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Abstract. The use of formal methods in software engineering imparts a
high degree of rigor and precision on the software development process.
While formal methods are crucial for ensuring system dependability, their
practical adoption has been limited in part due to scalability concerns,
even though many automated analysis tools are available. In this pa-
per, we address the scalability challenge in one type of formal analysis
approach, model-finding. Prior work on EvoAlloy has demonstrated the
potential for extending the Alloy Analyzer with an evolutionary algo-
rithm by loosening the completeness guarantee while preserving sound-
ness. However, that approach was evaluated on a small set of programs
and failed to find many small-scope models that Alloy can find. In this
work we introduce a new technique, called AdaptiveAlloy, which uses a
novel adaptive fitness function for the analysis of Alloy relational logic
specifications. Through our experiments, we illustrate that AdaptiveAl-
loy is capable of finding models of higher scope, and achieving greater
scalability than both EvoAlloy and a state-of-the-art Alloy analyzer.

Keywords: Genetic Algorithm · Formal Analysis · Adaptive Fitness.

1 Introduction

Software engineers rely on a wide variety of tools to help them develop se-
cure, efficient, and dependable software. In many software engineering domains—
particularly for systems where reliable execution is paramount—developers em-
ploy formal analysis to verify their systems behave as expected. Researchers
have developed and refined a variety of formal approaches to analyze software,
applying their tools to validate software in domains such as autonomous vehi-
cles [17], the Internet-of-Things [2], and database design [19,27]. Unfortunately,
despite great advances in these approaches, formal analysis techniques still face
challenges regarding scalability when applied to large-scale software systems.
Modern analysis tools—e.g., Alloy [12]—attempt to address these challenges by
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defining bounds on the scope of the analysis; these bounded analysis approaches
improve scalability for small applications, but larger scopes remain intractable
even for state-of-the-art techniques.

These scalability challenges stem in part from a reliance on Boolean sat-
isfiability (SAT) solvers, which many state-of-the-art formal techniques share.
These approaches translate a formal specification into a satisfiability problem—
typically represented in conjunctive normal form (CNF)—and provide that prob-
lem to an off-the-shelf SAT solver to solve. This translation from specification
to SAT is a resource intensive process, requiring a great deal of system memory
for large specifications. Once translated, the SAT solver systematically explores
a vast search space which grows exponentially in the number of variables in the
original specification—a total exploration of which may well be intractable.

In cases where the space of possible solutions is simply too large for system-
atic exploration, search-based techniques show promise as a sound alternative.
In particular, EvoAlloy [23] proposed the use of a genetic algorithm to address
the task of finding satisfying models within the Alloy context, yielding promising
results. It represents potential assignments of relational variables in the Alloy
specification as the genotype and utilizes methods such as mutation, crossover,
and selection to navigate the solution space and ultimately reach an assignment
that satisfies all the constraints. While EvoAlloy [23] represents a notable step
forward, it primarily focuses on employing the GA to explore the solution space
and converge on satisfactory assignments. However, its approach to fitness eval-
uation, which relies on “maxsat” and considers only the “top-level” subformulas
of the specification, might not fully grasp the intricacies of Alloy’s relational
specifications. This approach could lead to early convergence on locally optimal
solutions, potentially missing satisfying models of the specification.

In this paper, we present a novel approach that significantly enhances the
capabilities of genetic algorithm-based analysis in the context of Alloy speci-
fications. The key contribution lies in the refinement and depth of the fitness
function employed. Unlike EvoAlloy’s [23] approach, which operates on “top-
level” subformulas, our proposed fitness function delves into the abstract syntax
tree (AST) of the relational formula, offering a granular examination of the spec-
ification’s structure. By traversing the AST and computing the number of genes
that would require modification to satisfy the specification, our approach pro-
vides a more comprehensive and nuanced evaluation of candidate solutions. This
nuanced evaluation enables our method, implemented in our custom tool Adap-
tiveAlloy, to effectively navigate the solution space and converge more quickly
on satisfying solutions. Furthermore, we utilize adaptive fitness (e.g. [3]) in this
domain, which dynamically adjusts the weighting of subformulas based on their
complexity and difficulty in satisfying the specification. This adaptive approach
allows AdaptiveAlloy to allocate resources more efficiently, focusing compu-
tational effort where it is most needed and enhancing the overall effectiveness of
the GA-based analysis of Alloy specifications.

