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Abstract—Deep reinforcement learning has demonstrated re-

markable achievements across diverse domains such as video

games, robotic control, autonomous driving, and drug discovery.

Common methodologies in partially observable domains largely

lean on end-to-end learning from high-dimensional observations,

such as images, without explicitly reasoning about true state.

We suggest an alternative direction, introducing the Partially

Supervised Reinforcement Learning (PSRL) framework. At the

heart of PSRL is the fusion of both supervised and unsupervised

learning. The approach leverages a state estimator to distill

supervised semantic state information from high-dimensional ob-

servations which are often fully observable at training time. This

yields more interpretable policies that compose state predictions

with control. In parallel, it captures an unsupervised latent

representation. These two—the semantic state and the latent

state—are then fused and utilized as inputs to a policy network.

This juxtaposition offers practitioners a flexible and dynamic

spectrum: from emphasizing supervised state information to

integrating richer, latent insights. Extensive experimental results

indicate that by merging these dual representations, PSRL offers

a balance, enhancing interpretability while preserving, and often

significantly outperforming, the performance benchmarks set by

traditional methods in terms of reward and convergence speed.

I. INTRODUCTION

The realm of deep reinforcement learning has been trans-
formed through a series of advances that utilize deep neural
networks for policy or value function approximations. Dom-
inating the current Reinforcement Learning (RL) landscape
are methodologies that view the world as a Markov Decision
Process (MDP)—treating sequences of observations as states
and often learning policies directly from observable data, such
as images translating to controls [1]. Such an end-to-end (E2E)
approach has indeed set the benchmark in many domains, like
robot navigation [2], Atari games [3], human-level driving in
Gran Turismo [4], and numerous others.

However, many environments, especially those with high-
dimensional sensory inputs, are better modeled as partially
observable Markov decision processes (POMDPs). The so-
called “true” or “semantic” state in these settings is often a
relatively low-dimensional representation which encapsulates
semantic information. For example, in autonomous driving,
the true state includes critical variables such as the ego-
vehicle position, velocity, acceleration, or locations of nearby

obstacles. If we are to learn policies that map such semantic
information to control, they are naturally more interpretable.
However, we do not observe this state directly, but instead
have a high-dimensional sensory data stream, such as from
camera, LiDAR, and radar. An alternative to typical end-to-
end learning that aims to capture some of this intuition has
been to learn a low-dimensional latent state representation
that is implicit in the raw sensory data [5]. However, such
representations are typically not interpretable.

Significantly, what all conventional end-to-end approaches,
including those which infer latent state, fail to capture is that in
many domains true semantic state information is available dur-

ing training, even while it is unobservable at execution time.
For example, this is a common setting in robotics and control
research [6]–[14], and true state information is available by
construction in any simulation-based learning environment.
Several recent efforts have attempted to exploit this structure to
improve the efficiency of reinforcement learning in POMDPs.
[15] consider a closely related model of hindsight observability

in which information about semantic state is observed at the
end of each episode, and develop model-based reinforcement
learning approaches that achieve sample complexity that is
linear in the number of actions and logarithmic in the size
of the transition and observation function spaces. [16] and
[17] term this problem asymmetric reinforcement learning and
leverage state information by training critics—but not actors—
on states rather than observations. However, while [15] offer
a general-purpose algorithm, theirs is a custom model-based
approach; further, they assume that once the POMDP has
been learned, they can quickly solve it to optimality, making
their approach impractical in settings with high-dimensional
observations, such as images. On the other hand, while both
[16] and [17] offer practical algorithms, these are specific
to actor-critic reinforcement learning frameworks. Recently,
[18] proposed an asymmetric RL algorithm for deep Q-
learning. However, this approach is specific to DQN-style
algorithms [19], [20]. Thus, asymmetric RL methods are at
the moment distinct for Q-learning and actor-critic methods,
and no practical unified (general-purpose) method exists for
making use of known state information in reinforcement



learning for POMDPs with high-dimensional observations
in an interpretable way. Moreover, existing asymmetric RL
approaches ultimately still train policies that are end-to-end
in the sense of mapping raw sensory inputs to controls.When
these models err it is impossible to know whether the models
have not learned useful representations, or they have not
learned good policies with respect to those representations.
Consequently, concerns about the lack of interpretability of
conventional E2E approaches, which yield complex “black-
box” policies, apply to these as well.

