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Abstract In this expository Note, it is shown that
the Griffith phase-field theory of fracture accounting
for material strength originally introduced by Kumar,
Francfort, and Lopez-Pamies (J Mech Phys Solids 112,
523-551, 2018) in the form of PDEs can be recast
as a variational theory. In particular, the solution pair
(u, v) defined by the PDEs for the displacement field
u and the phase field v is shown to correspond to the
fields that minimize separately two different function-
als, much like the solution pair (u, v) defined by the
original phase-field theory of fracture without material
strength implemented in terms of alternating minimiza-
tion. The merits of formulating a complete theory of
fracture nucleation and propagation via such a varia-
tional approach — in terms of the minimization of two
different functionals — are discussed.
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1 Introduction

Kumar et al. (2018a, 2020) and Kumar and Lopez-
Pamies (2020) have recently established that any
attempt at the formulation of a complete macroscopic
theory of fracture nucleation and propagation in nomi-
nally elastic brittle solids must account for three intrin-
sic material properties: (i) the elasticity of the solid, (i7)
its strength, and (iii) its critical energy release rate.

In the most basic setting, that of an isotropic linearly
elastic brittle solid occupying an open bounded domain
Q C R that is subjected to monotonic and quasistatic
loading conditions! in time ¢ € [0, T'], these properties
are characterized by:

i The stored-energy function
A
WE) = ptr E? + 3 (trE)? (1)

describing elasticity of the solid, that is, the elastic
energy (per unit undeformed volume) stored by the
solid when deformed a strain E,

ii The strength surface

F(o)=0 @)

describing the strength of the solid, that is, the
set of critical stresses at which the solid fractures
when subjected to monotonically increasing uni-
form stress o, and

! We will come back to the more general case of non-monotonic

and dynamic loading conditions in Section 4 below.
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iii the critical energy release rate
Ge 3)

describing the intrinsic fracture energy of the solid,
that is, the amount of energy (per unit undeformed
area) required to create new surface in the solid
from an existing crack.

In contrast to the specific functional forms (quadratic
in E and constant) of the stored-energy function (1) and
critical energy release rate (3), there is no one-size-fits-
all functional form for the strength surface (2), since
different solids can feature very different strength sur-
faces. In this work, for definiteness, we shall restrict
attention to strength surfaces of the Drucker-Prager
form

Ots
Fo) =y h+—"-—
\/§ (Bons — Ots)
7 — \/gahsots =0, (4)
30hs — Ots

where Z; = tro and /b = 4 tr 0’2D stand for the first
and second principal invariants of the stress ¢ and the
deviatoric stressoep = 0 — %(tr o)1 tensors, while the
material constants o > 0and o, > 0 denote the uni-
axial tensile and hydrostatic strengths of the solid, that
is, they denote the critical stress values at which frac-
ture nucleates under states of monotonically increased
uniaxial tension ¢ = diag(c > 0,0,0) and tensile
hydrostatic stress ¢ = diag(oc > 0,0 > 0,0 > 0),
respectively.

Remark 1 According to our choice of signs in (4), any
stress state such that

(Bons —org) F(o) =0

is in violation of the strength of the solid. The strength
of the vast majority of solids, especially hard solids
(e.g., glass), is such that 30,5 — o > 0. Nonetheless,
3ons — ots < 0 for some soft solids (e.g., natural
rubber).