Our comparative analysis of AdaptiveAlloy with the Alloy Analyzer and
EvoAlloy demonstrates scalability and efficiency improvements across various
experimental subjects. Our approach shows enhancements in analysis time of up



AdaptiveAlloy 3

to 182 times faster compared to the Alloy Analyzer and up to 172 times faster
compared to EvoAlloy. Empowered by adaptive fitness functions and granular
AST assessment, our approach demonstrates promising capabilities in addressing
the scalability and performance challenges faced by current state-of-the-art tools.

2 Background and Running Example

In this section, we present a small, yet representative Alloy specification to il-
lustrate our evolutionary search technique and thus motivate our research. An
in-depth discussion of our adaptive approach is outlined in Section 3.

1 abs t rac t s i g Node{}
2 s i g Var extends Node {}
3 s i g Expr extends Node{
4 connec t s : set Node
5 }
6 one s i g Root extends Expr {}
7

8 f a c t S t r u c t u r e {
9 //Root Expression is accessible to every Node

10 Node i n Root .∗ connec t s
11 //No parent for Root Expression
12 no connec t s . Root
13 //Each Expression has exact two child Nodes
14 a l l e : Expr | # e . connec t s = 2
15 //No Expression is its own predecessors
16 a l l e : Expr | e not in e . ˜

connec t s
17 //Each Node has at most one parent
18 a l l n : Node | lone connec t s . n
19 }
20 pred model {
21 some Expr
22 }
23 run model f o r 2 Expr , 3 Var

Listing 1.1: An Alloy specification example
describing a Binary Expression Tree.

Alloy specifications con-
sist of a set of relations, de-
fined in a syntax akin to
object-oriented programming
languages, and a set of con-
straints, expressed as first-
order logic sentences. These
constraints may include tran-
sitive closure over the defined
relations. Additionally, speci-
fications may contain one or
more commands, which aim
to find models satisfying the
constraints or counterexam-
ples, all within a specified
scope defined on one or more
of the relations.

Listing 1.1 depicts an Al-
loy specification of a Bi-
nary Expression Tree (BET).
This specification outlines the
BET’s primary data types us-
ing four distinct signatures
(lines 1-6) and enforces sev-
eral key constraints (lines 8-
19). Specifically, it ensures
that each node possesses at most one parent, every expression possesses exactly
two children, and no expression self-includes. Moreover, the Root expression is
designated as exclusive and holds access to all other nodes.

The Alloy Analyzer translates specifications into a finite relational model us-
ing Kodkod [22]. This process involves defining bounds for each relation, which
encompass possible tuples. Kodkod then converts these relations, bounds, and
constraints into a Boolean formula, which is solved by SAT solvers to identify
valid instances. However, Alloy’s scalability is limited by its reliance on SAT
solvers, which employ an exhaustive enumeration approach, hindering its ap-
plication to real-world systems. In contrast, our approach, AdaptiveAlloy,
replaces SAT solvers with a genetic algorithm, offering improved scalability and
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performance. The next section discusses how our approach successfully achieves
a more economical and scalable model-finding technique by using a novel adap-
tive genetic algorithm in detail.

3 AdaptiveAlloy

Figure 1 presents an overview of AdaptiveAlloy and elucidates its ability
to circumvent the computationally intensive aspects of the current Alloy An-
alyzer. On the top, the Alloy Analyzer first reads an Alloy specification and
converts it into a relational model. This model is then forwarded to Kodkod.
Using the scopes and signature bounds provided by Alloy, Kodkod concretizes
these parameters to define the specification boundaries. To represent this finite
relational model as a Boolean logic formula, Kodkod maps each relation to a
Boolean matrix. Within this matrix, every tuple within the bounds of the given
relation corresponds to a unique Boolean variable. The relational constraints
are then transformed into Boolean constraints over these translated variables.
Subsequently, Kodkod translates the resulting Boolean formula into Conjunctive
Normal Form (CNF), which is then passed to an off-the-shelf SAT solver to de-
rive a solution. Finally, the Alloy interpreter interprets the SAT solver’s output,
translating it into a solution instance.

