
Jolt: SNARKs for Virtual Machines

via Lookups

Arasu Arun1, Srinath Setty2(B), and Justin Thaler3,4

1 New York University, New York, USA
2 Microsoft Research, New York, USA

srinath@microsoft.com

3 a16z crypto research, Washington, USA
4 Georgetown University, Washington, USA

Abstract. Succinct Non-interactive Arguments of Knowledge
(SNARKs) allow an untrusted prover to establish that it correctly ran
some “witness-checking procedure” on a witness. A zkVM (short for zero-
knowledge virtual machine) is a SNARK that allows the witness-checking
procedure to be specified as a computer program written in the assembly
language of a specific instruction set architecture (ISA).

A front-end converts computer programs into a lower-level represen-
tation such as an arithmetic circuit or generalization thereof. A SNARK
for circuit-satisfiability can then be applied to the resulting circuit.

We describe a new front-end technique called Jolt that applies to a
variety of ISAs. Jolt arguably realizes a vision called the lookup singu-

larity, which seeks to produce circuits that only perform lookups into
pre-determined lookup tables. The circuits output by Jolt primarily per-
form lookups into a gigantic lookup table, of size more than 2128, that
depends only on the ISA. The validity of the lookups are proved via a new
lookup argument described in a companion work called Lasso [STW23].
Although size-2128 tables are vastly too large to materialize in full, the
tables arising in Jolt are structured, avoiding costs that grow linearly
with the table size.

We describe performance and auditability benefits of Jolt compared to
prior zkVMs, focusing on the popular RISC-V ISA as a concrete example.
The dominant cost for the Jolt prover applied to this ISA (on 64-bit data
types) is equivalent to cryptographically committing to under eleven 256-
bit field elements per step of the RISC-V CPU. This compares favorably
to prior zkVM provers, even those focused on far simpler VMs.

1 Introduction

A SNARK (succinct non-interactive argument of knowledge) is a cryptographic
protocol that lets an untrusted prover P convince a verifier V that they know

The full version of this work is presented in [AST23], and is accompanied by its com-
panion work, Lasso [STW23].

cý International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14656, pp. 3–33, 2024.
https://doi.org/10.1007/978-3-031-58751-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58751-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-58751-1_1

4 A. Arun et al.

a witness w satisfying some property. A trivial proof is for P to send w to V,
who can then directly check that w satisfies the claimed property. A SNARK
achieves the same effect, but with better costs to the verifier. Specifically, the
term succinct roughly means that the proof should be shorter than this trivial
proof (i.e., the witness w itself), and verification should be much faster than
direct witness checking.

As an example, the prover could be a cloud service provider running an expen-
sive computation on behalf of its client (the verifier). A SNARK gives the client
confidence that the prover ran the computation honestly. Alternatively, in a
blockchain setting, the witness could be a list of valid digital signatures autho-
rizing several transactions. A SNARK can be used to prove that one knows the
(valid) signatures, so that the signatures themselves do not have to be stored and
verified by all blockchain nodes. Instead, only the SNARK needs to be stored
and verified on-chain.

1.1 SNARKs for Virtual Machine Abstractions

A popular approach to SNARK design today is to prove the correct execution
of computer programs. This means that the prover proves that it correctly ran
a specified computer program Ψ on a witness. In the example above, Ψ might
take as input a list of blockchain transactions and associated digital signatures
authorizing each of them, and verify that each of the signatures is valid.

Many projects today accomplish this via a CPU abstraction, also often called a
virtual machine (VM). Here, a VM abstraction entails fixing a set of primitive
instructions, known as an instruction set architecture (ISA), analogous to assem-
bly instructions in processor design. A full specification of the VM also includes
the number of registers and the type of memory that is supported. The program
Ψ to be proved is written in this language.

Systems that generate proofs for these VM abstractions are commonly called
“zkVMs”. While this is a misnomer as they do not necessarily provide zero-
knowledge, we stick with this terminology throughout this work due to its popu-
larity. To list a few examples, several so-called “zkEVM” projects seek to achieve
“byte-code level compatibility” with the Ethereum Virtual Machine (EVM). This
means that the set of primitive instructions is the 141 opcodes available on the
EVM and the types of memory supported are those required in the EVM (such as
a stack containing 256-bit elements, a byte-addressable memory, and a key-value
store with 256-bit keys and values).

Many other zkVM projects choose (or design) ISAs for their purported “SNARK-
friendliness”, or for surrounding infrastructure and tooling, or for a combina-
tion thereof. For example, Cairo-VM is a very simple virtual machine designed
specifically for compatibility with SNARK proving [GPR21,AGL+22]. Another
example is the RISC Zero project, which uses the RISC-V instruction set. RISC-
V is popular in the computer architecture community, and comes with a rich

Jolt: SNARKs for Virtual Machines via Lookups 5

ecosystem of compiler tooling. Other zkVM projects include Polygon Miden,1

Valida,2 and many others.

Front-End, Back-End Paradigm. SNARKs are built using protocols that
perform certain probabilistic checks, so to apply SNARKs to program executions,
one must express the execution of a program in a specific form that is amenable
to probabilistic checking (e.g., as arithmetic circuits or generalizations thereof).
Accordingly, most SNARKs consist of a so-called front-end and back-end : the
front-end transforms a witness-checking computer program Ψ into an equivalent
circuit-satisfiability instance, and the back-end allows the prover to establish
that it knows a satisfying assignment to the circuit.

Typically, the circuit will “execute” each step of the compute program one at
a time (with the help of untrusted “advice inputs”). Executing a step of the
CPU conceptually involves two tasks: (1) identify which primitive instruction
should be executed at this step, and (2) execute the instruction and update the
CPU state appropriately. Existing front-ends implement these tasks by carefully
devising gates or so-called constraints that implement each instruction. This is
time-intensive and potentially error-prone. As we show in this work, it also leads
to circuits that are substantially larger than necessary.

Pros and Cons of the zkVM Paradigm. One major benefit of zkVMs that
use pre-existing ISAs is that they can exploit extant compiler infrastructure
and tooling. This applies, for example, to the RISC-V and EVM instruction set,
and leads to a developer-friendly toolchain without building the infrastructure
from scratch. One can directly invoke existing compilers that transform witness-
checking programs written in high-level languages down to assembly code for
the ISA, and also benefit from prior audits or other verification efforts of these
compilers.

Another benefit of zkVMs is that a single circuit can suffice for running all pro-
grams up to a certain time bound, whereas alternative approaches may require
re-running a front-end for every program. Finally, frontends for VM abstractions
output circuits with repeated structure. For a given circuit size, backends tar-
geting circuits with repeated structure [Set20,BSBHR19,WTS+18] can be much
faster than backends that do not leverage repeated structure [CHM+20,GWC19,
Gro16].

However, zkVMs also have downsides that render them less efficient for some
applications. Circuits implementing a VM abstraction must pay for their gener-
ality – they must support all possible sequences of CPU instructions as opposed
to being tailored for a specific program. This leads to an overhead in circuit size
and ultimately, proving costs.

1 https://polygon.technology/polygon-miden.
2 https://github.com/valida-xyz/valida-compiler/issues/2.

https://polygon.technology/polygon-miden
https://github.com/valida-xyz/valida-compiler/issues/2

6 A. Arun et al.

Another issue is that implementing certain important operations in a zkVM
(e.g., cryptographic operations such as Keccak hashing or ECDSA signature
verification) is extremely expensive-e.g., ECDSA signature verification takes up
to 100 microseconds to verify on real CPUs, which translates to millions of
RISC-V instructions.3 This is why zkVM projects contain so-called gadgets or
built-ins, which are hand-optimized circuits and lookup tables computing specific
functionalities.

The Conventional Wisdom on zkVMs. The prevailing viewpoint today is
that simpler VMs can be turned into circuits with fewer gates per step of the VM.
This is most apparent in the design of particularly simple and ostensibly SNARK-
friendly VMs such as TinyRAM [BSCG+13a] and the Cairo-VM 4. However, this
comes at a cost, because primitive operations that are standard in real-world
CPUs require many primitive instructions to implement on the simple VM. In
part to minimize the overheads in implementing standard operations on such
limited VMs, many projects have designed domain specific languages (DSLs)
that are exposed to the programmer who writes the witness-checking program.

Moreover, existing zkVMs remain expensive for the prover, even for very simple
ISAs. For example, the prover for Cairo-VM programs described in [GPR21,
AGL+22] cryptographically commits to 51 field elements per step of the Cairo-
VM. This means that a single primitive instruction for the Cairo-VM may cause
the prover to execute millions of instructions on real CPUs. This severely limits
the applicability of SNARKs for VM abstractions, to applications involving only
very simple witness-checking procedures.

1.2 Jolt: a0- New Paradigm for zkVM Design

In this work, we introduce a new paradigm in zkVM design. The result is zkVMs
with much faster provers, as well as substantially improved auditability and
extensibility (i.e., a simple workflow for adding additional primitive instructions
to the VM). Our techniques are general. As a concrete example, we instantiate
them for the RISC-V instruction set (with multiplication extension [WA17]), a
popular open-source ISA developed by the computer architecture community
without SNARKs in mind.

