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Abstract In this expository Note, it is shown that

the Griffith phase-field theory of fracture accounting

for material strength originally introduced by Kumar,

Francfort, and Lopez-Pamies (J Mech Phys Solids 112,

523–551, 2018) in the form of PDEs can be recast

as a variational theory. In particular, the solution pair

(u, v) defined by the PDEs for the displacement field

u and the phase field v is shown to correspond to the

fields that minimize separately two different function-

als, much like the solution pair (u, v) defined by the

original phase-field theory of fracture without material

strength implemented in terms of alternating minimiza-

tion. The merits of formulating a complete theory of

fracture nucleation and propagation via such a varia-

tional approach — in terms of the minimization of two

different functionals — are discussed.
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1 Introduction

Kumar et al. (2018a, 2020) and Kumar and Lopez-

Pamies (2020) have recently established that any

attempt at the formulation of a complete macroscopic

theory of fracture nucleation and propagation in nomi-

nally elastic brittle solids must account for three intrin-

sic material properties: (i) the elasticity of the solid, (i i)

its strength, and (i i i) its critical energy release rate.

In the most basic setting, that of an isotropic linearly

elastic brittle solid occupying an open bounded domain

� ⊆ R
3 that is subjected to monotonic and quasistatic

loading conditions1 in time t ∈ [0, T ], these properties

are characterized by:

i The stored-energy function

W (E) = μ tr E2 +
λ

2
(tr E)2 (1)

describing elasticity of the solid, that is, the elastic

energy (per unit undeformed volume) stored by the

solid when deformed a strain E,

ii The strength surface

F(σ ) = 0 (2)

describing the strength of the solid, that is, the

set of critical stresses at which the solid fractures

when subjected to monotonically increasing uni-

form stress σ , and

1 We will come back to the more general case of non-monotonic

and dynamic loading conditions in Section 4 below.
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iii the critical energy release rate

Gc (3)

describing the intrinsic fracture energy of the solid,

that is, the amount of energy (per unit undeformed

area) required to create new surface in the solid

from an existing crack.

In contrast to the specific functional forms (quadratic

in E and constant) of the stored-energy function (1) and

critical energy release rate (3), there is no one-size-fits-

all functional form for the strength surface (2), since

different solids can feature very different strength sur-

faces. In this work, for definiteness, we shall restrict

attention to strength surfaces of the Drucker-Prager

form

F(σ ) ≡
√

J2 +
σts√

3 (3σhs − σts)

I1 −
√

3σhsσts

3σhs − σts
= 0, (4)

where I1 = tr σ and J2 = 1
2

tr σ
2
D stand for the first

and second principal invariants of the stress σ and the

deviatoric stress σ D = σ − 1
3
(tr σ )I tensors, while the

material constantsσts > 0 andσhs > 0 denote the uni-

axial tensile and hydrostatic strengths of the solid, that

is, they denote the critical stress values at which frac-

ture nucleates under states of monotonically increased

uniaxial tension σ = diag(σ > 0, 0, 0) and tensile

hydrostatic stress σ = diag(σ > 0, σ > 0, σ > 0),

respectively.

Remark 1 According to our choice of signs in (4), any

stress state such that

(3σhs − σts) F(σ ) ≥ 0

is in violation of the strength of the solid. The strength

of the vast majority of solids, especially hard solids

(e.g., glass), is such that 3σhs−σts > 0. Nonetheless,

3σhs − σts < 0 for some soft solids (e.g., natural

rubber).

Remark 2 The two-material-parameter strength sur-

face (4), originally introduced by Drucker and Prager

(1952) to model the yielding of soils, is arguably the

simplest model that has proven capable of describing

reasonably well the strength of many nominally brittle

solids (Lopez-Pamies 2023; Kumar et al. 2020, 2022,

2024; Kamarei et al. 2024), thus its use here as a rep-

resentative template.