Fig. 1: AdaptiveAlloy overview

Both EvoAlloy and AdaptiveAlloy modify the process of finding satisfying
models of a given specification by circumventing the traditional SAT solver-based
approach, as depicted in Figure 1. AdaptiveAlloy entails the following steps:
(1) It begins by converting the Alloy specification into a bounded relational
model, akin to the process employed by Kodkod in traditional analysis methods.
(2) Next, it constructs a genotype representation of candidate solutions. This
representation encapsulates the assignments of tuples to the relations within
the model. (3) The crux of our approach lies in executing a genetic algorithm-
based search of the solution space. This search employs crossover, mutation, and
selection techniques, backed by our adaptive Alloy-specific fitness function, to
iteratively explore and refine potential solutions.
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The following subsections detail our approach, focusing on key components:
Genotypic Representation (Sec.3.1) elucidates the methodology behind encod-
ing Alloy specifications, required for enabling our genetic algorithm to effectively
navigate the solution space. Genetic Algorithm Processes (Sec.3.2) delve into
the processes of crossover, mutation, and selection employed by our genetic al-
gorithm, instrumental in iteratively refining and improving candidate solutions.
Following this, our fitness function, which incorporates two core innovations, is
presented: Degree of Violation Computation (Sec.3.3) introduces a method for
computing the “degree” to which a given assignment violates the Alloy specifi-
cation. This granular analysis provides valuable insights into the quality of can-
didate solutions. Lastly, Dynamic Weight Adjustments (Sec.3.4) explains how
our dynamic weight adjustments enhance our approach’s efficacy in navigating
complex solution spaces by allocating more weight to challenging subformulas.

3.1 Genotypic representation
∅ ⊆ Var ⊆ { V 1, V 2, V 3 }
Vars0 = { } =⇒ 0 0 0
Vars1 = { V 2 } =⇒ 0 1 0
Vars2 = { V 1, V 3 } =⇒ 1 0 1

...

Fig. 2: Example (bit-string) chromosome
representation of tuple assignments to
relation Var.

The bounded relational models used
by Kodkod are typically converted
into Boolean variables in the underly-
ing SAT problem by creating a unique
variable to represent each possible tu-
ple assignment to each relation based
on the bounds defined for that rela-
tion. If a given variable is true in a
given candidate solution, the corre-
sponding tuple is assigned to the corresponding relation in that candidate; if
the variable is false, that tuple is not assigned to the relation. In AdaptiveAl-
loy, we use a similar mapping to represent the genotype for each individual as
a set of chromosomes corresponding to the set of relations, where each gene in
each chromosome is a single bit value (1 or 0) representing the assignment/non-
assignment of a specific tuple to that relation, respectively. Thus, each individual
can be defined genetically as a bitstring of genes indicating the assignment/non-
assignment of each relation-tuple pair that falls within the bounds of the specifi-
cation. Figure 2 depicts examples of bit chromosomes created for the Var relation
in the example from Sec. 2.

3.2 Genetic algorithm
For AdaptiveAlloy’s initial generation, we employ a combination of random
gene assignment for the majority of individuals and a domain-specific strategy.
This strategy generates two special chromosomes: one composed of all 1s in a
bit-string format, representing an instance incorporating all tuples for each rela-
tion, and another composed of all 0s, representing an empty tuple set instance,
thus providing a diversity of alleles in the population. Figure 3 provides an il-
lustration of various aspects of AdaptiveAlloy, including its (a) chromosome
representation, (b) two arbitrarily selected chromosomes corresponding to List-
ing 1.1, (c) transformation from tuple-sets form into bit-string chromosome, (d)
crossover step for generating a new bit string, and (e) mutation process over the
bit-string.
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Fig. 3: AdaptiveAlloy’s (a) chromo-
some representation, (b) two arbitrarily
picked chromosomes for Listing 1.1, (c)
transformation from tuple-sets form into
bit-string chromosome,(d)crossover step
for creating a new bit string, and (d)
mutation over bit-string.