Our results upend the conventional wisdom that simpler instruction sets neces-
sarily lead to smaller circuits and associated faster provers. First, our prover is

3 See https://github.com/risc0/risc0/tree/v0.16.0/examples/ecdsa.
4 The Cairo-VM has 3 registers, memory that is read-only (each cell can only be

written to once) and must be “continuous”, and the primitive instructions are roughly
addition and multiplication over a finite field, jumps, and function calls. Even the
high-level language only exposes write-once (also known as immutable) memory to
the programmer and does not offer signed integer data types. See https://www.cairo-
lang.org/ for information on the high-level language and [GPR21,AGL+22] and
https://github.com/lambdaclass/cairo-vm for information on the virtual machine.

https://github.com/risc0/risc0/tree/v0.16.0/examples/ecdsa
https://www.cairo-lang.org/
https://www.cairo-lang.org/
https://github.com/lambdaclass/cairo-vm

Jolt: SNARKs for Virtual Machines via Lookups 7

faster per step of the VM than existing SNARK provers for much simpler VMs.
Second, the complexity of our prover primarily depends on the size (i.e., number
of bits) of the inputs to each instruction. This holds so long as all of the prim-
itive instructions satisfy a natural notion of structure, called decomposability.
Roughly speaking, decomposability means that one can evaluate the instruction
on a given pair of inputs (x, y) by breaking x and y up into smaller chunks,
evaluating a small number of functions of each chunk, and combining the results.
A primary contribution of our work is to show that decomposability is satisfied
by all instructions in the RISC-V instruction set.

Lookup Arguments and Lasso. In a lookup argument, there is a predeter-
mined “table” T of size N , meaning that T * F

N . An (unindexed) lookup argu-
ment allows the prover to commit to any vector a * F

m and prove that every
entry of a resides somewhere in the table. That is, for every i * {1, . . . , m}, there
exists some k such that ai = T [k]. In an indexed lookup argument, the prover
commits not only to a * F

m, but also a vector b * F
m, and the prover proves

that for every i, ai = T [bi]. In this setting, we call a the vector of lookups and b
the vector of associated indices.

In a companion paper [STW23], we describe a new lookup argument called
Lasso (which applies to both indexed and unindexed lookups). One distinguishing
feature of Lasso is that it applies even to tables that are far too large for anyone
to materialize in full, so long as the table satisfies the decomposability condition
mentioned earlier.

Lookup Every Instruction! Say P claims to have run a certain computer
program for m steps, and that the program is written in the assembly language
for a VM. Today, front-ends produce a circuit that, for each step of the com-
putation: (1) identifies what instruction to execute at that step, and then (2)
executes that instruction. The second step is essentially a switch statement with
a case for each instruction, as the circuit should handle any possible instruction
in the ISA. This leads to a wasteful blowup in circuit size. Jolt’s core idea is to
replace step 2 with a single lookup. For each instruction f , the table stores the
entire evaluation table of f : that is, if f operates on two 64-bit inputs, this table
stores f(x, y) for every pair of inputs (x, y) * {0, 1}64 × {0, 1}64. This table has
size 2128. In this work, we show that all RISC-V instructions are decomposable.

In a research forum post in 2022, Barry Whitehat articulated a goal of designing
front-ends that produce circuits that only perform lookups [Whi], terming it
the lookup singularity. Circuits that only perform lookups are much simpler to
understand and formally verify than circuits consisting of many gates that are
often hand-optimized. Arguably, Jolt realizes the vision of the lookup singularity.
The bulk of the prover work in Jolt lies in the lookup argument, Lasso. On top
of this, the Jolt front-end only performs simple logic to handle memory reads
and writes. These are very basic and overall captured in fewer that 50 R1CS
constraints!

8 A. Arun et al.

1.3 Costs of Jolt

Polynomial Commitments and MSMs. A central component of most
SNARKs is a cryptographic protocol called a polynomial commitment scheme
(see Definition 8). Such a scheme allows an untrusted prover to succinctly com-
mit to a polynomial p and later reveal an evaluation p(r) for a point r chosen by
the verifier along with a proof that the claimed evaluation is correct. In Jolt, as
with most SNARKs, the bottleneck for the prover is the polynomial commitment
scheme.

Many popular polynomial commitments are based on multi-exponentiations
(also known as multi-scalar multiplications, or MSMs). This means that the com-
mitment to a polynomial p (with n coefficients c0, . . . , cn−1 over an appropriate

basis) is
∏n−1

i=0 gci

i , for some public generators g1, . . . , gn of a multiplicative group
G. Examples include KZG [KZG10], Bulletproofs/IPA [BCC+16,BBB+18],
Hyrax [WTS+18], and Dory [Lee21].5

The naive MSM algorithm performs n group exponentiations and n group mul-
tiplications (note that each group exponentiation is about 400× slower than a
group multiplication). But Pippenger’s MSM algorithm saves a factor of about
log(n) relative to the naive algorithm. This factor can be well over 10× in prac-
tice.

Working Over Large Fields, But Committing to Small Elements. If
all exponents appearing in the multi-exponentiation are “small”, one can save
another factor of 10× relative to applying Pippenger’s algorithm to an MSM
involving random exponents. This is analogous to how computing g216

i is 10×

faster than computing g2160

i : the first requires 16 squaring operations, while the
second requires 160 such operations. In other words, if one is promised that
all field elements (i.e., exponents) to be committed via an MSM are in the set
{0, 1, . . . ,K} ¢ F, the number of group operations required to compute the MSM
depend only on K and not on the size of F.6

Quantitatively, if all exponents are upper bounded by some value K, with K j n,
then Pippenger’s algorithm only needs (about) one group operation per term in
the multi-exponentiation. More generally, with any MSM-based commitment
scheme, Pippenger’s algorithm allows the prover to commit to roughly k · log(n)-
bit field elements (meaning field elements in {0, 1, . . . , n}) with only k group
operations per committed field element. So for size-n MSMs, one can commit to
log(n) bits with a single group operation.

Polynomial Evaluation Proofs. For many polynomial commitment schemes,
the evaluation proof computation is a low-order cost [WTS+18,BBHR18,Lee21].

5 In Hyrax and Dory, the prover does
√

n MSMs each of size
√

n.
6 Of course, the cost of each group operation depends on the size of the group’s base

field, which is closely related to that of the scalar field F. However, the number of
group operations to compute the MSM depends only on K, not on F.

Jolt: SNARKs for Virtual Machines via Lookups 9

Moreover, evaluation proofs exhibit excellent batching properties, whereby the
prover can commit to many polynomials and only produce a single evaluation
proof across all of them [BGH19,Lee21,KST22,BDFG20]. So in many contexts,
computing opening proofs is not a bottleneck even when a scheme such as Bullet-
proofs/IPA is employed. For these reasons, our accounting in this work ignores
the cost of polynomial evaluation proofs.

The Ultimate Cost of Jolt. For RISC-V instructions on 64-bit data types
supporting both the base integer instructions and the multiplication extension,
the Jolt prover commits to about 80 field elements per step of the RISC-V
CPU, with only a dozen being as large as 264. Table 2 provides the complete
distribution. With an MSM-based polynomial commitment, the Jolt prover costs
are roughly that of committing to under eleven arbitrary (256-bit) field elements
per CPU step.

1.4 Comparison of Prover Costs to Prior Works

This section compares Jolt’s commitment cost with other proof systems and
zkVM protocols.

Plonk [GWC19] is a popular backend that can prove statements about certain
generalizations of arithmetic circuit satisfiability. When Plonk is applied to an
arithmetic circuit (i.e., consisting of addition and multiplication gates of fan-in
two), the Plonk prover commits to 11 field elements per gate of the circuit, and
7 of these 11 field elements are random. Thus, the Jolt prover costs are roughly
equivalent to applying the Plonk backend to an arithmetic circuit with only
about one gate per step of the RISC-V CPU.

A more apt comparison is to the RISC Zero project7, which currently targets the
RISC-V ISA on 32-bit data types. A direct comparison is complicated, in part
because RISC Zero uses FRI as its (univariate) polynomial commitment scheme,
which is based on FFTs and Merkle-hashing, avoiding the use of elliptic curve
groups. Still, a crude comparison can be made by using how many field elements
the RISC Zero prover commits to, which is at least 275 31-bit field elements per
CPU step [Sol23]. At least on small instances, the prover bottleneck is Merkle-
hashing the result of various FFTs [Sol23], and one can hash 8 different 31-bit
field elements with the same cost as hashing one 256-bit field element. This
is roughly equivalent to committing to about 275 · 1/8 j 34 different 256-bit
field elements per CPU step. Thus, Jolt commits to significantly fewer elements
per CPU step (11 versus 34 in 256-bit equivalents) while also supporting 64-bit
architectures.

A final comparison point is to the SNARK for the Cairo-VM described in the
Cairo whitepaper [GPR21]. The prover in that SNARK commits to about 50 field

7 https://www.risczero.com/.

https://www.risczero.com/

10 A. Arun et al.

elements per step of the Cairo Virtual Machine, using FRI as the polynomial
commitment scheme. StarkWare currently works over a 251-bit field.8 This field
size may be larger than necessary (it is chosen to match the field used by certain
ECDSA signatures), but the provided arithmetization of Cairo-VM requires a
field of size at least 263. So the commitment costs for the prover are at least
equivalent to committing to 50 ·64/256 j 13 256-bit field elements.9 Jolt’s prover
costs per CPU compare favorably to this, despite the RISC-V instruction set
being vastly more complicated than the Cairo-VM (and with the Cairo-VM
instruction set specifically designed to be ostensibly “SNARK-friendly”).