Remark 3 For given uniaxial tensile and hydrostatic

strengths σts and σhs, the strength surface (4) pre-

dicts the shear, biaxial tensile, and uniaxial compres-

sive strengths

σss =
1

√
3

(
−

1

3
+

σhs

σts

)−1

σhs,

σbs =
(

1

3
+

σhs

σts

)−1

σhs, and

σcs =
(

−
2

3
+

σhs

σts

)−1

σhs,

which are defined as the critical stress values at which

fracture nucleates under uniform states of monotoni-

cally increased shear stress σ = diag(σ > 0,−σ, 0),

biaxial tension σ = diag(σ > 0, σ > 0, 0), and uniax-

ial compression σ = diag(σ < 0, 0, 0). Direct use of

these relations (or analogous ones for any other multi-

axial stress state of interest) allows to rewrite (4) in

terms of different pairs of critical strength constants.

For hard solids, it is customary to use σts and σcs,

while for soft solids it is more convenient to use σts
and σhs. In this work, as indicated by (4), we favor the

latter parametrization.

1.1 The problem

Consider hence a body made of an isotropic linearly

elastic brittle solid with stored-energy function (1),

Drucker-Prager strength surface (4), and critical energy

release rate (3) that, initially, at time t = 0, occupies

the open bounded domain �. We denote the bound-

ary of the body by ∂�, its outward unit normal by N,

and identify material points in the body by their initial

position vector

X ∈ �.

The body is subjected to a body force (per unit unde-

formed volume) b(X, t), a displacement u(X, t) on a

part ∂�D of the boundary, and a surface force (per unit

undeformed area) s(X, t) on the complementary part

∂�N = ∂�\∂�D. In response to these stimuli — all

of which, again, are assumed to be applied monotoni-

cally and quasistatically in time — the position vector

X of a material point in the body will move to a new

position specified by

x = X + u(X, t), (5)
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where u(X, t) is the displacement field. We write the

associated strain at X and t as

E(u) =
1

2

(
∇u + ∇uT

)
.

In addition to the deformation (5), the applied body

force and boundary conditions may result in the nucle-

ation and subsequent propagation of cracks in the body.

We describe such cracks in a regularized fashion via the

phase field

v = v(X, t)

taking values in the range [0, 1]. The value v = 1 iden-

tifies the intact regions of the material and v = 0 the

regions that have been fractured, while the transition

from v = 1 to v = 0 is set to occur smoothly over

regions of small thickness of regularization length scale

ε > 0.

1.2 The phase-field fracture theory of Kumar et al.

(2018a)

According to the phase-field fracture formulation put

forth by Kumar et al. (2018a), the displacement field

uk(X) = u(X, tk) and phase field vk(X) = v(X, tk) at

any material point X ∈ � = � ∪ ∂� and at any given

discrete time tk ∈ {0 = t0, t1, . . . , tm, tm+1, . . . , tM =
T } are determined by the system of coupled partial

differential equations (PDEs)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Div

[
(v2

k + ηε)
∂W

∂E
(E(uk))

]
+ b(X, tk) = 0,

X ∈ �

uk(X) = u(X, tk),

X ∈ ∂�D[
(v2

k + ηε)
∂W

∂E
(E(uk))

]
N = s(X, tk),

X ∈ ∂�N

(6)

and⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε δεGc 	 vk =
8

3
vk W (E(uk)) +

4

3
ce(X, tk)

−
δεGc

2ε
, if vk(X) < vk−1(X), X ∈ �

ε δεGc 	 vk ≥
8

3
vk W (E(uk)) +

4

3
ce(X, tk)

−
δεGc

2ε
, if vk(X)=1 or vk(X)=vk−1(X) > 0,

X ∈ �

vk(X) = 0, if vk−1(X) = 0, X ∈ �

∇vk · N = 0, X ∈ ∂�

(7)

with, e.g., initial conditions u(X, 0) ≡ 0 and v(X, 0) ≡
1, where ∇vk = ∇v(X, tk), 	vk = 	v(X, tk), ηε

is a positive constant of o(ε), and where, as elabo-

rated below, ce(X, t) is a driving force whose spe-

cific constitutive prescription depends on the partic-

ular form of strength surface F(σ ) = 0, while δε is

a non-negative coefficient whose specific constitutive

prescription depends in turn on the particular form of

ce(X, t).

Remark 4 The inequalities in (7) stem from the facts

that, by definition, the phase field is bounded according

to 0 ≤ v ≤ 1 and, by constitutive assumption, fracture

is an irreversible process, in other words, healing is not

allowed.