Selection: AdaptiveAlloy’s selec-
tor employs a combination of elitism
and tournament selection strategies
to determine the population for the
subsequent generation. Initially, the
selector retains the e most-fit chro-
mosomes from the current population,
adding them unchanged to the next
generation (elitism). Subsequently, it
randomly selects t individuals from
the remaining population and iter-
atively picks the most-fit individual
among those t, repeating this process
until all individuals are chosen (tour-
nament selection). The next genera-
tion consists of a set of survivors, com-
prising the elites (e) and a portion of
the winners from the tournament se-
lection, along with a set of offspring
generated through crossover and mu-
tation. The number of survivors and
offspring is determined based on the
ratio rates, with the total population
size (p) being composed of these indi-
viduals for the subsequent generation.

Crossover: After the mating pool
is established, AdaptiveAlloy em-
ploys the crossover operation to produce offspring for the subsequent genera-
tion. The crossover process starts by randomly choosing two parent genotypes
from the mating pool. Subsequently, a random bit index ranging from 0 to the
length of the shorter of the two bit-string genotypes is selected as the cut point
for one-point crossover. Using this cut point, the crossover operator generates
two new individuals by exchanging the bits to the right of the cut point between
each of the parents.

Mutation: To maintain genetic diversity and prevent premature convergence to
local optima, AdaptiveAlloy employs mutation as a crucial genetic operator.
The mutation process in AdaptiveAlloy involves a strategic combination of
configurable mutation rates and a probability-based selection of mutation opera-
tors. The mutation process operates at two levels: chromosomes and genes within
those chromosomes. The mutation rate for chromosomes, denoted as pindividual,
determines the likelihood that a chromosome will be selected for mutation, while
the gene mutation rate, denoted as pgene, determines the likelihood that a gene
within the selected chromosome will be altered. More specifically, it can be rep-
resented mathematically as follows:

P (mutation) = pindividual × pgene
where P (mutation) represents the probability of mutation occurring.



AdaptiveAlloy 7

Moreover, the mutation operator is determined based on a probability dis-
tribution. The choice of mutation operator is made from a set of options each
with its associated probability. These operators include:

– Chromosome Creation: If the selected chromosome has only 0s assigned
to each individual, the creation operator generates a new equal-length bit
chromosome by randomly assigning 0 or 1 for each gene in the chromosome.

– Chromosome Removal: Each gene in the selected chromosome is replaced
with a 0, effectively altering the chromosome’s composition.

– Chromosome Transformation: The original value of the selected chro-
mosome is replaced with a newly generated bit chromosome.

– Bit Transformation: This operator focuses on altering individual genes
within the selected chromosome. It randomly selects a gene and flips its
value, thereby introducing localized changes.

3.3 Granular Fitness Analysis: Assessing Degree of Violation

Unlike EvoAlloy [23], which relies on high-level assessments of solution quality,
our fitness function delves into the details of the relational formula structure,
offering a nuanced assessment of candidate chromosomes. Specifically, our fitness
function goes beyond simply counting violated constraints, aiming to capture the
diversity and complexity of constraint violations.

To facilitate our fitness function’s analysis, we categorize relational formu-
las into two main classes: (1) Elementary Formulas: These include multiplicity,
comparison, and int comparison formulas. They represent basic building blocks
of the relational formula and can be evaluated directly. (2) Composite Formulas:
These connect multiple elementary formulas with logical operators and often de-
pend on the truth values of more than one subformula. Examples include n-ary,
binary, and quantified formulas.

Fig. 4: The Abstract Syntax Tree of the Con-
straint Formulas

We conceptualize the re-
lational formula as a large
abstract syntax tree (AST),
with the global root symbol-
izing the conjunction of all
subformulas. Figure 4 demon-
strates the AST of the rela-
tional constraints of the run-
ning example. Each leaf node

Fig. 5: Two chromosomes with distinct genetic makeup exhibit varying degrees
of violation for the same constraint
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corresponds to an elementary formula, while composite formulas serve as inter-
mediate nodes, connecting smaller subtrees and leaf nodes. Our fitness function
conducts a detailed examination of the AST of the relational formula to identify
unsatisfied subformulas when a chromosome fails to meet the system constraints.
This process provides a better understanding of the violated constraints, in-
cluding the specific subformulas involved and the extent of their violation. For
instance, consider a constraint ensuring each node in a graph has exactly two
outgoing edges. If a chromosome violates this constraint, we pinpoint the specific
subformulas responsible, such as the multiplicity formula expressing the number
of outgoing edges for each node.

