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ABSTRACT

Many important behavior changes are frictionful; they require indi-
viduals to expend effort over a long period with little immediate
gratification. Here, an artificial intelligence (AI) agent can provide
personalized interventions to help individuals stick to their goals.
In these settings, the Al agent must personalize rapidly (before
the individual disengages) and interpretably, to help us understand
the behavioral interventions. In this paper, we introduce Behavior
Model Reinforcement Learning (BMRL), a framework in which an
Al agent intervenes on the parameters of a Markov Decision Pro-
cess (MDP) belonging to a boundedly rational human agent. Our
formulation of the human decision-maker as a planning agent al-
lows us to attribute undesirable human policies (ones that do not
lead to the goal) to their maladapted MDP parameters, such as an
extremely low discount factor. Furthermore, we propose a class of
tractable human models that captures fundamental behaviors in
frictionful tasks. Introducing a notion of MDP equivalence specific
to BMRL, we theoretically and empirically show that Al planning
with our human models can lead to helpful policies on a wide range
of more complex, ground-truth humans.
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1 INTRODUCTION

In many Al+human applications of behavior change, Al agents
assist the human in performing frictionful tasks, where making
progress toward the human’s goal requires sustained effort over

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 — 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Siddharth Swaroop
Harvard University
Cambridge, USA
siddharth@seas.harvard.edu

1482

Weiwei Pan
Harvard University
Cambridge, USA
weiweipan@g.harvard.edu

Finale Doshi-Velez
Harvard University
Cambridge, USA
finale@seas.harvard.edu

time with little immediate gratification. Examples include phys-
ical therapy (PT) programs, adherence to scheduled medication,
or passing an online course. Two key challenges for Al agents in
these settings are rapid personalization [26, 35, 43] and learning
interpretable policies for intervention [41, 44]. In frictionful tasks,
since effort exerted by the human does not reap immediate benefits,
the Al agent must learn a personalized intervention policy for each
human in a small number of interactions, or risk disengagement.
These policies must also be interpretable to experts in behavioral
science so that they can discover which interventions work for
which individuals, and investigate why.

Grounded in behavioral literature that treats humans as sequen-
tial decision-makers (e.g. [24, 33, 37, 38, 50]), we model the human
as an agent planning under a “maladapted” Markov Decision Pro-
cess (MDP). In maladapted human MDPs, the optimal policy does
not reach the human’s stated goal; for example, in physical therapy
(PT), the goal may be a rehabilitated shoulder and the maladapted
MDP parameter may be an extremely low discount rate, y. This
results in myopic decision-making, wherein an individual forgoes
the long-term goal (rehabilitated shoulder) to avoid experiencing
friction in the short-term (unpleasantness of PT). The AI agent
helps the individual achieve their long-term goal by changing the
maladapted human MDP (and thereby the optimal policy).

While there is existing reinforcement learning (RL) literature for
optimizing interventions on human utility functions (i.e. reward)
in maladapted MDPs [19, 46, 50], interventions on y have not been
optimized from an RL perspective. On the other hand, in behavioral
science, humans have been observed to use a problematically low
v [34] and scientists have developed interventions to change a hu-
man’s y (e.g. [17]). However, no work optimizes for when and with
what mechanisms to intervene on the parameters of the human’s
maladapted MDP.

In this paper, we introduce a flexible and behaviorally inter-
pretable framework called “Behavior-Model RL” (BMRL). In BMRL,
the human is modeled as an RL agent, whose actions are behav-
iors, such as performing or skipping PT; the Al agent provides
personalized assistance by delivering interventions on the human’s
maladapted MDP parameters. By linking the behaviors of our hu-
man agents to their MDP parameters, BMRL allows us to interpret
the mechanism behind the human’s maladapted decision-making.
Our framework is also more flexible than existing ones since we
allow the Al agent’s actions to include operations on any part of
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the human MDP (such as y). By solving for the Al agent’s optimal
policy, we learn the best set of interventions to change the human
agent’s behavior and to help the human reach their goal.

Unfortunately, current RL approaches have two major draw-
backs when used to solve for the optimal Al agent policy in BMRL.
First, most planning methods are too data-intensive for our set-
ting, in which personalization occurs online. For example, online
algorithms in robotics require thousands of interactions to learn
reasonable policies (e.g. in [39, 40, 45]), but in frictionful tasks, we
are limited to tens to hundreds of interactions [41]. Second, exist-
ing planning methods model the human as a black-box transition
or value function. Unfortunately, in learning black-box represen-
tations of the human agent, we lose the ability to interpretably
attribute human behavior to their MDP parameters.