Verifier Costs of Jolt. For RISC-V programs running for at most T steps,
the dominant costs for the Jolt verifier are performing O(log(T) log log(T)) hash
evaluations and field operations,10 plus checking one evaluation proof from the
chosen polynomial commitment scheme (when applied to a multilinear polyno-
mial over at most O(log T) variables). Verifier costs can be further reduced, and
the SNARK rendered zero-knowledge, via composition with a zero-knowledge
SNARK with smaller proof size.

1.5 Technical Details: CPU Instructions as Structured Polynomials

As mentioned, Lasso is most efficient when applied to lookup tables satisfying a
property called decomposability. Intuitively, this refers to tables t such that one
lookup into t of size N can be answered with a small number (say, about c) of
lookups into much smaller tables t1, . . . , t3, each of size N1/c. Furthermore, if
a certain polynomial t̃i associated with each ti can be evaluated at any desired
point r using, say, O(log(N)/c) field operations,11 then no one needs to cryp-
tographically commit to any of the tables (neither to t itself, nor to t1, . . . , t3).
Specifically, t̃i can be any so-called low-degree extension polynomial of ti. In
Jolt, we will exclusively work with a specific low-degree extension of ti, called
the multilinear extension, and denoted t̃i.

8 See, for example, https://github.com/starkware-libs/starkex-contracts/blob/
master/audit/EVM STARK Verifier v4.0 Audit Report.pdf.

9 Furthermore, in order to control proof size, StarkWare currently uses a “FRI blowup
factor” of 16, compared to RISC Zero’s choice of 4. This adds at least an extra factor
of 4 to the prover time per field element committed, relative to RISC Zero’s.

10 As described in Appendix G.3 of the full version [AST23], Lasso can use any so-called
grand product argument. The O(log(T) log log(T)) verifier cost are due to the choice
of grand product argument from [SL20, Section 6]. Other choices of lookup argument
offer different tradeoffs between commitment costs for the prover, versus proof size
and verifier time.

11 The Lasso verifier has to evaluate t̃i at a random point r on its own, so we need
this computation to be fast enough that we are satisfied with the resulting veri-
fier runtime. For all tables arising in Jolt, the verifier can compute all necessary t̃i

polynomial evaluations in O(log(N)) total field operations.

https://github.com/starkware-libs/starkex-contracts/blob/master/audit/EVM_STARK_Verifier_v4.0_Audit_Report.pdf
https://github.com/starkware-libs/starkex-contracts/blob/master/audit/EVM_STARK_Verifier_v4.0_Audit_Report.pdf

Jolt: SNARKs for Virtual Machines via Lookups 11

Hence, to take full advantage of Lasso, we must show two things:

• The evaluation table t of each RISC-V instruction has is decomposable in the
above sense. That is, one lookup into t, which has size N , can be answered
with a small number of lookups into much smaller tables t1, . . . , t3, each of
size N1/c. For most RISC-V instructions, 3 equals one or two, and about c
lookups are performed into each table.

• For each of the small tables ti, the multilinear extension t̃i is evaluatable at
any point, using just O(log(N)/c) field operations.

Establishing the above is the main technical contribution of our work. It turns
out to be quite straightforward for certain instructions (e.g., bitwise AND), but
more complicated for others (e.g., bitwise shifts, comparisons).

1.6 Decomposable Instructions

Suppose that table t contains all evaluations of some primitive instruction
f : {0, 1}n ³ F. Decomposability of the table t is equivalent to the following
property of f : for any n-bit input x to f , x can be decomposed into c “chunks”,
X0, . . . , Xc21, each of size n/c, and such that the following holds. There are 3

functions f0, . . . , f321 such that f(x) can be derived in a relatively simple man-
ner from fi(xj) as i ranges over 0, . . . , 3 2 1 and j ranges over 0, . . . , c 2 1. Then
the evaluation table t of f is decomposable: one lookup into t can be answered
with c total lookups into 3 · c lookups into the evaluation tables of f0, . . . , f321.

Bitwise AND is a clean example by which to convey intuition for why the evalua-
tion tables of RISC-V instructions are decomposable. Suppose we have two field
elements x and y in F, both in {0, . . . , 264 2 1}. We refer to x and y as 64-bit
field elements (we clarify here that “64 bits” does not refer to the size of the
field F, which may, for example, be a 256-bit field. Rather to the fact that x and
y are both in the much smaller set {0, . . . , 264 2 1} ¢ F, no matter how large F

may be).

Our goal is to determine the 64-bit field element z whose binary representation
is given by the bitwise AND of the binary representations of x and y. That
is, if x =

∑63
i=0 2i · xi and y =

∑63
i=0 2i · yi for (x0, . . . , x63) * {0, 1}64 and

(y0, . . . , y63) * {0, 1}64, then z =
∑63

i=0 2i · xi · yi.

One way to compute z is as follows. Break x and y into 8 chunks of 8 bits each
compute the bitwise AND of each chunk, and concatenate the results to obtain
z. Equivalently, we can express

z =

7∑

i=0

28·i · AND(Xi, Yi), (1)

12 A. Arun et al.

where each Xi, Yi * {0, . . . , 28 2 1} is such that x =
∑7

i=0 28·i · Xi and y =∑7
i=0 28·i · Yi. These Xi’s and Yi’s represent the decomposition of x and y into

8-bit limbs.12

In this way, one lookup into the evaluation table of bitwise-AND, which has
size 2128, can be answered by the prover providing X1, . . . , X8, Y1, . . . Y8 *
{0, . . . , 28 2 1} as untrusted advice, and performing 8 lookups into the size-216

table t1 containing all evaluations of bitwise-AND over pairs of 8-bit inputs.
The results of these 8 lookups can easily be collated into the result of the
original lookup, via Eq. (1). No party has to commit to the size-216 table t1
because for any input (r2

0, . . . , r
2

7, r
22

0 , . . . , r22

7) * F
16, the multilinear extension

t̃1(r
2

0, . . . , r
2

7, r
22

0 , . . . , r22

7) =
∑7

i=0 2i · r2

i · r22

i , can be evaluated directly by the
verifier with only 14 field multiplications and 6 field additions.

Challenges for Other Instructions. One may initially expect that correct
execution of RISC-V operations capturing 64-bit addition and multiplication
would be easy prove, because large prime-order fields come with addition and
multiplication operations that behave like integer addition and multiplication
until the result of the operation overflows the field characteristic. Unfortunately,
the RISC-V instructions capturing addition and multiplication have specified
behavior upon overflow (beyond 64 bits, not 256 bits!) that differs from that of
field addition and multiplication. Resolving this discrepancy is one key challenge
that we overcome.

2 Technical Preliminaries

2.1 Multilinear Extensions

An 3-variate polynomial p : F
3 ³ F is said to be multilinear if p has degree at

most one in each variable. Let f : {0, 1}3 ³ F be any function mapping the
3-dimensional Boolean hypercube to a field F. A polynomial g : F

3 ³ F is said
to extend f if g(x) = f(x) for all x * {0, 1}3. It is well-known that for any

f : {0, 1}3 ³ F, there is a unique multilinear polynomial f̃ : F ³ F that extends

f . The polynomial f̃ is referred to as the multilinear extension (MLE) of f .

Multilinear Extensions of Vectors. Given a vector u * F
m, we will often

refer to the multilinear extension of u and denote this multilinear polynomial by
ũ. Assuming for simplicity that m is a power of two, ũ is obtained by viewing u as
a function mapping {0, 1}log m ³ F in the natural way13: the function interprets
its (log m)-bit input (i0, . . . , ilog m21) as the binary representation of an integer i

12 Just as “digits” refers to a base-10 decomposition of an integer or field element,
“limbs” refer to a decomposition into a different base, in this case base 28.

13 All logarithms in this paper are to base 2.

Jolt: SNARKs for Virtual Machines via Lookups 13

between 0 and m21, and outputs ui. ũ is defined to be the multilinear extension
of this function.

Lagrange Interpolation. An explicit expression for the MLE of any function
is given by the following standard lemma (see [Tha22, Lemma 3.6]).

Lemma 1. Let f : {0, 1}3 ³ F be any function. Then the following multilinear

polynomial f̃ extends f :

f̃(x0, . . . , x321) =
∑

w*{0,1}3

f(w) · Çw(x0, . . . , x321), (2)

where, for any w = (w0, . . . , w321), Çw(x0, . . . , x321) :=
∏3

i=0 (xiwi + (1 2 xi)
(1 2 wi)) . Equivalently,

Çw(x0, . . . , x321) = ẼQ(x0, . . . , x321, w0, . . . , w321).

The polynomials {Çw : w * {0, 1}3} are called the Lagrange basis polynomials

for 3-variate multilinear polynomials. The evaluations {f̃(w) : w * {0, 1}3} are

sometimes called the coefficients of f̃ in the Lagrange basis, terminology that is
justified by Eq. (2).