Chromosomes with different genetic makeup produce varying degrees of viola-
tion for the same constraints. Essentially, when a common constraint is evaluated
as unsatisfied by distinct chromosomes, the dissimilarity in their genetic makeup
often results in the violated tuples varying in both quantity and composition.
By analyzing the specific tuples involved in constraint violations, we quantify
the degree of violation for each chromosome. An example of this is illustrated
in Figure 5, where chromosomes C1 and C2 both violate the same constraint,
requiring different degrees of modification to satisfy it. This constraint stipulates
that for all types of Expr, each one should connect to exactly two child Nodes.
Upon evaluating their relational values assigned to Root, Expr, and connects,
C1 requires only one additional tuple for connects to satisfy this constraint. In
contrast, C2 has one extra connected node for R1 and is missing two for E1,
resulting in a total of three tuples needing revision to meet the constraint.

Based on the detailed analysis of constraint violations and the tuple-wise
changes needed for satisfaction, our fitness function computes a fitness score
for each chromosome. This score represents the accumulated number of tuple-
wise changes required to satisfy all constraints, offering a precise measure of
each chromosome’s proximity to a valid solution, as represented by the following
formula: ∑

ci∈Consts

Ft(ci, ch)

where Ft(ci, ch) indicates the number of violating tuples when evaluating
chromosome ch against the ith constraint. This approach precisely quantifies
the distance of a specific formula from being satisfied by a chromosome in terms
of the number of tuples needed to be altered, in contrast to abstractly counting
how many relations are involved in the violation, as considered by prior work.
It also supports our design choice of representing the problem using a bit-string
chromosome at the tuple level.

3.4 Dynamic Weight in Fitness Computation

In addition to tracking the number of tuple revisions required to satisfy each
subformula, our approach incorporates a dynamic weight in fitness value compu-
tation to tackle the challenge posed by exceptionally difficult constraints. These
constraints can often lead to the search converging to local optima, hindering the
effectiveness of the genetic algorithm. The adaptive fitness function is defined as
follows: wi = wi +∆w, ∆w = Fc(ci, ch∗)
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f (ch) =
∑

ci∈Consts

wi × Ft(ci, ch)

Here, wi represents the dynamic weight of the ith constraint, which accumu-
lates the number of failed tuples for chromosome ch when the ith constraint is
unsatisfied. Initially, all weights are set to 1 and are subsequently updated every
certain number of generations by adding given values ∆w. ch∗ denotes the best
chromosome in the population found during the period between two consecutive
updates of the weights, denoted as P .

The value of ∆w is 1 if the best chromosome ch∗ does not satisfy constraint
ci, and 0 when it is satisfied. This implies that the weights of unsatisfied con-
straints are increased by 1 periodically. As the population evolves, constraints
that persistently remain unsatisfied over extended periods are penalized with
higher weights.

When the genetic algorithm encounters a plateau caused by resistant con-
straints, the adaptive fitness function assigns much lower fitness values to chro-
mosomes that satisfy these constraints. This favors the genes of chromosomes
that do not satisfy these constraints to propagate to the next generation, helping
to navigate the search out of local optima more efficiently.

This fitness function ensures truth-invariance by requiring the satisfaction
of the Alloy specification, which necessitates satisfaction of all its relations and
formulas. Our ablation study demonstrates that adaptive fitness outperforms
plain fitness significantly, as discussed in detail in Section 4.