In this paper, we propose a tractable planning method for the Al
agent in our BMRL framework. Our method provides the Al agent
with a useful inductive bias, in the form of a human model that cap-
tures important behavioral patterns in frictionful tasks. Specifically,
we identify a small, behaviorally grounded model of the human
that the Al agent can leverage to rapidly personalize interventions,
including previously under-explored interventions on y. Then, we
introduce the concept of “Al equivalence” to identify a class of more
complex human models for which Al policies learned in our simple
human model can be lifted with no loss of performance. In our
empirical analysis, we test whether Al planning with our small
model is robust to complex human models that are not covered
by our equivalence result. Throughout all of this, our small model
preserves scientific interpretability— in fact, it has an analytical
solution for the human behavior policy— which allows experts to
inspect and learn from the Al policies.

2 RELATED WORKS

Computational modeling of human behaviors. Behavioral scientists
have developed and verified several computational models of dy-
namic human decision-making. Unlike static models, such as Social
Cognitive Theory [2], dynamic models of decision-making apply
to interactive human-AlI settings, since they capture person-level
variation and changes over time, as in Zhang et al. [47]. Scientists
developed these models to explain offline data from frictionful set-
tings such as health (e.g. [18, 43, 48]), energy [20], and experience
sampling [14] or to capture broader behaviors such as risk [16] and
adherence [27]. However, these models involve too many latent
variables— corresponding to internal human processes— to facili-
tate rapid Al learning from online data. In contrast, we propose
a minimal, behaviorally grounded model, one whose set of latent
parameters is small and structured enough that our Al can learn.

Computational modeling of human agent deficiencies. RL is fre-
quently used to model the complex mechanisms underlying human
behavior, from the firing of dopaminergic neurons in the brain (e.g.
in [24, 33]) to frictionful tasks such as mindful eating [37], weight
loss [1], and smoking cessation [38]. Although these works use RL
to model humans, the models themselves are not used to enrich
planning for an Al agent. One exception is inverse reinforcement
learning, in which the AI agent infers the human agent’s rewards
(e.g. [3, 49]), transitions [30], discount factor [11], or entire MDP
[7, 13, 32], but does not intervene on the parts of the human MDP
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Figure 1: Overview of BMRL. The human agent interacts with
the environment as in standard RL. The Al agent’s actions affect
the human agent. The human agent + environment form the Al
environment.

that are maladapted. When the Al agent does intervene, the changes
are limited to the human’s reward [19, 36, 46, 50] or states [6, 31].
Our BMRL framework is flexible enough to incorporate Al interven-
tions on multiple parts of the human MDP, including the discount
factor or transitions.

Equivalence of (human) MDP models. In RL, there are notions of
equivalence that can reduce larger human MDPs to smaller, more
manageable ones. Equivalence, as defined in bisimulations [10], ho-
momorphism [28], and approximate homomorphisms (e.g. [29, 42]),
requires that one human MDP strictly preserves the transition and
reward functions of another, given a mapping between the state
and action spaces. State abstraction methods, which equate the op-
timal value function between two human-level MDPs, are less strict
[15]. However, these equivalences are still stricter than necessary in
our setting, where we only care that the human MDPs are similar
enough that the Al agent policy will not differ. Furthermore, the
simpler MDPs recovered by these methods are not guaranteed to
be behaviorally valid or interpretable. In our approach, we define
two human MDPs as equivalent if they lead to the same AI optimal
policies, and we use this definition to build up to more complex
human MDPs from a behaviorally interpretable one.

3 THE BEHAVIOR MODEL RL (BMRL)
FRAMEWORK FOR AI INTERVENTIONS

We define a formal framework, called BMRL, in which an Al agent
learns to intervene on a human agent’s maladapted MDP parame-
ters (overview in fig. 1).

3.1 Assumptions on human agent

In BMRL, human agents perform optimal planning on (subcon-
scious) knowledge of their MDP,

My = (Sp Ap, Tps R, Vs Sgs Sa)» (1)

where sg,s5 € Sj, are absorbing goal (e.g. a rehabilitated shoulder)
and disengagement states (e.g. quitting PT).

Though in general, it is possible for the human’s perception of
the states Sy, actions Ay, and transitions Tj, to be maladapted, in
this paper we assume that the human’s perception matches the true
environment. On the other hand, we allow the human’s rewards
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Ry, and discount y, to vary by perception. For example, one may
skip PT because of a tendency to ignore long-term rewards (low
yn) while another may skip PT because they find the workout to
be extremely unpleasant (bad Ry,).

We assume that at any point the human subconsciously “knows”
their own MDP, solves for the optimal policy, and uses it to select
actions. In future work, BMRL can extend to sub-optimal human
planning. Despite being optimal, our human agents are still bound-
edly rational because their MDP is maladapted. That is, under cer-
tain values of yp,, Ry, even an optimal human policy will never lead
to the goal state (e.g. if the path to the goal reward is laced with
extremely negative rewards). The existence of maladapted MDPs in
humans is shown in behavior science, where myopic discounting
has been linked to excessive alcohol intake [34] or miscalibrated
rewards have been linked to unhealthy eating [37]. Despite subcon-
scious knowledge of their own MDP, our human agents are still
boundedly rational because (1) they may not be conscious of their
deficiencies and unable to target them; (2) even if aware, they may
still struggle to change their deficiencies. In both cases, behavioral
interventions (delivered by the Al agent) can help.