Remark 5 The parameter ε in (7), with units of length,

regularizes sharp cracks. Accordingly, by definition,

it can be arbitrarily small. In practice, ε should be

selected to be smaller than the smallest material length

scale built in (6)–(7), which comes about because of

the different units of the elastic stored-energy function

W (E) ( f orce/ length2), the strength function F(σ )

( f orce/ length2), and the critical energy release rate

Gc ( f orce/ length); see, e.g., Appendix C in Kumar

et al. (2024) and Appendix B in Kamarei et al. (2024).

As a rule of thumb, it typically suffices to set ε <

3Gc/(16Wts), where Wts is given by expression (9)1

below.

Remark 6 With regard to the preceding remark, it is

important to emphasize that models of fracture in which

ε — or any such type of a length scale parameter — can-

not be taken arbitrarily small are not approximations of

any sharp fracture model. Interestingly, by virtue of the

finite value of ε that may be chosen in their implemen-

tation, those models may feature an apparent strength.

That strength is an artifact of such an ε, one that disap-

pears as ε ↘ 0, and not actual material strength.

Remark 7 On their own, the governing equations (6)

and (7) are standard second-order PDEs for the dis-

placement field uk(X) and the phase field vk(X), the

latter of which is additionally subjected to standard

variational inequalities. Accordingly, their numerical

solution is amenable to a finite element (FE) staggered

scheme in which (6) and (7) are discretized with finite

elements and solved iteratively one after the other at

every time step tk until convergence is reached. In the

next section, as the main result of this Note, we show
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that the solution pair (uε
k, v

ε
k ) computed in such a stag-

gered approach corresponds in fact to the fields that

minimize separately two different functionals.

The driving force ce(X, t) and coefficient δε. For a solid

whose strength is characterized by the Drucker-Prager

strength surface (4), Kumar et al. (2020, 2022) and

Kamarei et al. (2024) have worked out different consti-

tutive prescriptions for the driving force ce(X, t) and

coefficient δε that are equivalent in the limit as ε ↘ 0,

but contain different corrections of O(ε0). Here, for

definiteness, we consider the constitutive prescription

proposed by Kamarei et al. (2024). It reads2

ce(X, t) = β2

√
J2 + β1I1 − v

⎛
⎝1 −

√
I2

1

I1

⎞
⎠ W (E(u))

and

δε =

(
σts + (1 + 2

√
3) σhs

(8 + 3
√

3) σhs

)
3Gc

16Wtsε
+

2

5
, (8)

where

β1 =
1

σhs
δε Gc

8ε
−

2Whs

3σhs
,

β2 =
√

3(3σhs − σts)

σhsσts
δε Gc

8ε
+

2Whs√
3σhs

−
2
√

3Wts

σts
,

Wts =
σ 2
ts

2E
, Whs =

σ 2
hs

2κ
, (9)

{
I1 = tr σ = 3κv2tr E

J2=
1

2
tr σ

2
D=2μ2v4tr E2

D, ED=E −
1

3
(tr E) I,

,

and where we have made use of the classical connec-

tions E = μ(3λ + 2μ)/(λ + μ) and κ = λ + 2
3
μ

between the Young’s modulus E and bulk modulus κ

and the Lamé constants μ and λ.

The constitutive prescription (8) for the driving force

ce and coefficient δε leads to a complete macroscopic

theory of fracture (6)–(7), one that over the past lus-

trum has been validated through direct comparisons

2 A FEniCS code of the resulting phase-field theory

is available in GitHub: https://github.com/farhadkama/

FEniCSx_Kamarei_Kumar_Lopez-Pamies.

with experiments on a wide range of nominally elastic

brittle solids under a broad range of loading conditions

(Kumar et al. 2018a, b, 2020, 2022, 2024; Kumar and

Lopez-Pamies 2021; Kamarei et al. 2024).

The central reason for the apparent status of the

PDEs (6)–(7) as a complete theory of fracture nucle-

ation and propagation in a nominally elastic brittle solid

subjected to monotonic and quasistatic loading condi-

tions is that, by construction, they encode the competi-

tion between the elastic energy (1), the strength surface

(2), and the critical energy release rate (3) of the solid

in a way that is consistent with the large body of exper-

imental evidence on fracture that has been amassed

since the end of the 1800 s.