4 Experimental Evaluation
This section presents the experimental evaluation of AdaptiveAlloy. We have
implemented AdaptiveAlloy’s genetic algorithms engine on top of the Alloy
Analyzer, its underlying finite relational model finder, Kodkod [21], and the
Jenetics framework [26]. AdaptiveAlloy consists of two main components:
the Adaptive Evaluator and the GA Generator. The Adaptive Evaluator as-
sesses chromosome satisfiability, measures error degrees, and computes adaptive
weights for the fitness function. The GA Generator produces initial populations,
implements mutation operators for effective solution exploration, and facilitates
chromosome conversion between Kodkod and bit-string representations. Addi-
tionally, it includes a component for transforming chromosome-level model in-
stances into high-level Alloy models at the final stage of the evolutionary search.
We used the AdaptiveAlloy apparatus for carrying out the experiments. The
AdaptiveAlloy prototype and data is available on the project website [24].
Our evaluation addresses the following research questions:

– RQ1. How does AdaptiveAlloy compare to Alloy and EvoAlloy in terms of
both effectiveness and efficiency?

– RQ2. What is the impact of Adaptive AST-Based Fitness compared to
Non-Adaptive Fitness in terms of performance improvement?

Experimental subjects Our experimental subjects consist of publicly avail-
able Alloy specifications with varying sizes and complexities. More specifically,
we use a list of twelve Alloy specifications modeling prominent algorithms (i.e.,
Chord models chord protocol for a peer-to-peer distributed hash table) or ubiq-
uitous systems (i.e., Railway models a simplified railway system that declares
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safety policies for trains) that are distributed with the Alloy Analyzer [1]. When
performing the comparison experiments on this collection of specifications, we
gradually increased the scope of analysis for each specification. Figure 6 displays
the counts of variables and clauses in propositional formulas for each subject
system. The data reflects a notable escalation in both variables and clauses as
the analysis scope progresses from 5 to 25, highlighting the considerable rise in
complexity and computational demands for broader analyses.

Fig. 6: Size Comparison of Variables and
Clauses in Propositional Formulas for
Subject Systems Across Two Analysis
Scopes of 5 and 25.

Spec
Analysis Scope

5 25
Vars Clauses Vars Clauses

abstract-
2,622 4,604 639,497 1,240,899

Memory
birthday 2,503 4,245 179,148 335,100
ceilings 952 1,568 44,002 83,578
chord 13,582 32,551 11,643,597 43,930,456
com 9,031 16,447 2,046,548 4,093,018
dijkstra 578 512 63,878 62,552
fileSystem 2,037 3,965 149,946 409,604
grandpa 1,810 2,985 133,594 255,397
handshake 757 1,335 45,214 99,532
life 2,893 8,307 335,508 1,159,923
lists 2,948 8,613 205,940 756,769
railway 2,941 6,078 242,976 922,713

Experimental Setup We con-
ducted all experiments on a PC
equipped with a 64-core 4.3 GHz
AMD Ryzen Threadripper 3990X
processor boasting 128 threads and
64GB of RAM. To maintain consis-
tency, each experiment was allocated
8 cores (16 threads) and 16GB RAM.
Consequently, a maximum of three
jobs could run concurrently on the
system. Following parameter-tuning,
we heuristically settled on the follow-
ing parameters for all experiments: a
population size of 32, with primary
GA configurations initialized as fol-
lows: 60% offspring fraction, an over-
all gene mutation rate of 80%, and a
one-point crossover with a 60% probability. Additionally, the likelihoods for each
mutation operator were configured as follows: for a selected gene represented by a
string of 0s, a 50% chance for bit-string creation and 50% for single-bit creation;
for a non-empty selected gene, a 20% chance of deletion, 30% for bit-string
transformation, and 50% for single-bit transformation. Regarding the hyper-
parameters of our adaptive algorithm, the incremental adaptive weight was ini-
tially set to 1, and the adaptive step was set to 100 iterations.

4.1 Results for RQ1: Comparison against State-of-the-art

We conducted a comparative analysis of AdaptiveAlloy with two state-of-the-
art tools: Alloy Analyzer (version 5.1) [1] and EvoAlloy [23]. This comparison
aimed to assess how well AdaptiveAlloy scales and performs in terms of
both effectiveness and efficiency across a range of experimental subjects. We
evaluated the effectiveness of AdaptiveAlloy by comparing its scalability with
Alloy Analyzer and EvoAlloy over increasing analysis scopes. Each technique was
subjected to three stopping criteria: reaching a satisfying solution, exceeding
the maximum memory allocation, or surpassing a 24-hour time limit. To reduce
variance, we performed each analysis five times and recorded the analysis time.