3.2 Alagent

Our AI agent encourages the human agent toward the goal by
intervening on the human’s decision-making parameters, such as
Yn- To do so, the Al agent plans according to an MDP,

Mar = (Sar, Aar Tar, Rar YAD: (2)

with known rewards R4 and unknown transitions Taj.

Upon observing state sqgr = [sp, a], which consists of the hu-
man’s current state and previous action, the Al agent must decide
whether to intervene on the human’s discount (a4; = ay), reward
(aar = ag), or to do nothing (as; = 0). In practice, a discounting
intervention a, could be “episodic future thinking,” where indi-
viduals imagine future events as if they are presently occurring
[4]; this could executed as a guided activity in-app. A common
intervention on reward ag is to offer extrinsic rewards, such as
badges [8]. Domain experts would determine how the interven-
tions are executed, e.g. if the burden intervention should be a badge,
motivational message, or cash.

To encourage policies that quickly lead to the goal state, the
Al agent receives a positive reward when the human reaches the
goal state, a negative reward when the human disengages, and a
negative reward for the “cost” of intervening. The AI’s transitions
factorize into two probability distributions, Tar(sar, aar, 51’41) =
P(S;l|5‘h, ah)P(a;lISh, aar) = Ty(sp, ap, s;l)ﬂ'h(a;llsh, aar). The first
distribution refers to the human-level transitions Tj,. The second
distribution is over human actions; it is the human policy that re-
sults from the AT’s intervention on the human’s MDP. Importantly,
we assume that the effect of Al actions on the human MDP is tem-
porary. For example, if the Al agent increases the human’s discount
factor yy, to y}’l in the current time step, the human’s discounting
will have reverted to y, at the next time step.

In table 1, we provide a comparison on what the Al and human
agents separately know and observe. Note that all of the Al agent’s
unknown parameters pertain to the human MDP M}, and are con-
tained in the AT’s transitions T4;. Instead of explicitly learning M},
to form T4y, we could directly estimate T4 or Q% ; using standard

1484

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Human agent Al agent
Knows... Sn. An, Tn, Ry, yn Sar, Aar, Rar
Does not know... - Tar (includes Ty, Ry, yn)
Observes... S, Ap, Aar S, Ap, Aar

Table 1: Overview of what is known, unknown, and observ-
able to the human and AI agent. the Al agent does not know
(and must infer) the human agent’s MDP (Ry, yp) and the true envi-
ronmental transitions (Tj,).

l'pdﬂ

L-p;-p,

Figure 2: Graphical representation of the chainworld.

model-based or model-free techniques. However, by learning Mp,
we take advantage of the known structure of the problem,; the better
the AT’s model of M}, the better the inductive bias for forming T4y
(and therefore 77 ).

4 RAPID PERSONALIZATION IN BMRL VIA A
SIMPLE HUMAN MODEL

4.1 Chainworlds: a simple human model that
captures progress-based decision-making

In this section, we define chainworlds, a class of simple human
MDPs that the Al agent will use as a stand-in model for the true
human decision-making process. Chainworlds are based on the
observation that many frictionful tasks contain a notion of human
progress toward a goal; for example, in PT, the progress toward a
rehabilitated shoulder may be summarized by the current strength
of the joint. We summarize these “progress-based” settings with a
“progress-only” class of human MDPs, shown in fig. 2, which we
call chainworlds and denote M cp,in -
Each element of A}, is as follows:

States sp, € {S0,51,...,SN = S¢,34}. The N states are 1-D, discrete,
and represent progress toward the goal. The goal state at the end
of the chain, sy = s; means that the human has rehabilitated
their shoulder. The disengagement state s; means that the human
has disengaged from PT.

e Actions ap, € {0,1}. The human decides to perform (aj = 1) or
not perform (ay = 0) the goal-directed behavior. In the future,
this could be extended to categorical actions. That said, many
important applications have binary actions, such as "exercise or
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not" in PT, "smoke or not" in smoking cessation, and "adhered or
not" in medication adherence.
Rewards. The human’s utility function is the reward,

rp, a=1
re, s’ <s
Ry(s,a5) =1 &)
rg. =S4
rd, S =S4

Goal behaviors, such as doing PT, incur a cost representing bur-
den r, < 0. Similarly, losing progress incurs r, < 0. The goal and
disengagement states have positive utility, r; > 0 and rg > 0.
Transitions. The human knows that there is p; probability that
they will move toward the goal as a result of the behavior, p,
probability that they will lose progress from abstaining, and
pq probability that they will disengage from abstaining. These
probabilities are fixed across states, except for the first state so,
which has a separate probability of disengagement pyq > pg-
Discount. The human exponentially discounts future rewards
via y, € [0,1). We leave other behaviorally relevant forms of
discounting, such as hyperbolic discounting [9], as future work.
Effect of Al interventions. When aar = a, the human’s discount
Yn increases by Ay > 0, and when a4; = aj the human’s burden
rp < 0 decreases by Ay. We clip y; + Ay to be between 0 and 1.