Lasso can make use of any commitment schemes for multilinear polynomials g.14

Here an 3-variate multilinear polynomial g : F
3 ³ F is a polynomial of degree at

most one in each variable.

We employ standards definitions of SNARKs, Polynomial Commitments, Poly-
nomial IOPs, and R1CS constraints and provide them in Appendix A of the full
version [AST23] for completeness.

2.2 Lookup Arguments

Lookup arguments allow a prover to commit to two vectors a * F
m and b * F

m

(with a polynomial commitment scheme) and prove that each entry ai of vector
a resides in index bi of a pre-determined lookup table T * F

N . That is, for each
i = 1, . . . , m, ai = T [bi]. Here, to emphasize the interpretation of T as a table, we
use square brackets T [i] to denote the i’th entry of T . Here, if bi ;* {1, . . . , N},
then t[bi] is undefined, and hence ai ;= T [bi]. We refer to a as the vector of
looked-up values and b as the vector of indices.

Definition 1 (Lookup arguments, indexed variant). Let PC =
(Gen,Commit,Open,Eval) be an extractable polynomial commitment scheme for

14 Any univariate polynomial commitment scheme can be transformed into a multilin-
ear one, though the transformations introduce some overhead (see, e.g., [CBBZ23,
BCHO22,ZXZS20]).

14 A. Arun et al.

multilinear polynomials over F. A lookup argument (for indexed lookups) for
table T * F

N is a SNARK for the relation

{
(pp, C1, C2, w = (a, b)) : a, b * F

m ' ai = T [bi]"i * {1, . . . , n}

' Open(pp, C1; ã) = 1 ' Open(pp, C2; b̃) = 1
}
.

Here w = (a, b) * F
m ×F

m is the witness, while pp, C1, and C2 are public inputs.

Definition 1 captures so-called indexed lookup arguments (this terminology was
introduced in our companion work, Lasso [STW23]. Other works consider unin-
dexed lookup arguments, in which only the vector vector a * F

m of looked-up
values is committed, and the prover claims that there exists a vector b of indices
such that ai = T [bi] for all i = 1, . . . , m.

Definition 2 (Lookup arguments, unindexed variant). Let PC =
(Gen,Commit,Open,Eval) be an extractable polynomial commitment scheme for
multilinear polynomials over F. A lookup argument (for indexed lookups) for
table T * F

N is a SNARK for the relation

{
(pp, C1, C2, a) : a ∈ F

m
∧ ∀i ∈ {1, . . . , n}, ∃bi such that ai = T [bi] ∧ Open(pp, C1, ã) = 1

}
.

Here a * F
m × F

m is the witness, while pp and C1 are public inputs.

Jolt primarily requires indexed lookups. However, a few instructions require
range checks, which are naturally handled by unordered lookups (to prove that a
value is in the range {0, . . . 2L 2 1}, perform an unordered lookup into the table
T with T [i] = i for i = {0, . . . , 2L 2 1}).

There are natural reductions in both directions, i.e., unindexed lookup arguments
can be transformed into index lookup arguments and vice versa.

A Companion Work: Lasso. Our companion work Lasso introduces a family of
lookup arguments called Lasso. The lookup arguments in this family are the first
that do not require any party to cryptographically commit to the table vector
T * F

N , so long as T satisfies one of the two structural properties defined below.

Definition 3 (MLE-structured tables). We say that a vector T * F
N is

MLE-structured if for any input r * F
log(N), T̃(r) can be evaluated with O(log N)

field operations.

Definition 4 (Decomposable tables). Let T * F
N . For a small constant c,

we say that T is c-decomposable if there exist a constant k and constant ³ f
kc tables T1, . . . , T³ each of size N1/c and each MLE-structured, as well as a
multilinear ³-variate polynomial g such that the following holds. As in Sect. 2.1,
let us view T as a function mapping {0, 1}log N to F in the natural way, and view

Jolt: SNARKs for Virtual Machines via Lookups 15

each Ti as a function mapping {0, 1}log(N)/c ³ F. Then for any r * {0, 1}log N ,
writing r = (r1, . . . , rc) * {0, 1}log(N)/c,

T [r] = g(T1[r1], . . . , Tk[r1], Tk+1[r2], . . . , T2k[r2], . . . , T³2k+1[rc], . . . , T³[rc]).

We refer to T1, . . . , T³ as sub-tables.

For any constant c > 0 and any c-decomposable table, our companion paper gives
a lookup argument called Lasso, in which the prover commits to roughly 3cm +
cN1/c field elements. Moreover, all of these field elements are small, meaning that
they are all in {0, . . . , m} (specifically, they are counts for the number of times
each entry of each subtable is read), or are elements of the subtables T1, . . . , T³.
The verifier performs O(log(m) log log(m)) hash evaluations and field operations,
processes one evaluation proof from the polynomial commitment scheme applied
to a multilinear polynomial in log m variables, and evaluates T̃1, . . . , T̃³ each at
a single randomly chosen point.

The Relationship Between MLE-Structured and Decomposable Tables.
For any decomposable table T * F

N , there is some low-degree extension T̂ of T
(namely, an extension of degree at most k in each variable) that can be evaluated
in O(log N) time. Specifically, the extension polynomial is

T̂ (r) = g(T̃1(r1), . . . , T̃³(rc)).

In general, T̂ is not necessarily multilinear, so a table being decomposable does
not necessarily imply that it is MLE-structured. In Jolt, we show all lookup
tables used are both c-decomposable (for any integer c > 0) as well as MLE-
structured.

Lasso with Small Tables (c = 1). A special case of Lasso used throughout
this work is with a lookup table of small size (say, under 222) that does not need
to be decomposed. Equivalently, this can be thought of as a decomposition with
c = 1. Such tables are used to range-check small values like bytes, chunks and
timestamps.

Remark 1. To show that a value x is in a table of size under 222, the lookup
proof requires the prover to commit to only one additional element, the value of
which is bounded by the total number of lookup queries made (specifically the
access count of the subtable).

2.3 Memory Checking

Any SNARK for VM execution has to perform memory-checking. This means
that the prover must be able to commit to an execution trace for the VM (that
is, a step-by-step record of what the VM did over the course of its execution),

16 A. Arun et al.

and the verifier has to find a way to confirm that the prover maintained mem-
ory correctly throughout the entire execution trace. In other words, the value
purportedly returned by any read operation in the execution trace must equal
the value most recently written to the appropriate memory cell. We use the
term memory-checking argument to refer to a SNARK for the above function-
ality. Note that a lookup table T * F

N can be viewed as a read-only memory
of size N , with memory cell i initialized to T [i]. Hence, a lookup argument for
indexed lookups (Definition 1) is equivalent the a memory-checking argument
for read-only memories.

A variety of memory-checking arguments have been described in the research
literature [ZGK+18,BCG+18,BFR+13,BSCGT13] (with the underlying tech-
niques rediscovered multiple times). The most efficient are based on lightweight
fingerprinting techniques for the closely related problem of offline memory check-
ing [Lip89,BEG+91]. In this work, we use such an argument due to Spice
[SAGL18], but optimize it using Lasso. For completeness, we an provide overview
of other memory-checking arguments in Appendix G, and Spice’s in particular
in Appendix G.3 of the full version [AST23].

3 An Overview of RISC-V and Jolt’s Approach

This section first provides a brief overview of the RISC-V instruction set architec-
ture considered in this work. Our goal is to convey enough about the architecture
that readers who have not previously encountered it can follow this paper. A com-
plete specification can be found at [WA17].15 We also stick to regular control
flow and do not support external events and other unusual run-time conditions
like exceptions, traps, interrupts and CSR registers.

Informally, the RISC-V ISA consists of a CPU and a read-write memory, collec-
tively called the machine.

Definition 5 (Machine state). The machine state consists of (PC,R,M). R
denotes the 32 integer registers, each of W bits, where W is 32 or 64. M is
a linear read-write byte-addressable array consisting of a fixed number of total
locations with each location storing one byte. The PC, also of W bits, is a separate
register that stores the memory location of the instruction to be executed.

Assembly programs consist of a sequence of instructions, each of which operate
on the machine state. The instruction to be executed at a step is the one stored
at the address pointed to by the PC . Unless specified by the instruction, the
PC is advanced to the next memory location after executing the instruction.
The RISC-V ISA specifies that all instructions are 32 bits long (i.e., 4 bytes), so
advancing the PC to the next memory location entails incrementing PC by 4.

15 Another helpful resource for interested readers is Lectures 5–8 at https://inst.eecs.
berkeley.edu/∼cs61c/resources/su18 lec/.

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/

Jolt: SNARKs for Virtual Machines via Lookups 17

Fig. 1. A model of RISC-V’s CPU state and transition function. Note that the tran-
sition function is deterministic and all information required, such as the location of
memory accessed, is derived from the CPU state and instr.

While RISC-V uses multiple formats to store instructions in memory, we can
abstract away the details and represent all instructions in the following 5-tuple
format.

Definition 6 (5-tuple RISC-V instruction format). Any RISC-V instruc-
tion can be written in the following format: [opcode, rs1, rs2, rd, imm].
That is, each instruction specifies an operation code uniquely identifying its func-
tion, at most two source registers rs1, rs2, a destination register rd, and a con-
stant value imm (standing for “immediate”) provided in the program code itself.