Box plots in Figure 7 illustrate the analysis time (in logarithmic scale) in
milliseconds (ms) obtained from Alloy Analyzer, EvoAlloy, AdaptiveAlloy, and
AdaptiveAlloy without dynamic weight across increasing analysis scopes for var-
ious study objects. The notations “M” and “T” in the diagram denote that the
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Fig. 7: Box plots depict the analysis time (in logarithmic scale) in milliseconds
(ms) taken from Alloy Analyzer, EvoAlloy, AdaptiveAlloy, and Adap-
tiveAlloy without dynamic weight over the increasing analysis scope across
objects of study. M denotes exceeding the maximum memory allocation, and T
indicates surpassing a 24-hour time limit.
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corresponding technique cannot identify a valid solution given the available mem-
ory and time resources, respectively; “M” signifies the technique exceeded the
maximum memory allocation and “T” indicates the technique surpassed the 24-
hour time limit. From the experimental results, several observations emerged.
First, for more than half of the specifications, both EvoAlloy and AdaptiveAl-
loy could scale to larger analysis scopes compared to Alloy Analyzer, which fre-
quently encountered memory limitations. This trend was particularly evident in
specifications such as abstractMemory, birthday, and railway. Second, for smaller
scopes where all three techniques performed well, EvoAlloy generally exhibited
running times comparable to, or worse than, Alloy Analyzer. However, Adap-
tiveAlloy outperformed both the Alloy Analyzer and EvoAlloy in terms of the
analysis time required to find solutions. Finally, while EvoAlloy’s genetic algo-
rithm (GA) struggled to efficiently solve certain problems, often hitting the time
limit even for small scopes, AdaptiveAlloy’s advanced adaptive GA approach
proved effective. For instance, in the case of Dijkstra, AdaptiveAlloy achieved
superior performance compared to both Alloy Analyzer and EvoAlloy.

AdaptiveAlloy achieves analysis time improvements of up to 181.62
times faster (with an average enhancement of 20.56 times) compared
to the Alloy Analyzer and up to 172.10 times faster (with an average
improvement of 33.04 times) compared to EvoAlloy across various spec-
ifications.

4.2 Results for RQ2: Ablation Study on Dynamic Weight

To investigate the impact of Adaptive AST-Based Fitness compared to Non-
Adaptive Fitness, we conducted an ablation study on dynamic weight. Our GA-
boosted approach was developed in two phases: initially incorporating advanced
AST-based granular assessment of constraint violation degrees for fitness eval-
uation, and subsequently adding dynamic weights as indicators of the difficulty
level in satisfying specific subformulas alongside fitness based on constraint vi-
olation degrees. Figure 7 outlines the runtime performance of both versions as
the analysis scope increases across the objects of study. The complete form of
AdaptiveAlloy(involving both advanced AST-based granular assessment of
constraint violation degree and dynamic weights in fitness analysis) outperforms
the version without introducing dynamic weight for almost every specification
under analysis, with handshake as the only exception, on which both versions
exhibit similar performance. It is noteworthy that, for most specifications, the
efficiency gained from using adaptive fitness becomes increasingly significant as
the analysis scope increases. Notably, for certain specifications like chord and file
system, the non-adaptive version ran out of memory at smaller scopes compared
to the one using adaptive fitness.

The Ablation Study compared Adaptive AST-Based Fitness with and
without dynamic weights. Results show dynamic weights significantly
outperformed static weights, with improvements ranging up to 5.78 times
(with an average improvement of 3.62 times).



AdaptiveAlloy 13

5 Discussion

The experimental results generally indicate that AdaptiveAlloy’s GA no-
tably improves the scalability of the state-of-the-art without experiencing the
runtime efficiency degradation observed in EvoAlloy. However, a few drawbacks
of AdaptiveAlloy are worth discussing. During the preliminary hyperparam-
eter tuning experiments, we discovered that no universally optimal configura-
tion achieves the best performance across all experimental objects, leaving us a
tradeoff option that keeps significantly better running time on the majority of
the specs, while maintaining acceptable performance for the rest. This results
in AdaptiveAlloy having a larger variance in running time over handshake
and railway, and performs equally or slightly less efficiently when compared to
EvoAlloy. A dynamic parameter tuning technique can potentially further en-
hance AdaptiveAlloy’s performance.