Each individual is an instance of the chainworld, My € cphain,
with parameters 0 = {ry, r¢, rg, rq, Pg> Pes Pds Pdo> Yh» Dys Dp}. For
example, some people tend to prioritize short-term rewards (with a
low yp,) while others prioritize long-term rewards (with a high yy).
The parameters 6 must be inferred by the AL

Closed-form Solutions for Human Policies in Chainworlds. Chain-
worlds are inspectable to behavioral experts because there is an
analytical solution for the optimal value function (all derivations in
appendix A [25]). For a chainworld MDP My € M cpain, the optimal
value function maximizes between the value of a policy that always
pursues the goal, 74(sp) = 1, and the value of a policy that always
chooses to disengage, 7;(sp) = 0, where s, forn € 0,..., N refers
to the n-th state on the chain. The value of goal pursuit is,

) ; ©

where z = 1 - y(1 - pg). The value of goal pursuit, Vgﬂg (sn), trades
off between the long-term utility of the goal (the r4 term) and the
burden one accumulates to get there (the rj, term). The value of
disengagement is,

Vi (sm) = ra (2292 (

1- (YPg/Z)Nin
1-y

YPg

N-n
) +13
z

Vgng(sn) :rg(

pey

u

1- (YPe/u)")
1-y(1-pg) )’
(5)

wherev = 1—y(1—-pgo) andu = 1—y(1— pg — pe). The first term
in the equation (with r;), represents the value of disengagement
from state 0, after having lost all prior progress. The second term
represents the value of disengagement after state 0, which factors
in the cost of disengagement r; and of losing progress r.

These equations allow us to hypothesize about the diverse space
of Al actions that will encourage the human towards the goal, such

) +(yparatpere) (
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as actions to increase the human’s level of motivation (increasing
rg) or that highlight the consequences of quitting (decreasing r).

4.2 Different humans yield different Al policies

At this point, we have fully specified an AT MDP as defined in sec-
tion 3.2, in which the human MDP is a chainworld My € A pin-
Solving this Al MDP will yield an optimal Al policy, which is the
best intervention plan for a given human with parameters 6. Impor-
tantly fig. 3 demonstrates that personalization is necessary because
humans with different 0 require different optimal Al policies.

(a) Highly myopic human (y = 0.1) with high burden (r, = -2).

Sq s3 | S

0

S0 51 S2 54

0

g

0

ap ay |a,/ay|a,/ay

(b) Highly myopic human (y = 0.1) with low burden (rp = —0.3).

Figure 3: Example of different optimal AI policies for two
humans with different chainworld parameters. Each square is
a chainworld state. An a;, means Al should select action to reduce
rp, while ay means Al should select action to increase y. Red solid
and blue dotted lines show start and end of intervention window.

5 THEORETICAL ANALYSIS: WHEN IS
CHAINWORLD GOOD ENOUGH?

In this section, we define an equivalence class of more complex
human MDPs for which an Al agent that plans with the chainworld
can still learn the optimal policy.

Definition 5.1 (Al equivalence of human MDPs). We consider two
human MDPs M}, = M}, under state mapping f : S — Sy, and
action mapping gs : Ay — Ay, if the corresponding optimal Al

policies are equal, so that 7%, ( [sp. ap] ) = 74, ( [ (s) gs, (an)])
for all sy, a] € Sar-

The state mapping f and (state-specific) action mapping g let
us map from the state and action space of one MDP to the other. In
terms of the chainworld, our definition states that if the optimal AI
action in the chainworld MDP is the same as the optimal Al action
in the true MDP for all states (after applying the mappings), then
the two are equivalent.

Our equivalence in definition 5.1 is not as strict as the homo-
morphisms equivalence. Unlike homomorphisms, we do not seek
human MDPs that have the same rewards and transitions as chain-
world. In fact, we do not even seek MDPs that result in the same
optimal human policy as chainworld. Instead, we only care that the
two human MDPs are similar enough to result in the same optimal
Al policy. As a result, we get the largest set of human MDPs that
admits simple planning of optimal interventions by the Al agent.



Full Research Paper

5.1 Optimal AI policies for chainworld MDPs

Under definition 5.1, the class of MDPs that is equivalent to chain-
worlds is determined by the space of Al policies that chainworlds
can express. In this section, we show that all chainworld MDPs
Mg € Mepain result in Al optimal policies that follow a “three-
window format.” which we refer to as I1. Throughout this section,
we describe the Al policy in terms of the chainworld states, s,
where n refers to n-th state on the chain; even though the previous
human actions are technically part of the Al state, they do not affect
the best current action in the AI’'s optimal policy.