Remark 2 The two-material-parameter strength sur-
face (4), originally introduced by Drucker and Prager
(1952) to model the yielding of soils, is arguably the
simplest model that has proven capable of describing
reasonably well the strength of many nominally brittle
solids (Lopez-Pamies 2023; Kumar et al. 2020, 2022,
2024; Kamarei et al. 2024), thus its use here as a rep-
resentative template.
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Remark 3 For given uniaxial tensile and hydrostatic
strengths ocs and ong, the strength surface (4) pre-
dicts the shear, biaxial tensile, and uniaxial compres-
sive strengths

1 1 ons\ !
Oss = —=|—z+ Ohs,
ss ﬁ( 3 Uts) hs

1 —1
Ops = <_ + Uhs) Ohs, and
3 Ots

2 Ohs !
Ocs =|—35 + Ohs,
3 Ots

which are defined as the critical stress values at which
fracture nucleates under uniform states of monotoni-
cally increased shear stress ¢ = diag(oc > 0, —o, 0),
biaxial tension 0 = diag(o > 0, 0 > 0, 0), and uniax-
ial compression ¢ = diag(c < 0, 0, 0). Direct use of
these relations (or analogous ones for any other multi-
axial stress state of interest) allows to rewrite (4) in
terms of different pairs of critical strength constants.
For hard solids, it is customary to use oy and o¢g,
while for soft solids it is more convenient to use og
and ons. In this work, as indicated by (4), we favor the
latter parametrization.

1.1 The problem

Consider hence a body made of an isotropic linearly
elastic brittle solid with stored-energy function (1),
Drucker-Prager strength surface (4), and critical energy
release rate (3) that, initially, at time t = 0, occupies
the open bounded domain 2. We denote the bound-
ary of the body by 9€2, its outward unit normal by N,
and identify material points in the body by their initial
position vector

X e Q.

The body is subjected to a body force (per unit unde-
formed volume) b(X, #), a displacement u(X, 7) on a
part 0Q2p of the boundary, and a surface force (per unit
undeformed area) s(X, #) on the complementary part
QN = 0Q\0Qp. In response to these stimuli — all
of which, again, are assumed to be applied monotoni-
cally and quasistatically in time — the position vector
X of a material point in the body will move to a new
position specified by

x=X+ulX,1), ®)



A variational formulation

where u(X, ¢) is the displacement field. We write the
associated strain at X and ¢ as

E(u) = % <Vu 1 VuT) .

In addition to the deformation (5), the applied body
force and boundary conditions may result in the nucle-
ation and subsequent propagation of cracks in the body.
We describe such cracks in a regularized fashion via the
phase field
v=v(X,1)
taking values in the range [0, 1]. The value v = 1 iden-
tifies the intact regions of the material and v = 0 the
regions that have been fractured, while the transition
from v = 1 to v = 0 is set to occur smoothly over
regions of small thickness of regularization length scale
e > 0.

1.2 The phase-field fracture theory of Kumar et al.
(2018a)

According to the phase-field fracture formulation put
forth by Kumar et al. (2018a), the displacement field
u; (X) = u(X, #) and phase field v (X) = v(X, ) at
any material point X € Q = Q U dQ and at any given
discrete time #x € {0 =10, 11, . -+, gy bt 1s - - 5 EM =
T} are determined by the system of coupled partial
differential equations (PDEs)

Iw
Div [(v,% +110) = (E(uk»] +b(X, %) =0,
XeQ
we(X) = u(X, t),
X € 0Qp
5 IW _
(W + 1) =2 (B() | N = 5(X, 1),
X € 9Qs
(©6)
and
8 4
8°G. Ay = §UkW(E(uk)) + gce(X, 1)
8¢G,

CifueX) < v 1(X), X € Q
&

8 4
865G A, = §UkW(E(uk)) + gce(X’ 1)
8¢G
£ ifuX)=1 or v(X)=vi_1(X) > 0,
&
XeQ
uX) =0, ify_1X)=0,X e Q
Ve -N=0,X € 9%

(N

with, e.g., initial conditions u(X, 0) = 0and v(X, 0) =
1, where Vv, = Vu(X, %), Avy = Av(X, ), ne
is a positive constant of o(g), and where, as elabo-
rated below, co(X, t) is a driving force whose spe-
cific constitutive prescription depends on the partic-
ular form of strength surface F (o) = 0, while 8° is
a non-negative coefficient whose specific constitutive
prescription depends in turn on the particular form of
ce (X, 1).