Figure 1 provides a schematic of the CPU state change and instruction format.
Operations read the source registers, perform some computation, and can do any
or all of the following: read from memory, write to memory, store a value in rd,

18 A. Arun et al.

or update the PC. For example, the logical left-shift instruction “(SLL, r5, r8,

r2, -)” reads the value stored in the fifth register, performs a logical left shift
on the value by the length stored in the eighth register, and stores the result in
second register (and does not involve any immediates). As another example, the
branch instruction “(BEQ, r5, r8, -, imm)” sets PC to be PC + imm if the
values stored in the fifth and eighth registers are equal, or routinely increments
PC by 4, otherwise (and does not involve the destination register).

Unsigned and Signed Data Types. For the RISC-V ISA, data in registers
has no type. A register simply stores W bits. However, different instructions can
be conceptualized as interpreting register values in different ways. Specifically,
some instructions operate upon unsigned data types, while others operate over
signed data types. All RISC-V instructions involving signed data types interpret
the bits in a register as an integer via two’s complement representation.16 For
many instructions (such as ADD and SUB), the use of two’s complement has the
consequence that the instruction operates identically regardless of whether or
not the inputs are interpreted as signed or unsigned. For some instructions, like
multiplication (MUL and MULU) and integer comparison (SLT and SLTU), there
will be two different RISC-V instructions, one for signed and one for unsigned.
See Appendix D of the full version [AST23] for more information on two’s com-
plement notation and arithmetic.

Let z be a W -bit data type with constituent bits [zW21, . . . , z0] such that z =∑W21
i=0 2i · zi. When discussing instructions interpreting their W -bit inputs as

signed data types represented in twos-complement format, we refer to zW21

as the sign bit of z, and denote this by zs. (Concretely, the sign bit of a 64-
bit register value z will be zs = z63.) We use z<s to refer to [zW22, . . . , z0] *
{0, 1}W21.

Sign and Zero Extensions. A “sign-extension” of an L-bit value z to W
bits (where L < W) is the W -bit value zsign-ext with bits [zs, . . . , zs, zL21, . . . , z0].
That is, the sign bit of z is replicated to fill the higher-order bits of z until it
reaches length W . A “zero-extension” is when, instead of the sign bit, the 0 bit
is used. This results in W -bit zzero-ext with bits [0, . . . , 0, zL21, . . . , z0].

3.1 Performing Instruction Logic Using Lookups

As described in Sect. 2.2, the Jolt paradigm avoids the complexity of implement-
ing each instruction’s logic as constraints in a circuit by encapsulating instruc-
tion execution into a lookup table. Specifically, we identify an “evaluation table”
for each operation opcode, Topcode[x ' y] = r, that contains the required result
for all possible inputs x, y. Jolt combines the tables for all instructions into

16 See https://en.wikipedia.org/wiki/Two%27s complement for an overview of how
two’s complement maps bit vectors in {0, 1}L to integers in {22L, . . . , 2L 2 1} and
vice versa.

https://en.wikipedia.org/wiki/Two%27s_complement

Jolt: SNARKs for Virtual Machines via Lookups 19

one table and thus makes only one lookup query per step to this table as
Trisc-v[opcode ' x ' y] = r. Given a processor and instruction set, this table
is fixed and independent of the program or inputs. The key contribution of Jolt

is to design these enormous tables with a certain decomposability structure (see
Definition 4) that allows for efficient lookup arguments using Lasso.

Preparing Operands and the Lookup Query. The main responsiblity of
the constraint system is to prepare the appropriate operands x, y at each step
before the lookup. This is efficient to do as the operands only come from the set
{value in rs1, value in rs2, imm,PC}. This means, for example, that the instruc-
tions ADD and ADDI are expressed by the same lookup table as they only differ
in whether the second operand comes from register rs2 or is imm, respectively.
With the operands prepared, the lookup query is then committed to by the
prover and fed to the lookup argument for verification. The query is of the form
opcode ' z where z is generally x ' y or (x + y) or (x × y), making it either
2 · W or W + 1 bits in length. The prover provides as advice the claimed entry,
result, in the lookup table corresponding to the query.

The trace of all lookup queries and entries is sent to Lasso. As described in
Definition 4, Lasso requires the query to be split into “chunks” which are fed
into different subtables. The prover provides these chunks as advice, which are
c in number for some small constant c, and hence approximately W/c or 2W/c
bits long, depending on the structure of z. The constraint system must verify
that the chunks correctly constitute z, but need not perform any range checks
as the Lasso algorithm itself later implicitly enforces these on the chunks.

3.2 Using Memory-Checking

The machine state transition involves reading from and writing to three concep-
tually separate parts of memory: (1) the program code, (2) the registers and (3)
the random access memory. As discussed in Sect. 2.3, the most efficient way to
enforce correct reads and writes is by using the offline memory checking tech-
niques. These techniques are used for reading from the program code, reading
and writing to registrers, and performing load and store operations from the
RAM. Unlike other operations, loads and stores do not involve lookups to a
large table to perform their core function. As is standard in zkVM design, Jolt

conceptualizes the memory-checking procedure as a black box that guarantees
correctness of all the memory reads and writes required by the CPU execution,
and hence the proof proceeds assuming these operations are correct.

At the start of the proof, the prover commits to the transcript of all memory
accesses in the form of two sequences: the sequence of reads RS and that of writes
WS. Each access is represented as a 3-tuple of field elements (a, v, t) where a is
the address read from (or written to), v is the value read (or written) and t is
the “timestamp”. In writes, the timestamp is the current CPU step counter, and
in reads, the timestamp is that of the preceding write to that address.

20 A. Arun et al.

Fig. 2. Proving the correctness of CPU execution using offline memory checking
(Sect. 3.2) and lookups (Sect. 3.1).

The offline memory-checking procedure takes these sequences and their commit-
ments as inputs and convinces the verifier that they are consistent: that is, the
value read from an address is always the latest value written to that address.
The constraint system also takes the transcript of all reads and writes and per-
forms various checks, such as ensuring the address read from or written to is the
one deterministically computed by the corresponding step’s operation and CPU
state. See Appendix C.3 of the full version [AST23] for the list of constraints
enforced.

Supporting Byte-Addressable Memory. RISC-V requires that memory
be byte-addressable (as opposed to word-addressable). A load or store operation
may read up to W/8 (which equals four and eight for 32-bit and 64-bit processors,
respectively) bytes in a given instruction. Thus, when writing a W -bit value v,
the prover must provide its byte-decomposition [v1 . . . vW/8] as each byte is stored
in a separate address in memory. Jolt enforces range-checks on the provided bytes
through lookups performed using Lasso. Certain load instructions also require
the values read from memory to be sign-extended to W bits. This is enforced
using lookups to small tables to obtain the sign bit. See Appendix C.2 of the full
version [AST23] for more details.

3.3 Formatting Assembly Code

Before the proof starts, the assembly code is formatted into the 5-tuple form
of Definition 6: (opcode, rs1, rs2, rd, imm). Instructions may need to sign-
extend or zero-extend imm to W bits. This is a deterministic choice that depends
only on the instruction (and is independent of the rest of the program or inputs).

Jolt: SNARKs for Virtual Machines via Lookups 21

Additionally, in our design, each instruction may also comes with a number of
one-bit “flags” that guide the constraint system. For example, in our design,
opflag[5] is 1 to indicate whether the instruction is a jump instruction, and
opflags[7] is 1 if and only if the lookup’s result is to be stored in rd. Note
that these flags are fixed for any given instruction. See Appendix C.1 of the full
version [AST23] for a list of all the fourteen flags used in Jolt.

Putting this together, before the proof starts, the prover and verifier convert
the RISC-V assembly code to the 5-tuple format, along with the flags packed
into one “packed flags”value. These six elements are then stored in consecutive
locations of a read-only section of memory and accessed using standard offline
memory-checking techniques in the constraint system. Jolt thus performs six
memory-checking reads per CPU step to read each element of the tuple. As the
program code is read-only, the prover’s cost involves committing to the elements
of the tuple, along with the read timestamp for the address PC .

4 Analyzing MLE-Structure and Decomposability

This section illustrates the process of designing MLE-structured tables and
decomposing them as per Definition 4 required by Lasso. We first establish nota-
tion and then design the tables for three important functions that are used as
building blocks for the tables of many RISC-V instructions: equality, less than,
and shifts. The MLE-structured tables and their decomposition for other instruc-
tions such as arithmetic ones (like ADD,SUB), logical ones (like AND, OR, XOR),
and jumps and branches are described in Appendix B of the full version [AST23].
Load and store instructions do not perform any lookups.

Notation. Let z be a field element in {0, 1, . . . , 2W 2 1} ¢ F. We denote the
binary representation of z as bin(z) = [zW21, . . . , z0] * {0, 1}W . Here, z0 is the
least significant bit (LSB), while zW21 is the most significant bit (MSB). That is,

z =
∑W21

i=0 2izi. We refer to the “sign-bit” of z as zs = zW21. We use z<i and z>i

to refer to the subsequences [zi21, . . . , z0] and [zW21, . . . , zi+1], respectively.17

Concatenation of Bit Vectors. Given two bit vectors x, y * {0, 1}W , we use
x ' y to refer to the number whose binary representation is the concatenation
[xW21, . . . , x0 ' yW21, , . . . , y0]. Under this definition, it holds that int(x ' y) =
int(x) · 2W + int(y).