A “three-window” Al policy consists of: window 1 (no inter-
vention is effective enough to make human perform the behavior),
window 2 (intervention window), and window 3 (human performs
behavior without intervention). Two examples are in fig. 3. The
size of these windows varies and may even be 0. For example, if the
interventions have no effect (A, = 0, A, = 0) then the intervention
window will be size 0. The three windows are a consequence of
how the AT’s action affects the human’s optimal policy; when the
Al agent intervenes on the human, it changes the human’s MDP pa-
rameters, which in turn, might change the human’s optimal policy.

To succinctly describe the human’s optimal policy, we introduce
“human thresholds” ¢t in definition 5.2; when the human is in a
state past the threshold, their optimal policy is to pursue the goal.
A human with a smaller threshold t will pursue the goal from
farther away. An effective Al action moves the threshold ¢ to a state
preceding the human’s current state, so that the human chooses to
move.

Definition 5.2 (Human threshold). For a chainworld My € M chain,
define t € {0,...,N — 1} as the threshold where ﬂ;(sn) = 0 for
n< tand:r;(sn) =1forn>t.

Even if the Al agent can intervene to prompt the human toward
the goal, whether or not the optimal Al does intervene depends on
the configuration of the Al rewards. If intervening has negligible
cost, then the Al agent will intervene as soon as it is able. On the
other hand, if there is a high cost, then the Al agent will wait until
the human is closer to the goal, to minimize the total number of
interventions needed. We define Al threshold t4; below, as the
point at which the reward of reaching the goal outweighs the cost
of interventions required to reach it:

Definition 5.3 (Al threshold). For a human chainworld My €
M chain and AT MDP M 41, define Al threshold t47 € {0,...,N —1}
as the chainworld state in which the value of the goal is greater
than the value of disengagement. For states s, where n > t47, the
Al values are V:Ig (sn) > V:}” (sn), and for states where n < t4, the

TT,
Al values are V[ (sn) < VXId.

The human and Al thresholds define the intervention windows for
the Al policy in theorem 5.4.

THEOREM 5.4 (CHAINWORLD Al POLICIES). Suppose we are given:

o An AI MDP M1 = (Sar, Aar, Tar, Rar, yar), where the ac-

tions are to do nothing (aa;r = 0), intervene on the discount
(aar = ay), or to intervene on burden (aar = ap)

o A human MDP My € M cp4in, Which results in human thresh-

olds t;)l, t;:, and t}li under Al actions 0, ay, and ay, respectively
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min _ s 0 .Y
Let th = min {th’ th’
result of any Al action. Let ta; denote the Al intervention threshold,
as in definition 5.3. Then, the optimal Al policy is,

tz} denote the earliest human threshold as a

0, n<gmn
0, t}’l”l” <n < tar
Tar(sn) = {ay, max{tar, t}:} <n< tg (6)
ap, max{tag, tZ} <n< tg
0, n> tZ’

and 7y belongs to the three-window policy class, II.

The proof is in appendix B.1 [25]. Note that if both a;, and ay, are
valid options in the intervention window (when g7 < n < tg), then
the Al agent will prefer the less expensive intervention. Theorem
5.4 shows that every chainworld results in an optimal Al policy
belonging to I1. Theorem 5.5 shows the reverse; for any human
MDP whose corresponding Al policy is 747 € II, there exists a
chainworld MDP whose Al policy is also z4j.

THEOREM 5.5 (CHAINWORLD EQUIVALENCE CLASS). If human MDP
My, has corresponding Al policy may € 11, then 30 for My € M opain
such that Mg = My,

Proof in appendix B.2 [25]. Theorem 5.5 means that any human
MDP that results in a three-window AI policy—that is, consists of
three regions: impossible to help, can be helped by the Al and does
not need help— belongs to the chainworld equivalence class. In
section 6, we will show that the Al agent can plan interventions
using chainworld as a substitute for another human MDP in the
same class, without any loss in performance.

5.2 Realistic human models that are equivalent
to chainworld

Ultimately, we care that the chainworld equivalence class contains
realistic models of humans that align with the behavioral literature.
In this section, we provide examples of human MDPs that capture
a meaningful behavior not covered by chainworlds, yet whose
optimal Al policy is still in the equivalence class II.

Monotonic chainworlds. In monotonic chainworlds, the closer
one gets to the goal, the higher the relative value of pursuing it.

Definition 5.6 (Monotonic chainworlds). For a monotonic chain-
world M, the value of goal-pursuit increases closer to the goal:
V79 (sp) — V™ (sp) < V™9 (sps1) — V7 (sp41) for all states n
1,...,N-1.

For example, consider chainworlds in which the probability of
disengagement p; decreases the closer the agent is to the goal (the
human is less likely the quit the closer they are to recovery). Mono-
tonic chainworlds relate to the goal-gradient hypothesis, which
states that motivation to reach a goal increases with proximity [23].
In appendix C.1 [25], we prove that all monotonic chainworlds are
Al equivalent to our chainworld.