Remark 4 The inequalities in (7) stem from the facts
that, by definition, the phase field is bounded according
to 0 < v < 1 and, by constitutive assumption, fracture
is an irreversible process, in other words, healing is not
allowed.

Remark 5 The parameter ¢ in (7), with units of length,
regularizes sharp cracks. Accordingly, by definition,
it can be arbitrarily small. In practice, ¢ should be
selected to be smaller than the smallest material length
scale built in (6)—(7), which comes about because of
the different units of the elastic stored-energy function
W(E) (force/length?), the strength function F (o)
(force/length?), and the critical energy release rate
G, (force/length); see, e.g., Appendix C in Kumar
et al. (2024) and Appendix B in Kamarei et al. (2024).
As a rule of thumb, it typically suffices to set ¢ <
3G./(16W¢s), where Wy is given by expression (9);
below.

Remark 6 With regard to the preceding remark, it is
important to emphasize that models of fracture in which
& —or any such type of a length scale parameter — can-
not be taken arbitrarily small are not approximations of
any sharp fracture model. Interestingly, by virtue of the
finite value of ¢ that may be chosen in their implemen-
tation, those models may feature an apparent strength.
That strength is an artifact of such an ¢, one that disap-
pears as ¢ \ 0, and not actual material strength.

Remark 7 On their own, the governing equations (6)
and (7) are standard second-order PDEs for the dis-
placement field ug (X) and the phase field v (X), the
latter of which is additionally subjected to standard
variational inequalities. Accordingly, their numerical
solution is amenable to a finite element (FE) staggered
scheme in which (6) and (7) are discretized with finite
elements and solved iteratively one after the other at
every time step #; until convergence is reached. In the
next section, as the main result of this Note, we show
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that the solution pair (uj, v;) computed in such a stag-
gered approach corresponds in fact to the fields that
minimize separately two different functionals.

The driving force cc (X, t) and coefficient §¢. For a solid
whose strength is characterized by the Drucker-Prager
strength surface (4), Kumar et al. (2020, 2022) and
Kamarei et al. (2024) have worked out different consti-
tutive prescriptions for the driving force co (X, ¢) and
coefficient 6° that are equivalent in the limit as & N\ 0,
but contain different corrections of O(g"). Here, for
definiteness, we consider the constitutive prescription
proposed by Kamarei et al. (2024). It reads?

IZ
ceX,0) = o/ T+ BiT1 —v |1 - £

7 W(E(u))

and

5 <ats T (1+2V3) ahs) 3G, 2

+ —> 8
(8 +34/3) ons 16Wege 5 ®)

where

g — g Ge _ s

Ohs g 30ns '
\/g(Sahs - Uts)(Sg G,

2th 2\/§Wts

B2 = —
OhsOts 8¢ «/§0hs Ots
2 2
o 0,
Wes = 552, Whe = 22, 9
ts °F hs 2 ( )

I =tro = 3kv*trE
1 1 ,
@:5 trof,=2p>v*rE3, Ep=E — 3 (trBE)1,

and where we have made use of the classical connec-
tions E = u(3r +20)/(A +p) and k = A+ 2
between the Young’s modulus E and bulk modulus «
and the Lamé constants p and A.

The constitutive prescription (8) for the driving force
ce and coefficient §° leads to a complete macroscopic
theory of fracture (6)—(7), one that over the past lus-
trum has been validated through direct comparisons

2 A FEniCS code of the resulting phase-field theory
is available in GitHub: https://github.com/farhadkama/
FEniCSx_Kamarei_Kumar_Lopez-Pamies.
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with experiments on a wide range of nominally elastic
brittle solids under a broad range of loading conditions
(Kumar et al. 2018a,b, 2020, 2022, 2024; Kumar and
Lopez-Pamies 2021; Kamarei et al. 2024).