To address this gap, we introduce a Partially Supervised
Reinforcement Learning (PSRL) framework. In PSRL, we
assume that training time trajectories include both observation
and true state information, whereas only the former is avail-
able at execution time. PSRL has two main building blocks:
state predictor g, which maps (finite) observation history to
predicted state, and policy ⇡, which maps predicted state to
action. At training time, both g and ⇡ are jointly trained using
a combination of supervised and reinforcement learning loss.
Crucially, we train ⇡ with predicted, rather than actual state as
an input, ensuring that the learned policy is robust to prediction
errors. These models are interpretable for two reasons. First, it
enables designers to develop policies that map actual state to
actions independently of raw data, and “plug” these in directly,
in addition to the more natural framework of jointly learning
predictions and policies as we do in PSRL. This makes the
state estimation an “explanation” in the sense defined by [21].
Second, we can now explicitly determine whether the cause
of poor behavior is due to poor state predictions or poor
state-dependent decisions of designed or learned policies. In
other words, state prediction provides a kind of counterfactual
information, i.e., we can determine what the correct behavior
should have been in a given state, so long as it is predicted
well. Notably, this notion critically relies on the state definition
being semantically relevant. Our framework can’t claim these
benefits if the state itself is poorly specified. Fortunately,
in many practical applications, there is already an extensive
literature devoted to specifying meaningful semantics.

At execution time, actions are chosen by composing ⇡

and g, thereby effecting an end-to-end policy that relies
only on observations. Nevertheless, this explicit composition
preserves a high degree of interpretability, as the policy makes
a clear distinction between the prediction of a semantically
meaningful state, and actions taken with such predictions
as an input. Further, the PSRL framework admits a natural
generalization that allows for state to be incompletely observed
even at training time, whereby we additionally learn a very
low-dimensional representation of the latent part of the state
which is concatenated with predicted state as an input to ⇡.
We refer to this as PSRL-K, where K is the number of
such latent dimensions. This generalization, in turn, induces
a space of algorithmic approaches that span from fully end-
to-end (ignoring supervised loss in training, with K just
the dimension of latent state in end-to-end RL) to PSRL-0,
with its added advantage of being interpretable due to the
semantic nature of the state predicted by g. Thus, varying

K induces a tradeoff between interpretability and ability to
capture additional information from sensor data that may be
relevant for control. In general as K grows the amount of
information the policy can use to make decision increases.
This diminishes the counterfactual explainability efficacy as
previously mentioned. Other interpreability techniques such
as [22] would be required to understand how much of the
behavior was dependent on the state estimation vs. the latent
features.

We investigate the efficacy of PSRL-K for varying K

for both deep Q-learning (DQN) and actor-critic (PPO) ap-
proaches that instantiate the policy learning architecture and
loss, on six domains in OpenAI Gym. Broadly, we find that
PSRL-0 is usually, although not always, more sample efficient
than state-of-the-art end-to-end counterparts, and the added
value of increasing K is typically low. Moreover, our experi-
ments demonstrate that both pre-training the state predictor g
or the policy ⇡—both common ways state information is used
in specific applications—tends to perform poorly, in the former
case because PSRL makes more efficient use of supervised
data, and in the latter case because of fragility of policies
learned using true, rather than predicted, state to prediction
errors. Finally, our experiments demonstrate interpretability
of composite policies learned by PSRL, showing that state
prediction errors are typically far lower than unsupervised
embeddings learned in conventional end-to-end reinforcement
learning paradigms.