Progress worlds. Progress worlds, while potentially multi-dimensional,

have a one-dimensional notion of progress.
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Definition 5.7 (Progress worlds). Suppose M is a D dimensional,
path-connected graph with an absorbing goal state s4, an absorb-
ing disengagement state s;, and actions that allow movement be-
tween states on the graph. Let d(s,s”) denote the shortest graph
distance from s to s’. M is a progress world if d(s, sg) = d(s’, sq)
and d(s, sg) = d(s’, s4) for all pairs of s5,s" € S.

In our PT example, “progress” may depend on a combination of
metrics such as joint strength, the ability to perform daily tasks,
and so on. We show in appendix C.4 [25] that worlds in which
states can be mapped to a one-dimensional distance are equivalent
to our chainworlds. This type of equivalence is simple yet useful,
as it lets us reduce high-dimensional worlds to a single dimension
of interest. Definition 5.7 restricts us to graphs in which all shortest
paths between the disengagement and goal state are of the same
length. Intuitively, this means that a single chainworld can represent
all paths (and therefore, the entire world). Though not all graphs
are progress worlds, in our empirical experiments, we test the
chainworld AT’s robustness to graphs that break this definition.

Multi-chain worlds. In multi-chain worlds, there is a principle
dimension that corresponds to progress toward the goal (as in our
simple chainworld) but there may be several additional dimensions
associated with different ways of dropping out.

Definition 5.8 (Multi-chain worlds). A multi-chain world M con-
sists of C chains, each of length N¢. The first chain, ¢ = 0, is the
goal chain; when the human reaches the end of this chain, they
have reached the goal. The remaining chains, sy, ..., sc—1, are dis-
engagement chains; when the human reaches the end of any of
these chains, they disengage. When a = 1, the human moves along
the goal chain with probability po while staying still in the disen-
gagement chains. When a = 0, the human stays still in the goal
chain and (independently) moves along each of the ¢ disengagement
chains with probability p..

In our PT example, the principle chain might still correspond to
the overall strength of the joint as a measure of progress toward re-
covery. Additional chains, corresponding to the level of motivation,
level of pain, etc., may all represent mechanisms that cause disen-
gagement. This form of multi-chain reflects how disengagement
is described in the behavioral literature (e.g. [21, 22]). In appen-
dix C.5.1 [25], we show equivalence to multi-chain worlds whose
disengagement chains are of length 2, which corresponds to real-
world situations in which one of many factors can abruptly trigger
disengagement at any point (e.g. the PT patient is re-injured).

Negative effect worlds. These are chainworlds in which the Al
intervention has the opposite intended effect on the human.

Definition 5.9 (Negative effect worlds). A negative effect world
M is defined exactly as the chainworld, except that A, < 0 (Al
intervention on discount yj, decreases it) or A, > 0 (Al intervention
on burden ry, increases it).

The efficacy of a behavioral intervention is known to vary by
individual (e.g. [5]). In appendix C.2 [25], we prove that negative
effect worlds result in Al policies that correspond to chainworlds
where the intervention has no effect (i.e. Ay = 0 and A;, = 0).
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6 EMPIRICAL ANALYSIS: TESTING
ROBUSTNESS OF CHAINWORLD

We test how Al planning using chainworld benefits performance,
especially as we remove our assumptions and make the true human
model dissimilar to chainworld.

6.1 Setup

All experiments are over 200 trials of 15 episodes each, and each
trial corresponds to a human whose MDP parameters 6 are sampled.
Not all settings of 6 correspond to individuals that can reach their
goal—for example, consider a human whose burden is so high that
no Al intervention can make them act. Here, we report results for
the subset of sampled humans that can reach the goal under the
oracle Al policy. Doing so preserves the relative ordering of method
performances and reduces noise; in appendix fig 11 [25] we give
an example of results that include individuals who never reach the
goal.

Baselines. Our baselines are ways to learn the Al policy online.
Using data D ay = {(sar, aar, 31'4[, rar)}, the model-free approach
directly estimates Q’,; via Q-learning. The model-based method
estimates T4y using the observed transitions and then solves for
7y with certainty equivalence. Both approaches bypass the need
for explicitly solving for a human policy. The always y and always
B are “no personalization,” in which the Al policy is to always inter-
vene on y and B, respectively. Our method, chainworld, estimates
the parameters 0 from D4j.

6.2 Results under no model misspecification

In perfect conditions, the AI agent can use chainworld to
reach oracle-level performance in the fewest episodes. When
the true human matches our inductive bias, i.e. both are chainworlds,
we achieve the fastest personalization in fig. 4. In contrast, model-
free requires hundreds of episodes before it learns policies that
are better than random (which we demonstrate in fig. 10 of the
appendix [25]).

= Random = Model-based

= Oracle Always 7,

Chainworld (ours) = Model-free = Always v

Chain world

/\/¥

Al Rewards

ot

10
Episode

Figure 4: When the true human model is a chainworld, our
method rapidly personalizes. Plot is Al rewards (y-axis) over
multiple episodes (x-axis). Lines in upper-left personalize quicker.