The main objective of this Note is to show that

the competition described by the PDEs (6)–(7) can be

recast variationally as the minimization of two different

functionals. We do so in Sect. 2. The resulting varia-

tional structure happens to be of the same type that has

recently allowed to prove existence of solutions in the

variational approach to sharp Griffith fracture (Franc-

fort and Marigo 1998) accounting for boundary loads

(Larsen 2021). It is also of the same type of variational

structure that describes the original phase-field the-

ory without material strength when implemented as an

alternating minimization (Bourdin et al. 2000, 2008).

We devote Sect. 3 to explaining this overarching con-

nection. There, we also point to some misconceptions in

the literature on the interpretation of the original phase-

field theory as typically implemented. We conclude in

Section 4 by recording a number of final comments.

2 The variational formulation of the phase-field

fracture theory (6)-(7)

2.1 The deformation energy functional Eε
d (uk; vk)

For any fixed phase field vk(X) ∈ [0, 1], a standard

calculation suffices to show that equations (6) are noth-

ing more than the Euler-Lagrange equations associated

with variations in

uk ∈ Au =
{

uk ∈ H1(�; R
3) : uk(X) = u(X, tk),

X ∈ ∂�D}
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of the deformation energy functional

Eε
d (uk; vk) :=

∫

�

(v2
k + ηε)W (E(uk))dX

−
∫

�

b(X, tk) · uk dX

−
∫

∂�N

s(X, tk) · uk dX. (10)

Assuming that b(X, tk) ∈ L2(�; R
3), u(X, tk) ∈

L2(∂�D; R
3), and s(X, tk) ∈ L2(∂�N ; R

3), and not-

ing that ηε > 0, we can invoke the classical theorems

of existence and uniqueness in linear elastostatics (see,

e.g., Fichera 1973) to readily establish that

(uε
k; vk) = arg min

uk∈Au

Eε
d (uk; vk) (11)

exists, is unique, and is the solution of equations (6).

2.2 The fracture functional Eε
f (vk; uk)

Define the “undamaged” driving force

ĉe(E(u)) = μβ2

√
2 tr E2

D(u) + 3κβ1tr E(u) so that

ce(X, t) = v2ĉe(E(u))

−2v [1 − H (tr E(u))] W (E(u)),

where H(·) stands for the Heaviside function. In terms

of this driving force, equations (7) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε δεGc 	 vk =
8

3
vkH (tr E(uk)) W (E(uk))

+
4

3
v2

k ĉe(E(uk)) −
δεGc

2ε
, if vk(X) < vk−1(X),

X ∈ �

ε δεGc 	 vk ≥
8

3
vkH (tr E(uk)) W (E(uk))

+
4

3
v2

k ĉe(E(uk)) −
δεGc

2ε
, if vk(X) = 1 or

vk(X) = vk−1(X) > 0, X ∈ �

vk(X) = 0, if vk−1(X) = 0, X ∈ �

∇vk · N = 0, X ∈ ∂�.

(12)

For any fixed regularization length ε > 0 and any fixed

displacement field uk(X) ∈ H1(�; R
3), yet another

standard calculation suffices to show that equations

(12) are the Euler-Lagrange equations associated with

variations in

vk ∈ Av=
{
vk ∈ H1(�; R) : 0≤vk≤1, vk≤vk−1

}
(13)

of the fracture functional

Eε
f (vk; uk) :=

∫

�

v2
k H (tr E(uk)) W (E(uk))dX

+
∫

�

v3
k

3
ĉe(E(uk))dX

+
3δεGc

8

∫

�

(
1−vk

ε
+ε∇vk · ∇vk

)
dX.

(14)

Since, as outlined next, Eε
f has minimizers in the admis-

sible set (13), we have that

(vε
k ; uk) ∈ arg min

vk∈Av

Eε
f (vk; uk) (15)

exists and is a solution of equations (12).