Decomposing Bit Vectors into Chunks. For a constant c, and any x *
{0, 1}L, we divide the bits of input x naturally into chunks

x = [xW21 . . . x0] = Xc21 ' . . . ' X2 ' X0, (3)

17 In the above paragraphs, we used an italicized z to denote both a field element in
{0, . . . , 2W 2 1} and a vector in {0, 1}W . Throughout the paper, which of the two
sets any variable z resides in will be clear from context.

22 A. Arun et al.

with each Xi * {0, 1}W/c. In the following discussions, we assume c divides W
for simplicity. However, this is not necessary and is in fact more efficient to set
c = 3 for W = 32 and c = 6 for W = 64, resulting in differing chunk lengths.

Three Instructive Functions and Associated Lookup Tables

Let field F be a prime order field of size at least 2W . Let x and y denote field
elements that are guaranteed to be in the set {0, 1, . . . , 2W 2 1}.

4.1 The Equality Function

MLE-Structured. The equality function EQ takes as inputs two vectors x, y *
{0, 1}W of identical length and outputs 1 if they are equal, and 0 otherwise. We
will use a subscript to clarify the number of bits in each input to EQ, e.g., EQW

denotes the equality function defined over domain {0, 1}W ×{0, 1}W . It is easily
confirmed that the multilinear extension of EQW is as follow:

ẼQW (x, y) =

W21∏

j=0

(xjyj + (1 2 xj)(1 2 yj)) . (4)

Indeed, the right hand side is clearly a multilinear polynomial in x and y, and if
x, y * {0, 1}W , it equals 1 if and only if x = y. Hence, the right hand side must
equal the unique multilinear extension of the equality function. Clearly, it can
be evaluated at any point (x, y) * F

W × F
W with O(W) field operations.

Decomposability. To determine whether two W -bit inputs x, y * {0, 1}W are
equal, one can decompose x and y into c chunks of length W/c, compute equality
of each chunk, and multiply the results together.

Let x = [Xc21, . . . , X0] and y = [Yc21, . . . , Y0] denote the decomposition of x
and y into c chunks each, as per Eq. (3). Let EQW denote the “big” table of
size N = 22W indexed by pairs (x, y) with x, y * {0, 1}W , such that EQW [x '

y] = ẼQW (x, y). Let EQW/c denote the “small” table of size N2W/c indexed by

pairs (X,Y) of chunks X,Y * {0, 1}W/c, such that EQW/c[X ' Y] = 1 if X = Y
and EQW/c[X ' Y] = 0 otherwise. The table below asserts that evaluating the
equality function on x and y is equivalent to evaluating the equality function on
each chunk Xi ' Yi and multiplying the results.

CHUNKS SUBTABLES FULL TABLE

Ci = Xi ' Yi EQW/c[Xi ' Yi] = ẼQW/c(Xi, Yi) EQW [x, y] =
c−1∏
i=0

EQW/c[Xi ' Yi]

The (lone) subtable EQW/c is MLE-structured by Eq. (4).

Jolt: SNARKs for Virtual Machines via Lookups 23

4.2 Less Than Comparision

To show that an L-bit value x is less than another L-bit value y, it suffices
to enforce an L-bit range check on y 2 x. However, this doesn’t work when x
and y are treated as two-complement signed numbers and we thus use a lookup
table. We explain below how this table is designed through unsigned less-than
comparisons (LTU) and show how to adapt it to perform signed comparisons
(LTS) in Appendix B.5 of the full version [AST23].

MLE-Structured. The comparison of two unsigned data types x, y *
{0, 1, . . . , 2W21} is involved in many instructions. For example, SLTU outputs 1
if x < y and 0 otherwise, where the inequality interprets x and y as integers in
the natural way. Note that the inequality computed here is strict. Consider the
following 2W -variate multilinear polynomial (LTU below stands for “less than
unsigned”):

L̃TUi(x, y) = (1 2 xi) · yi · ẼQW2i21(x>i, y>i). (5)

Clearly, this polynomial satisfies the following two properties:

(1) Suppose x g y. Then L̃TUi(x, y) = 0 for all i.

(2) Suppose x < y. Let k be the first index (starting from the MSB of x and y)

such that xk = 0 and yk = 1. Then L̃TUk(x, y) = 1 and L̃TUi(x, y) = 0 for
all i ;= k.

Based on the above properties, it is easy to check that

L̃TU(x, y) =

W21∑

i=0

L̃TUi(x, y). (6)

Indeed, the right hand side is clearly multilinear, and by the two properties

above, it equals L̃TU(x, y) whenever x, y * {0, 1}W . It is not difficult to see that
the right hand side of Eq. (6) can be evaluated at any point (x, y) * F

W × F
W

with O(W) field operations as the set {ẼQW2i(x>i, y>i)}
W21
i=0 can be computed

in O(W) total steps using the recurrence relation

ẼQW2i21(x>i, y>i) = ẼQW2i22(x>(i+1), y>(i+1)) · ẼQ(xi, yi). (7)

See [Tha22, Figure 3.3] for a depiction of this procedure.

Decomposing L̃TU. A similar reasoning to the derivation of Eq. (6) reveals
the following. As usual, break x and y into c chunks, Xc21 ' · · · ' X0 and

Yc21 ' · · · ' Y0. Let LTUW/c[Xi ' Yi] = L̃TUW/c(Xi, Yi) denote the subtable
with entry 1 if Xi < Yi when interpreted as unsigned (W/c)-bit data types, and

24 A. Arun et al.

0 otherwise. Then

LTUW [x ' y] =
c21∑

i=0

LTUW/c[Xi ' Yi] · EQW/c[X>i ' Y>i]

=

c21∑

i=0

(
LTUW/c[Xi ' Yi] ·

∏

j<i

EQW/c(Xj ' Yj)
)

Thus, evaluating LTU(x, y) can be done by evaluating LTUW/c and EQW/c on
each chunk (Xi, Yi) (EQW/c need not be evaluated on the lowest-order chunk
(Xc, Yc)). This is summarized in the table below.

CHUNKS SUBTABLES FULL TABLE

Ci = Xi ' Yi LTUW/c[Xi ' Yi], EQW/c[Xi ' Yi] LTUW [x ' y] =
c−1∑
i=0

LTUW/c[Xi ' Yi] ·
∏
j<i

EQW/c[Xj ' Yj]

The two subtables LTU and EQ are MLE-structured by Eqs. (4) and (6).

4.3 Shift Left Logical

MLE-Structured. SLL takes a W -bit integer x and a log(W)-bit integer y, and
shifts the binary representation of x to the left by length y. Bits shifted beyond
the MSB of x are ignored, and the vacated lower bits are filled with zeros.18 For
a constant k, let

S̃LLk(x) =

W21∑

j=k

2j · xj2k. (8)

It is straightforward to check that the right hand side of Eq. (8) is multilinear (in
fact, linear) function in x, and that when evaluated at x * {0, 1}W , it outputs
the unsigned W -bit data type whose binary representation is the same as that
of the output of the SLL instruction on inputs x and k, SLL(x, k).

Now consider
S̃LL(x, y) =

∑

k*{0,1}log W

ẽq(y, k) · S̃LLk(x). (9)

It is straightforward to check that the right hand side of Eq. (9) is multilinear
in (x, y), and that, when evaluated at x * {0, 1}W × {0, 1}log W , it outputs the
unsigned W -bit data type SLL(x, y).

Decomposability. We split the value to be shifted, x, into c chunks, X1, . . . , Xc,
each consisting of W 2 = W/c bits. y has only one chunk, Y0, consisting of the

18 For L = 32-bit data types, the RISC-V manual says that the “shift amount is
encoded in the lower 5 = log(W) bits”.

Jolt: SNARKs for Virtual Machines via Lookups 25

lowest order log W bits. As explained below, we decompose a lookup into the
evaluation table of SLL into a lookup into c different subtables, each of size
2W 2+log W . For W = 64, a reasonable setting of c would be 4 (instead of the
usual c = 6 for most other instructions), ensuring that 2W 2+log W = 220.

Conceptually, each chunk Xi of X needs to determine how many of its input bits
goes “out of range” after the shift of length y. By out of range, we mean that
shifting x left by y bits causes those bits to overflow the MSB of x and hence
not contribute to the output of the instruction.

For chunks i = 0, . . . , (c 2 1) and shift length k * {0, 1}log W , define:

mi,k = min{W 2,max{0, (int(k) + W 2 · (i + 1)) 2 W}}

Here, mi,k equals the number of bits from the i’th chunk that go out of range.
Let m2

i,k = W 2 2 mi,k 2 1 denote the index of the highest-order bit within the
i’th chunk that does not go out of range. Then the evaluation table of SLL

decomposes into c smaller tables SLL0, . . . ,SLLc21 as follows.