II. RELATED WORK

End-to-end deep reinforcement learning has demonstrated
remarkable success in settings such as [3], [4], [23]–[25].
However, in numerous other applied settings, such as involv-
ing robotics and control applications, it is often natural to
decompose end-to-end control into state inference and state-
based control [6]–[14], [26], although this decomposition is
typically ad hoc and domain specific. For example, one may
simply learn to predict state from observational data first,
and then uses such predictions to learn a controller. However,
such approaches often fail due to prediction errors [16]. The
proposed PSRL framework can be viewed as unifying these
disparate application-driven approaches, as well as providing
a systematic means for studying them. Moreover, the joint
supervised and RL training in PSRL overcomes the fragility
of many such approaches to prediction errors.

Moreover, several lines of RL research have noted that one
commonly observes true state of a POMDP during training. On
the more theoretical side, this has been modeled as hindside-

observability in POMDPs (HOMDPs), that is, true state can
be observed after an action has been taken, or after an
episode, during training, inference, or both [15], [27]. This
work has demonstrated that observability of state (at least)
during training can yield theoretical advantages, but did not
yield practical algorithms for high-dimensional settings (e.g.,
most approaches assume a finite set of states). On the more
practical side, several recent approaches proposed asymmetric

RL [17], [18], [28]. The key idea in asymmetric RL is to train a



critic that depends directly on state, and an actor that is end-to-
end. However, such approaches need to be designed separately
for deep Q-learning and actor-critic RL frameworks, and still
ultimately rely on learning end-to-end actors. PSRL provides
a simple unified framework that is conceptually independent
of the particular flavor of model-free RL, making use of
supervised information provided by observability of state at
training time.

Our work also builds on ideas in current interpretability
literature such as [29] and [30]. These works seek to develop
model artifacts that would allow a developer or end user to
understand agent actions at each step. Moreover, our work
is a practical approach to addressing the anticipatory gap
detailed in [31]. The key insight detailed is to formally view
interpretability in reinforcement learning as a policy satisfac-
tion problem between the agent and some outside observer
(presumed to be a human who needs the explanation). We
address this by mapping observations directly to a semantic
state. Moreover, our approach is connected to the representa-
tion learning literature [32]–[34], which seeks to understand
the theoretical and practical impacts of the way networks
use underlying representations of their input data, and the
way these representations are leveraged by downstream tasks.
Of particular relevance is [35], which attempts to solve the
POMDP problem using VAE constructed representations over
observations. While this method can be useful for comparing
underlying abstract belief states from actions, it does not
capture the intreptability notions detailed here.

Finally, our work is loosely related to model-based re-
inforcement learning, such as DREAMER, which also uses
supervised techniques [36]–[40]. However, these methods rely
on learning dynamics and rewards, whereas the propose PSRL
framework uses supervision as a means to take advantage of
observed state at training time.

III. PRELIMINARIES

Partially Observable MDPs A partially-observable Markov
decision process (POMDP) is characterized by a tuple:
{S,A, T,O,⌦, r, �, ⇢}, where S is the state space, A the
action space, T the transition function where T (s0|s, a) is
the probability distribution over s

0
2 S given true state s

and action a, ⌦ the set of observations, O the observation
function with O(o|s) the distribution of observations o 2 ⌦
given true state s 2 S, r(s, a) the reward function, � 2 [0, 1)
the temporal discount factor, and ⇢ the distribution over initial
state s0. Throughout, we assume that S ✓ Rn and ⌦ ✓ Rm,
and that typically m � n, that is, the dimension of the raw
sensory observation space is far greater than the dimension of
the true state s, which furthermore is semantically meaningful
(for example, position, velocity, and acceleration of a car). We
allow A to be either finite or infinite and multi-dimensional.