Our method’s performance scales to high-dimensional
human models equivalent to the chainworld. In the prior theo-
retical section, we provided examples of human MDPs that reduce
to the chainworld. The gridworld in fig. 5a is one such world since
it is a type of distance world. In fig. 5, our method still person-
alizes the fastest in increasingly large state spaces, because the
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= Qracle Chainworld (ours) = Random = Model-free = Model-based = Always v Always 1,
X=6,Y=3 0 X=8Y=5 0 X=10,Y=7
N = ;
- Z S W
]
g 5 10 15 5 10 15 5 10 15
X Episode Episode Episode
(a) (b) 18 total states (c) 40 total states (d) 70 total states

Figure 5: Chainworld scales to large gridworlds. Example gridworld on left. Going right, the grid’s width (X) and height (Y) increases.

Assumption ‘ Equiv? ‘ Low misspecification High misspecification

‘ ‘ Chainworld (ours) Top baseline ‘ Chainworld (ours) Top baseline
Noise in burden ry, No —14.47 £ 3.63 —14.43 £3.63 | —35.96 * 3.36 —3343+34
Noise in utility of goal ry No -5.53+1.71 -14.76 £3.38 | —6.9 £2.22 —14.66 + 3.34
Noise in utility of progress loss ry No -5.97+1.94 —14.78 £3.39 | —=11.01 £3.29 —15.43 £3.54
Noise in utility of disen. ry No —8.08 +£2.58 —15.18 £3.44 | —13.38 £3.54 —14.63 £ 3.41
Noise in prob. of disen. py No —5.03 + 1.46 -14.78 £3.39 | —6.41 £2.45 -12.13 £ 4.05
Noise in prob. of disen. at state 0, pgq No —-5.8+1.86 —14.81+3.4 —5.83 £1.86 —14.36 £3.3
Noise in prob. of losing progress p, No —5.05+1.51 -14.78 £3.39 | =5.19 £ 1.81 —13.38 £ 4.13
Noise in prob. of making progress py No -5.82+1.77 -15.24+3.49 | —19.38 £4.34 —17.85+£3.72
Noise in discount yp, No —=7.75+2.42 —-15.83 £3.56 | —20.7 +4.03 —-21.19 £ 3.93
Params. fixed across states Yes - -
Mapping many dimensions to chainworld Yes — -
Wrong distance to goal in mapping No —21.18 + 3.84 -15.62+3.15 | -35.8+3.8 -24.52+3.3
Wrong distance to disengagement in mapping | No -10.11 + 2.44 -15.62 +2.44 | —27.27 £ 3.86 —24.52+3.3
Diseng. from multiple factors Yes — -
Human selects actions non-optimally No -7.23 £2.27 —16.01 £4.01 | —24.27 £3.85 —23.39 £ 3.68
Al intervention has negative effect Yes

Table 2: Reward earned by the Al in episode six. Each row is an assumption violated by the environment. Chainworld is better
than or within 95% confidence interval of the top-performing baseline (out of five total baselines) in all but one setting. Conditions
marked with “yes” in the “Equivalence?” column were shown in section 5.2 to preserve theoretical equivalence under misspecification.

number of chainworld parameters is invariant to the size of the
gridworld. On the other hand, model-based degrades; it is worse
than the personalization-free baselines and the same as random
baselines, even after 15 episodes. This is because the transition
matrix that model-based must estimate scales with the size of the
gridworld. Model-free approaches are even more inefficient in the
2-D setting than in the 1-D chainworld.

6.3 Robustness results under model
misspecification

In true frictionful settings, the Al agent will encounter humans that
are more sophisticated than the chainworld. Our remaining experi-
ments in table 2 test if Al performance is robust to misspecification
when we remove our assumptions about humans. In section 5.2,
we theoretically showed that a subset of these assumptions can
be removed without affecting the Al The remaining assumptions
we test empirically, and we show our method is more robust to
increasing levels of misspecification than baselines. The definition
of “low” vs. “high” misspecification is specific to the experiment.
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Experiment on noise in chainworld parameters. In this experiment,
we test Al performance when the true human model is a chain-
world whose parameters vary each timestep due to noise. This
mimics situations in which unobservable factors, such as mood,
affect parameters, such as burden rj,. We vary each parameter in
isolation. Our comparison must account for the domains of differ-
ent parameters, since yy, € (0, 1) while rewards such as r;, € R. At
each timestep, the parameter of interest x is sampled uniformly
from x ~ Uniform(x — ec, ¥ + ec), where x is the mean parameter
value for that individual and the noise level is determined by the
parameter range ¢ and the error level € € [0, 1]. We set parameter
range ¢ = 5 for reward parameters and to ¢ = 1 for transition pa-
rameters and yy. We define low misspecification as is € = 0.1 and
high misspecification as € = 0.5.