CHUNKS SUBTABLES FULL TABLE

Ci = Xi ' Y0 SLLi[Xi ' Y0] = SLL[x ' y] =
c−1∑
i=0

2i·W 2

· SLLi[Xi ' Yc]

∑
k∈{0,1}log W

ẼQ(Y0, k) ·

(
m2

i,k∑
j=0

2j+int(k) · Xi,j

)

Note that each SLLi can be evaluated at any input (x, y) * F
W 2

× F
log W

in O(W 2) field operations. Indeed, the set {ẼQ(Y0, k)}k*{0,1}log W can be com-
puted in O(W) field operations via the recurrence in Eq. (7). Similarly, the set
{2j+int(k)}i*{0,...,c21},k*{0,1}log W can be computed with O(W) field operations.
It follows that SLL0(x ' y), . . . ,SLLc21(x ' y) can be evaluated in O(W) field
operations in total.

4.4 The Multiplication Extension

On top of the base integer instruction set, RISC-V supports various instructions
to multiply, divide and find the remainder with two operands in an optional “M”
extension. Jolt can handle all of these instructions, most with no additional over-
head. The only caveat is that six of these are split into via several “pseudoinstruc-
tions”. For example, division is handled by having P provide the quotient and
remainder as untrusted advice in one pseudoinstruction, and they are checked
for correctness by performing multiplication and addition with more pseudoin-
structions. Appendix E of the full version [AST23] describes these techniques
along with the tables for each new instruction.

26 A. Arun et al.

5 Putting It All Together: A SNARK for RISC-V

Emulation

The overall architecture of Jolt is depicted in Fig. 2. The Jolt prover exe-
cutes the program to obtain the trace, and calls the provers for each module
(memory-checking, lookups and constraint satisfaction) to obtain three proofs
that together form the Jolt proof. This involves the prover cryptographically
committing to the execution trace z of the VM on the appropriate input (or
more precisely, its multilinear extension polynomial z̃, using any multilinear
polynomial commitment scheme). We leave a detailed discussion of the R1CS
and memory-checking modules of Jolt to Appendix F of the full version [AST23],
and focus on a particular aspect of the lookup argument here.

5.1 Combining Instruction Lookup Tables into One

The previous sections so far explained that the evaluation table of each individual
RISC-V instruction is both MLE-structured and decomposable. But Lasso is a
lookup argument for a single decomposable table. We now explain how to bridge
this gap, and thus make Jolt use “just one lookup table”.

Closely related issues have been addressed in earlier work on zkVMs. Specifically,
the fact that the evaluation tables of different RISC-V instructions have different
decompositions into subtables is analogous to the following issue dealt with
in earlier approaches to front-end design for zkVMs: different instructions are
computed by different circuits, and while only one instruction is executed per
step of the VM, in general it is not known until runtime which instruction will
be executed at any given step. Appendix F of the full version [AST23] discusses
techniques used in existing works, such as the re-ordering approach of vRAM
[ZGK+18], to solve this problem.

Conceptually, the approach we use expresses the concatenation of the evalua-
tion tables of each instruction (and of which we have shown to be decomposable)
as itself decomposable, analogous to how the concatenation of MLE-structured
tables is itself MLE-structured. To this end, it is convenient to treat each instruc-
tion as leading to 2c21 different lookups into subtables (2c21 here comes from
the maximum number of subtable lookups across all instructions, namely due
to SLT as described in Sect. 4). For instructions that require fewer than 2c 2 1
lookups into subtables, the extraneous lookup results can be set to 0, thereby
avoiding any cryptographic work on the part of the prover if using an MSM-based
commitment scheme (we will explain below how to ensure that these extraneous
subtable lookup results will be ignored by all subtables).

There will be a single collation polynomial g (Definition 4) for all instructions,
but g will take as input not only the results of relevant subtable lookups, but also
8 additional variables that, when assigned values in {0, 1}, are interpreted as the

Jolt: SNARKs for Virtual Machines via Lookups 27

bit-representation of the opcode. Denoting these variables as w = (w1, . . . , w8),
and letting gi(z) denote the collation polynomial for the i’th instruction, and
letting x denote a vector of 2c2 1 variables, interpreted as specifying the results
of 2c 2 1 subtable lookups, we define

g(w, x) =
∑

y*{0,1}8

ẼQ(w, y) · gint(y)(x).

This definition ensures that for any instruction i, g(bin(i), x) = gi(x), i.e., colla-
tion for each instruction is performed correctly by g.

The core of Lasso is to invoke a grand product argument for each subtable
(as explained in Appendix G.3 of the full version [AST23], this is due to the
use of memory-checking techniques to verify that the sequences of reads from
the subtable are consistent). We can modify the circuit used to compute these
products for each subtable to take as input the bits of the opcode associated with
each lookup. This way, the circuit can simply ignore any lookups associated with
opcodes that do not access the subtable associated with the circuit.

To minimize the size of this circuit, rather than having the prover commit to the
8 bits of the opcode, it may be preferable to instead have the prover commit to
some additional Boolean flags (beyond the Boolean circuit flags already described
in Sect. 3.3), so that each subtable’s circuit only needs to inspect fewer than 8
Boolean flags to determine whether or not a given lookup operation actually is
intended to access the subtable.

6 Qualitative Cost Estimation

The overall architecture of Jolt is depicted in Fig. 2. In this section, we analyze
the cost of a lookup and of the prover’s per-step work in Jolt.

6.1 Cost of a Lookup

We first briefly state the costs incurred by the prover when making a lookup
query in terms of the bit-lengths of the elements to be committed to. A Lasso

lookup into a decomposed table involves committing to the following elements
for some fixed Lasso parameter c:

1. Chunks of the operands x, y or of x + y or x × y. (Each < 2W/c bits.)

2. The outputs of the subtables involved in the lookup. (Each < W/c bits.)

3. Access counts of each subtable at that step. (Each < log T bits.)

4. Elements involved in the range checks of the chunks. (Each < log T bits.)

28 A. Arun et al.

In the worst case (the LTU table, to be precise), each step involves at most 2c21
total elements. We use this scenario when reporting costs in Sect. 6.2. Note that
the chunks need to be range-checked as it is possible for the prover to provide
invalid chunks xi, yi but together form a valid lookup index xi ' yi. These range
checks are a special case of Lasso with parameter c = 1 and, from Remark 1,
each involve committing to a single element bounded by the step counter.

With parameters (W = 32, c = 3), a lookup requires committing to 6 elements
of at most 11 bits, 6 elements of at most 22 bits, and 12 elements that are equal
to the step counter.

6.2 Overall Prover Costs in Jolt

From Fig. 2, the broad steps involved are committing to the transcripts and
then proving satisfaction of the constraint system, lookup arguments and offline
memory-checking procedures. The prover’s field operation costs and the verifier’s
costs are presented in Table 1. = We note here that the constraint system is
a uniform circuit consisting of under 50 R1CS constraints per CPU step. In
Appendix C.3 and F of the full version [AST23], we describe the constraints and
how Spartan is used to prove that they are satisfied. As discussed in Sect. 1.3,
the dominating cost for the prover is in producing commitments.

Table 1. Field operation costs involved in Jolt for a program that runs in n steps
with memory of size M . Cryptographic group operation costs are described in Tables 2
and 3. Lasso is run with parameter c and Jolt performs at most one Lasso lookup per
step. We assume that memory-checking and Lasso protocols implement the optimized
variant of the GKR protocol due to Thaler [Tha13]. We assume Spartan is instantiated
with a polynomial commitment scheme with O(log n)-verification time opening proofs.

Jolt field operation costs

Module Dominating Cost P Cost V Cost

Memory-checking 13 · n memory operations on an (M + |code| + 32)-sized memory O(n + M) O(log2 (n + M))

Lasso lookups n lookups on a decomposable table of size O(2128) O(c2n) O(log2 n)

Constraint checking Spartan proof on a uniform R1CS with j 50 · n constraints O(n) O(log n)

The rest of this section analyzes the elements that are committed to in Jolt.
Table 2 provides a upper bound on the elements committed per step grouped by
their bit-lengths. We measure bit-length as that is the main factor determining
the commitment cost when using Pippenger’s multi-scalar multiplication algo-
rithm.19 We provide below a brief overview of the elements involved and leave a
more detailed discussion to Appendix C of the full version [AST23].

19 In Pippenger’s multi-scalar multiplication algorithm to commit to elements, com-
mitting to an N -bit element costs roughly ceil(N/22) group operations. This makes
committing to a 32-bit element cost two group operations while a 256-bit element
costs 12 group operations.

Jolt: SNARKs for Virtual Machines via Lookups 29

Table 2. An approximate spread of the spread of elements committed to in Jolt in
lookup-based operations (i.e., excluding loads and stores which do not involve lookups)
by their bit-length. We assume that the program code is under 222 bytes long, and the
program finishes in under 222 CPU steps. The Lasso parameter c = 3 when W = 32
and c = 6 when W = 64. We approximate the per-step committments costs in terms of
the cost of committing to a 256-bit element when using Pippenger’s MSM algorithm:
an n-bit number involves +n/22, group operations to commit to.