In general, a policy in a POMDP can be a function of
an arbitrary observation history. However, in practice it is
typical to keep track of only a finite sequence of observations.
Since an observation ot can embed any finite sequence of
observations and actions, we aim w.l.o.g. to learn a policy

⇡(ot) that maps an observation ot to an action a 2 A to solve
the following problem:

max
⇡

E
" 1X

t=0

�
t
r(st, at)|at = ⇡(·)

#
,

where the expectation is with respect to ⇢, as well as the
distribution of trajectories induced by ⇡ and T .
Deep Reinforcement Learning In relatively general terms,
deep reinforcement learning algorithms can be viewed as
minimizing a composite loss function comprised of up to three
elements: 1) critic loss Lc(✓c), 2) actor loss La(✓a), and 3)
entropy He:

LRL(✓c, ✓a) = Er,s,a,s0,a0 [Lc(✓c) + ↵1La(✓a) + ↵2H]. (1)

In deep Q-learning, ↵1 = ↵2 = 0, and in the most basic variant
of deep Q network (DQN) [41], we learn the parametric action-
value function Q✓c(s, a) using loss Lc(✓c) = (Q̄�Q✓c(s, a))

2
,

where Q̄ = r + maxa0 Q✓(s, a0). Variations, such as double
DQN (DDQN), involve a distinct Q network as a target in
Q̄ [42]. In the case of actor-critic methods, one commonly
learns a value function V✓c(s) as the critic. In particular,
in this case it is common to define the advantage function
A(s, a) = (V̄ � V✓c), where V̄ = r + V✓c(s

0), and the
critic loss is just Lc(✓c) = A(s, a)2, while the actor loss
is La(✓a) = A(s, a) log ⇡✓a , where ⇡✓a is the policy (often
represented as a neural network), as in the case of approaches
as such advantage actor critic (A2C) [43], or

La(✓a) = �A(s, a)min

⇢
log ⇡✓a
log ⇡✓old

,

clip(
log ⇡✓a
log ⇡✓old

, 1� ⌘, 1 + ⌘)

�
,

as in PPO [44]. Finally, the entropy term H aims to ensure
that ⇡ remains stochastic during training to ensure exploration.

IV. APPROACH

In a broad array of domains, it is reasonable to assume that
even though the domain is partially observable, true state is
observed during training, though not at execution time. For
example, any simulation, by construction, must generate both
true state and observations, while only emitting observations
to mimic whatever domain is being simulated. Moreover,
common robotic settings involve highly instrumented training
runs (besides training using simulations) in which one can
indeed closely approximate whatever actual state information
is important. Formally, we assume that training trajectories
⌧ = (s0, o0, a0, s1, o1, a1, . . . , st, ot, at, . . .) include both ob-
servations ot and states st at each time step t.

We propose to leverage knowledge of true state at training
time by combining reinforcement learning, which learns how
to act, with supervised learning, which learns to predict state
s from observations o. Let g�(ot�i, ...ot) denote a parametric
model that predicts state given an observation sequence of
the last i + 1 observations. In general, g� can be either a
point prediction or a distribution. Here, we assume it makes



a point prediction of a state s given an observation sequence
to predict s at time t ie the last observation in the sequence
corresponds to the predicted state. Recall that policy ⇡✓a(·)
takes an observation sequence (potentially a single observa-
tion) as an input. We refer to this as an end-to-end policy.
The key idea, which is either implicitly or explicitly common
in numerous particular cases [], but has not previously been
systematically investigated on its own, is to have a policy with
an architecture that explicitly composes state prediction with
decision. Formally, let ⇡̃✓a(s) be a policy that maps the true

state s (albeit, unobserved at decision time) to actions. We can
then define ⇡(ot�i, ..., ot) = ⇡̃✓a(g�(ot�i, ..., ot)).

If both ⇡̃ and g are differentiable, we can train the resulting
policy end-to-end using the conventional RL loss LRL(✓c, ✓a)
in Equation (1). And, in conventional RL settings, there is
little else to do. However, when we observe state s during
training, we can do more. Recent asymmetric RL approaches
take advantage of such information by learning a critic value
or action-value (Q) function as a function of true state, rather
than observation, with the actor (policy) [16]–[18]. However,
actor policies in these methods are still learned end-to-end.
We suggest that this is a missed opportunity for two reasons:
first, because it does not take full advantage of the knowledge
of true state at training time, and second, because distinct
approaches are needed for actor-critic and DQN settings. We
propose partially supervised reinforcement learning (PSRL) as
a general framework for RL that leverages knowledge of true
state of a POMDP during training. In its most basic variant,
we jointly train ⇡̃ and g using a combination of supervised
loss (for g) and RL loss (for both):

