) [Lee et al., 2021] are demonstrating how such challenges can 

be overcome. 

Therefore, we have begun development of PyOPIA, a Python Ocean Particle Image Analysis 

(https://github.com/SINTEF/PyOPIA) toolbox, with the aim of providing the ocean research 

community with an open software toolbox for the analysis of particle images from diverse 

hardware systems. The design goals for PyOPIA are to: 

1. be hardware agnostic (both from image acquisition and processing perspectives) 

2. use free and open-source software to ensure accessibility and transparency 

3. be robust, testable and clearly documented 

4. be flexible and reconfigurable 

5. generate interoperable data that are compatible with FAIR data principles 

6. be usable and trusted by non-experts, with opportunity to contribute and commit code 

changes 

7. support collaborative development by leading international experts 

8. be capable of running offline and on edge hardware, with compatibility for Windows, 

Linux, macOS 

030



3 

Methods

PyOPIA aims to provide a pipeline-based workflow as a standard for analysis of images of 

particles in the ocean. This pipeline should be consistent across different instruments (hardware), 

and therefore has flexibility to adapt analysis steps to meet instrument-specific processing needs 

(e.g. holographic reconstruction), while maintaining a traceable workflow that is attached as 

metadata to a standard open-format output file that helps users follow FAIR data principles. 

While the initial development of PyOPIA has targeted in-situ instruments with open-path 

imaging, the aim is for this toolset to be widely applicable to in-situ and lab-based (e.g. 

PlanktoScope) imagers. 

The most basic pipeline consists of steps that 

standardise tasks including: background correction, 

segmentation, calculating of particle geometries, 

output file formats, and a framework within which a 

particle classification algorithm can label particle 

types (e.g. using tensorflow). User setup of 

processing pipelines is also flexible, such that new 

steps can be added as required by specific hardware 

or uses (e.g. holographic reconstruction requires 

setup of the reconstruction kernel, and focussing 

steps). In addition to the processing pipeline 

philosophy, PyOPIA aims to provide a toolbox of 

high-level functions that can be used to perform 

specific analysis or visualisation tasks. Such a 

toolbox enables rapid prototyping and adaptation of 

data analysis tasks, while maintaining the ability to 

produce a consistent output data format. 

With the repository hosted on GitHub, users are able 

to contribute their additions in the form of new help 

functions, or revisions to instrument- or use-specific 

pipelines. Changes to the source code are 

automatically tested, using GitHub Actions, with a 

set of fixed reference datasets. Such testing ensures that code changes do not introduce unwanted 

outputs as enhancements are made. In-line documentation also allows updates to PyOPIA to be 

rendered automatically at https://pyopia.readthedocs.io. 

Figure 1: Schematic of the basic PyOPIA pipeline 
that after initialisation draws images 
sequentially from the image queue (A), applies 
background correction and particle processing 
steps (B), outputs particle ROIs (C) and then 
collates particle statistics (D) for saving and 
further analysis.
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Applications and examples 

Measuring bubbles under breaking waves: 

In this case, the goal of the experiments was to measure bubble size distributions, as a function 

of depth and time, under breaking waves. The PyOPIA workflow here (Figure 2), takes a raw 

image, applies a background correction, segmentation (producing the binary image), and then 

regions of interest are extracted for each connected object in the binary image using 

skimage.measure.regionprops (https://scikit-image.org/).

Given that the pixel size is known (in this case 20 m), the size of the detected objects can be 

found. The example in Figure 3 shows all detected particles with an equivalent diameter larger 

than 100 m outlined in red, with a fitted ellipse. Following this, bubbles size measurements 

provided data on the time evolution of the particle counts, d50, and volume concentration during 

breaking wave experiments.

Figure 3: Fitted ellipses around bubbles following a basic PyOPIA analysis (left), and the time-series evolution of particle statistics 
under breaking waves derived from these data (right).

Generalised particle measurements, classification, and visualisation capabilities:

In executing a standard pipeline (in this case for SilCam analysis), PyOPIA is able to take a 

folder of raw images from the instrument, and produce particle data that can be utilised by the 

available plotting and classification functions to produce a summary of a dataset (in this case, 

following removal of bubbles near the surface), as the one shown in Figure 4. 