Per-step Commitment Costs for Non-Memory Operations

Bit-length Number of Elements In RV32 W = 32, c = 3 In RV64 W = 64, c = 6

1 22 22 22

[2, 12] 9 9 9

(2W/c) j 22 5c 15 30

log (T) 9+4c 21 33

W 12 12 12

Total Elements 52 + 9c 79 106

In 256-bit commit equivalents: < 8 elements < 11 elements

Elements Involved in CPU Execution. First, let’s look at the elements
involved in satisfying the CPU step circuit’s constraints before looking at the
elements needed for the Lasso argument. The smallest of these are the 1-bit
circuit flags (Sect. 3.3) and the opcode bits (Sect. 5), and the 5-bit elements
indexing the source (rs1, rs2) and destination (rd) registers read from the
instruction. Slightly larger elements are the PC (which could be as large as
log |program code| bits) and the step counter, both of which we assume to be
under 222 to simplify our analysis. Finally, the largest elements involved are
the W -bit ones specifying the values stored in the two source registers, the sign-
extended imm read from the program code, the lookup output, (which is generally
stored in the destination register), and the advice element involved (only) in
division and reminder operations. However, an instruction uses at most 4 of these
elements (specifically, this is because the division/remainder instructions do use
advice never use imm). Beyond this, there are more (eight to be specific) W -bit
values that arise as auxiliary witness values involved in constraint satisfaction.
These can be thought of as the internal wires of the circuit representing each
step’s constraint checks.

6.3 Cost of Memory Operations

Load and store operations do not involve large lookups to perform the core
instruction logic. Rather, the main cost here is performing memory-checking
operations, one for each byte of memory involved in the load/store. This can
be up to four for 32-bit processors and eight for 64-bit processors. The elements
involved on top of the non-lookup elements of the non-memory instructions are

30 A. Arun et al.

Table 3. The spread of elements committed per memory operation with the extra
overhead elements per byte of load or store. See Appendix C.2 and Table 5 of the
full version [AST23] for more details on the exact procedure and elements involved.
Note that the per-step costs are independent of the total size of the memory . We
approximate these costs in terms of the cost of committing to a 256-bit element when
using Pippenger’s MSM algorithm, assuming that the program code is under 222 bytes
long and the program finishes executing in under 222 CPU steps.

Base Costs per Memory Instruction Overhead per Byte

Bit-length Number of Elements for Loads for Stores

1 23 1 1

[2, 12] 4 1 1

(2W/c) j 22 2 1 1

log (T) 8 2 3

W 10 – –

Total Elements 47 5 6

In 256-bit equivalents j 5 2 6 elements j 0.5 elements j 0.5 elements

(both RV32, RV64)

the actual bytes read/written, the timestamps involved in memory-checking (one
for each byte), and the cost of range checking these bytes and timestamps. Mem-
ory operations also commit to fewer W -bit elements as they don’t involve com-
puting the lookup query or reading the lookup output. Stores, which are memory
“writes”, require 8-bit range checks of the bytes written. These range-checks are
again very efficient in Lasso (see Remark 1) and only involve committing to a
single element of value at most the number of steps up to that point.

Acknowledgements and Disclosures. Justin Thaler was supported in part by NSF
CAREER award CCF-1845125 and by DARPA under Agreement No. HR00112020022.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the United States
Government or DARPA.

Disclosures. Thaler is a Research Partner at a16z crypto and is an investor in various

blockchain-based platforms, as well as in the crypto ecosystem more broadly (for general

a16z disclosures, see https://www.a16z.com/disclosures/.)

https://www.a16z.com/disclosures/

Jolt: SNARKs for Virtual Machines via Lookups 31

References

[AGL+22] Avigad, J., Goldberg, L., Levit, D., Seginer, Y., Titelman, A.: A veri-
fied algebraic representation of cairo program execution. In: Proceedings
of the 11th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, pp. 153–165 (2022)

[AST23] Arun, A., Setty, S., Thaler, J.: Jolt: snarks for virtual machines via
lookups. Cryptology ePrint Archive, Report 2023/1217 (2023)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: Pro-
ceedings of the IEEE Symposium on Security and Privacy (S&P) (2018)

[BBHR18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon
interactive oracle proofs of proximity. In: Proceedings of the International
Colloquium on Automata, Languages and Programming (ICALP) (2018)

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting.
In: Proceedings of the International Conference on the Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT) (2016)

[BCG+18] Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: nearly
linear-time zero-knowledge proofs for correct program execution. In: Pro-
ceedings of the International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT) (2018)

[BCHO22] Bootle, J., Chiesa, A., Hu, Y., Orru, M.: Gemini: elastic snarks for diverse
environments. In: Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT)
(2022)

[BDFG20] Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: Recursive
zk-SNARKs from any Additive Polynomial Commitment Scheme. Cryp-
tology ePrint Archive, Report 2020/1536 (2020)

[BEG+91] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the
correctness of memories. In: Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS) (1991)

[BFR+13] Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.:
Verifying computations with state. In: Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP) (2013)

[BFS20] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK
compilers. In: Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT) (2020)

[BGH19] Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)

[BGtR23] Bruestle, J., Gafni, P., the RISC Zero Team: Scalable, transparent argu-
ments of RISC-V integrity, RISC Zero zkVM (2023)

[BSBHR19] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowl-
edge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 23

https://doi.org/10.1007/978-3-030-26954-8_23

32 A. Arun et al.

[BSCG+13a] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40084-1 6

[BSCG+13b] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Tinyram
architecture specification, vol. 991. en. In:(Aug. 2013), pp. 16 (2013)

[BSCGT13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from
rams to delegatable succinct constraint satisfaction problems. In: Pro-
ceedings of the 4th conference on Innovations in Theoretical Computer
Science, pp. 401–414 (2013)

[BSCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowl-
edge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 16

[CBBZ23] Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-
time prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023. LNCS, vol. 14005, pp. 499–530. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30617-4 17

[CHM+20] Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Mar-
lin: preprocessing zkSNARKs with universal and updatable SRS. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105,
pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45721-1 26

[CMT12] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computa-
tion with streaming interactive proofs. In: Proceedings of the Innovations
in Theoretical Computer Science (ITCS) (2012)

[ET18] Eberhardt, J., Tai, S.: Zokrates - scalable privacy-preserving off-chain
computations. In: 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communica-
tions (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pp. 1084–1091 (2018)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to iden-
tification and signature problems. In: Proceedings of the International
Cryptology Conference (CRYPTO), pp. 186–194 (1986)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: Proceedings of the ACM Symposium
on Theory of Computing (STOC) (2008)

[GPR21] Goldberg, L., Papini, S., Riabzev, M.: Cairo–a Turing-complete stark-
friendly CPU architecture. Cryptology ePrint Archive (2021)

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 11

[GWC19] Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations
over Lagrange-bases for oecumenical noninteractive arguments of knowl-
edge. ePrint Report 2019/953 (2019)

[KST22] Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge
arguments from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022. LNCS, vol. 13510, pp. 359–388. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-15985-5 13

https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-031-15985-5_13

Jolt: SNARKs for Virtual Machines via Lookups 33

[KZG10] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8 11

[Lee21] Lee, J.: Dory: efficient, transparent arguments for generalised inner prod-
ucts and polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC
2021. LNCS, vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-90453-1 1

[LFKN90] Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for
interactive proof systems. In: Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS) (1990)

[Lip89] Lipton, R.J.: Fingerprinting sets. Princeton University, Department of
Computer Science (1989)

[SAGL18] Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of
concurrent services in zero-knowledge. In: Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI)
(2018)

[Set20] Setty, S.: Spartan: efficient and general-purpose zkSNARKs without
trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-56877-1 25

[SL20] Setty, S., Lee, J.: Quarks: quadruple-efficient transparent zkSNARKs.
Cryptology ePrint Archive, Report 2020/1275 (2020)

[Sol23] Solberg, T..: RISC Zero prover protocol & analysis (2023). https://
github.com/ingonyama-zk/papers/blob/main/risc0 protocol analysis.
pdf

[STW23] Setty, S., Thaler, J., Wahby, R.S.: Lasso: Unlocking the lookup singular-
ity. Cryptology ePrint Archive, Report 2023/1216 (2023)

[Tha13] Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
71–89. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40084-1 5

[Tha22] Thaler, J.: Proofs, arguments, and zero-knowledge. Found. Trends Priv.
Secur. 4(2–4), 117–660 (2022)

[WA17] Waterman, A., Asanovic, K.: The RISC-V instruction set manual (2017).
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

[Whi] Whitehat, B.: Lookup singularity. https://zkresear.ch/t/lookup-
singularity/65/7

[WTS+18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zkSNARKs without trusted setup. In: Proceedings of the IEEE
Symposium on Security and Privacy (S&P) (2018)

[ZGK+18] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.:
vRAM: faster verifiable RAM with program-independent preprocessing.
In: Proceedings of the IEEE Symposium on Security and Privacy (S&P)
(2018)

[ZXZS20] Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delega-
tion and its applications to zero knowledge proof. In: Proceedings of the
IEEE Symposium on Security and Privacy (S&P) (2020)

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://github.com/ingonyama-zk/papers/blob/main/risc0_protocol_analysis.pdf
https://github.com/ingonyama-zk/papers/blob/main/risc0_protocol_analysis.pdf
https://github.com/ingonyama-zk/papers/blob/main/risc0_protocol_analysis.pdf
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-642-40084-1_5
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://zkresear.ch/t/lookup-singularity/65/7
https://zkresear.ch/t/lookup-singularity/65/7