The central reason for the apparent status of the
PDEs (6)—(7) as a complete theory of fracture nucle-
ation and propagation in a nominally elastic brittle solid
subjected to monotonic and quasistatic loading condi-
tions is that, by construction, they encode the competi-
tion between the elastic energy (1), the strength surface
(2), and the critical energy release rate (3) of the solid
in a way that is consistent with the large body of exper-
imental evidence on fracture that has been amassed
since the end of the 1800s.

The main objective of this Note is to show that
the competition described by the PDEs (6)—(7) can be
recast variationally as the minimization of two different
functionals. We do so in Sect. 2. The resulting varia-
tional structure happens to be of the same type that has
recently allowed to prove existence of solutions in the
variational approach to sharp Griffith fracture (Franc-
fort and Marigo 1998) accounting for boundary loads
(Larsen 2021). It is also of the same type of variational
structure that describes the original phase-field the-
ory without material strength when implemented as an
alternating minimization (Bourdin et al. 2000, 2008).
We devote Sect. 3 to explaining this overarching con-
nection. There, we also point to some misconceptions in
the literature on the interpretation of the original phase-
field theory as typically implemented. We conclude in
Section 4 by recording a number of final comments.

2 The variational formulation of the phase-field
fracture theory (6)-(7)

2.1 The deformation energy functional £ (uy; vy)

For any fixed phase field vx(X) € [0, 1], a standard
calculation suffices to show that equations (6) are noth-
ing more than the Euler-Lagrange equations associated
with variations in

wed, = {uk € H'(Q: R?) : we(X) = u(X. 1),
X € 9Qp)
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of the deformation energy functional
%mwm=[@+mwmmmm
Q
—/ b(X, #) - ur dX
Q
— / s(X, ) - ui dX. (10)
QN

Assuming that b(X, ) € L*(Q;R%), uX,n) €
L2(0Qp; R?), and 5(X, 1) € L*(3Qr; R?), and not-
ing that n, > 0, we can invoke the classical theorems
of existence and uniqueness in linear elastostatics (see,
e.g., Fichera 1973) to readily establish that

(uj;; vg) = argmin & (u; ve) (1)
Uy EAM

exists, is unique, and is the solution of equations (6).

2.2 The fracture functional S;(vk; uy)

Define the “undamaged” driving force

Ce(E(u)) = upry/21tr E%,(u) + 3k Bitr E(u) so that
ce(X, 1) = v’Ce(Eu))
=2v[l = H (r E(u))] W(E(w)),

where H(-) stands for the Heaviside function. In terms
of this driving force, equations (7) can be rewritten as

8
€8°G. A vk = zuH (r E(ug)) W(E(ug))
4 5. 5G,. .
+§Ukce(E(uk)) B if ve(X) < v 1(X),
XeQ

8

€8°Ge Avg = ZuH (tr E(ug)) W(E(ug))

4 ‘G, .
+§v,§ce(E(uk)) - 70 if uu(X) =1 or
e (X) =y 1(X) > 0,X € @

uX) =0, if e_1(X) =0,X € Q

Vi -N=0,X € 9Q.

(12)

For any fixed regularization length ¢ > 0 and any fixed
displacement field u;y(X) € H L RY, yet another
standard calculation suffices to show that equations
(12) are the Euler-Lagrange equations associated with
variations in

v e A={u € H'(@R) : 0w, v J13)

of the fracture functional

5 (vis ) 1= /Q VM (tr E(ue)) W (E(ug))dX

U3
+/i&mmmx
0 3

38°G 1—
+ < / ( Uk +&eVuy - Vvk>dX.
Q &

8
(14)

Since, as outlined next, £5 has minimizers in the admis-

sible set (13), we have that

(vg; wg) € argmin 5; (v wg) (15)
€A,

exists and is a solution of equations (12).