We now briefly describe the existence of minimiz-

ers of Eε
f . We suppose that vk−1 = 1 for simplicity,

the general case is similar. The idea is a straightfor-

ward application of the Direct Method in the Calcu-

lus of Variations. We consider a sequence vn such that

Eε
f (vn; uk) → inf Eε

f (·; uk). Note that

−
1

3

∫

�

|̂ce(E(uk))|dX

+
3 δεGc

8

∫

�

ε∇vn · ∇vn dX ≤ Eε
f (vn; uk)

≤
∫

�

(W (E(uk)) + |̂ce(E(uk))|) dX < ∞.

It follows that {∇vn} is bounded in L2(�; R
3), and

since |vn| ≤ 1, {vn} is bounded in H1(�; R). There-

fore, a subsequence, not relabeled, satisfies vn ⇀ v∞ in

H1(�; R) for some v∞ ∈ H1(�; R), and so vn → v∞
strongly in L2(�; R). As ∇vn ⇀ ∇v∞ in L2(�; R

3),

we get
∫

�

(ε∇v∞ · ∇v∞) dX ≤ lim inf
n→∞

∫

�

(ε∇vn · ∇vn) dX

by the convexity of this term.

The first two terms in Eε
f are of the form

∫
�

v
p

k F dX,

where F is integrable and p = 2, 3. Since vn → v∞
strongly in L2(�; R), for a subsequence, not relabeled,

vn → v∞ a.e. Therefore, v
p
n F → v

p
∞F a.e., and since

vn ∈ [0, 1], we have v
p
n |F | ≤ |F |. The Dominated

Convergence Theorem then implies
∫

�

v
p
n F dX →

∫

�

v
p
∞F dX.

The term in (1 − vk) converges similarly.

Putting all the terms together, we get

Eε
f (v∞; uk) ≤ lim inf

n→∞
Eε

f (vn; uk) = inf Eε
f (·; uk),

123



C. J. Larsen et al.

and so v∞ is a minimizer. Finally, note that for any

irreversibility constraint (of the type included in (13))

such that vn ≤ V a.e. for some V , then since vn → v∞
a.e., we also get v∞ ≤ V a.e.

Remark 8 Contrary to the uniqueness of the minimizer

(11) of the deformation energy functional (10), the min-

imizer (15) of the fracture functional (14) need not be

unique.

2.3 The variational principle

Having defined the deformation energy and fracture

functionals (10) and (14) and having established that

they have minimizers, we are now ready to recast the

phase-field fracture theory described by the PDEs (6)–

(7) as a variational principle.

The idea — as in the standard implementation of

the original phase-field fracture theory (see below) —

is to alternately minimize the deformation energy and

fracture functionals (10) and (14) at every time step tk
until reaching a converged solution pair (uε

k , v
ε
k). Doing

so leads to sequences ui , vi satisfying

ui minimizes Eε
d (·; vi−1)

and

vi minimizes Eε
f (·; ui ).

The expectation — as, again, in the standard imple-

mentation of the original phase-field fracture theory

(see below) — is that the limits u
ε
k and v

ε
k of ui and vi ,

respectively, satisfy the minimality conditions

u
ε
k minimizes Eε

d (·; v
ε
k)

and

v
ε
k minimizes Eε

f (·; u
ε
k)

and therefore satisfy the PDEs (6)–(7). At present, there

is no mathematical proof. However, as noted in the

Introduction, the verity of this expectation has been

supported by numerous simulations of experiments on

a wide range of nominally elastic brittle solids under

a broad range of loading conditions, which have also

served as validation results for the theory. In the sequel,

we provide some insight into why this is the case.

Remark 9 Larsen (2021) has recently shown that a sim-

ilar variational principle based on the minimization of

two different functionals in the setting of sharp —

as opposed to phase-field — fracture is necessary in

order to have existence of solutions in the variational

approach to fracture accounting for boundary loads.

2.4 Some remarks on the competitions set up by the

variational principle

On the one hand, the minimization of the deformation

energy functional (10) is nothing more than the classi-

cal variational statement that forces in the body satisfy

balance of linear and angular momenta for the specific

case when the body is made of a linear elastic solid.

On the other hand, the minimization of the frac-

ture functional (14) states that whether cracks nucleate

and/or propagate depends on a competition among all

three intrinsic material properties (1)–(3) of the solid

at states when the body is in elastostatic equilibrium.