LPSRL(✓c, ✓a,�) = LRL(✓c, ✓a) + �LS(�), (2)

where LS(�) is the supervised (e.g., cross-entropy) loss and
� a parameter that determines the relative weight of the
supervised loss to RL loss. Since the policy architecture
composes the state-level policy ⇡̃ and predictions g, effectively
both the actor and the critic in actor-critic method are still
trained with respect to observation input o, unlike asymmetric
actor-critic, in which the critic takes true state as an input.
A corresponding asymmetric variation of PSRL is straightfor-
ward. A key advantage of PSRL over asymmetric actor-critic,
however, is its simplicity and generality, as it applies equally
directly to both Q learning and policy gradient methods.

An important limitation of the PSRL approach is that it as-
sumes decodability of the true state from the observation [45],
that is, that each observation is associated with a unique state.
To address this, we propose a generalization of PSRL, PSRL-
K, in which the policy ⇡̃ takes as input (predicted) state s

along with K latent variables trained solely using the RL
loss. Formally, let ⇡̃(s, z), where z represents a latent low-
dimensional observation embedding, and let z = h (o) be a
neural network architecture that captures this embedding. The
full policy architecture is then ⇡(·) = ⇡̃✓a(g�(o), h (o)), still
trained using the PSRL loss in Equation (2).

Note that PSRL-K generalizes both PSRL and end-to-end
RL. In the former case, we omit the dependence on h 

(equivalently, set K = 0), while in the latter case, we omit the
dependence on g� (and, therefore, the supervised part of PSRL
loss). Consequently, it enables us to modulate between the two
extremes, which our experiments show can be beneficial.

Finally, the proposed joint supervised and RL training in
PSRL and its generalization is unlike a rather natural idea
common in applied settings, where we train a state predictor
g and independently a state-conditional policy ⇡̃, and compose
these at decision time. However, this approach is sensitive to
state prediction errors. An improvement is to first pre-train g,
and then train ⇡̃ �g using either RL or PSRL loss. We explore
these alternatives in the experiments below.

V. EXPERIMENTS

We evaluate the performance of PSRL-K on several com-
mon benchmark environments from OpenAI Gym, comparing
to state of the art end-to-end and asymmetric actor critic
approaches, as detailed below. In three environments featuring
small action sets, we evaluate the implementation of PSRL-
K in deep Q-learning-based approaches (specifically, double
deep Q-network (DDQN) [42]). In three others that feature
continuous actions, we combine PSRL-K with PPO.

A. Experiment Setup

Environments We consider five OpenAI Gym environments:
Acrobot, Cart Pole, Mountain Car, Reacher, and Pendu-
lum [46]. Of these, Acrobot and Mountain Car have finite
action sets, Reacher and Pendulum involve continuous actions,
and we used two versions of Cart Pole, one with finite and
another with continuous action sets. In Acrobot, (true) state
is a 6-dimensional vector providing information about the
two rotational joints and two links. In Mountain Car, state
is represented by a 4-dimensional vector, comprising the cart
position, cart velocity, pole angle, and pole angular velocity.
In Pendulum state is a 3-dimensional vector, representing
the cosine and sine of the pendulum’s angle and its angular
velocity. In Cart Pole is a 4-dimensional vector, comprising
the cart position, cart velocity, pole angle, and pole angular
velocity. Finally, in Reacher the state is given by an 11-
dimensional vector comprising the cosine and sine values for
the angles of both arms, the coordinates of the target, the
angular velocities of the arms, and the vector between the
target and the reacher’s fingertip. In all cases, observations o

are short sequences of 2D images simulated by OpenAI Gym.
Baselines Our first true state baseline is for calibration, and
assumes that the environment is fully observable. This baseline
learns ⇡(s) using either DDQN (in finite-action settings) or
PPO (in continuous-action settings). The second baseline is
end-to-end (E2E), for which we learn policies ⇡(o) directly
mapping image inputs to control using either DDQN or PPO
as conventionally done. For each environment, we use the
best performing E2E baseline available. To ensure a fair
comparison with PSRL-K, we additionally provide results for
E2E-K + n, where the architecture of ⇡(o) mirrors that of
PSRL-K, except the policy is learned using solely the RL
loss. Finally, we compare with a state-of-the-art asymmetric