Figure 2: Processing steps taking raw images (left), correcting to their background (middle), and segmenting them (right).
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Figure 4. Example summary of particle images and statistics from a SilCam during profiling in Billefjorden, Svalbard, Jan 2020. 
The volume distribution and number distribution of the measured particles after removing detected bubbles, is shown in the 
upper and lower left panels, respectively. The montage of particle images shown in the middle panel is auto-generated from 

e 
distribution of particles to correspond with what was measured, but in doing so, concentration (or separation between particles) 
is not represented. The small montage to the right shows detected bubbles that were removed from the statistics presented.

Hardware-agnostic analysis:

Using the same analytical approach on multiple hardware configurations allows side-by-side 

comparisons, and eventual merging, of multiple instruments’ measurements. In the case shown 

in Figure 5, below, both a SINTEF SilCam and UVP-6 were deployed alongside each other on a 

profiling frame in June 2022 on the Norwegian shelf. A comparison of both instruments’ vertical 

particle volume distributions is demonstrated, together with depth-integrated montages that 

visualise the particle populations imaged by the two instruments. It is also possible to pinpoint 

locations of each unique particle, where, for example the two copepods expanded are from a 

denser region of zooplankton in the surface region indicated by the blue ovals. 

Figure 5: Example depth-integrated montages and particle volume distribution profiles from SilCam and UVP-6 (inverted 

intensities) using PyOPIA analysis functions. ECD is Equivalent Circular Diameter.
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Holographic imaging reconstruction and analysis – LISST-HOLO2: 

The example in Figure 6 shows a particle montage generated from the PyOPIA toolbox. As set 

out in Figure 1B, additional processing steps are activated to reconstruct, clean (de-noise) and 

then localise (focus) the particles within the 3D sample volume using functions within the 

pyopia.instrument.holo subpackage. Additional instrument-specific parameters for the LISST-

HOLO2, such as laser wavelength and sample-volume dimensions are used during the pipeline 

initialisation to generate the required reconstruction kernel. All identified particles are displayed 

after performing segmentation, from which statistics are generated as above.

Figure 6: Example PyOPIA-generated montage from a LISST-HOLO2

Holographic imaging reconstruction and analysis – iCPRholo: 

As a further example of the application of PyOPIA to holographic images, Figure 7 shows a 

particle montage and volume distribution collected using an iCPRholo – a bespoke in-line 

holographic camera with different resolution and sample volume size to the LISST-HOLO – 

Figure 7: Example PyOPIA-generated montage and volume distribution of all particles (23,435) within a 1 
nautical mile segment of an 85 nautical mile long iCPRholo tow across the Irish Sea, November 2022. 
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mounted on a Continuous Plankton Recorder (CPR) tow-body on a routine 85 nautical mile tow 

across the Irish Sea in November 2022. Here, all particles from a 1 nautical-mile segment are 

shown, with a prevalence of small (~90mm equivalent circular diameter, ECD) flocs.

Flexibility in operational data pipelines:

Edge computing is becoming a vital component in operational monitoring and adaptive sampling 

[Fossum et al., 2019]. In the context of operational ocean monitoring, edge computing would 

mean the data processing (classification of particles into different types) could happen onboard a 

glider or AUV. This both reduces the amount of data that needs to be transmitted back to the 

surface, and allows for real-time or near real-time processing of data. The real-time results (as 

outlined in Figure 8) can directly be reused for either data-driven sampling based on previous 

results (‘follow the particles’) or in an immediate and targeted response to the particles to 

minimise their impact on the environment, should they be pollutants such as oil, gas, or plastic. 

Figure 8: Example operational use of PyOPIA for data-driven adaptive sampling of zooplankton in OceanLab, 

Trondheim.

With the advent of digital twins of the ocean, that aim to create a digital replica of the physical 

ocean which can be used to model, analyse, and predict the behaviour in an ocean area, 

operational modelling with flexible data pipelines (Figure 8) can become an integral part of the 

twin for observations, model validation as well as event detection and responses [Brönner et al., 

2023].  

Outlook 

PyOPIA represents the start of a standardised open framework for particle image processing in 

the ocean community. For development to continue, wider community adoption, feedback and 

input is needed. We encourage researchers in the community to start using this toolbox to 
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analyse their own unique research images and to contribute refinements, new code 

developments, and new pipeline suggestions as they see fit to reach broad applicability. In 

particular, refinements of processing methods for new instruments and challenging imaging 

cases (e.g. high particle densities, particle aggregates, highly transparent particles, etc.) are 

encouraged. It is our aim to implement these varied processing options as different pipeline steps 

or user-defined input choices to maximise functionality and flexibility while retaining 

standardised and documented data processing standards. 
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