Uniform fields. In particular, for the basic case when

the body is subjected to a uniform strain E(uk) = Ek ,

with help of the notation

Sk =
∂W

∂E
(Ek)

for the corresponding uniform “undamaged” stress,

noting that

ĉe(Ek) =
3δεGc

8ε

(3σhs − σts)√
3σhsσts

×

(
F(Sk) +

√
3σhsσts

3σhs − σts

)
+ O(ε0),

where we recall that the strength function F is defined

in (4), the fracture functional (14) specializes to

E
ε
f (vk; uk) =

∫

�

v2
k H

(
tr Ek

)
W (Ek)dX

+
∫

�

v3
k

3

[
3δεGc

8ε

(3σhs − σts)√
3σhsσts

×

(
F(Sk) +

√
3σhsσts

3σhs − σts

)
+ O(ε0)

]
dX

+
3 δεGc

8

∫

�

(
1 − vk

ε
+ ε∇vk · ∇vk

)
dX.

(16)

For sufficiently small regularization length ε, in regions

where vk = 1, the only terms that compete in the min-

imization of this functional are the second (i.e., the

strength) and the third (i.e., the fracture energy) inte-

grals. The first integral (i.e., the elastic energy) is incon-

sequential in this case.
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In view of the definition of the strength function F

in (4), the second integral in (16) starts at a value of 0

when Ek = 0. As the strain Ek deviates from 0 along the

given loading path, so does the second integral, which

may become large enough to compete with the third

integral and the minimizing displacement (11) to force

the localization of the phase field vk near vk = 0 and

hence the nucleation of fracture. As this localization of

vk occurs, the first integral in (16) may become of com-

parable order to the other two integrals in a way that

further enhances localization. Consistent with experi-

mental observations, the numerical experiments refer-

enced in the Introduction indicate that this localization

of vk (when the strain is initially uniform in the body)

happens when

F(Sk) = 0,

that is, when the strength surface (4) of the solid is first

violated.

Importantly — in stark contrast to the first integral

which is non-negative — the second integral in (16) can

be positive or negative. When it is negative, or when it is

positive but not sufficiently large, there is no incentive

to localize the phase field vk and hence the nucleation of

fracture does not occur. Consistent with experimental

observations, the numerical experiments referenced in

the Introduction indicate that fracture nucleation does

not occur so long as

(3σhs − σts)F(Sk) ≤ 0.

Non-uniform fields due to the presence of large cracks.

For the opposite basic case when the body contains

large3 cracks, the numerical experiments indicate that

the competition set up by the fracture functional (14)

describes that such cracks grow according to Griffith’s

criticality condition (Griffith 1921), consistent with

experimental observations.

Importantly, all three integrals in (14) enter the com-

petition that describes the growth of large cracks. In par-

ticular, because of its different sign for tensile and com-

pressive stresses, the second integral (i.e., the strength)

3 “Large” refers to large relative to the characteristic size of the

underlying heterogeneities in the solid under investigation. By

the same token, “small” refers to sizes that are of the same order

or just moderately larger than the sizes of the heterogeneities. In

practice, as a rule of thumb, “large” refers to large relative to the

material length scale Gc/Wts.

prevents the growth of large cracks under compressive

loads, consistent with experimental observations (Liu

and Kumar 2024).

Arbitrary non-uniform fields. Irrespective of the pres-

ence of large cracks, the stress field in a body is typi-

cally highly non-uniform. In this general case, consis-

tent yet again with experimental observations, numer-

ical experiments indicate that the competition set up

by the fracture functional (14) describes that fracture

nucleation is governed neither solely by the strength of

the solid nor solely by Griffith’s criticality condition,

but by an “interpolation” between the two.

What is more, the results indicate that a necessary

condition for the nucleation of fracture at a material

point X is that the strength surface of the solid be vio-

lated at that point. Such a condition is not sufficient,

however, as indicated by the observation that stress sin-

gularities will always give rise to a stress state that vio-

lates the strength surface without necessarily resulting

in the nucleation of fracture.