We now briefly describe the existence of minimiz-
ers of £%. We suppose that v = 1 for simplicity,
the general case is similar. The idea is a straightfor-
ward application of the Direct Method in the Calcu-
lus of Variations. We consider a sequence v, such that
5;(1),,; u;) — inf 5;(-; uy). Note that

1 ~
3 f lce (E(ug))|dX
Q
358G,

+ / eV, - Vv, dX < E?(Un; u)
o .

=< /Q (W(E(uy)) + [ce(E(ug))]) dX < oo.

It follows that {Vuv,} is bounded in L?(£2; R3), and
since |v,| < 1, {v,} is bounded in H!(§2; R). There-
fore, a subsequence, notrelabeled, satisfies v, — v in
H'(Q; R) for some voo € H'(2; R), and s0 v, = Voo
strongly in L2(2; R). As Vv, — Vv in L?(Q; R3),
we get

n—oo

/ (Vs - Vig) dX < lim inf/ (eVu, - Vu,) dX
Q Q
by the convexity of this term.

The first two terms in Ef, are of the form fQ v,f F dX,
where F is integrable and p = 2, 3. Since v, — vso
strongly in L? (2; R), for a subsequence, not relabeled,
Uy — Uso a.e. Therefore, v F — vZ F a.e., and since
v, € [0, 1], we have v?|F| < |F|. The Dominated
Convergence Theorem then implies

fv,’ZFdX—>f vE F dX.
Q Q

The term in (1 — vg) converges similarly.
Putting all the terms together, we get

Ef (voos w) < liminf E% (v,; ) = inf €5 (; wp),
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and so v is a minimizer. Finally, note that for any
irreversibility constraint (of the type included in (13))
such that v, < V a.e. for some V, then since v, — v
a.e., we also get voo < V a.e.

Remark 8 Contrary to the uniqueness of the minimizer
(11) of the deformation energy functional (10), the min-
imizer (15) of the fracture functional (14) need not be
unique.

2.3 The variational principle

Having defined the deformation energy and fracture
functionals (10) and (14) and having established that
they have minimizers, we are now ready to recast the
phase-field fracture theory described by the PDEs (6)—
(7) as a variational principle.

The idea — as in the standard implementation of
the original phase-field fracture theory (see below) —
is to alternately minimize the deformation energy and
fracture functionals (10) and (14) at every time step #;
until reaching a converged solution pair (ug, v7). Doing
so leads to sequences u;, v; satisfying
u; minimizes £ (-; vi_1)
and
v; minimizes 5?(-; ;).

The expectation — as, again, in the standard imple-
mentation of the original phase-field fracture theory
(see below) — is that the limits u; and v of u; and v;,
respectively, satisfy the minimality conditions

up minimizes &5 (-; vy)

and

v; minimizes 5;-(-; ug)

and therefore satisfy the PDEs (6)—(7). At present, there
is no mathematical proof. However, as noted in the
Introduction, the verity of this expectation has been
supported by numerous simulations of experiments on
a wide range of nominally elastic brittle solids under
a broad range of loading conditions, which have also
served as validation results for the theory. In the sequel,
we provide some insight into why this is the case.

Remark 9 Larsen (2021) has recently shown thata sim-
ilar variational principle based on the minimization of
two different functionals in the setting of sharp —
as opposed to phase-field — fracture is necessary in
order to have existence of solutions in the variational
approach to fracture accounting for boundary loads.
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/C\e (Ek) =

2.4 Some remarks on the competitions set up by the
variational principle

On the one hand, the minimization of the deformation
energy functional (10) is nothing more than the classi-
cal variational statement that forces in the body satisfy
balance of linear and angular momenta for the specific
case when the body is made of a linear elastic solid.