Fig. 1. Experiments in Acrobot (top row), Cart Pole (with finite action sets; middle row), and Mountain Car (bottom row), in finite-action environments using
DDQN approaches.

Fig. 2. Experiments in Pendulum (top row), Cart Pole (with continuous action sets; middle row), and Reacher (bottom row), in continuous-action environments
using PPO approaches.

DQN (ADQN) [18] in the finite-action settings and asymmetric
PPO (APPO) [17] in the continuous-action settings. We use
an identical architecture between APPO and PSRL to ensure
a fair comparison.

B. Results

Q-Learning Settings Our first set of experiments considers
the DDQN framework, comparing PSRLwith the baselines.

The results are presented in Figure 1. Consider first the
top row, corresponding to Acrobot. In this setting, PSRL
is essentially as effective as learning in its fully observable
counterpart. In contrast, both variants of end-to-end learning
considerably slower, even as they ultimately approach a near-
optimal policy. Finally, we observe that ADQN significantly
outperforms E2E approaches, but remains clearly below PSRL



Fig. 3. Experiments comparing PSRL-0 (joint RL and supervised) learning with either representation first or policy first approaches. Top row, left-to-right:
Acrobot 50% pretrained, Acrobot 25% pretrained, Acrobot 10% pretrained. Middle row: Cartpole 50% pretrained, Cartpole 25% pretrained, Cartpole 10%
pretrained. Bottom row: Mountain Car 50% pretrained, Mountain Car 25% pretrained, Mountain Car 10% pretrained.

in terms of performance.
The second row of Figure 1 presents DDQN results for

the finite-action Cart Pole environment. Here, PSRL again
exhibits a clear advantage over end-to-end approaches as well
as asymmetric DQN, although in this domain there is a clear
advantage in the knowledge of true state. Notably, in both
the Acrobot and Cart Pole domain, there appears to be little
advantage to PSRL-K for K > 0, with PSRL-0 already
exhibiting strong performance.

Finally, the last row of Figure 1 presents the results for
Mountain Car. In this domain, we find that end-to-end per-
forms extremely well, essentially no different from using the
true state. PSRL-0 is tangibly worse, but in this case PSRL-2
performs better.
Actor-Critic Settings Next, we consider settings with con-
tinuous actions, combining PSRLand baselines with the PPO
actor-critic approach. The results are provided in Figure 2. In
the Pendulum environment (top row), both asymmetric actor-
critic and PSRL outperform end-to-end approaches by a large
margin, although learn tangibly slower than true-state PPO.
Moreover, PSRL-0 learns somewhat faster than asymmetric
actor-critic. In the Cart Pole environment (bottom row), the
advantage of PSRL and asymmetric methods over end-to-end
is smaller. Indeed, in this case, asymmetric actor critic no
longer outperforms one of the end-to-end baselines. PSRL,
however, maintains an advantage over both. In both of these
domains, PSRL-0 performance is comparable to PSRL-K for
several values of K; that is, no added value is provided by
including latent features. Finally, in the Reacher environment,
PSRL and APPO are both comparable and actually learn
somewhat faster than the approach which knows the true state

(perhaps because of the implicit increase in exploration that
results from imperfect state predictions), whereas end-to-end
approaches are considerably worse.
Ablation Experiments Now, we consider two natural ab-
lations of PSRL. The first ablation involves pretraining state
prediction (representation network) g� using only supervised
loss for the first T iterations. Thereafter, we freeze the
representation network g�, and train only the policy network
⇡̃(g�(o)) using conventional RL loss. This roughly mirrors the
typical way that state information in reinforcement learning is
used in applied settings, such as robotic control [6], [10], [12],
[14]. We refer to this as representation-first PSRL. The second
ablation first pretrains a policy mapping true state to actions
for the first T iterations using RL loss. Thereafter, we freeze
the policy network ⇡̃, and train the state prediction g� using
supervised loss. We refer to this as policy-first PSRL. This
corresponds to an effective decomposition of prediction and
policy training, also common in applied settings.