3 A comment on the variational structure of the

original formulation of Griffith phase-field

fracture without material strength

In the original phase-field fracture formulation (see,

e.g., Bourdin et al. 2000, 2008), one seeks a minimizing

pair (uε
k, v

ε
k ) of the energy functional

E
ε(uk , vk) :=

∫

�
v2

k W (E(uk))dX−
∫

�
b(X, tk) · uk dX

−
∫

∂�N

s(X, tk) · uk dX

+
3 Gc

8

∫

�

(
1−vk

ε
+ε∇vk · ∇vk

)
dX.

This energy functional is not convex and hence dif-

ficult to minimize. It is separately convex, however,

and so standard implementations involve alternating

minimization. Precisely, sequences of pairs (ui , vi ) are

found, satisfying

ui minimizes Eε(·, vi−1)

and

vi minimizes Eε(ui , ·).

Looking at the terms that are independent of vk and uk

respectively, this is equivalent to saying

ui minimizes Eε
d (·; vi−1)
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and

vi minimizes Eε
G(·; ui ),

where we recall that the deformation energy functional

Eε
d is defined by (10), while

E
ε
G(vk; uk) :=

∫

�
v2

k W (E(uk))dX

+
3 Gc

8

∫

�

(
1 − vk

ε
+ ε∇vk · ∇vk

)
dX

(17)

defines the Griffith energy functional; note that, as

opposed to the fracture functional (14), the Griffith

energy functional (17) does not account for the strength

of the solid. As in the previous section, the expectation,

without proof, is that the limits u
ε
k and v

ε
k of ui and vi ,

respectively, satisfy the minimality conditions

u
ε
k minimizes Eε

d (·; v
ε
k)

and

v
ε
k minimizes Eε

G(·; u
ε
k).

At this stage, it is plain that the solution pairs (uε
k , v

ε
k )

described by the phase-field fracture theory of Kumar

et al. (2018a) and the original phase-field fracture the-

ory are described by the same type of variational princi-

ple. The sole difference between them is that the orig-

inal phase-field fracture theory is based on the Grif-

fith energy functional (17), which does not account for

the strength surface F(σ ) = 0 of the solid, while the

phase-field fracture theory of Kumar et al. (2018a) is

based on the fracture functional (14), which accounts

for all three material properties (1)–(3) required for a

complete theory of fracture.

Remark 10 We close this section by emphasizing that

for neither setting, the original phase-field fracture

theory and that of Kumar et al. (2018a), is there a

mathematical proof (yet) that guarantees that large

cracks grow according to Griffith’s criticality condi-

tion. Whether they do can only be verified (thus far)

numerically. For the case of the original phase-field

fracture theory, this is because alternating minimization

does not necessarily lead to the global minimization of

Eε. What is more, as discussed by Larsen (2023), it is

possible to alter the energy functional Eε so that both

fracture nucleation and propagation are completely pre-

vented in the alternating minimization described above,

while still having Eε �-converge to the energy func-

tional of sharp Griffith fracture.

4 Final comments

In this Note, we have shown that the phase-field frac-

ture theory of Kumar et al. (2018a) can be formulated

as the minimization of two different functionals: (i) a

deformation energy functional Eε
d and (i i) a fracture

functional Eε
f . While the minimization of the deforma-

tion energy functional Eε
d determines the deformation

of the body, the minimization of the fracture functional

Eε
f determines where and when cracks nucleate and

propagate.

We have also shown that the original phase-field

fracture theory (Bourdin et al. 2000, 2008), as typically

implemented in terms of an alternating minimization

procedure, is described by the same variational formu-

lation, with the key difference that the fate of cracks is

determined not by the fracture functional Eε
f , but by a

Griffith energy functional Eε
G , which does not account

for the strength of solids.

While the focus of this Note has been on the basic

case of fracture in nominally linear elastic brittle solids

under monotonic and quasistatic loading conditions, it

is apparent that the proposed variational approach — in

terms of the minimization of two different functionals

— has the flexibility to accommodate additional phys-

ical phenomena, such as non-monotonic and dynamic

loading conditions, as well as possibly the inelasticity

of actual solids. From a mathematical point of view,

the proposed variational approach may also provide a

fruitful path to advance the analysis of fracture theories

at large.
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