On the other hand, the minimization of the frac-
ture functional (14) states that whether cracks nucleate
and/or propagate depends on a competition among all
three intrinsic material properties (1)—(3) of the solid
at states when the body is in elastostatic equilibrium.
Uniform fields. In particular, for the basic case when
the body is subjected to a uniform strain E(uy) = E.,
with help of the notation

— ow
Sk = _(Ek)

for the corresponding uniform “undamaged” stress,
noting that

35°G. (Bons — Ots)
8¢ \/gahsats

(]—'(Sk)+ \/_Uhsats ) +0(80),

30ns — Otg

where we recall that the strength function F is defined
in (4), the fracture functional (14) specializes to

Ef (vis wi) :/QU,EH (tr Ex) W(EpdX
+/ LI:E [36€GL (Bons — ots)
o3 8¢ fahsgts

(f(s )+ V30ns0ts ) + O(EO)} dx

30ns — Ots

358G, 1—
+ 7L‘/‘ ( Uk + eV - Vvk> dX.
Q

8 &
(16)

For sufficiently small regularization length ¢, in regions
where vy = 1, the only terms that compete in the min-
imization of this functional are the second (i.e., the
strength) and the third (i.e., the fracture energy) inte-
grals. The first integral (i.e., the elastic energy) is incon-
sequential in this case.
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In view of the definition of the strength function F
in (4), the second integral in (16) starts at a value of 0
whenE; = 0. As the strain E;, deviates from 0 along the
given loading path, so does the second integral, which
may become large enough to compete with the third
integral and the minimizing displacement (11) to force
the localization of the phase field vy near vy = 0 and
hence the nucleation of fracture. As this localization of
v occurs, the first integral in (16) may become of com-
parable order to the other two integrals in a way that
further enhances localization. Consistent with experi-
mental observations, the numerical experiments refer-
enced in the Introduction indicate that this localization
of v (when the strain is initially uniform in the body)
happens when

F(Su) =0,

that is, when the strength surface (4) of the solid is first
violated.

Importantly — in stark contrast to the first integral
which is non-negative — the second integral in (16) can
be positive or negative. When it is negative, or when it is
positive but not sufficiently large, there is no incentive
to localize the phase field vy and hence the nucleation of
fracture does not occur. Consistent with experimental
observations, the numerical experiments referenced in
the Introduction indicate that fracture nucleation does
not occur so long as

(Bons — 0ts)F(Sk) < 0.

Non-uniform fields due to the presence of large cracks.
For the opposite basic case when the body contains
large® cracks, the numerical experiments indicate that
the competition set up by the fracture functional (14)
describes that such cracks grow according to Griffith’s
criticality condition (Griffith 1921), consistent with
experimental observations.

Importantly, all three integrals in (14) enter the com-
petition that describes the growth of large cracks. In par-
ticular, because of its different sign for tensile and com-
pressive stresses, the second integral (i.e., the strength)

3 “Large” refers to large relative to the characteristic size of the
underlying heterogeneities in the solid under investigation. By
the same token, “small” refers to sizes that are of the same order
or just moderately larger than the sizes of the heterogeneities. In
practice, as a rule of thumb, “large” refers to large relative to the
material length scale G./Ws.

prevents the growth of large cracks under compressive
loads, consistent with experimental observations (Liu
and Kumar 2024).

Arbitrary non-uniform fields. Irrespective of the pres-
ence of large cracks, the stress field in a body is typi-
cally highly non-uniform. In this general case, consis-
tent yet again with experimental observations, numer-
ical experiments indicate that the competition set up
by the fracture functional (14) describes that fracture
nucleation is governed neither solely by the strength of
the solid nor solely by Griffith’s criticality condition,
but by an “interpolation” between the two.

What is more, the results indicate that a necessary
condition for the nucleation of fracture at a material
point X is that the strength surface of the solid be vio-
lated at that point. Such a condition is not sufficient,
however, as indicated by the observation that stress sin-
gularities will always give rise to a stress state that vio-
lates the strength surface without necessarily resulting
in the nucleation of fracture.