The results are provided in Figure 3 for discrete action en-
vironments and Figure 4 for continuous action environments.
We can observe that neither the representation first nor the
policy first baselines are as effective as PSRLin the majority of
cases. However, there are a few interesting exceptions. While
the policy first baseline is nearly always poor, representation
first is effective in Continuous Cart Pole and Reacher, indistin-
guishable from PSRLin the latter, and actually outperforming
it under one configuration in the former. Interestingly, these
exceptions are only in the PPO setting, whereas the joint
representation and policy training in PSRLappears uniformly
more advantageous than these variations in the DQN setting.
Wall Time Experiments We find that our method is com-



Fig. 4. Experiments comparing PSRL-0 (joint RL and supervised) learning with either representation first or policy first approaches. Top row, left-to-right:
Pendulum 50% pretrained, Pendulum 25% pretrained, Pendulum 10% pretrained. Middle row: Continuous Cartpole 50% pretrained, Continuous Cartpole 25%
pretrained, Continuous Cartpole 10% pretrained. Bottom row: Reacher 50% pretrained, Reacher 25% pretrained, Reacher 10% pretrained.

parable or considerably faster than E2E baselines. Below are
training times for continuous domains are over 10000 time
steps and discrete action over 100000 time steps.

TABLE I
COMPARISON OF TRUESTATE, E2E, AND PSRL TIMINGS FOR DIFFERENT

ENVIRONMENTS.

Truestate (s) E2E (s) PSRL (s) Env

5491 ± 191 85343 ± 851 44023 ± 6069 Cartpole
3332 ± 69 70643 ± 8721 55721 ± 1153 Acrobot
8412 ± 19 123892 ± 36304 45008 ± 1997 Mountain Car
67 ± 2 1052 ± 43 2930 ± 54 Continuous Cartpole
69 ± 0.1 1292 ± 3 1292 ± 3 Pendulum
66 ± 0.1 12985 ± 179 13528 ± 87 Reacher

TABLE II
COMPARISON OF PSRL-0 AND E2E TEST MEAN SQUARED ERROR FOR

DIFFERENT ENVIRONMENTS.

Environment PSRL-0 E2E

Acrobot 0.78 ± 0.27 16260 ± 7435
Mountain Car 0.0003 ± 0.0001 337 ± 37
Cartpole 0.20 ± 0.005 56 ± 5.6
Reacher 0.30 ± 0.13 0.88 ± 0.13
Cont Cartpole 0.05 ± 0.001 805 ± 146
Pendulum 1.04 ± 0.18 134 ± 21

Note that although E2E is able to learn, it does so with embeddings that are
not interpretable as state estimates.

Interpretability Finally, we consider the issue of inter-
pretability, which we quantify simply as the quality of true
(semantic) state estimation, comparing PSRL (that is, the
predictions by g) with E2E with respect to the embedding
of the identical dimension. One may expect that since E2E

approaches typically learn to be quite effective, they do so by
learning a good estimate of true state despite not having any
explicit supervision. Our results in Table II dispel this, showing
that while PSRL yields highly accurate state predictions, the
latent embeddings in E2E are entirely uninterpretable.

VI. CONCLUSION

The PSRL framework reveals its effectiveness as a com-
pelling alternative for addressing the challenges posed by
important classes of partially observable domains, striking a
balance between performance and interpretability. PSRL pro-
vides interpretability in the inferred state while outperforming
state of the art methods.
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