Experiment on action selection. Instead of optimally, humans se-
lect actions according to a softmax policy, 7, (als) o exp{Qp(s, a)/€},
where ¢ is the level of noise. We define low misspecification as
€ = 0.05 and high misspecification as € = 0.2.

Experiment on misspecified mapping. This experiment tests ro-
bustness to differences in model structure. The true human is no
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= Oracle Chainworld (ours) = Random = Model-free = Model-based = Always v Always 7y
Noise in 7, Noise in Noise in 7y

» 0 s 0 5 0
S = — S
g g e g
£ 925 £ -25 Z _95 X
~ [aed ~ =
= . = =

50 —50 —50

0.2 0.4 0.2 0.4 0.2 0.4
Noise level Noise level Noise level

(a) Chainworld robust to low and high mis.

(b) Chainworld is robust to low mis.

(c) Environment challenges all methods.

Figure 6: Examples of robustness experiments. Chainworld is robust to all levels of misspecification fig. 6a, robust to low levels of
misspecification with maintainence at high levels fig. 6b, and all methods, including oracle, struggle to perform well in fig. 6¢c. Details and
plots for all environments in appendix D.1 and E.3 [25], respectively.

longer a chainworld, but a gridworld as in fig. 5a. However, the grid-
world in this experiment is no longer equivalent to our chainworld
because the goal state s, is not in the lower-right corner at [X, 0].
In fact, the equivalence degrades as € increases for [X, €]. We set
the grid dimensions as X = 8, Y = 5 and define low misspecification
as € = 1 and high misspecification as € = 4.

We are robust to low levels of misspecification. In table 2,
our method outperforms baselines in 9 out of 12 robustness experi-
ments under low levels of misspecification. With high misspecifica-
tion, when our method is not the best, it falls within two standard
errors of the next-best method in all but one condition.

Some humans are difficult to intervene on overall, even for
the oracle. All methods, including the oracle, earn fewer rewards
when the burden parameter ry, is noisy (see fig. 6¢). This indicates
that it is particularly important to model rj, well in frictionful tasks.
For example, we may ensure that features predictive of burden, such
as mood, are part of the AI’s state space, so that we can estimate ry,.

To reduce (non-equivalent) human models to the chain-
world, it is important that we capture distance to goal well.
Since chainworld is one-dimensional, it can only represent worlds
whose multi-dimensional states can be mapped to one dimension.
When such a mapping is not possible, we must choose between
capturing progress toward goal (e.g. how far does the patient feel
from shoulder recovery?) or distance from disengagement (e.g. how
close to giving up does the patient feel?). Under the “wrong distance
to goal / disengagement mapping” condition in table 2, we show
that capturing progress toward goal matters more. This implies
that chainworlds can still be applied to settings where we cannot
model all factors that lead to disengagement, so long as we have an
accurate way of measuring the human’s progress to the goal.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced Behavior Model Reinforcement Learn-
ing (BMRL), a framework for AI agents to intervene on human
agents performing frictionful tasks. We proposed a simple model
of the human agent- the chainworld- that the AI agent can use
to rapidly personalize. Using a novel definition of equivalence be-
tween human models in BMRL, we defined a theoretical class of
human MDPs that chainworld can generalize to and showed that
this class contains behaviorally meaningful models of humans.
Our chainworlds are not psychologically verified human models;
in future work, we will formally test the modeling assumptions
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with user studies. To apply BMRL in the real world, we must also
consider the ethics of Al intervention. Mainly, we must ensure the
Al does not manipulate the human. BMRL should only be used
for people who already have a long-term goal, and the AI must
not change that goal. Subgroup fairness should also be considered
during learning and personalization.

Although we aimed to be comprehensive in testing chainworld’s
robustness, there were limitations to our approach. First, we did not
evaluate how multiple misspecifications may compound to affect Al
performance. Second, our analyses assumed that the mapping from
the true MDP to the chainworld is given. In some applications this
is reasonable; in PT, a domain expert is likely to know which factors
contribute to a patient’s perception of “progress” (the mapping from
a distance world to a chainworld). In other cases, one will need to
learn this mapping in conjunction with the chainworld parameters.

We made several simplifying assumptions on the human + Al
interactions. We avoided a POMDP formulation by assuming that
there are no delayed effects of the AI’s actions on the human MDP.
However, habituation (reduced effectiveness of repeated interven-
tions) is a well-studied phenomenon in digital interventions (e.g.
[12]). Furthermore, we avoided multi-agent RL by assuming that
the human is not learning, and instead, is solving an (implicitly)
known MDP at each time step. We did not consider suboptimality of
the human agent’s planning, such as (small) fixed-horizon planning.
Finally (and excitingly), BMRL is adaptable to more diverse Al in-
terventions. Our paper focused exclusively on interventions to the
human’s discount and reward. In many applications, the human’s
perception of state, actions, and transitions may also be impaired.
Similarly, behavioral interventions on perceptions of state, actions,
and transitions exist and could be incorporated into our framework.
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