3 A comment on the variational structure of the
original formulation of Griffith phase-field
fracture without material strength

In the original phase-field fracture formulation (see,
e.g., Bourdin etal. 2000, 2008), one seeks a minimizing
pair (ug, v) of the energy functional

E8 (ug, vp) :=/ v,%W(E(uk))dX—/ b(X, 1) - ug dX
Q Q

— / s(X, 1) - u dX
QN

3G 1—
+== / ( Uk +eVuy - Vvk> dX.
8 Jo £

This energy functional is not convex and hence dif-
ficult to minimize. It is separately convex, however,
and so standard implementations involve alternating
minimization. Precisely, sequences of pairs (u;, v;) are
found, satisfying

u; minimizes £° (-, v;_1)
and
v; minimizes £° (u;, -).

Looking at the terms that are independent of vy and uy
respectively, this is equivalent to saying

u; minimizes £ (-; vi—1)
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and
v; minimizes G (-; w;),

where we recall that the deformation energy functional
&] is defined by (10), while

& (vgs uy) = /Q VW (E(uy)dX

3G 1—
+—C/ ( Uk +erk.ka) X
8 Jo e

A7)

defines the Griffith energy functional; note that, as
opposed to the fracture functional (14), the Griffith
energy functional (17) does not account for the strength
of the solid. As in the previous section, the expectation,
without proof, is that the limits ui and ni of u; and v;,
respectively, satisfy the minimality conditions

up minimizes &5 (-; vy)

and

vy minimizes £ (-; uy).

At this stage, itis plain that the solution pairs (uy, v;)
described by the phase-field fracture theory of Kumar
et al. (2018a) and the original phase-field fracture the-
ory are described by the same type of variational princi-
ple. The sole difference between them is that the orig-
inal phase-field fracture theory is based on the Grif-
fith energy functional (17), which does not account for
the strength surface (o) = 0 of the solid, while the
phase-field fracture theory of Kumar et al. (2018a) is
based on the fracture functional (14), which accounts
for all three material properties (1)—(3) required for a
complete theory of fracture.

Remark 10 We close this section by emphasizing that
for neither setting, the original phase-field fracture
theory and that of Kumar et al. (2018a), is there a
mathematical proof (yet) that guarantees that large
cracks grow according to Griffith’s criticality condi-
tion. Whether they do can only be verified (thus far)
numerically. For the case of the original phase-field
fracture theory, this is because alternating minimization
does not necessarily lead to the global minimization of
Ef. What is more, as discussed by Larsen (2023), it is
possible to alter the energy functional £° so that both
fracture nucleation and propagation are completely pre-
vented in the alternating minimization described above,
while still having £¢ I'-converge to the energy func-
tional of sharp Griffith fracture.
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4 Final comments

In this Note, we have shown that the phase-field frac-
ture theory of Kumar et al. (2018a) can be formulated
as the minimization of two different functionals: (i) a
deformation energy functional £ and (ii) a fracture
functional 5;.. While the minimization of the deforma-
tion energy functional £ determines the deformation
of the body, the minimization of the fracture functional
5; determines where and when cracks nucleate and
propagate.

We have also shown that the original phase-field
fracture theory (Bourdin et al. 2000, 2008), as typically
implemented in terms of an alternating minimization
procedure, is described by the same variational formu-
lation, with the key difference that the fate of cracks is
determined not by the fracture functional £%, but by a
Griffith energy functional £, which does not account
for the strength of solids.

While the focus of this Note has been on the basic
case of fracture in nominally linear elastic brittle solids
under monotonic and quasistatic loading conditions, it
is apparent that the proposed variational approach — in
terms of the minimization of two different functionals
— has the flexibility to accommodate additional phys-
ical phenomena, such as non-monotonic and dynamic
loading conditions, as well as possibly the inelasticity
of actual solids. From a mathematical point of view,
the proposed variational approach may also provide a
fruitful path to advance the analysis of fracture theories
at large.
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