AdaptiveAlloy enhances the precision of its search guidance by evaluating
constraint violation through AST traversal. While this strategy notably boosts
fitness function accuracy and overall performance, it comes with increased mem-
ory consumption, potentially limiting scalability. Jenetics’ memory management
shortcomings exacerbate this issue by retaining allocated memory post-iteration.
Our ablation study revealed that the non-adaptive AdaptiveAlloy variant
faced memory constraints due to prolonged search iterations and residual mem-
ory accumulation. Implementing a memory-efficient GA engine and imposing a
threshold on AST tracking depth could mitigate this challenge.

6 Related Work

Numerous extensions to Alloy and its automated Analyzer have been developed
to enhance its performance and address scalability challenges [2,4,6,7,9,13–15].
Notable among these are Titanium [5], which optimizes analysis time by gener-
ating a complete solution set for original specifications to inform revised ones,
and Platinum [28], which partitions constraints into independent subclauses for
more efficient analyses. Similarly, iAlloy [25] and SoRBoT [18] leverage solution
reuse techniques to enhance efficiency. Aluminum [15] extends the Alloy Ana-
lyzer to generate minimal model instances by iteratively removing tuples from
found model instances until a minimal instance is reached. Unlike our approach,
Aluminum does not incorporate search-based solutions.

EvoAlloy [23] stands out for its focus on scalability, employing evolutionary
algorithms to address Alloy Analyzer’s limitations. However, its oversimplified
problem representation and fitness design hinder its effectiveness. In contrast,
our approach, AdaptiveAlloy, introduces a sophisticated GA with a novel
fitness function and adaptive weight optimization to overcome these limitations.

PLEDGE [16] employs a hybrid metaheuristic search and SMT approach for
improving constraint solving, particularly in system testing. While promising,
PLEDGE’s relies on UML models and OCL constraints. Additionally, PLEDGE
lacks significant scalability improvements over Alloy due to its approach of del-
egating subformulas to an SMT solver, which can be a scalability bottleneck.
In contrast, AdaptiveAlloy focuses on improving scalability and efficiency
through a Genetic algorithm approach, bypassing intensive solvers.
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There is extensive research on using evolutionary algorithms in software en-
gineering [11]. Allmula and Gay [3] propose the use of adaptive fitness functions,
however, their focus is on traditional program code coverage. Godefroid and
Khurshid apply a genetic algorithm to analyze concurrent reactive systems for
errors [10]. ACO-Solver utilizes Ant Colony Optimization for solving intricate
string constraints [20]. Concolic Walk combines linear constraint solving with
tabu search for complex arithmetic path conditions [8]. In contrast, our work
focuses on bounded analysis of large-scale solution spaces specified in relational
logic, requiring original chromosome encodings and fitness functions suitable for
Alloy’s relational logic.

7 Conclusion

In this paper, we introduce a novel approach that enhances genetic algorithm-
based analysis, particularly within Alloy specifications. Our key contribution lies
in the depth of the fitness function, which offers a granular examination of the
specification’s structure by traversing the abstract syntax tree. This nuanced
evaluation, implemented in our tool, AdaptiveAlloy, enables effective navi-
gation of the solution space, leading to globally optimal solutions. Additionally,
we introduced an adaptive fitness, dynamically adjusting subformula weighting
based on complexity. This optimizes resource allocation, enhancing GA-based
analysis efficiency. Our comparative analysis with state-of-the-art Alloy Ana-
lyzer and EvoAlloy underscores significant scalability and efficiency improve-
ments, with AdaptiveAlloy achieving analysis times up to 181.62 times faster
than Alloy Analyzer and up to 172.10 times faster than EvoAlloy.

For future work, we plan to optimize the memory overhead introduced by the
AST traversal tracking procedure as aforementioned. A potential tradeoff can
be restricting the maximum depth of the AST for constraints being exploited.
Our preliminary parameter tuning results reveal that no single global optimal
configuration achieves the best performance for all experimental objects, thus we
would also seek to explore incorporating a learning-based technique to dynam-
ically tune the hyperparameters to enhance the performance when analyzing a
diversity of specifications.
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